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Abstract

Video camouflaged object segmentation (VCOS), aiming at segmenting camou-
flaged objects that seamlessly blend into their environment, is a fundamental vision
task with various real-world applications. With the release of SAM2, video seg-
mentation has witnessed significant progress. However, SAM2’s capability of seg-
menting camouflaged videos is suboptimal, especially when given simple prompts
such as point and box. To address the problem, we propose Camouflaged SAM2
(CamSAM2), which enhances SAM2’s ability to handle camouflaged scenes with-
out modifying SAM2’s parameters. Specifically, we introduce a decamouflaged
token to provide the flexibility of feature adjustment for VCOS. To make full use
of fine-grained and high-resolution features from the current frame and previous
frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fu-
sion (EOF) modules, respectively. Object prototype generation (OPG) is introduced
to abstract and memorize object prototypes with informative details using high-
quality features from previous frames. Extensive experiments are conducted to
validate the effectiveness of our approach. While CamSAM2 only adds negligible
learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS
datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask
and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the
backbone. The code is available at https://github.com/zhoustan/CamSAM2.

1 Introduction

Camouflaged object detection (COD) and video camouflaged object segmentation (VCOS) aim to
identify objects that blend seamlessly into their surroundings. Unlike standard object segmentation
tasks, where objects typically exhibit clear boundaries and contrast with the background, camouflaged
objects are naturally indistinguishable from the background. These tasks have various applications
in wildlife monitoring, surveillance, and search-and-rescue operations [1, 2]. COD focuses on
detecting camouflaged objects in individual images, while VCOS extends it to video sequences,
adding the complexity of modeling temporal information across frames. Despite recent advancements
in COD [3, 4, 5, 6, 7, 8, 9] and VCOS [3, 4, 10, 11, 12, 13, 14], the performance remains far from
satisfactory compared to general segmentation tasks.

The recently introduced vision foundation model, Segment Anything Model 2 (SAM2) [15], marks a
significant advancement in video segmentation. SAM2 has learned rich and generalizable representa-
tions for natural scenes on the SA-1B [16] (11M images, 1B masks) and SA-V [15] (50.9K videos,
35.5M masks) datasets. Therefore, its features are optimized for natural scenes, while SAM2’s ability
of segmenting camouflaged objects is suboptimal, as in [17, 18]. Following the setting of SAM2,
we apply point, box, or mask prompts on the first frame of each video. Specifically, we randomly
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Figure 1: Illustration of SAM2 and CamSAM2. Top: SAM2’s segmentation of the camouflaged
object is suboptimal, primarily because its feature optimization is biased toward natural videos,
and its design does not account for the unique challenges inherent to VCOS. Bottom: CamSAM2
improves SAM2’s ability to segment and track camouflaged objects by introducing a decamouflaged
token, IOF to enhance features with high-resolution features, and EOF and OPG to further enhance
features by exploiting informative object details across time. CamSAM2 only adds a limited number
of parameters to SAM2 while keeping all SAM2’s parameters fixed and fully inheriting SAM2’s
zero-shot ability. The segmentation result is overlaid in orange on the frame.

sample a point within the ground truth region as a point prompt, extract the tight bounding box as the
box prompt, or use the full ground-truth mask as the mask prompt. As shown in Fig. 1, with a point
prompt, SAM2 segments only part of a camouflaged animal (hedgehog), indicating that there is still
room for improvements in VCOS.

This paper aims to develop a model for accurate segmentation in camouflaged videos, requiring
both natural image understanding and effective identification of camouflaged objects in complex
environments. To achieve this, we identify two core challenges in adapting SAM2 for VCOS: (1)
SAM2 is optimized for natural scenes rather than camouflaged environments. (2) The architecture
does not account for the complexities of segmenting and tracking camouflaged objects across time.
For VCOS, accurately segmenting camouflaged objects for a frame requires: a) exploiting fine-grained
and detailed features from the frame, and b) considering the temporal evolvement of fine-grained
features from previous frames. For exploiting temporal information, SAM2 is equipped with a
memory module containing a memory encoder and a memory bank. However, only low-resolution
and coarse features are encoded into the memory, which is suboptimal for accurate VCOS.

To tackle the above limitations and fully keep SAM2’s ability to process natural videos, we introduce
Camouflaged SAM2, dubbed as CamSAM2, equipping SAM2 with the ability to effectively tackle
VCOS, as depicted in Fig. 1. CamSAM2 includes a learnable decamouflaged token, which extends the
token structure of SAM2 and provides flexibility to optimize features for VCOS without modifying
SAM2’s trained parameters. To exploit the fine-grained features of the frame, we propose the Implicit
Object-aware Fusion (IOF) module, which leverages high-resolution features from the early layers of
the image encoder to enhance the model’s perception of fine-grained details. To make use of detailed
features from previous frames, we further propose Object Prototype Generation (OPG) to abstract
high-quality features within the object region into informative object prototypes through Farthest
Point Sampling (FPS) and k-means. Those object prototypes are saved to memory for easy usage by
the Explicit Object-aware Fusion (EOF) module that is designed to integrate explicit object-aware
information across the temporal dimension. Our design avoids saving the high-resolution features in
the memory and only adds negligible computations to SAM2 while accounting for a large amount of
temporal information.

We conduct extensive experiments in §4 to validate the effectiveness of CamSAM2 on three VCOS
benchmarks: two camouflaged animal datasets, MoCA-Mask [4] and CAD [19], and one camouflaged
medical dataset, SUN-SEG [20]. Our experiments show that CamSAM2 significantly outperforms
SAM2 by achieving improvements of 12.2/13.1 mDice scores with click prompt on MoCA-Mask for
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Hiera-T/Hiera-S backbones, and 19.6 mDice gains with mask prompt on SUN-SEG-Hard for Hiera-T
backbone. When directly evaluating CamSAM2 on CAD without further finetuning, we observe
strong zero-shot ability. Since all SAM2’s weights remain unchanged, CamSAM2 totally inherits
SAM2’s capability on segmenting natural videos. In summary, our contributions are three-fold:

(1) We propose CamSAM2 to equip SAM2 with the ability to segment and track camouflaged objects
in videos while keeping SAM2’s strong generalizability in natural videos. (2) CamSAM2 introduces
a decamouflaged token to achieve easy feature adjustments for the VCOS task without affecting
SAM2’s trained weights. To effectively exploit the crucial fine-grained and high-resolution features
from both the current frame and previous frames, we propose IOF, EOF, and OPG modules. (3) Our
approach clearly outperforms SAM2 and sets new state-of-the-art performance on public VCOS
datasets. Experiments also show the strong zero-shot ability of CamSAM2 in the domain of VCOS.

2 Related work

2.1 Camouflaged object detection

Camouflaged Scene Understanding (CSU) focuses on interpreting scenes where objects blend closely
with their backgrounds, such as natural environments like forests, oceans, and deserts. Early works in
this field primarily involved the collection of extensive image and video datasets, such as CAMO [21],
COD10K [22], NC4K [23], CAD [19], MoCA-Mask [4], and MoCA-Mask-Pseudo [4], which laid
the foundation for CSU. Traditional COD methods extract foreground-background features using
optical features [24], color, and texture [25]. Deep learning has advanced COD with CNNs and
transformers. SINet [22] and SINet-V2 [26] enhance fine-grained cues by applying receptive fields
and texture-enhanced modules, while DQNet [27] applies cross-modal detail querying to detect subtle
features. Transformer-based models like CamoFormer [9] leverage multi-scale feature extraction
with masked separable attention, and WSSCOD [5] employs a frequency transformer and noisy
pseudo labels for weak supervision. ZoomNeXt [3] further optimizes multi-scale extraction via
a collaborative pyramid network. These advancements refine COD by integrating sophisticated
architectures and diverse supervision strategies.

2.2 Video camouflaged object segmentation

VCOS [14, 28, 12, 29] extends COD to videos, introducing challenges from motion, dynamic
backgrounds, and temporal consistency. Former VCOS models tackle these with motion learning,
spatial-temporal attention, and advanced segmentation techniques to maintain object coherence across
frames. Motion-guided models enhance segmentation by leveraging motion cues. IMEX [30] inte-
grates implicit and explicit motion learning for robust detection. TMNet [28] refines motion features
with a transformer-based encoder and neighbor connection decoder. Flow-SAM [31] uses optical flow
as input or a prompt, guiding SAM to detect moving camouflaged objects. Spatial-temporal attention
enhances the tracking of camouflaged objects. TSP-SAM [10] and SAM-PM [11] improve SAM’s
ability to detect subtle movements. Static-Dynamic-Interpretability [12] quantifies static and dynamic
information in spatial-temporal models, aiding balanced approaches. Assessing camouflage quality is
also essential for VCOS. CAMEVAL [32] introduces scores evaluating background similarity and
boundary visibility, refining datasets and improving model robustness. These advancements drive
more accurate and effective VCOS systems.

2.3 Segment Anything Model 2

SAM2 [15] is a vision foundation model for promptable segmentation across images and videos. Com-
pared to SAM [16], which is limited to image segmentation, SAM2 offers a significant performance
leap in video segmentation SAM2 has demonstrated strong capabilities in many tasks, including
medical image, video and 3D segmentation [33, 34, 35, 36, 37, 38, 39, 40], video object tracking and
segmentation [41, 42], remote sensing [43], 3D mesh and point cloud segmentation [44], COD and
VCOS [17, 38, 39, 18]. In previous works [17, 18], although SAM2’s performance on camouflaged
video segmentation has surpassed most existing methods, these studies primarily focused on direct
evaluation, lightweight fine-tuning, or integrating SAM2 with multimodal large language models.
However, they did not address the fundamental architectural challenges of adapting SAM2 to VCOS,
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Figure 2: Overall architecture of CamSAM2. CamSAM2 effectively captures and segments
camouflaged objects by leveraging implicit and explicit object-aware information from the current
or previous frames. It includes the following key components: (a) the decamouflaged token, which
extends SAM2’s token structure to learn features suitable for camouflaged objects; (b) an IOF module
to enrich memory-conditioned features with implicitly object-aware high-resolution features; (c)
an EOF module to aggregate explicit object-aware features; and (d) an OPG module, generating
informative object prototypes, which guides cross-attention in EOF. These components work together
to preserve fine details, enhance segmentation quality, and track camouflaged objects across time.

leaving a significant performance gap compared to other VOS tasks, especially when using simple
prompts.

3 Method

We propose CamSAM2, equipping SAM2 with the ability to accurately segment camouflaged objects
in videos while retaining SAM2’s original capabilities. §3.1 briefly reviews the architecture of SAM2.
From §3.2 to §3.5, we describe CamSAM2 tailored for VCOS. With fixing SAM2’s parameters,
CamSAM2 proposes a learnable decamouflaged token, Implicit and Explicit Object-aware Fusion,
and Object Prototype Generation to enhance feature representations, thus leading to improved
performance, as shown in Fig. 2.

3.1 Preliminaries

SAM2 [15] is a pioneering vision foundation model designed for promptable visual segmentation
tasks. Different from SAM [16], SAM2 includes a memory module that stores information about
the object from previous frames. It contains an image encoder, memory attention, prompt encoder,
mask decoder, memory encoder, and memory bank. For each frame, the image encoder extracts
representative visual features, which are then conditioned on the features and predictions of past
frames. If a point or box prompt is given, the prompt encoder encodes it into sparse or dense
embeddings, then segments the prompted frame; if a mask prompt is given, SAM2 directly uses the
mask as the current frame output. Exploiting memory-conditioned features and prompt embeddings,
the mask decoder outputs the segmentation mask. The memory encoder then updates the memory
bank with the output mask and the unconditioned frame embedding to support the segmentation of
subsequent frames. SAM2 is pre-trained on SA-1B [16] and further trained on SA-V [15], achieving
strong performance across video and image segmentation tasks. For more details, please refer to [15].
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3.2 Decamouflaged token

Given a video clip containing m frames, we denote all frames as {It−m+1, · · · , Ii, · · · , It}
with ground-truth segmentation masks of {St−m+1, · · · ,Si, · · · ,St}. Especially, It is the cur-
rent frame for the purpose of easy explanation. We use the image encoder to extract features
for all frames, denoted as {Ft−m+1, · · · ,Fi, · · · ,Ft}. Here, Fi can be further represented as
{F0

i , · · · ,F
j
i , · · · ,F

L−1
i }, containing feature maps extracted from L different intermediate layers,

where Fj
i ∈ Rcj×hj×wj , with cj , hj , and wj representing channels, height, and width, respectively.

SAM2’s output tokens include an object score (occlusion) token, an IoU token, and mask tokens.
To enhance SAM2’s ability of segmenting camouflaged objects, we introduce a new learnable
decamouflaged token T ∈ R1×256, enabling it to optimize features for segmenting camouflaged
objects. As depicted in Fig. 2, integrated with SAM2’s output tokens, the decamouflaged token
undergoes the same layers as output tokens within SAM2’s mask decoder. After this, the output
decamouflaged token is denoted as T′. This token is updated through back-propagated gradients,
while SAM2’s weights remain frozen. T′ is then passed through an MLP layer to participate in
computing CamSAM2’s final mask logits, which will be explained in §3.4.

3.3 Implicit object-aware fusion

Early-layer features from the image encoder capture high-resolution details, such as edges and
textures, essential for distinguishing subtle differences between the camouflaged object and the
background. These early-layer features are implicit object-aware, as features for background and
non-relevant objects also exist with similar magnitude. In contrast, deeper layers focus on high-level
semantic information. In SAM2, memory-conditioned features are computed by only conditioning
high-level semantic features, without using detailed features from early layers. To this end, we propose
an IOF module to fuse these implicit object-aware features with memory-conditioned features.

For SAM2, three feature maps from the Hiera image encoder [45] are extracted for each frame,
i.e., L = 3. We have F0

t , F1
t , and F2

t for the current frame It. We denote the memory-conditioned
feature as Fmem

t , encoded by the memory-attention module on F2
t , as in [15]. The high-resolution

features F0
t and F1

t are fused with Fmem
t via compression modules and point-wise addition to create

a refined feature representation Fiof
t ∈ Rc0×h0×w0 , where a compression module C(·) consists of

two convolutional layers, followed by an upsampling layer. This process is given by:

Fiof
t = C0(F

0
t ) + C1(F

1
t ) + C2(F

mem
t ). (1)

3.4 Explicit object-aware fusion

After obtaining Fiof
t , we further refine it by EOF, which exploits explicit object-aware information

from the current frame and previous frames, through employing object mask logits and object
prototypes (see §3.5). We have three steps to fuse informative features. First, feature Fiof

t , with
shape Rc0×h0×w0 , is directly concatenated with SAM2’s mask logits Rt, which has shape R1×h0×w0 .
This concatenated feature is then processed through a convolutional layer to reduce the channels back
to c0, resulting in the output with the original shape Rc0×h0×w0 , denoted as:

Feof
t = Conv

([
Fiof

t ;Rt

])
. (2)

Second, Feof
t goes through a cross-attention layer. Prototypes generated from previous frames,

representing clustered camouflaged features, serve as informative priors to help distinguish the
camouflaged object from its background. A cross-attention mechanism takes Feof

t as a query, and
leverages these prototypes as keys and values, effectively exploiting the information within the
object prototypes to refine Feof

t . This design naturally suppresses outdated or irrelevant prototypes:
if a prototype is inconsistent or suboptimal (e.g., due to occlusion or missing), it receives lower
attention and contributes less to the output. This cross-attention mechanism provides robustness and
avoids overfitting to specific regions. Formally, we update Feof

t by conducting cross-attention with
prototypes Pt = {P0,P1, . . . ,Pt−1} from previous frames, given by:

Fattn
t = Attn(Feof

t ,Pt,Pt). (3)
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Third, the attention-refined feature Fattn
t is combined with the upscaled mask feature Fmask

t from
SAM2 mask decoder. The upscaled mask feature is first processed through a convolutional layer and
then fused with Fattn

t via point-wise addition, as follows:

Feof ′
t = Fattn

t + Conv(Fmask
t ). (4)

Finally, we calculate the mask logits Rc
t of CamSAM2, by processing the output decamouflaged

token T′ through an MLP layer, then performing point-wise product with the Feof ′
t , as shown below:

Rc
t = MLP(T′) · Feof ′

t . (5)

This approach incorporates both implicit and explicit camouflaged information, which can enhance
mask generation for more accurate segmentation for the VCOS task.

3.5 Object prototype generation

To effectively represent the camouflaged features within the mask (object) region, we employ Farthest
Point Sampling (FPS) [46] to identify k points within the predicted mask region, which act as cluster
centers. This approach ensures that the sampled points are well-distributed throughout the mask,
capturing diverse and important characteristics of the camouflaged object. Then, we group all pixels
in the predicted mask region into k clusters by conducting one-iteration k-means, using the sampled
k points as initial centers. The prototype of each cluster is represented as the mean of the spatial
features of the points in the cluster. This prototype generation process is denoted as Fp, as shown in:

Pt = {P i
t | 1 ≤ i ≤ k} = Fp(F

eof
t ,Rc

t), (6)

where Pt represents the camouflaged object prototypes extracted from high-resolution and detailed
features for the frame It. The prototypes are concatenated and then saved in the memory, which will
be used by EOF (§3.4) when segmenting the subsequent frames.

4 Experiments

4.1 Experimental setup

Datasets. Our experiments are conducted on three video datasets: two popular camouflaged animal
datasets, MoCA-Mask [4] and CAD [19], and one camouflaged medical dataset, SUN-SEG [20].
The pioneering Moving Camouflaged Animals dataset (MoCA) [47] comprises 37K frames from
141 YouTube video sequences. The dataset MoCA-Mask is reorganized from the MoCA, containing
71 video sequences with 19,313 frames for training and 16 video sequences with 3,626 frames for
testing, respectively, with pixel-wise ground-truth masks on every five frames. It also generates a
MoCA-Mask-Pseudo dataset, which contains pseudo masks for unlabeled frames with a bidirectional
optical-flow-based consistency check strategy. The Camouflaged Animal Dataset (CAD) includes 9
short videos in total that have 181 hand-labeled masks on every five frames. SUN-SEG is the largest
benchmark for video polyp segmentation, derived from SUN-database [48]. It consists of a training
set with 112 clips (19,544 frames) and two test sets: SUN-SEG-Easy, containing 119 clips (17,070
frames), and SUN-SEG-Hard, comprising 54 clips (12,522 frames).

Training and inference. We simulate interactive prompting of the model in the training process,
prompting on the first frame of the sampled sequence. Following the training strategy of SAM2, we
use three types of prompts (mask, bounding box, 1-click point of foreground) for training, with the
probabilities of 0.5, 0.25, and 0.25, respectively.

To train the model, we use a combined loss of binary cross-entropy (BCE) and dice loss for mask
predictions across the entire video. This loss applies to both SAM2’s mask logits Ri and the
CamSAM2’s mask logits Rc

i , compared with the ground-truth mask Si of frame Ii, as follows:

LC =

t∑
i=t−m+1

[
LBCE(Ri,Si) + LBCE(R

c
i ,Si)

]
,

LD =
t∑

i=t−m+1

[
LDice(Ri,Si) + LDice(R

c
i ,Si)

]
,

L = LC + LD, (7)
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Table 1: Comparisons between our method and existing approaches on MoCA-Mask. CamSAM2
outperforms the existing method by achieving new state-of-the-art performance. “SAM2-FT” refers
to a version of SAM2 in which the mask decoder is fine-tuned. The results of all these methods
(excluding SAM2) are from the corresponding publications. The best results are shown in bold. ↑:
the higher the better, ↓: the lower the better.

Model Backbone Params (M) Prompt Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑ mDice ↑ mIoU ↑

EGNet2019 [55] ResNet-50 111.7 - 54.7 11.0 3.5 13.6 57.4 14.3 9.6
BASNet2019 [56] ResNet-50 87.1 - 56.1 15.4 4.2 17.3 59.8 19.0 13.7
CPD2019 [57] ResNet-50 47.9 - 56.1 12.1 4.1 15.2 61.3 16.2 11.3
PraNet2020 [58] ResNet-50 32.6 - 61.4 26.6 3.0 29.6 67.4 31.1 23.4
SINet2020 [22] ResNet-50 48.9 - 59.8 23.1 2.8 25.6 69.9 27.7 20.2
SINet-V22021 [26] Res2Net-50 27.0 - 58.8 20.4 3.1 22.9 64.2 24.5 18.0
PNS-Net2021 [59] ResNet-50 142.9 - 52.6 5.9 3.5 8.4 53.0 8.4 5.4
RCRNet2019 [60] ResNet-50 53.8 - 55.5 13.8 3.3 15.9 52.7 17.1 11.6
MG2021 [61] VGG 4.8 - 53.0 16.8 6.7 19.5 56.1 18.1 12.7
SLT-Net-LT2022 [4] PVTv2-B5 82.3 - 63.1 31.1 2.7 33.1 75.9 36.0 27.2
ZoomNeXt2024 [3] PVTv2-B5 84.8 - 73.4 47.6 1.0 49.7 73.6 49.7 42.2
SAM22024 [15] Hiera-T 38.9 1-click 68.2 50.7 7.7 52.5 73.6 52.1 44.8
SAM2-FT Hiera-T 38.9 1-click 70.2 54.5 7.2 56.0 76.8 55.2 48.1
CamSAM2 Hiera-T 39.4 1-click 75.2 61.7 7.3 63.7 82.0 64.3 54.6
SAM22024 [15] Hiera-T 38.9 box 81.5 69.9 0.6 70.9 89.4 72.7 62.3
SAM2-FT Hiera-T 38.9 box 82.1 71.6 0.5 72.8 90.8 73.6 63.4
CamSAM2 Hiera-T 39.4 box 82.9 72.4 0.6 73.2 94.2 75.5 64.8
SAM-PM2024 [11] ViT-L 303.0 mask 72.8 56.7 0.9 - 81.3 59.4 50.2
SAM22024 [15] Hiera-T 38.9 mask 84.7 76.0 0.4 76.9 91.9 77.1 67.9
SAM2-FT Hiera-T 38.9 mask 84.7 76.2 0.4 77.1 91.9 77.2 68.0
CamSAM2 Hiera-T 39.4 mask 86.2 78.7 0.4 79.6 96.2 80.2 70.5

Table 2: Detailed comparisons between SAM2 and CamSAM2 on MoCA-Mask. CamSAM2
consistently outperforms SAM2 for all considered prompt types and backbones. Improvements of
CamSAM2 over SAM2 are shown in dark green.

Model Prompt Hiera-T Hiera-S

mDice ↑ mIoU ↑ mDice ↑ mIoU ↑
SAM2 1-click 52.1 44.8 54.9 46.7
CamSAM2 64.3 (+12.2) 54.6 (+9.8) 68.0 (+13.1) 58.8 (+12.1)

SAM2 box 72.7 62.3 73.7 63.8
CamSAM2 75.5 (+2.8) 64.8 (+2.5) 76.4 (+2.7) 66.1 (+2.3)

SAM2 mask 77.1 67.9 80.3 70.7
CamSAM2 80.2 (+3.1) 70.5 (+2.6) 81.4 (+1.1) 71.7 (+1.0)

where L is the final loss for our approach, summing the BCE loss LC and the dice loss LD.

During inference, we provide a prompt at the first frame of a video, following [15, 11]. Our final
output is the average of the logits of SAM2 and CamSAM2 masks for the error correction. For more
training and inferencing details, please see Appendix A.5.

Implementation details. The proposed CamSAM2 is implemented with PyTorch [49]. CamSAM2
is initialized with the parameters of SAM2. We freeze all parameters used in SAM2 and initialize
other parameters randomly. We set betas = (0.9, 0.999) for the optimizer Adam and use the learning
rate of 1e-3. We train CamSAM2 on 4 NVIDIA RTX 4090 GPUs for 10 epochs. For camouflaged
animal segmentation, we train the model using the MoCA-Mask-Pseudo training set and evaluate
it on the MoCA-Mask test set and CAD. During inference, we apply the 1-click, box, and mask
prompts only on the first frame of each video. For camouflaged polyp segmentation, we train the
model using the SUN-SEG training set and perform inference using the mask prompt on the first
frame of each video on the SUN-SEG-Easy and SUN-SEG-Hard test sets.

Evaluation metrics. We adopt seven evaluation metrics to measure the quality of predicted pixel-
wise masks: S-measure (Sm) [50], F-measure (Fβ) [51], weighted F-measure (Fω

β ) [52], mean
absolute error (MAE) [53], E-measure (Em) [54], mean Dice (mDice), and mean IoU (mIoU).

4.2 Experimental results

Results on MoCA-Mask. Tab. 1 compares four promptable methods on MoCA-Mask. For a fair
comparison, we fine-tune the mask decoder (4.2M parameters) of SAM2 on MoCA-Mask. CamSAM2
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Figure 3: Qualitative comparisons between SAM2 and CamSAM2 using 1-click prompt with
the Hiera-T backbone on two MoCA-Mask clips. From top to bottom: the input frames, SAM2’s
results, CamSAM2’s results, and ground-truth masks. CamSAM2 demonstrates improved accuracy
in VCOS, especially in complex backgrounds, as shown by the circles. Best viewed in color.

Table 3: Comparisons between our method and existing approaches on CAD.
Model Backbone Params (M) Prompt Sm ↑ Fω

β ↑ MAE ↓ Fβ ↑ Em ↑ mDice ↑ mIoU ↑
EGNet2019 [55] ResNet-50 111.7 - 61.9 29.8 4.4 35.0 66.6 32.4 24.3
BASNet2019 [56] ResNet-50 87.1 - 63.9 34.9 5.4 39.4 77.3 39.3 29.3
CPD2019 [57] ResNet-50 47.9 - 62.2 28.9 4.9 35.7 66.7 33.0 23.9
PraNet2020 [58] ResNet-50 32.6 - 62.9 35.2 4.2 39.7 76.3 37.8 29.0
SINet2020 [22] ResNet-50 48.9 - 63.6 34.6 4.1 39.5 77.5 38.1 28.3
SINet-V22021 [26] Res2Net-50 27.0 - 65.3 38.2 3.9 43.2 76.2 41.3 31.8
PNS-Net2021 [59] ResNet-50 142.9 - 65.5 32.5 4.8 41.7 67.3 38.4 29.0
RCRNet2019 [60] ResNet-50 53.8 - 62.7 28.7 4.8 32.8 66.6 30.9 22.9
MG2021 [61] VGG 4.8 - 59.4 33.6 5.9 37.5 69.2 36.8 26.8
SLT-Net-LT2022 [4] PVTv2-B5 82.3 - 69.6 48.1 3.0 52.4 84.5 49.3 40.2
ZoomNeXt2024 [3] PVTv2-B5 84.8 - 75.7 59.3 2.0 63.1 86.5 59.9 51.0

SAM22024 [15] Hiera-T 38.9 1-click 75.7 58.3 3.3 62.2 81.4 59.2 48.9
CamSAM2 Hiera-T 39.4 1-click 77.1 62.2 3.2 68.1 83.9 62.6 50.7

SAM22024 [15] Hiera-T 38.9 box 85.4 77.3 1.7 79.5 95.1 77.8 66.7
CamSAM2 Hiera-T 39.4 box 87.2 79.5 1.3 81.4 96.3 79.6 69.2

clearly outperforms SAM-PM, SAM2, and the fine-tuned SAM2. Even with the 1-click prompt,
CamSAM2 still outperforms SAM-PM, which uses the mask prompt. The promptable methods
clearly outperform other non-promptable models. Tab. 2 further compares SAM2 and CamSAM2
with the Hiera-T and Hiera-S backbones. CamSAM2 consistently outperforms SAM2 across all
prompt types. With the 1-click prompt, CamSAM2 achieves mDice/mIoU gains of 12.2/9.8 with
Hiera-T backbone and 13.1/12.1 with Hiera-S backbone, and further improves mIoU by 2.5/2.3 (box)
and 2.6/1.0 (mask) over SAM2 on Hiera-T and Hiera-S backbones, respectively.
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Figure 4: Attention map visualization from
SAM2 and CamSAM2 using point prompts
with the Hiera-T backbone. From top to bot-
tom: input frames, attention with SAM2 mask
token, attention with decamouflaged token, and
ground-truth masks. The higher attention regions
are indicated by warmer colors.

Fig. 3 presents qualitative comparisons on two
MoCA-Mask video clips using 1-click prompts
with Hiera-T as the backbone. Fig. 4 shows at-
tention maps from the last token-to-image cross-
attention layer in the mask decoder, where the
SAM2 output token or the decamouflaged token
acts as the query and the image embedding as
key and value. Compared to SAM2, CamSAM2
produces more focused and expansive attention
around target objects, highlighting its improved
spatial awareness and the effectiveness of our
design for VCOS. Despite CamSAM2 introduc-
ing only a marginal parameter increase of 0.5M,
it delivers substantial improvements while keep-
ing all SAM2 parameters frozen, fully preserving
SAM2’s original ability to segment and track ob-
jects in natural scenes.

Results on CAD. We evaluate the zero-shot per-
formance of CamSAM2 and SAM2 on the CAD using Hiera-T backbone with point and box prompts,
as shown in Tab. 3. CamSAM2 consistently outperforms SAM2, especially with the 1-click prompt,
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Table 4: Comparisons between CamSAM2
and SAM2 on SUN-SEG-Easy and SUN-SEG-
Hard.

Model Sm ↑ Fω
β ↑ Em ↑ mDice ↑

SUN-SEG-Easy

SAM2 [15] 83.4 71.6 83.0 73.6
CamSAM2 88.3 82.6 93.4 84.3

SUN-SEG-Hard

SAM2 [15] 75.5 58.4 73.4 61.0
CamSAM2 86.4 78.2 91.2 80.6

Table 5: Ablation study on the effectiveness
of main components of CamSAM2. It shows
the effectiveness of each key component of Cam-
SAM2.

Decam.
Token IOF EOF OPG mDice ↑ mIoU ↑

52.1 44.8
✓ 54.9 47.0
✓ ✓ 55.2 47.5
✓ ✓ ✓ 55.9 47.9
✓ ✓ ✓ ✓ 64.3 54.6

Table 6: Impact of using different distance
metrics for k-means in Object Prototype Gen-
eration. Cosine distance shows superiority.

Distance Metric mDice ↑ mIoU ↑
Euclidean 61.9 52.7

Cosine 64.3 54.6

Table 7: Impact of using different number of
prototypes in Object Prototype Generation.

Prototypes (k) mDice ↑ mIoU ↑
3 60.2 51.8
5 64.3 54.6
7 60.6 50.8

achieving improvements of 3.4 mDice and 1.8 mIoU. With the box prompt, it also shows clear gains
of 1.8 mDice and 2.5 mIoU. These results highlight CamSAM2’s superior zero-shot performance,
demonstrating its effectiveness for segmentation tasks with minimal user input.

Results on SUN-SEG. As shown in Tab. 4, CamSAM2 consistently outperforms SAM2 across
all metrics on both SUN-SEG-Easy and SUN-SEG-Hard. Notably, it improves mDice by 10.7 on
SUN-SEG-Easy (from 73.6 to 84.3) and by 19.6 on SUN-SEG-Hard (from 61.0 to 80.6), demon-
strating strong capability in segmenting camouflaged polyps. These results confirm that CamSAM2
significantly enhances SAM2 across varying tasks of camouflage, highlighting its effectiveness and
generalizability in VCOS.

4.3 Ablation studies

To understand the impact of each component in CamSAM2, we conduct ablation studies on MoCA-
Mask using the Hiera-T backbone with the 1-click prompt. The goal is to measure the contributions of
key components, including the decamouflaged token, IOF, EOF, and OPG. Additionally, we evaluated
the effects of different distance metrics and prototype numbers in the OPG process.

Impact of key components. As shown in Tab. 5, each main component in CamSAM2 clearly
contributes to its high performance. Starting from baseline (SAM2), adding the decamouflaged token
alone improves mDice from 52.1 to 54.9 and mIoU from 44.8 to 47.0. Adding IOF further raises
mDice to 55.2 and mIoU to 47.5. Using EOF brings mDice to 55.9 and mIoU to 47.9. With all
components included, the model performs the best, achieving 64.3 on mDice and 54.6 on mIoU.

Effect of distance metric. We compare different distance metrics for k-means clustering in OPG,
as shown in Tab. 6. Cosine distance performs better than Euclidean distance, likely due to its
effectiveness in grouping camouflaged features by angular relationships rather than direct distances.

Influence of number of prototypes k. We examine the impact of the number of prototypes k, as
shown in Tab. 7. The results show that both fewer or higher numbers of prototypes will reduce the
performance due to under-representation or redundancy, respectively. It is observed that k = 5 is
found to be optimal for capturing essential informative details in camouflaged features.
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5 Conclusion

In this paper, we introduce the CamSAM2, by equipping SAM2 with the ability to accurately
segment and track the camouflaged objects for VCOS. While SAM2 demonstrates strong performance
across general segmentation tasks, its performance on VCOS is suboptimal due to a lack of feature
optimization and architectural support for considering the challenges of VCOS. To overcome the
limitations, we propose to add a learnable decamouflaged token to optimize SAM2’s features for
VCOS, as well as three key modules: IOF for enhancing memory-conditioned features with implicitly
object-aware high-resolution features, EOF for refining features with explicit object details, and
OPG for abstracting high-quality features within the object region into informative object prototypes.
Our experiments on three popular benchmarks of two camouflaged scenarios demonstrate that
CamSAM2 clearly improves VCOS performance over SAM2, especially with point prompts, while
fully inheriting SAM2’s zero-shot capability. By setting new state-of-the-art performance, CamSAM2
offers a more practical and effective solution for real-world VCOS applications.
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A Appendix

A.1 Training details

During the training process, each training video clip consists of 8 frames, the input frames are resized
to 1024 × 1024, and the ground truths are resized to 256 × 256 since the raw predicted logits are
1/4 of the original size. We train CamSAM2 with a batch size of 4. The predicted final mask is
interpolated to 1024 × 1024 and then encoded with the visual feature of the current frame as the
memory feature in the memory bank for subsequent frames.

A.2 Comparative analysis across backbones and prompt types

Table 8: Detailed comparisons between CamSAM2 and SAM2 on MoCA-Mask across various
backbones and prompt types. CamSAM2 consistently outperforms SAM2 for all cases. Improve-
ments are highlighted in dark green.

Model Prompt mDice ↑ mIoU ↑
Hiera-T

SAM2 1-click 52.1 44.8
CamSAM2 64.3 (+12.2) 54.6 (+9.8)

SAM2 box 72.7 62.3
CamSAM2 75.5 (+2.8) 64.8 (+2.5)

SAM2 mask 77.1 67.9
CamSAM2 80.2 (+3.1) 70.5 (+2.6)

Hiera-S

SAM2 1-click 54.9 46.7
CamSAM2 68.0 (+13.1) 58.8 (+12.1)

SAM2 box 73.7 63.8
CamSAM2 76.4 (+2.7) 66.1 (+2.3)

SAM2 mask 80.3 70.7
CamSAM2 81.4 (+1.1) 71.7 (+1.0)

Hiera-B+

SAM2 1-click 55.5 45.5
CamSAM2 68.0 (+12.5) 58.4 (+12.9)

SAM2 box 73.0 63.1
CamSAM2 75.1 (+2.1) 64.9 (+1.8)

SAM2 mask 77.8 68.5
CamSAM2 81.0 (+3.2) 71.2 (+2.7)

Hiera-L

SAM2 1-click 69.3 55.8
CamSAM2 73.5 (+4.2) 63.3 (+7.5)

SAM2 box 74.9 65.4
CamSAM2 76.2 (+1.3) 66.5 (+1.1)

SAM2 mask 80.9 71.1
CamSAM2 81.9 (+1.0) 72.1 (+1.0)

Tab. 8 compares the performance of SAM2 and CamSAM2 on the MoCA-Mask dataset across
various backbones (Hiera-T, Hiera-S, Hiera-B+, and Hiera-L) and prompt types (click, box, and
mask). The results consistently demonstrate that CamSAM2 outperforms SAM2 across all scenarios,
with improvement varying depending on the prompt type and backbone.

For click prompts, CamSAM2 achieves substantial improvements, particularly with smaller back-
bones such as Hiera-T and Hiera-S. For instance, with Hiera-T, CamSAM2 achieves a significant
improvement of 12.2 mDice and 9.8 mIoU, while with Hiera-S, the gains are even larger at 13.1
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mDice and 12.1 mIoU. These results highlight CamSAM2’s ability to utilize minimal user input to
enhance segmentation performance effectively.

For box prompts, CamSAM2 consistently maintains its advantage. With the Hiera-T backbone,
CamSAM2 achieves gains of 2.8 mDice and 2.5 mIoU. With Hiera-L backbone, it delivers consistent
improvements.

For mask prompts, where the input is the most detailed, CamSAM2 continues to outperform SAM2.
For example, with Hiera-T, CamSAM2 achieves gains of 3.1 mDice and 2.6 mIoU, while with
Hiera-B+, the improvements are 3.2 mDice and 2.7 mIoU.

Overall, the results highlight CamSAM2’s adaptability across different backbones and prompt types.
Its ability to achieve notable improvements with minimal input, while consistently maintaining
advantages as prompts become more detailed, underscores its practicality and effectiveness for
real-world applications requiring accurate segmentation of camouflaged objects in videos.

A.3 Comparative analysis across point prompt with different numbers of clicks

We evaluate the point prompt by randomly selecting points from the ground-truth mask regions using
a fixed random seed of 42. Click prompts are evaluated on the MoCA-Mask dataset with varying
numbers of clicks: 1, 2, 3, and 5. Across all settings, CamSAM2 consistently outperforms SAM2, as
shown in Tab. 9, demonstrating its robustness and adaptability.

With the 2-click prompt, CamSAM2 achieves significant improvements of 16.4 mDice and 15.2 mIoU
with the Hiera-T backbone. Similarly, with the Hiera-S backbone, it achieves gains of 6.8 mDice
and 5.9 mIoU, effectively leveraging additional user input for enhanced segmentation accuracy. For
the 3-click prompt, CamSAM2 continues to deliver improvements, achieving a 3.4 mDice gain with
the Hiera-T backbone and a 1.9 mDice gain with the Hiera-S backbone. These results showcase
CamSAM2’s ability to utilize increasing user input effectively, maintaining its advantage in producing
accurate segmentation outcomes.

With the 5-click prompt, while both models benefit from the additional user input, CamSAM2 still
achieves noticeable gains. The Hiera-T backbone records an improvement of 2.2 mDice and 1.9 mIoU,
while with the Hiera-S backbone, the gains are 5.4 mDice and 4.6 mIoU, highlighting CamSAM2’s
consistent effectiveness across varying input levels. These results emphasize CamSAM2’s ability to
adapt and maintain robust performance as the complexity of the interaction grows.

These results highlight CamSAM2’s adaptability and consistent effectiveness across the varying
number of user clicks. Its ability to achieve substantial improvements, while maintaining robust
performance, underscores its practicality and scalability for real-world applications that demand
precise segmentation of VCOS.

A.4 Comparison with SAM2-Adapter

To provide a fair and comprehensive comparison, we evaluate CamSAM2 alongside SAM2-
Adapter [38]. SAM2-Adapter is an approach to adapt SAM2 to downstream tasks and achieve
enhanced performance. This method effectively integrates task-specific knowledge with the general
knowledge learned by the model. During this process, only the adaptor layers and the mask decoder
are trained, while the rest of the image encoder is kept frozen. Since the official SAM2-Adapter
implementation uses Hiera-L as the backbone, we directly compare on the same backbone to avoid
unintended modifications to their codebase. We re-train the SAM2-Adapter on the MoCA-Mask
dataset using their provided settings. Results are reported in Tab. 10. Importantly, CamSAM2 and
SAM2-Adapter represent two fundamentally different design philosophies for extending SAM2:

Evaluation granularity. SAM2-Adapter operates at the image level, making per-frame predictions
independently. In contrast, CamSAM2 is designed for video level inference, where only the first
frame receives a prompt, and subsequent frames are segmented using memory-augmented features
that evolve over time. This enables prototype refinement and accumulated improvements across
frames, which is a capability SAM2-Adapter lacks.

Prompt usage. SAM2-Adapter relies on a learned prompt injected into different stages in the image
encoder at every image during inference. In contrast, CamSAM2 follows the original SAM2 design
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Table 9: Detailed comparisons between CamSAM2 and SAM2 with Hiera-T and Hiera-S
backbones on MoCA-Mask using different numbers of click prompts.

Model Prompt mDice ↑ mIoU ↑
Hiera-T

SAM2 1-click 52.1 44.8
CamSAM2 64.3 (+12.2) 54.6 (+9.8)

SAM2 2-click 48.4 39.8
CamSAM2 64.8 (+16.4) 55.0 (+15.2)

SAM2 3-click 63.7 55.4
CamSAM2 67.1 (+3.4) 56.3 (+0.9)

SAM2 5-click 65.9 56.7
CamSAM2 68.1 (+2.2) 58.6 (+1.9)

Hiera-S

SAM2 1-click 54.9 46.7
CamSAM2 68.0 (+13.1) 58.8 (+12.1)

SAM2 2-click 56.8 47.8
CamSAM2 63.6 (+6.8) 53.7 (+5.9)

SAM2 3-click 71.7 61.7
CamSAM2 73.6 (+1.9) 62.9 (+1.2)

SAM2 5-click 68.5 58.4
CamSAM2 73.9 (+5.4) 63.0 (+4.6)

Table 10: Comparison between SAM2-Adapter and CamSAM2 with Hiera-L as the backbone.

Model Prompt Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑ mDice ↑ mIoU ↑

SAM2-Adapter [38] - 68.4 38.7 0.9 43.0 80.0 43.2 35.8
CamSAM2 1-click 82.2 71.8 0.6 73.4 92.1 73.5 63.3

as a promptable segmentation model, accepting a single external prompt (e.g., a click) on the first
frame and leveraging internal mechanisms to propagate the segmentation over time. While our usage
of ground-truth-derived prompts may raise fairness concerns, this is a common and practical setting
in semi-supervised video segmentation and is consistent with SAM2’s prompt-driven paradigm.

In summary, CamSAM2 and SAM2-Adapter offer two distinct solutions. CamSAM2 enhances
SAM2 for video by leveraging memory and minimal user guidance, while SAM2-Adapter adapts
SAM2 to images through internal prompt learning. Although they address different use cases, our
results demonstrate that CamSAM2 provides a more effective and temporally coherent framework for
VCOS, maintaining compatibility with SAM2’s promptable design without modifying its parameters.

A.5 Additional training and inferencing details

As we mentioned in the §4.1, we adopt a combined loss of binary cross-entropy (BCE) and dice loss
for mask predictions across the entire video sequence. This loss applies to both the original SAM2
mask logits Ri and our CamSAM2 mask logits Rc

i . Although the original SAM2 parameters remain
frozen during training, we still apply supervision to its outputs. The reason is that the introduction
of our learnable decamouflaged token changes the self-attention dynamics in the mask decoder:
this token is concatenated with the original output tokens and jointly participates in self-attention
and cross-attention layers (see Fig. 2(a) in the main paper). Consequently, the outputs Ri are no
longer guaranteed to be identical to those of the original SAM2. By supervising them, we ensure that
SAM2’s predictions remain aligned with the segmentation intent and are not perturbed by the token
interactions.

Inspired by HQ-SAM [62], we adopt a simple post-processing strategy where the final mask prediction
is obtained by averaging SAM2’s mask logits Rt and the CamSAM2 mask logits Rc

t , which is
calculated by the SAM2 mask token and the decamouflaged token. This strategy integrates SAM2’s
global representation with the fine-grained, camouflage-aware features extracted by our proposed
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modules. Despite its simplicity, this approach effectively unifies global generalization and fine-grained
object sensitivity.

Tab. 11 reports mIoU scores on the Hiera-T backbone. The first column shows the original SAM2
performance. The second and third columns report the mask predictions from the SAM2 token and
the decamouflaged token within CamSAM2, respectively. The final column presents the result of
averaging both. Each individual output mask already outperforms the SAM2 baseline, and their
combination leads to further improvements across all prompt types, validating the effectiveness of
our averaging strategy.

Table 11: Comparison of SAM2, individual token predictions within CamSAM2, and their
combination. Results are reported as mIoU on the Hiera-T backbone across three prompt types.
“SAM2 baseline” refers to the vanilla SAM2 prediction. “SAM2 token” denotes the prediction
generated from the SAM2 mask token, while “decamouflaged token” refers to the prediction from
the decamouflaged token after integrating features from our proposed IOF, EOF, and OPG modules.
“CamSAM2” is the final result obtained by averaging the mask logits calculated by the SAM2 token
and the decamouflaged token.

Prompt SAM2 baseline SAM2 token decamouflaged token CamSAM2

1-click 44.8 53.3 53.1 54.6
box 62.3 63.9 64.1 64.8
mask 67.9 70.3 68.4 70.5

Notably, the mask of the SAM2 output token within CamSAM2 yields better results than in the
original SAM2 model, despite having identical parameters and no additional fine-tuning. This
improvement stems from two key factors. First, all output tokens, including the SAM2 mask tokens
and the decamouflaged token, are jointly processed in the same transformer, where they interact
through a self-attention layer and different cross-attention layers. Second, SAM2’s architecture
conditions the current frame’s feature Fmem

t on the previously predicted mask stored in memory,
enriching the encoder’s output over time. This mutual influence further enhances their individual
representational capacity.

A.6 First frame performance analysis

We evaluate CamSAM2 on the first frame of each video clip on the MoCA-Mask dataset using a
1-click point prompt with Hiera-T as the backbone. This setting isolates the model’s ability to handle
camouflaged object segmentation, as on the first frame, the OPG module is naturally inactive, since
there are no prior frames from which to extract prototypes. This makes the first frame an ideal testbed
for evaluating the model’s segmentation capability only without temporal information.

Table 12: First frame comparison between SAM2 and CamSAM2 with the point prompt.

Model Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑ mDice ↑ mIoU ↑

SAM2 72.2 56.7 7.4 58.1 75.9 58.6 51.1
CamSAM2 73.0 59.4 7.2 60.8 80.7 61.4 52.6

As shown in Tab. 12, CamSAM2 consistently outperforms SAM2 across all metrics on the first
frame. This improvement is particularly meaningful, as it demonstrates that CamSAM2 enhances
SAM2’s segmentation capability even in the absence of temporal cues, laying a stronger foundation
for subsequent predictions. Since CamSAM2 stores the predicted mask of each frame into memory
and uses it to generate object prototypes, these prototypes can progressively enhance segmentation in
future frames within EOF, resulting in cumulative performance gains over time, which shows that
CamSAM2 further enhances the tracking ability of SAM2 for the VCOS task.

A.7 Efficiency analysis of OPG

To assess the runtime efficiency of CamSAM2, we profile its per-frame latency using the Hiera-T
backbone on a representative 106-frame camouflaged video from the MoCA-Mask test set. Tab. 13
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Table 13: Average runtime per frame and overhead breakdown of CamSAM2.

Component Avg Time (ms) Relative Percentage
SAM2 83.7 100.0%
FPS 3.5 4.2%
k-means 1.0 1.2%
OPG 4.6 5.5%
CamSAM2 89.7 107.2%

reports the average runtime breakdown and compares CamSAM2 against the baseline SAM2. Overall,
CamSAM2 introduces only 6 ms (7.2%) additional latency per frame relative to SAM2, demonstrating
that the method remains efficient. The OPG module, which consists of FPS sampling and 1-iter
k-means clustering, accounts for the majority of the runtime overhead. All other added components,
including IOF, EOF, and associated processing, together contribute approximately 1.4 ms (1.7%) per
frame.

We profile the computational complexity in Tab. 14. CamSAM2 introduces an additional 14.4
GFLOPs, which is independent of different backbone architectures. Based on the Hiera-T backbone,
the total FLOPs increase from 137.2 GFLOPs to 151.5 GFLOPs, which corresponds to approximately
a 10% increase. This added cost results in a significant performance gain of 9.8 mIoU with point
prompts. Moreover, when using the Hiera-L backbone, which image encoder requires 810 GFLOPs,
the same 14.4 GFLOPs overhead accounts for only a 1.7% increase in total FLOPs. Even with such a
small relative increase, CamSAM2 still achieves a notable 7.5 mIoU gain.

Table 14: FLOPs comparison between SAM2 and CamSAM2.

Module FLOPs (G)
Image encoder 103.0
Memory encoder 5.0
Memory attention 27.4
Mask decoder 1.8

SAM2 137.2
CamSAM2 extra 14.4
CamSAM2 151.5

These findings confirm that CamSAM2 remains efficient and is suitable for practical deployment,
even in time-sensitive VCOS applications.

A.8 Additional analysis and ablation studies

Number of Decamouflaged Tokens. We conduct an ablation study on the number of decamouflaged
tokens to evaluate its effect on representation quality. As shown in Tab. 15, increasing the number of
tokens from 1 to 3 results in a comparable performance in mIoU. This indicates that adding more
tokens does not structurally improve the representation quality, but may introduce redundancy and
additional computational cost.

Table 15: Impact of using different numbers of decamouflaged tokens.

Model Number of Decam. Token mIoU
SAM2 - 44.8
CamSAM2 3 53.3
CamSAM2 1 54.6

Sampling and Clustering Strategies. To evaluate the robustness and generality of the OPG module,
we experiment with different strategies for sampling and clustering. Specifically, we compare (i)
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Farthest Point Sampling (FPS) versus Average Sampling for selecting initial cluster centers, and (ii)
k-means versus Gaussian Mixture Model (GMM) for clustering. Results are reported in Tab. 16. All
combinations yield reasonable performance, confirming the flexibility of OPG. Notably, FPS better
preserves spatial diversity among selected features, leading to more representative prototypes.

Table 16: Impact of different sampling and clustering strategies in OPG.

Sampling Clustering mIoU
Average Sampling k-means 52.1
Average Sampling GMM 52.7
FPS GMM 53.6
FPS k-means 54.6

These findings show that OPG is not overly sensitive to specific implementation choices, while FPS
sampling in combination with k-means clustering offers the best trade-off between representativeness
and segmentation accuracy.

A.9 Architecture toggle between CamSAM2 and SAM2
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Figure 5: Illustration of the architecture toggle. The toggle switch enables or disables the proposed
modules for VCOS containing the decamouflaged token, IOF, EOF, and OPG. Modules and flows in
dashed lines indicate the disabled state.

To better illustrate the relationship between CamSAM2 and the original SAM2 pipeline, Fig. 5
presents a side-by-side comparison. When the toggle is set to OFF, the proposed modules are
completely bypassed, and the pipeline reverts to the SAM2 architecture. Importantly, since all SAM2
parameters are fixed during the training of CamSAM2, the model behaves identically to SAM2 in
this mode, preserving its original structure and performance across various tasks. This design ensures
compatibility and flexibility, allowing seamless integration without disrupting SAM2’s performance.

A.10 Limitation

CamSAM2 is built upon the SAM2 architecture, inheriting both its strengths and limitations. While
our proposed modifications significantly improve SAM2’s performance in VCOS tasks, we do not
alter the core architecture of SAM2. As a result, CamSAM2 retains several of SAM2’s known
limitations. Specifically, it does not address SAM2’s challenges in handling shot changes and long
occlusions. Future work may consider integrating explicit motion information or relational modeling
to further improve the robustness of the model.

A.11 Interpreting prototypes via cosine similarity maps

To improve interpretability, we visualize the cosine similarity between the object prototype from
preceding frames and the current-frame feature map of two selected videos. As shown in Fig. 6, the
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similarity maps consistently highlight semantically meaningful object regions while suppressing the
background, indicating that the prototypes abstract object-aware semantics and remain temporally
consistent rather than drifting to spurious parts.

Figure 6: The cosine similarity map between the preceding frames prototype and the current
frame feature map.

A.12 More qualitative result visualization
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Figure 7: Qualitative comparisons between SAM2 and CamSAM2 using mask prompt with the
Hiera-T backbone on two video clips of SUN-SEG-Hard. From top to bottom: the input frames,
SAM2’s results, CamSAM2’s results, and ground-truth masks. CamSAM2 demonstrates improved
accuracy in segmenting camouflaged polyps, as shown by the circles. Best viewed in color.

Fig. 7 presents two qualitative example video clips of SUN-SEG-Hard, comparing the segmentation
performance of SAM2 and CamSAM2 using mask prompts with the Hiera-T backbone. Compared
with SAM2, CamSAM2 can segment polyps more accurately, including more precise regions and
boundaries.

Fig. 8 and Fig. 9 present more comprehensive qualitative results for six video clips in MoCA-Mask,
comparing the segmentation performance of SAM2 and CamSAM2 using 1-click point prompts
with the Hiera-T backbone. The results clearly demonstrate CamSAM2’s advantages in segmenting
camouflaged objects in videos. For instance, in the first (stick insect) and second (rusty spotted cat)
examples from Fig. 8, SAM2 is able to segment parts of the camouflaged objects; however, CamSAM2
significantly outperforms by successfully segmenting larger and more complete regions of the objects.
Furthermore, in the third (pygmy seahorse) example, SAM2 produces an incorrect segmentation,
failing to segment the camouflaged object accurately, while CamSAM2 still manages to segment the
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correct regions of the object. These findings highlight CamSAM2’s ability to both enhance accuracy
in cases where SAM2 performs moderately well and to maintain reliable segmentation performance in
challenging scenarios where SAM2 fails. This underscores CamSAM2’s robustness and effectiveness
in tackling diverse and complex tasks in VCOS.
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Figure 8: More qualitative comparisons between SAM2 and CamSAM2 using 1-click point
prompt with the Hiera-T backbone on three video clips. From top to bottom: the input frames,
SAM2’s results, CamSAM2’s results, and ground-truth masks. CamSAM2 demonstrates improved
accuracy in segmenting camouflaged objects, as shown by the circles. Best viewed in color.
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Figure 9: More qualitative comparisons between SAM2 and CamSAM2 using 1-click point
prompt with the Hiera-T backbone on three video clips. Best viewed in color.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide a comprehensive overview of the
background and motivation of this study, accurately reflecting its main contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: No theoretical result is included in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information regarding the key contribution of this paper including architec-
tural, data, and experimental configurations, has been fully disclosed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used in this paper are publicly available. The code is released at
github.com/zhoustan/CamSAM2.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details have been discussed in §4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We only provide baseline results for future reference. We will release code to
reproduce all our reported results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discussed the compute resources in §4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in our paper complies in all respects with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the potential positive impacts in §5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the paper, we specified the datasets we used and our code is built on the
open source model. We provided appropriate citations in the reference section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper doesn’t contain any LLM usage in the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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