
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONLINE DETECTING LLM-GENERATED TEXTS VIA
SEQUENTIAL HYPOTHESIS TESTING BY BETTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing algorithms to differentiate between machine-generated texts and
human-written texts has garnered substantial attention in recent years. Existing
methods in this direction typically concern an offline setting where a dataset con-
taining a mix of real and machine-generated texts is given upfront, and the task is
to determine whether each sample in the dataset is from a large language model
(LLM) or a human. However, in many practical scenarios, sources such as news
websites, social media accounts, or on other forums publish content in a stream-
ing fashion. Therefore, in this online scenario, how to quickly and accurately
determine whether the source is an LLM with strong statistical guarantees is cru-
cial for these media or platforms to function effectively and prevent the spread
of misinformation and other potential misuse of LLMs. To tackle the problem of
online detection, we develop an algorithm based on the techniques of sequential
hypothesis testing by betting that not only builds upon and complements existing
offline detection techniques but also enjoys statistical guarantees, which include a
controlled false positive rate and the expected time to correctly identify a source
as an LLM. Experiments were conducted to demonstrate the effectiveness of our
method.

1 INTRODUCTION

Over the past few years, there has been growing evidence that LLMs can produce content with
qualities on par with human-level writing, including writing stories (Yuan et al., 2022), producing
educational content (Kasneci et al., 2023), and summarizing news (Zhang et al., 2024). On the other
hand, concerns about potentially harmful misuses have also accumulated in recent years, such as
producing fake news (Zellers et al., 2019), misinformation (Lin et al., 2021; Chen & Shu, 2023),
plagiarism (Bommasani et al., 2021; Lee et al., 2023), malicious product reviews (Adelani et al.,
2020), and cheating (Stokel-Walker, 2022; Susnjak & McIntosh, 2024). To tackle the relevant issues
associated with the rise of LLMs, a burgeoning body of research has been dedicated to distinguishing
between human-written and machine-generated texts (Jawahar et al., 2020; Lavergne et al., 2008;
Hashimoto et al., 2019; Gehrmann et al., 2019; Mitchell et al., 2023; Su et al., 2023; Bao et al.,
2023; Solaiman et al., 2019; Bakhtin et al., 2019; Zellers et al., 2019; Ippolito et al., 2019; Tian,
2023; Uchendu et al., 2020; Fagni et al., 2021; Adelani et al., 2020; Abdelnabi & Fritz, 2021; Zhao
et al., 2023; Kirchenbauer et al., 2023; Christ et al., 2024).

While these existing methods can efficiently identify a text source in an offline setting where all
the texts to be classified are provided in a single shot, they are not specifically designed to handle
scenarios where texts arrive sequentially, and therefore, they might not be directly applicable to the
online setting, where certain serious challenges have been observed over the past few years. For
example, the American Federal Communications Commission in 2017 decided to repeal net neu-
trality rules according to the public opinions collected through an online platform (Selyukh, 2017;
Weiss, 2019). However, it was ultimately discovered that the overwhelming majority of the total 22
million comments that support rescinding the rules were machine-generated (Kao, 2017). In 2019,
Weiss (2019) used GPT-2 to overwhelm a website for collecting public comments on a medical re-
form waiver within only four days, where machine-generated comments eventually made up 55.3%
of all the comments (more precisely, 1, 001 out of 1, 810 comments). As discussed by Fröhling &
Zubiaga (2021), a GPT-J model trained on a politics message board was then deployed on the same

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

forum. It generated posts that included objectionable content and accounted for about 10% of all
activity during peak times (Kilcher, 2022). Furthermore, other online attacks mentioned by Fröhling
& Zubiaga (2021) may even manipulate public discourse (Ferrara et al., 2016), flood news with fake
content (Belz, 2019), or fraud by impersonating others on the Internet or via e-mail (Solaiman et al.,
2019). However, existing bot detection methods for social media (e.g., Davis et al. (2016); Varol
et al. (2017); Pozzana & Ferrara (2020); Ferrara (2023) and the references therein) might not be di-
rectly applicable to the online setting with strong statistical guarantees, to the best of our knowledge,
and they often require training on extensive labeled datasets beforehand. This highlight the urgent
need for developing algorithms with strong statistical guarantees that can quickly identify machine-
generated texts in a timely manner, which, to the best of our knowledge, have been overlooked in
the literature.

Our goal, therefore, is to tackle the problem of online detecting LLM-generated texts. More pre-
cisely, building upon existing score functions from those “offline approaches”, we aim to quickly
determine whether the source of a sequence of texts observed in a streaming fashion is an LLM or a
human. Our algorithm leverages the techniques of sequential hypothesis testing (Shafer, 2021; Ram-
das et al., 2023; Shekhar & Ramdas, 2023). Specifically, we frame the problem of online detecting
LLMs as a sequential hypothesis testing problem, where at each round t, a text from an unknown
source is observed, and we aim to infer whether it is generated by an LLM. We also assume that a
pool of examples of human-written texts is available, and our algorithm can sample a text from this
pool of examples at any time t. Our method constructs a null hypothesis H0 (to be elaborated soon),
for which correctly rejecting the null hypothesis implies that the algorithm correctly identifies the
source as an LLM under a mild assumption. Furthermore, since it is desirable to quickly identify
an LLM when it is present and avoid erroneously declaring the source as an LLM, we also aim to
control the type-I error (false positive rate) while maximizing the power to reduce type-II error (false
negative rate), and to establish an upper bound on the expected total number of rounds to declare
that the source is an LLM. We emphasize that our approach is non-parametric, and hence it does
not need to assume that the underlying data of human or machine-generated texts follow a certain
distribution (Balsubramani & Ramdas, 2015). It also avoids the need for assuming that the sample
size is fixed or to specify it before the testing starts, and hence it is in contrast with some typical hy-
pothesis testing methods that do not enjoy strong statistical guarantees in the anytime-valid fashion
(Garson, 2012; Good, 2013; Tartakovsky et al., 2014). The way to achieve these is based on recent
developments in sequential hypothesis testing via betting (Shafer, 2021; Shekhar & Ramdas, 2023).
The setting of online testing with anytime-valid guarantees could be particularly useful when one
seeks substantial savings in both data collection and time without compromising the reliability of
their statistical testing. These desiderata might be elusive for approaches that based on collecting
data in batch and classifying them offline to achieve.

We evaluate the effectiveness of our method through comprehensive experiments. The code and
datasets needed to reproduce the experimental results is available in the supplementary file.

2 PRELIMINARIES

We begin by providing a recap of the background on sequential hypothesis testing.

Sequential Hypothesis Test with Level-α and Asymptotic Power One. Let us denote a forward
filtration F = (Ft)t≥0, where Ft = σ(Z1, . . . , Zt) represents an increasing sequence that accu-
mulates all the information from the observations {Zi : i ≥ 1} up to time point t. A process
W := (Wt)t≥1, adapted to (Ft)t≥1, is defined as a P-martingale if it satisfies EP [Wt|Ft−1] = Wt−1

for all t ≥ 1. Furthermore, W is a P-supermartingale if EP [Wt|Ft−1] ≤Wt−1 for all t ≥ 1. In our
algorithm design, we will consider a martingale W and define the event {Wt ≥ 1/α} as rejecting
the null hypothesis H0, where α > 0 is a user-specified “significance level” parameter. We denote
the stopping time τ := arg inft≥1 P{Wt ≥ 1/α} accordingly.

We further recall that a hypothesis test is a level-α test if supP∈H0
P (∃t ≥ 1,Wt ≥ 1/α) ≤ α,

or alternatively, if supP∈H0
P (τ ≤ ∞) ≤ α. Furthermore, a test has asymptotic power (1 − β)

if supP∈H1
P (∀t ≥ 1,Wt < 1/α) ≤ β, or if supP∈H1

P (τ =∞) ≤ β, where H1 represents
the alternative hypothesis. A test with asymptotic power one (i.e., β = 0) means that when the
alternative hypothesis is true, the test will eventually rejects the null hypothesis H0. As shown later,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Overview of LLM Detection via Online Optimization. We sequentially observe text yt
generated by an unknown source starting from time t = 1 and aim to determine whether these
texts are produced by a human or an LLM. The detection process can be divided into three steps.
(1) (Score) At each time t, text xt and yt are evaluated by a selected score function ϕ(·), where
the sample xt is drawn from a prepared dataset consisting of human-written text examples. (2)
(Update) The parameter θt is updated via the Online Newton Step (ONS) to increase the wealth
Wt rapidly when yt is an LLM-generated text. A large value of Wt serves as significant evidence
and provides confidence to declare that the unknown source is an LLM. (3) (Check) Whether the
wealth Wt ≥ 1/α is checked. If this event happens, we declare the unknown source of yt as LLM.
Otherwise, if the time budget T is not yet exhausted or if we have an unlimited time budget, we
proceed to t + 1 and repeat the steps. When t = T , if the condition WT ≥ Z/α holds, where Z is
drawn from an uniform distribution in [0, 1], our algorithm will also declare the source as an LLM.

our algorithm that will be introduced shortly is a provable sequential hypothesis testing method with
level-α and asymptotic power one.

Problem Setup. We consider a scenario in which, at each round t, a text yt from an unknown source
is observed, and additionally, a human-written text xt can be sampled from a dataset of human-
written text examples at our disposal. The goal is to quickly and correctly determine whether the
source that produces the sequence of texts {yt}Tt=1 is an LLM or a human. We assume that a score
function ϕ(·) : Text → R is available, which, given a text as input, outputs a score. The score
function ϕ(·) that we consider in this work are those proposed for detecting LLM-generated texts
in offline settings, e.g., Mitchell et al. (2023); Bao et al. (2023); Su et al. (2023); Bao et al. (2023);
Yang et al. (2023). We provide more details on these score functions in the experiments section and
in the exposition of the literature in Appendix A.1.

Following related works on sequential hypothesis testing via online optimization (e.g., Shekhar &
Ramdas (2023); Chugg et al. (2023)), we assume that each text yt is i.i.d. from a distribution ρy ,
and similarly, each human-written text xt is i.i.d. from a distribution ρx. Denote the mean µx :=
Eρx [ϕ(x)] and µy := Eρy [ϕ(y)] respectively. The task of hypothesis testing that we consider can be
formulated as

H0 (null hypothesis) : µx = µy, versus H1 (alternative hypothesis) : µx ̸= µy. (1)

We note that when H0 is true, this is not equivalent to saying that the texts {yt}Tt=1 are human-
written, as different distributions can share the same mean. However, under the additional assump-
tion of the existence of a good score function ϕ(·) which produces scores for machine-generated
texts with a mean µy different from that of human-generated texts µx, H0 is equivalent to the un-
known source being human. Therefore, under this additional assumption, when the unknown source
ρy is an LLM, then rejecting the null hypothesis H0 is equivalent to correctly identifying that the
source is indeed an LLM. In our experiments, we found that this assumption generally holds empiri-
cally for the score functions that we adopt. That is, the empirical mean of ϕ(yt) significantly differs
from that of ϕ(xt) when each yt is generated by an LLM. Figure 1 illustrates the process of online
detecting LLMs.

Sequential Hypothesis Testing by Online Optimization and Betting. Consider the scenario that
an online learner engages in multiple rounds of a game with an initial wealth W0 = 1. In each round
t of the game, the learner plays a point θt. Then, the learner receives a fortune after committing θt,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

which is −gtθtWt−1, where Wt−1 is the learner’s wealth from the previous round t− 1, and gt can
be thought of as “the coin outcome” at t that the learner is trying to “bet” on (Orabona & Pál, 2016).
Consequently, the dynamic of the wealth of the learner evolves as:

Wt = Wt−1 · (1− gtθt) = W0 ·Πt
s=1 (1− gsθs) . (2)

To connect the learner’s game with sequential hypothesis testing, one of the key techniques that will
be used in the algorithm design and analysis is Ville’s inequality (Ville, 1939), which states that if
(Wt)t≥1 is a nonnegative supermartingale, then one has P (∃t : Wt ≥ 1/α) ≤ αE[W0]. The idea
is that if we can guarantee that the learner’s wealth Wt can remain nonnegative from W0 = 1, then
Ville’s inequality can be used to control the type-I error at level α simultaneously at all time steps t.
To see this, let gt = ϕ(xt)− ϕ(yt). Then, when P ∈ H0 (i.e., the null hypothesis µx = µy holds),
the wealth (Wt)t≥1 is a P-supermartingale, because

EP [Wt|Ft−1] = EP [Wt−1(1− θtgt)|Ft−1] = Wt−1 · EP [(1− θt(ϕ(xt)− ϕ(yt)))|Ft−1] = Wt−1.

Hence, if the learner’s wealth Wt can remain nonnegative given the initial wealth W0 = 1, we can
apply Ville’s inequality to get a provable level-α test, since Wt is a nonnegative supermartingale in
this case. Another key technique is randomized Ville’s inequality (Ramdas & Manole, 2023) for a
nonnegative supermartingale (Wt)t≥1, which states that P (∃t ≤ T : Wt ≥ 1/α or WT ≥ Z/α) ≤
α, where T is any F-stopping time and Z is randomly drawn from the uniform distribution in [0, 1].
This inequality becomes particularly handy when there is a time budget T in sequential hypothesis
testing while maintaining a valid level-α test.

We now switch to discussing the control of the type-II error, which occurs when the wealth Wt is
not accumulated enough to reject H0 when H1 is true. Therefore, we need a mechanism to enable
the online learner in the game quickly increase the wealth under H1. Related works of sequential
hypothesis testing by betting (Shekhar & Ramdas, 2023; Chugg et al., 2023) propose using a no-
regret learning algorithm to achieve this. Specifically, a no-regret learner aims to obtain a sublinear
regret, which is defined as RegretT (θ∗) :=

∑T
t=1 ℓt(θt) −

∑T
t=1 ℓt(θ∗), where θ∗ is a benchmark.

In our case, we will consider the loss function at t to be ℓt(θ) := − ln(1 − gtθ). The high-level
idea is based on the observation that the first term in the regret definition is the log of the learner’s
wealth, modulo a minus sign, i.e., ln(WT) =

∑T
t=1 ln(1−gtθt) = −

∑T
t=1 ℓt(θt), while the second

term is that of a benchmark. Therefore, if the learner’s regret can be upper-bounded, say C, then
the learner’s wealth is lower-bounded as WT ≥

(
ΠT

t=1(1− gtθ∗)
)
exp(−C). An online learning

algorithm with a small regret bound can help increase the wealth quickly under H1. We refer the
reader to Appendix D for a rigorous argument, where we note that applying a no-regret algorithm
to guarantee the learner’s wealth is a neat technique that is well-known in online learning, see e.g.,
Chapter 9 of Orabona (2019) for more details. Following existing works (Shekhar & Ramdas, 2023;
Chugg et al., 2023), we will adopt Online Newton Steps (ONS) (Hazan et al., 2007) in our algorithm.

3 OUR ALGORITHM

We have covered most of the underlying algorithmic design principles of our online method for
detecting LLMs, and we are now ready to introduce our algorithm, which is shown in Algorithm 1.
Compared to existing works on sequential hypothesis testing via betting (e.g., Shekhar & Ramdas
(2023); Chugg et al. (2023)), which assume knowledge of a bound on the magnitude of the “coin
outcome” gt in the learner’s wealth dynamic (2) for all time steps before the testing begins (i.e.,
assuming prior knowledge of d∗ := maxt |gt|), we relax this assumption. Specifically, we consider
the scenario where an upper bound on |gt+1|, which is denoted by dt+1, is available before updating
θt+1 at each round t. Our algorithm then plays a point in the decision space Kt+1 that guarantees
the learner’s wealth remains a non-negative supermartingale (Step 11 in Algorithm 1). We note that
if the bound of the output of the underlying score function ϕ(·) is known a priori, this scenario holds
naturally. Otherwise, we can estimate an upper bound for |gt| for all t based on the first few time
steps and execute the algorithm thereafter. One approach is to set the estimate as a conservatively
large constant, e.g., twice the maximum value observed in the first few time steps. We observe that
this estimate works for our algorithm with most of the score functions ϕ(·) that we consider in the
experiments. On the other hand, we note that a tighter bound dt will lead to a faster time to reject
H0 when the unknown source is an LLM, as indicated by the following propositions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Online Detecting LLMs via Online Optimization and Betting

Require: a score function ϕ(·) : Text→ R.
1: Init: θ1 ← 0, a0 ← 1, wealth W0 ← 1, step size γ, and significance level parameter α ∈ (0, 1).
2: for t = 1, 2, . . . , T do
3: # T is the time budget, which can be∞ if their is no time constraint.
4: Observe a text yt from an unknown source and compute ϕ(yt).
5: Sample xt from a dataset of human-written texts and compute ϕ(xt).
6: Set gt = ϕ(xt)− ϕ(yt).
7: Update wealth Wt = Wt−1 · (1− gtθt).
8: if Wt ≥ 1/α then
9: Declare that the source producing the sequence of texts yt is an LLM.

10: end if
11: Get a hint dt+1 which satisfies dt+1 ≥ |gt+1|.
12: Specify the decision space Kt+1 := [− 1

2dt+1
, 1
2dt+1

] to ensure Wt+1 is nonnegative.
13: // Update θt+1 ∈ Kt+1 via ONS on the loss function ℓt(θ) := − ln(1− gtθ).
14: Compute zt =

dℓt(θt)
dθ = gt

1−gtθt
and at = at−1 + z2t .

15: Compute θt+1 = max
(
min

(
θt − 1

γ
zt
at
, 1
2dt+1

)
,− 1

2dt+1

)
.

16: end for
17: if the source has not been declared as an LLM then
18: Sample Z ∼ Unif(0, 1), declare the sequence of texts yt is from an LLM if WT ≥ Z/α.
19: end if

Proposition 1. Algorithm 1 is a level-α sequential test with asymptotic power one. Furthermore, if
yt is generated by an LLM, the expected time τ to declare the unknown source as an LLM is bounded
by

E[τ] ≲
d3∗
∆2
· log

d
(3+ 1

γ)
∗

∆2α

 , (3)

where ∆ := |µx − µy|, d∗ := max
t≥1
|dt| with dt ≥ |gt|, and γ satisfies γ ≤ 1

2 min{ dt

Gt
, 1} with

Gt := maxθ∈Kt
|∇ℓt(θ)| denoting the upper bound of the gradient∇ℓt(θ).

Remark 1. Under the additional assumption of the existence of a good score function ϕ(·) that can
generate scores with different means for human-written texts and LLM-generated ones, Proposi-
tion 1 implies that when the unknown source is declared by Algorithm 1 as an LLM, the probability
of this declaration being false will be bounded by α. Additionally, if the unknown source is in-
deed an LLM, then our algorithm can guarantees that it will eventually detect the LLM, since it
has asymptotic power one. Moreover, Proposition 1 also provides a non-asymptotic result (see (3))
for bounding the expected time to reject the null hypothesis H0, which is also the expected time
to declare that the unknown source is an LLM. The bound indicates that a larger difference of the
means ∆ can lead to a shorter time to reject the null H0.

(Composite Hypotheses.) As Chugg et al. (2023), we also consider the composite hypothesis,
which can be formulated as H0 : |µx − µy| ≤ ϵ versus H1 : |µx − µy| > ϵ . The hypothesis can be
equivalently expressed in terms of two hypotheses,

HA
0 : µx−µy−ϵ ≤ 0 vs. HA

1 : µx−µy−ϵ > 0 and HB
0 : µy−µx−ϵ ≤ 0 vs. HB

1 : µy−µx−ϵ > 0.
(4)

Consequently, the dynamic of the wealth evolves as WA
t = WA

t−1 (1− θt(gt − ϵ)) and WB
t =

WB
t−1 (1− θt(−gt − ϵ)) respectively, where gt = ϕ(xt) − ϕ(yt). We note that both gt − ϵ and
−gt − ϵ are within the interval [−dt − ϵ, dt − ϵ]. The composite hypothesis is motivated by the
fact that, in practice, even if both sequences of texts xt and yt are human-written, they may have
been written by different individuals. Therefore, it might be more reasonable to allow for a small
difference ϵ in their means when defining the null hypothesis H0.

Proposition 2. Algorithm 3 in the appendix is a level-α sequential test with asymptotic power one,
where the wealth WA

t for HA
0 (HA

1) and WB
t for HB

0 (HB
1) are calculated through level-α/2 tests.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Furthermore, if yt is generated by an LLM, the expected time τ to declare the unknown source as an
LLM is bounded by

E[τ] ≲
(d∗ + ϵ)3

(∆− ϵ)2
· log

(
(d∗ + ϵ)(3+

1
γ)

(∆− ϵ)2α

)
. (5)

Remark 2. Proposition 2 indicates that even if there is a difference ϵ in mean scores between texts
written by different humans, the probability that the source is incorrectly declared by Algorithm 3 as
an LLM can be controlled below α. Besides, our algorithm will eventually declare the source as an
LLM if the texts are indeed LLM-generated, as it achieves asymptotic power of one. The expected
time to reject H0 and then declare the unknown source as an LLM is bounded (see (5)). The bound
implies that smaller ϵ and larger ∆ will result in a shorter time to reject H0.

4 EXPERIMENTS

4.1 SETTINGS

Score Functions. We use 10 score functions in total from the related works for the experiments. As
mentioned earlier, a score function takes a text as an input and outputs a score. For example, one
of the configurations of our algorithm that we try uses a score function called Likelihood, which
is based on the average of the logarithmic probabilities of each token conditioned on its preceding
tokens (Solaiman et al., 2019; Hashimoto et al., 2019). More precisely, for a text x which consists of
n tokens, this score function can be formulated as ϕ(x) = 1

n

∑n
j=1 log pθ(xj |x1:j−1), where xj de-

notes the j-th token of the text x, x1:j−1 means the first j−1 tokens, and pθ represents the probability
computed by a language model used for scoring. The score functions that we considered in the exper-
iments are: 1. DetectGPT: perturbation discrepancy (Mitchell et al., 2023). 2. Fast-DetectGPT: con-
ditional probability curvature (Bao et al., 2023). 3.LRR: likelihood log-rank ratio (Su et al., 2023).
4. NPR: normalized perturbed log-rank (Su et al., 2023). 5. DNA-GPT: WScore (Yang et al., 2023).
6. Likelihood: mean log probabilities (Solaiman et al., 2019; Hashimoto et al., 2019; Gehrmann
et al., 2019). 7. LogRank: averaged log-rank in descending order by probabilities (Gehrmann et al.,
2019). 8. Entropy: mean token entropy of the predictive distribution (Gehrmann et al., 2019; So-
laiman et al., 2019; Ippolito et al., 2019). 9. RoBERTa-base: a pre-trained classifier (Liu et al.,
2019). 10. RoBERTa-large: a larger pre-trained classifier with more layers and parameters (Liu
et al., 2019). The first eight score functions calculate scores based on certain statistical properties of
texts, with each text’s score computed via a language model. The last two score functions compute
scores by using some pre-trained classifiers. For the reader’s convenience, more details about the
implementation of the score functions ϕ(·) are provided in Appendix B.

LLMs and Datasets. Our experiments focus on the black-box setting (Bao et al., 2023), which
means that if x is generated by a model qs, i.e., x ∼ qs, a different model pθ will then be used to
evaluate the metrics such as the log-probability log pθ(x) when calculating ϕ(x). The models qs
and pθ are respectively called the “source model” and “scoring model” for clarity. The black-box
setting is a relevant scenario in practice because the source model used for generating the texts to
be inferred is likely unknown in practice, which makes it elusive to use the same model to compute
the scores. We construct a dataset that contains some real news and fake ones generated by LLMs
for 2024 Olympics. Specifically, we collect 500 news about Paris 2024 Olympic Games from its
official website (Olympics, 2024) and then use three source models, Gemini-1.5-Flash, Gemini-
1.5-Pro (Google Cloud, 2024a), and PaLM 2 (Google Cloud, 2024b; Chowdhery et al., 2023) to
generate an equal number of fake news based on the first 30 tokens of each real one respectively. Two
scoring models for computing the text scores ϕ(·) are considered, which are GPT-Neo-2.7B (Neo-
2.7) (Black et al., 2021) and Gemma-2B (Google, 2024). The perturbation model that is required
for the score function DetectGPT and NPR is T5-3B (Raffel et al., 2020). For Fast-DetectGPT, the
sampling model is GPT-J-6B (Wang & Komatsuzaki, 2021) when scored with Neo-2.7, and Gemma-
2B when the scoring model is Gemma-2B. We sample human-written text xt from a pool of 500
news articles from the XSum dataset (Narayan et al., 2018). We also consider existing datasets from
Bao et al. (2023) for the experiments. Details can be found in Appendix H.

Baselines. Our method are compared with two baselines, which adapt the fixed-time permutation
test (Good, 2013) to the scenario of the sequential hypothesis testing. Specifically, the first baseline
conducts a permutation test after collecting every k samples. If the result does not reject H0, then it

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Averaged test results with text xt sampled from
XSum and yt from 2024 Olympic news or machine-
generated news, across three source models. The scor-
ing model is Neo-2.7.

(b) Averaged test results with text xt sampled from
XSum and yt from 2024 Olympic news or machine-
generated news, across three source models. The scor-
ing model is Gemma-2B.

Figure 2: Averaged results of Scenario 1 (oracle), which shows the average of the rejection time
under H1 (i.e., the average time to detect LLMs) and the false positive rate under H0 for 10 different
score functions and 20 different values of the significance level parameter α. Here, three source
models (Gemini-1.5-Flash, Gemini-1.5-Pro and PaLM 2) are used to generate an equal number of
the machine-generated texts, and two different scoring models (Neo-2.7 and Gemma-2B) are used
for computing the function value of the score functions. The left subfigure in each panel (a) and
(b) shows the average time to correctly declare an LLM versus the average false positive rates over
1000 runs for each α. Thus, plots closer to the bottom-left corner are better, as they indicate correct
detection of an LLM with shorter rejection time and a lower FPR. In the right subfigure of each
panel, the black dashed line along with the shaded area illustrates the desired FPRs. Our algorithm
under various configurations consistently has an FPR smaller than the value of the significance level
parameter α.

will wait and collect another k samples to conduct another permutation test on this new batch of k
samples. This process is repeated until H0 is rejected or the time t runs out (i.e., when t = T). The
significance level parameter of the permutation test is set to be the same constant α for each batch,
which does not maintain a valid level-α test overall. The second baseline is similar to the first one
except that the significance level parameter for the i-th batch is set to be α/2i, with i starting from
1, which aims to ensure that the cumulative type-I error is bounded by α via the union bound. The
detailed process of the baselines is described in Appendix G.

Parameters of Our Algorithm. All the experiments in the following consider the setting of the
composite hypothesis. For the step size γ, we simply follow the related works (Cutkosky & Orabona,
2018; Chugg et al., 2023; Shekhar & Ramdas, 2023) and let 1/γ = 2/(2− log 3). We consider two
scenarios of sequential hypothesis testing in the experiments. The first scenario (oracle) assumes
that one has prior knowledge of d∗ and ϵ, and the performance of our algorithm in this case could
be considered as an ideal outcome that it can achieve. For simulating this ideal scenario in the
experiments, we let ϵ be the absolute difference between the mean scores of XSum texts and 2024
Olympic news, which are datasets of human-written texts. The second scenario considers that we
do not have such knowledge a priori, and hence we have to estimate d∗ (or dt) and specify the value
of ϵ using the samples collected in the first few times steps, and then the hypothesis testing is started
thereafter. In our experiments, we use the first 10 samples from each sequence of xt and yt and set
dt to be a constant, which is twice the value of maxs≤10|ϕ(xs)−ϕ(ys)|. For estimating ϵ, we obtain
scores for 20 texts sampled from the XSum dataset and randomly divided them into two groups,
and set ϵ to twice the average absolute difference between the empirical means of these two groups
across 1000 random shuffles.

4.2 EXPERIMENTAL RESULTS

The experiments evaluate the performance of our method and baselines under both H0 and H1. As
there is inherent randomness from the observed samples of the texts in the online setting, we repeat
1000 runs and report the average results over these 1000 runs. Specifically, we report the false
positive rate (FPR) under H0, which is the number of times the source of yt is incorrectly declared
as an LLM when it is actually human, divided by the total of 1000 runs. We also report the average
time to reject the null under H1 (denoted as Rejection Time τ), which is the time our algorithm

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Averaged test results with text xt sampled from
XSum and yt from 2024 Olympic news or machine-
generated news, across three source models. The scor-
ing model is Neo-2.7.

(b) Averaged test results with text xt sampled from
XSum and yt from 2024 Olympic news or machine-
generated news, across three source models. The scor-
ing model is Gemma-2B.

Figure 3: Averaged results of Scenario 2, where our algorithm has to use the first 10 samples to
specify dt and ϵ before starting the algorithm. The plots are about the average of the rejection
time under H1 (i.e., the average time to detect LLMs) and the false positive rate under H0 for 10
different score functions and 20 different values of the significance level parameter α when using
two different scoring models, Neo-2.7 (a) and Gemma-2B (b).

takes to reject H0 and correctly identify the source when yt is indeed generated by an LLM. More
precisely, the rejection time τ is the average time at which either WA

t or WB
t exceeds 2/α before

T ; otherwise, τ is set to T = 500, regardless of whether it rejects H0 at T , since the the time budget
runs out. The parameter value dt ← d∗ in Scenario 1 (oracle) is shown in Table 2, and the value for
ϵ can be found in Table 1 in the appendix. For the estimated ϵ and dt of each sequential testing in
Scenario 2, they are displayed in Table 5 and Table 6 respectively in the appendix. Our method and
the baselines require specifying the significance level parameter α. In our experiments, we try 20
evenly spaced values of the significance level parameter α that ranges from 0.005 to 0.1 and report
the performance of each one.

Figure 2 shows the performance of our algorithm with different score functions under Scenario 1
(oracle). Our algorithm consistently controls FPRs below the significance levels α and correctly
declare the unknown source as an LLM before T = 500 for all score functions. This includes
using the Neo-2.7 or Gemma-2B scoring models to implement eight of these score functions that
require a language model. On the plots, each marker represents the average results over 1000 runs
of our algorithm with a specific score function ϕ(·) under different values of the parameter α. The
subfigures on the left in Figure 2a and 2b show False Positive Rate (under H0) versus Rejection
Time (under H1); therefore, a curve that is closer to the bottom-left corner is more preferred. From
the plot, we can see that the configurations of our algorithm with the score function being Fast-
DetectGPT, DetectGPT, or Likelihood have the most competitive performance. When the unknown
source is an LLM, they can detect it at time around t = 100 on average, and the observation is
consistent under different language models used for the scoring. The subfigures on the right in
Figure 2 show that the FPR is consistently bounded by the chosen value of the significance level
parameter α.

Figure 3 shows the empirical results of our algorithm under Scenario 2, where it has to use the first
few samples to specify dt and ϵ before starting the algorithm. Under this scenario, our algorithm
equipped with most of the score functions still perform effectively. We observe that our algorithm
with 1) Fast-DetectGPT as the score function ϕ(·) and Neo-2.7 as the language model for computing
the score, and with 2) Likelihood as the score function ϕ(·) and Gemma-2B for computing the value
of ϕ(·) have the best performance under this scenario. Compared to the first case where the oracle
of d∗ and ϵ is available and exploited, these two configurations only result in a slight degradation of
the performance under Scenario 2, and we note that our algorithm can only start updating after the
first 10 time steps under this scenario. We observe that the bound of d∗ that we estimated using the
samples collected from first 10 time steps is significantly larger than the tightest bound of d∗ in most
of the runs where we refer the reader to Table 2, 6 in the appendix for details, which explains why
most of the configurations under Scenario 2 need a longer time to detect LLMs, as predicted by our
propositions. We also observe that the configurations with two supervised classifiers (RoBERTa-
based and RoBERTa-large) and the combinations of a couple of score functions and the scoring
model Gemma-2B do not strictly control FPRs across all significance levels. This is because the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Comparison between our method and the baseline
that sets the value of the significance level parameter
to be the same constant α for every batch.

(b) Comparison between our method and the baseline
that sets the value of the significance level parameter
for the i-th batch test to be α/2i.

Figure 4: Comparison of the average results under Scenario 2, where one has to use the first 10
samples to specify ϵ and/or dt before starting the algorithm. Human-written text xt are sampled
from XSum dataset, while yt is from 2024 Olympic news (under H0) or machine-generated news
(under H1). Fake news are generated by three source models: Gemini-1.5-Flash, Gemini-1.5-Pro
and PaLM 2. We report the case when the score function is Fast-DetectGPT and the scoring model
is Neo-2.7 for our algorithm.

estimated dt for these score functions is not large enough to ensure that the wealth Wt remains
nonnegative at all time points t. That is, we observed 2dt < |ϕ(xt) − ϕ(yt)| + ϵ for some t in the
experiments, and hence the wealth Wt is no longer a non-negative supermartingale, which prevents
the application of Ville’s inequality to guarantee a level-α test. Nevertheless, our algorithm with
eight score functions that utilize the scoring model Neo-2.7 can still effectively control type-I error
and detect LLMs by around t = 300.

In Appendix H, we provide more experimental results, including those using existing datasets from
Bao et al. (2023) for simulating the sequential testing, where our algorithm on these datasets also
performs effectively. Moreover, we found that the rejection time is influenced by the relative magni-
tude of ∆−ϵ and dt−ϵ, as predicted by our propositions, and the details are provided in Appendix G.
From the experimental results, when the knowledge of d∗ and ϵ is not available beforehand, as long
as the estimated d∗ and ϵ guarantee a nonnegative supermartingale, and the estimated ϵ is greater
than or equal to the actual absolute difference in the empirical mean scores of two sequences of
human texts, our algorithm can maintain a sequential valid level-α test and efficiently detect LLMs.

Comparisons with Baselines. In this part, we use the score function of Fast-DetectGPT and scor-
ing model Neo-2.7 to get text scores, and then compare the performance of our method with two
baselines that adapt the fixed-time permutation test to the sequential hypothesis setting. Batch sizes
k ∈ {25, 50, 100, 250, 500} are considered for the baselines. We set the estimated ϵ and d∗ values
the same as in Scenario 2. The baselines are also implemented in a manner to conduct the com-
posite hypothesis test. We observe a significant difference between the scores of XSum texts and
machine-generated news, which causes the baselines of the permutation test to reject the null hy-
pothesis most of the time immediately after receiving the first batch. This in turn results in the nearly
vertical lines observed in the left subfigure of Figure 4a and Figure 4b, where the averaged rejection
time across 1000 repeated tests closely approximates the batch size k for each of the 20 significance
levels α. On the other hand, we observe that when H0 is true, the baselines might not be a valid
α-test, even with a corrected significance level. This arises from the increased variability of text
scores introduced by smaller batch sizes, which results in observed absolute differences in means
that may exceed the ϵ value under H0. Our method can quickly detect an LLM while keeping the
false positive rates (FPRs) below the specified significance levels, which is a delicate balance that
can be difficult for the baselines to achieve. Without prior knowledge of the ϵ value, the baselines
of permutation tests may fail to control the type-I error with small batch sizes and cannot quickly
reject the null hypothesis while ensuring that FPRs remain below α, unlike our method.

5 LIMITATIONS AND OUTLOOKS

In this paper, we demonstrate that our algorithm, which builds on the score functions of offline
detectors, can rapidly determine whether a stream of text is generated by an LLM and provides
strong statistical guarantees. Specifically, it controls the type-I error rate below the significance

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Averaged test results for estimating parameters
based on first 10 samples.

(b) Averaged test results for estimating parameters
based on first 20 samples.

Figure 5: Comparison of different durations in the initial stage for parameter estimation in Scenario
2. Here, text xt is sampled from XSum and yt is from 2024 Olympic news or machine-generated
news, across three source models. The scoring model is Neo-2.7. Better parameter estimation can
enhance the performance of our algorithm. In the previous experiments, we used the first 10 samples
to estimate parameters dt and ϵ, as shown in (a). The subfigure (b) suggests that a longer duration of
for parameter estimation could possibly yield better results, where we emphasize that the test begins
at t = 21 after estimating the parameters. More discussion is available in Appendix I.

(a) Task 1: When the LLM source posts texts gener-
ated by different LLMs (under H1). Specifically, the
sequence consists of 100 texts generated by Gemini-
1.5-Pro, 200 texts generated by Gemini-1.5-Flash, and
200 texts generated by PaLM 2.

(b) Task 2: When the unknown source posts a mix-
ture of human-written texts and LLM-generated texts
(under H1). Specifically, the sequence consists of 200
texts written by human, and 300 texts generated by
PaLM 2.

Figure 6: (Extension to other settings) (a) Results when the sequence of texts yt are produced by
various LLMs instead of a single one. (b) Results under the setting that the null hypothesis corre-
sponds to the case that all the texts from the unknown source are human-written, while the alternative
hypothesis corresponds to the one that not all yt are human-written. More detail is available in Ap-
pendix I.

level, ensures that the source of LLM-generated texts can eventually be identified, and guarantees an
upper bound on the expected time to correctly declare the unknown source as an LLM under a mild
assumption. Although the choice of detector can influence the algorithm’s performance and some
parameters related to text scores need to be predefined before receiving the text, our experimental
results show that most existing detectors provide effective score functions, and our method performs
well in most cases when using estimated values of parameters based on text scores from the first few
time steps. To further enhance its efficacy, it may be worthwhile to design score functions tailored to
the sequential setting, improve parameter estimations with scores from more time steps, and study
the trade-offs between delaying the start of testing and obtaining more reliable estimates.

Moreover, our algorithm could potentially be used as an effective tool to promptly identify and
mitigate the misuse of LLMs in generating texts, such as monitoring social media accounts that dis-
seminate harmful information generated by LLMs, rapidly detecting sources of fake news generated
by LLMs on public websites, and identifying users who post LLM-generated comments in forums
to manipulate public opinion. Exploring these applications could be a promising direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text
provenance with data hiding. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 121–
140. IEEE, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

David Ifeoluwa Adelani, Haotian Mai, Fuming Fang, Huy H Nguyen, Junichi Yamagishi, and Isao
Echizen. Generating sentiment-preserving fake online reviews using neural language models and
their human-and machine-based detection. In Advanced information networking and applica-
tions: Proceedings of the 34th international conference on advanced information networking and
applications (AINA-2020), pp. 1341–1354. Springer, 2020.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
Real or fake? learning to discriminate machine from human generated text. arXiv preprint
arXiv:1906.03351, 2019.

Akshay Balsubramani and Aaditya Ramdas. Sequential nonparametric testing with the law of the
iterated logarithm. arXiv preprint arXiv:1506.03486, 2015.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Effi-
cient zero-shot detection of machine-generated text via conditional probability curvature. arXiv
preprint arXiv:2310.05130, 2023.

Anya Belz. Fully automatic journalism: we need to talk about nonfake news generation. In Confer-
ence for truth and trust online, 2019.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. Gpt-neo: Large scale
autoregressive language modeling with mesh-tensorflow. 2021. URL https://api.
semanticscholar.org/CorpusID:245758737.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom B Brown. Language models are few-shot learners. 2020.

Canyu Chen and Kai Shu. Can LLM-generated misinformation be detected? arXiv preprint
arXiv:2309.13788, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Ben Chugg, Santiago Cortes-Gomez, Bryan Wilder, and Aaditya Ramdas. Auditing fairness by
betting. Advances in Neural Information Processing Systems, 36:6070–6091, 2023.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning
in banach spaces. In Conference On Learning Theory, pp. 1493–1529. PMLR, 2018.

Clayton Allen Davis, Onur Varol, Emilio Ferrara, Alessandro Flammini, and Filippo Menczer.
Botornot: A system to evaluate social bots. In Proceedings of the 25th international conference
companion on world wide web, pp. 273–274, 2016.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

11

https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:245758737

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio Martella, and Maurizio Tesconi.
Tweepfake: About detecting deepfake tweets. Plos one, 16(5):e0251415, 2021.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Emilio Ferrara. Social bot detection in the age of chatgpt: Challenges and opportunities. First
Monday, 2023.

Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro Flammini. The rise of
social bots. Communications of the ACM, 59(7):96–104, 2016.

Leon Fröhling and Arkaitz Zubiaga. Feature-based detection of automated language models: tack-
ling gpt-2, gpt-3 and grover. PeerJ Computer Science, 7:e443, 2021.

G David Garson. Testing statistical assumptions, 2012.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and
visualization of generated text. arXiv preprint arXiv:1906.04043, 2019.

Phillip Good. Permutation tests: a practical guide to resampling methods for testing hypotheses.
Springer Science & Business Media, 2013.

Google. Gemma-2b model on hugging face, 2024. URL https://huggingface.co/
google/gemma-2b.

Google Cloud. Vertex ai: Machine learning model management, 2024a. URL https://cloud.
google.com/vertex-ai?hl=zh_cn.

Google Cloud. Reference for text models in vertex ai, 2024b. URL https://cloud.google.
com/vertex-ai/generative-ai/docs/model-reference/text?hl=zh-cn.

Nick Harvey. A second course in randomized algorithms. 2023.

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang. Unifying human and statistical evaluation
for natural language generation. arXiv preprint arXiv:1904.02792, 2019.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2):169–192, 2007.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection
of generated text is easiest when humans are fooled. arXiv preprint arXiv:1911.00650, 2019.

Zunera Jalil and Anwar M Mirza. A review of digital watermarking techniques for text docu-
ments. In 2009 International Conference on Information and Multimedia Technology, pp. 230–
234. IEEE, 2009.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks VS Lakshmanan. Automatic detection of
machine generated text: A critical survey. arXiv preprint arXiv:2011.01314, 2020.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146, 2019.

Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A review
of text watermarking: theory, methods, and applications. IEEE Access, 6:8011–8028, 2018.

J. Kao. More than a million pro-repeal net neutrality comments were likely
faked. Hacker Noon, Nov 2017. URL https://hackernoon.com/
more-than-a-million-pro-repeal-net-neutrality-comments-were-likely-faked-e9f0e3ed36a6.

12

https://huggingface.co/google/gemma-2b
https://huggingface.co/google/gemma-2b
https://cloud.google.com/vertex-ai?hl=zh_cn
https://cloud.google.com/vertex-ai?hl=zh_cn
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text?hl=zh-cn
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text?hl=zh-cn
https://hackernoon.com/more-than-a-million-pro-repeal-net-neutrality-comments-were-likely-faked-e9f0e3ed36a6
https://hackernoon.com/more-than-a-million-pro-repeal-net-neutrality-comments-were-likely-faked-e9f0e3ed36a6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

John L Kelly. A new interpretation of information rate. the bell system technical journal, 35(4):
917–926, 1956.

Y. Kilcher. This is the worst ai ever, June 2022. URL https://www.linkedin.com/posts/
ykilcher_gpt-4chan-this-is-the-worst-ai-ever-activity-6938520423496081409-Twxg.
LinkedIn post.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Dmitry Kobak, Rita González-Márquez, Emőke-Ágnes Horvát, and Jan Lause. Delving into chatgpt
usage in academic writing through excess vocabulary. arXiv preprint arXiv:2406.07016, 2024.

Thomas Lavergne, Tanguy Urvoy, and François Yvon. Detecting fake content with relative entropy
scoring. Pan, 8(27-31):4, 2008.

Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. Do language models plagiarize? In
Proceedings of the ACM Web Conference 2023, pp. 3637–3647, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning, pp. 24950–24962. PMLR, 2023.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Olympics. Olympic games news, 2024. URL https://olympics.com/en/.

OpenAI. Chatgpt. https://chat.openai.com/, December 2022.

OpenAI. AI Text Classifier. https://beta.openai.com/ai-text-classifier, 2023.
Accessed: 2023-08-30.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Francesco Orabona and Kwang-Sung Jun. Tight concentrations and confidence sequences from the
regret of universal portfolio. IEEE Transactions on Information Theory, 2023.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Iacopo Pozzana and Emilio Ferrara. Measuring bot and human behavioral dynamics. Frontiers in
Physics, 8:125, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Aaditya Ramdas and Tudor Manole. Randomized and exchangeable improvements of markov’s,
chebyshev’s and chernoff’s inequalities. arXiv preprint arXiv:2304.02611, 2023.

13

https://www.linkedin.com/posts/ykilcher_gpt-4chan-this-is-the-worst-ai-ever-activity-6938520423496081409-Twxg
https://www.linkedin.com/posts/ykilcher_gpt-4chan-this-is-the-worst-ai-ever-activity-6938520423496081409-Twxg
https://olympics.com/en/
https://chat.openai.com/
https://beta.openai.com/ai-text-classifier

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer. Game-theoretic statistics and
safe anytime-valid inference. Statistical Science, 38(4):576–601, 2023.

A Selyukh. Fcc repeals ‘net neutrality’rules for internet providers. NPR (accessed 13 October 2020),
2017.

Glenn Shafer. Testing by betting: A strategy for statistical and scientific communication. Journal of
the Royal Statistical Society Series A: Statistics in Society, 184(2):407–431, 2021.

Shubhanshu Shekhar and Aaditya Ramdas. Nonparametric two-sample testing by betting. IEEE
Transactions on Information Theory, 2023.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Chris Stokel-Walker. Ai bot chatgpt writes smart essays-should academics worry? Nature, 2022.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank informa-
tion for zero-shot detection of machine-generated text. arXiv preprint arXiv:2306.05540, 2023.

Teo Susnjak and Timothy R McIntosh. Chatgpt: The end of online exam integrity? Education
Sciences, 14(6):656, 2024.

Alexander Tartakovsky, Igor Nikiforov, and Michele Basseville. Sequential analysis: Hypothesis
testing and changepoint detection. CRC press, 2014.

Edward Tian. Gptzero: An ai text detector, 2023. URL https://gptzero.me/. URL https:
//gptzero.me/.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. Authorship attribution for neural text genera-
tion. In Proceedings of the 2020 conference on empirical methods in natural language processing
(EMNLP), pp. 8384–8395, 2020.

Onur Varol, Emilio Ferrara, Clayton Davis, Filippo Menczer, and Alessandro Flammini. Online
human-bot interactions: Detection, estimation, and characterization. In Proceedings of the inter-
national AAAI conference on web and social media, volume 11, pp. 280–289, 2017.

Jean Ville. Etude critique de la notion de collectif. Gauthier-Villars Paris, 1939.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model,
2021.

Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(1):1–27, 2024.

Max Weiss. Deepfake bot submissions to federal public comment websites cannot be distinguished
from human submissions. Technology Science, 2019121801, 2019.

Xianjun Yang, Wei Cheng, Yue Wu, Linda Petzold, William Yang Wang, and Haifeng Chen. Dna-
gpt: Divergent n-gram analysis for training-free detection of gpt-generated text. arXiv preprint
arXiv:2305.17359, 2023.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. Wordcraft: story writing with large lan-
guage models. In Proceedings of the 27th International Conference on Intelligent User Interfaces,
pp. 841–852, 2022.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Advances in neural information processing
systems, 32, 2019.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

14

https://gptzero.me/
https://gptzero.me/
https://gptzero.me/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

A.1 RELATED WORKS OF DETECTING MACHINE-GENERATED TEXTS

Some methods distinguish between human-written and machine-generated texts by comparing their
statistical properties (Jawahar et al., 2020). Lavergne et al. (2008) introduced a method, which uses
relative entropy scoring to effectively identify texts from Markovian text generators. Perplexity
is also a metric for detection, which quantifies the uncertainty of a model in predicting text se-
quences (Hashimoto et al., 2019). Gehrmann et al. (2019) developed GLTR tool, which leverages
statistical features such as per-word probability, rank, and entropy, to enhance the accuracy of fake-
text detection. Mitchell et al. (2023) created a novel detector called DetectGPT, which identifies
a machine-generated text by noting that it will exhibit higher log-probability than samples where
some words of the original text have been rewritten/perturbed. Su et al. (2023) then introduced two
advanced methods utilizing two metrics: Log-Likelihood Log-Rank Ratio (LRR) and Normalized
Perturbed Log Rank (NPR), respectively. Bao et al. (2023) developed Fast-DetectGPT, which re-
places the perturbation step of DetectGPT with a more efficient sampling operation. Solaiman et al.
(2019) employed the classic logistic regression model on TF-IDF vectors to detect texts generated by
GPT-2, and noted that texts from larger GPT-2 models are more challenging to detect than those from
smaller GPT-2 models. Researchers have also trained supervised models on neural network bases.
Bakhtin et al. (2019) found that Energy-based models (EBMs) outperform the behavior of using the
original language model log-likelihood in real and fake text discrimination. Zellers et al. (2019)
developed a robust detection method named GROVER by using a linear classifier, which can effec-
tively spot AI-generated ‘neural’ fake news. Ippolito et al. (2019) showed that BERT-based (Devlin,
2018) classifiers outperform humans in identifying texts characterized by statistical anomalies, such
as those where only the top k high-likelihood words are generated, yet humans excel at semantic
understanding. Solaiman et al. (2019) fine-tuned RoBERTa (Liu et al., 2019) on GPT-2 outputs and
achieved approximately 95% accuracy in detecting texts generated by 1.5 billion parameter GPT-
2. The effectiveness of RoBERTa-based detectors is further validated across different text types,
including machine-generated tweets (Fagni et al., 2021), news articles (Uchendu et al., 2020), and
product reviews (Adelani et al., 2020). Other supervised classifiers, such as GPTZero (Tian, 2023)
and OpenAI’s Classifier (OpenAI, 2023), have also proven to be strong detectors. Moreover, some
research has explored watermarking methods that embed detectable patterns in LLM-generated texts
for identifying, see e.g., Jalil & Mirza (2009); Kamaruddin et al. (2018); Abdelnabi & Fritz (2021);
Zhao et al. (2023); Kirchenbauer et al. (2023); Christ et al. (2024). Recently, Kobak et al. (2024)
introduced “excess word usage”, a novel data-driven approach that identifies LLM usage in aca-
demic writing and avoids biases that could be potentially introduced by generation prompts from
traditional human text datasets.

A.2 RELATED WORKS OF SEQUENTIAL HYPOTHESIS TESTING BY BETTING

Kelly (1956) first proposed a strategy for sequential betting with initial wealth on the outcome of
each coin flip gt in round t, which can take values of +1 (head) or−1 (tail), generated i.i.d. with the
probability of heads p ∈ [0, 1]. It is shown that betting a fraction βt = 2p−1 on heads in each round
will yield more accumulated wealth than betting any other fixed fraction of the current wealth in
the long run. Orabona & Pál (2016) demonstrated the equivalence between the minimum wealth of
betting and the maximum regret in one-dimensional Online Linear Optimization (OLO) algorithms,
which introduces the coin-betting abstraction for the design of parameter-free algorithms. Based on
this foundation, Cutkosky & Orabona (2018) developed a coin betting algorithm, which uses an exp-
concave optimization approach through the Online Newton Step (ONS). Subsequently, Shekhar &
Ramdas (2023) applied their betting strategy, along with the general principles of testing by betting
as clarified by Shafer (2021), to nonparametric two-sample hypothesis testing. Chugg et al. (2023)
then conducted sequentially audits on both classifiers and regressors within the general two-sample
testing framework established by Shekhar & Ramdas (2023), which demonstrate that this method
remains robust even in the face of distribution shifts. Additionally, other studies (Orabona & Jun,
2023; Waudby-Smith & Ramdas, 2024) have developed practical strategies that leverage online
convex optimization methods, with which the betting fraction can be adaptively selected to provide
statistical guarantees for the results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B RELATED SCORE FUNCTIONS

The score function ϕ : Text → R will take a text as input and then output a real number. It is
designed to maximize the ability to distinguish machine text from human text, that is, we want the
score function to maximize the difference in scores between human text and machine text.

DetectGPT. Three models: source model, perturbation model and scoring model are considered
in the process of calculating the score ϕ(x) of text x by the metric of DetectGPT (the normalized
perturbation discrepancy) (Mitchell et al., 2023). Firstly, the original text x is perturbed by a pertur-
bation model qζ to generate m perturbed samples x̃(i) ∼ qζ(·|x), i ∈ [1, 2, · · · ,m], then the scoring
model pθ is used to calculate the score

ϕ(x) =
log pθ(x)− µ̃

σ̃
, (6)

where µ̃ = 1
m

∑m
i=1 log pθ(x̃

(i)), and σ̃2 = 1
m

∑m
i=1

[
log pθ(x̃

(i))− µ̃
]2

. We can write log pθ(x) as∑n
j=1 log pθ(xj |x1:j−1), where n denotes the number of tokens of x, xj denotes the j-th token, and

x1:j−1 means the first (j − 1) tokens. Similarly, log pθ(x̃(i)) =
∑ñ(i)

j=1 log pθ(x̃
(i)
j |x̃

(i)
1:j−1), where

ñ(i) is the number of tokens of i-th perturbed sample x̃(i).

Fast-DetectGPT. Bao et al. (2023) considered three models: source model, sampling model and
scoring model for the metric of Fast-DetectGPT (conditional probability curvature). The calculation
is conducted by first using the sampling model qζ to generate alternative samples that each consist
of n tokens. For each token x̃j , it is sampled conditionally on x1:j−1, that is, x̃j ∼ qζ(·|x1:j−1)
for j = 1, · · · , n. The sampled text is x̃ = (x̃1, · · · , x̃n). Then, the scoring model pθ is used to
calculate the logarithmic conditional probability of the text, given by

∑n
j=1 log pθ(xj |x1:j−1), and

then normalize it, where n denotes the number of tokens of x. This score function is quantified as

ϕ(x) =

∑n
j=1 log pθ(xj |x1:j−1)− µ̃

σ̃
. (7)

There are two ways to calculate the mean value µ̃ and the corresponding variance σ̃2, one is to
calculate the population mean

µ̃ = Ex̃

 n∑
j=1

log pθ(x̃
(i)
j |x1:j−1)

 =

n∑
j=1

Ex̃

[
log pθ(x̃

(i)
j |x1:j−1)

]

=

n∑
j=1

s∑
i=1

qζ(x̃
(i)
j |x1:j−1) · log pθ(x̃(i)

j |x1:j−1),

if we denote
∑s

i=1 qζ(x̃
(i)
j |x1:j−1) · log pθ(x̃(i)

j |x1:j−1) as µ̃j , then the variance is

σ̃2 = Ex̃

 n∑
j=1

(
log pθ(x̃

(i)
j |x1:j−1)− µ̃j

)2 = Ex̃

 n∑
j=1

(
log2 pθ(x̃

(i)
j |x1:j−1)− µ̃2

j

)
=

n∑
j=1

(
s∑

i=1

qζ(x̃
(i)
j |x1:j−1) · log2 pθ(x̃(i)

j |x1:j−1)− µ̃2
j

)
,

where x̃
(i)
j denotes the i-th generated sample for the jth token of the text x, qζ(x̃

(i)
j |x1:j−1) is

the probability of this sampled token given by the sampling model according to the probability
distribution of all possible tokens at position j, conditioned on the first (j− 1) tokens of x. Besides,
pθ(x̃

(i)
j |x1:j−1) is the conditional probability of x̃(i)

j evaluated by the scoring model, s represents the
total number of possible tokens at each position, corresponding to the size of the entire vocabulary
used by the sampling model. We can use the same value at each position in the formula, as the
vocabulary size remains consistent across positions. The sample mean and the variance can be
considered in practice

µ̃ =
1

m

m∑
i=1

n∑
j=1

log pθ(x̃
(i)
j |x1:j−1), σ̃2 =

1

m

n∑
j=1

m∑
i=1

(
log pθ(x̃

(i)
j |x1:j−1)− µ̃2

j

)
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where µ̃j = 1
m

∑m
i=1 log pθ(x̃

(i)
j |x1:j−1). In this case, the sampling model is just used to get sam-

ples x̃. By sampling a substantial number of texts (m = 10, 000), we can effectively map out the
distribution of their log pθ(x̃j |x1:j−1) values according to Bao et al. (2023).

NPR. The definition of Normalized Log-Rank Perturbation (NPR) involves the perturbation opera-
tion of DetectGPT (Su et al., 2023). The scoring function of NPR is

ϕ(x) =
1
m

∑m
i=1 log rθ(x̃

(i))

log rθ(x)
,

where rθ(x) represents the rank of the original text evaluated by the scoring model, m per-
turbed samples x̃(i), i ∈ [1, 2, · · · ,m] are generated based on x. The log rθ(x) is calculated as
1
n

∑n
j=1 log rθ(xj |x1:j−1), where n denotes the number of tokens of x. Similarly, log rθ(x̃(i)) =

1
ñ(i)

∑ñ(i)

j=1 log rθ(x̃
(i)
j |x̃

(i)
1:j−1), where ñ(i) is the number of tokens of perturbed sample x̃(i) gener-

ated by the perturbation model qζ .

LRR. The score function of Log-Likelihood Log-Rank Ratio (LRR) (Su et al., 2023) consider both
logarithmic conditional probability and the logarithmic conditional rank evaluated by the scoring
model for text

ϕ(x) =

∣∣∣∣∣
1
n

∑n
j=1 log pθ(xj |x1:j−1)

1
n

∑n
j=1 log rθ(xj |x1:j−1)

∣∣∣∣∣ = −
∑n

j=1 log pθ(xj |x1:j−1)∑n
j=1 log rθ(xj |x1:j−1)

,

where rθ(xj |x1:j−1) ≥ 1 is the rank of xi, conditioned on its previous j − 1 tokens. We suppose
that the total number of tokens of x is n.

Likelihood. The Likelihood (Solaiman et al., 2019; Hashimoto et al., 2019; Gehrmann et al., 2019)
for a text x which has n tokens can be computed by averaging the log probabilities of each token
conditioned on the previous tokens in the text given its preceding context evaluated by the scoring
model:

ϕ(x) =
1

n

n∑
j=1

log pθ(xj |x1:j−1).

LogRank. The LogRank (Gehrmann et al., 2019), is defined by firstly using the scoring model to
determine the rank of each token’s probability (with respect to all possible tokens at that position)
and then taking the average of the logarithm of these ranks:

ϕ(x) =
1

n

n∑
j=1

log rθ(xj |x1:j−1).

Entropy. Entropy measures the uncertainty of the predictive distribution for each token (Gehrmann
et al., 2019). The score function is defined as:

ϕ(x) = −1

s

n∑
j=1

s∑
i=1

pθ(x
(i)
j |x1:j−1) · log pθ(x(i)

j |x1:j−1),

where pθ(x
(i)
j |x1:j−1) denotes the probability of each possible token x(i) at position j evaluated by

the scoring model, given the preceding context x1:j−1. The inner sum computes the entropy for each
token’s position by summing over all s possible tokens.

DNA-GPT. The score function of DNA-GPT is calculated by WScore, which compares the differ-
ences between the original and new remaining parts through probability divergence (Yang et al.,
2023). Given the truncated context z based on text x and a series of texts sampled by scoring model
pθ based on z, denoted as {x̃(1), x̃(2), . . . , x̃(m)}. WScore is defined as:

ϕ(x) = log pθ(x)−
1

m

m∑
i=1

log pθ(x̃
(i)),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where we need to note that x ∼ qs(·), x̃(i) ∼ pθ(·|z) for i = {1, 2, · · · ,m}. This formula calculates
the score of x by comparing the logarithmic probability differences between the text x and the aver-
aged results of m samples generated by the scoring model under the context z which is actually the
truncated x. Here, we can write the log pθ(x) as

∑n
j=1 log pθ(xj |x1:j−1), which is the summation

of the logarithm conditional probability of each token conditioned on the previous tokens, assuming
the total number of non-padding tokens for x is n. The calculation is similar for log pθ(x̃(i)), we
just need to replace x in log pθ(x) by x̃(i).

RoBERTa-base/large. The supervised classifiers RoBERTa-base and RoBERTa-large (Liu et al.,
2019) use the softmax function to compute a score for text x. Two classes are considered: “class =
0” represents text generated by a GPT-2 model, while “class = 1” represents text not generated by a
GPT-2 model. The score for text x is defined as the probability that it is classified into class 0 by the
classifier, computed as:

ϕ(class = 0|x) = ez0

ez0 + ez1
,

where zj is the logits of x corresponding to class j ∈ {0, 1}, provided by the output of the pre-trained
model.

C PROOF OF REGRET BOUND OF ONS

Algorithm 2 Online Newton Step (Hazan et al., 2016)

Require: parameter γ; Init: θ1 ← 0, a0 ← 1.
1: for t = 1 to T do
2: Receive loss function ℓt : Kt → R.
3: Compute zt = ∇ℓt(θt), at = at−1 + z2t .
4: Update via Online Newton Step:

βt+1 = θt −
1

γ
· zt
at

.

5: Get a hint of dt+1 to update the domain Kt+1 ← [− 1
2dt+1

, 1
2dt+1

].
6: Project βt+1 to Kt+1:

θt+1 = projKt+1
(βt+1) = arg min

θ∈Kt

(βt+1 − θ)2.

7: end for

Under H0, i.e., µx = µy , the wealth is a P-supermartingale. The value of gt are constrained to the
interval [−1, 1] in previous works (Orabona & Pál, 2016; Cutkosky & Orabona, 2018; Chugg et al.,
2023) with the scores ϕ(xt) and ϕ(yt) each range from [0, 1]. To ensure that wealth Wt remains
nonnegative and to establish the regret bound by ONS, θt is always selected within [−1/2, 1/2]. In
our setting, however, the actual range of score difference between two texts, denoted as gt = ϕ(xt)−
ϕ(yt), is typically unknown beforehand. If we assume that the ranges for both ϕ(xt) and ϕ(yt) are
[mt, nt], the range of their difference gt is then symmetric about zero, which spans from−(nt−mt)
to (nt − mt). we suppose an upper bound value dt ≥ nt − mt and express the range as gt ∈
[−dt, dt], where dt ≥ 0. Then, choosing θt within [−1/2dt, 1/2dt] can guarantee that the wealth
is a nonnegative P-supermartingale. If we consider the condition of either Wt ≥ 1/α or WT ≥
Z/α for any stopping time T as the indication to ”reject H0” and apply the randomized Ville’s
inequality (Ramdas & Manole, 2023), the type-I error can be controlled below the significance level
α under H0.

Under H1, i.e.,µx ̸= µy , our goal is to select a proper θt at each round t that can speed up the wealth
accumulation. It allows us to declare the detection of an LLM once the wealth reaches the specified
threshold 1/α. We can choose θt recursively following Algorithm 2. This algorithm can guarantee
the regret upper bound for exp-concave loss. Following the proof of Theorem 4.6 in Hazan et al.
(2016), we can derive the bound to the regret. The regret of choosing θt ∈ Kt after T time steps by

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 is defined as

RegretT (ONS) :=

T∑
t=1

ℓt(θt)−
T∑

t=1

ℓt(θ
∗), (8)

where the loss function for each t is ℓt : Kt → R, and the best decision in hindsight is defined as
θ∗ ∈ argminθ∈K∗

∑T
t=1 ℓt(θ), where K∗ =

⋂T
t=1Kt.

Lemma 1. Let ℓt : Kt → R be an α-exp-concave function for each t. Let Dt represent the
diameter of Kt, and Gt be a bound on the (sub)gradients of ℓt. Algorithm 2, with parameter γ =
1
2 min

{
1

GtDt
, α
}

and a0 = 1/γ2D2
1 , guarantees:

RegretT (ONS) ≤ 1

2γ

(
T∑

t=1

z2t
at

+ 1

)
, (9)

where Gt ·Dt is a constant for all t, and zt, at, and Kt are defined in Algorithm 2.

Remark 3. For any α-exp-concave function ℓt(·), if we let a positive number γ be
1
2 min

{
1

GtDt
, α
}

, and initialize a0 = 1/γ2D2
1 at the beginning, the above inequality (9) will al-

ways hold for choosing the fraction θt by Algorithm 2. That is, the accumulated regret after T time
steps, defined as the difference between the cumulative loss from adaptively choosing θt by this
ONS algorithm and the minimal cumulative loss achievable by the optimal decision θ∗ at each time
step, is bounded by the right-hand side of (9). To prove this lemma, we need to first prove Lemma
2.
Lemma 2. (Lemma 4.3 in Hazan et al. (2016)) Let f : K → R be an α-exp-concave function, and
D,G denote the diameter of K and a bound on the (sub)gradients of f respectively. The following
holds for all γ = 1

2 min
{

1
GD , α

}
and all θ, β ∈ K:

f(θ) ≥ f(β) +∇f(β)⊤(θ − β) +
γ

2
(θ − β)⊤∇f(β)∇f(β)⊤(θ − β). (10)

Remark 4. For any α-exp-concave function f(·), if we let a positive number γ = 1
2 min

{
1

GD , α
}

,
the above equation (10) will hold for any two points within the domain K of f(·). This inequality
remains valid even if γ > 0 is set to a smaller value than this minimum, although doing so will result
in a looser regret bound. At time t in Algorithm 2, the diameter of the loss function ℓt : Kt → R
is D = 1/dt, since Kt = [−1/2dt, 1/2dt]. Additionally, the bound on the gradient of ℓt(θ) is
Gt = maxθ∈Kt

∇ℓt(θ). If ℓt(θ) is α-exp-concave function and γ = 1/2min{dt/Gt, α}, then
equation (10) will hold for any θ, β ∈ [−1/2dt, 1/2dt].
Proof of Lemma 2. The composition of a concave and non-decreasing function with another con-
cave function remains concave. Given that for all γ = 1

2 min
{

1
GD , α

}
, we have 2γ ≤ α, the

function g(θ) = θ2γ/α composed with f(θ) = exp(−αf(θ)) is concave. Hence, the function h(θ),
defined as exp(−2γf(θ)), is also concave. Then by the definition of concavity,

h(θ) ≤ h(β) +∇h(β)⊤(θ − β). (11)

We plug ∇h(β) = −2γ exp(−2γf(β))∇f(β) into equation (11),

exp(−2γf(x)) ≤ exp(−2γf(β))[1− 2γ∇f(β)⊤(θ − β)]. (12)

Thus,

f(θ) ≥ f(β)− 1

2γ
log
(
1− 2γ∇f(β)⊤(θ − β)

)
. (13)

Since D,G are previously denoted as the diameter of K and a bound on the (sub)gradients of f
respectively, which means that D ≥ |θ − β|, G ≥ ∇f(β). Therefore, we have |2γ∇f(β)(θ −
β)| ≤ 2γGD ≤ 1 ⇒ −1 ≤ 2γ∇f(β)(θ − β)| ≤ 1. According to the Taylor approximation,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

we know that − log(1 − a) ≥ a + 1
4a

2 holds for a ≥ −1. The lemma is derived by considering
a = 2γ∇f(β)(θ − β).

Since our problem is one-dimensional, then we can use Lemma 2 to get the regret bound. Here
shows the proof of Lemma 1.

Proof of Lemma 1. The best decision in hindsight is θ∗ ∈ argminθ∈K∗

∑T
t=1 ℓt(θ), where K∗ =⋂T

t=1Kt. By Lemma 2, we have the inequality (14) for γt = 1
2 min

{
1

GtDt
, α
}

, which is

ℓt(θt)− ℓt(θ
∗)︸ ︷︷ ︸

:=Regrett(ONS)

≤ zt(θt − θ∗)− γt
2
(θt − θ∗)2z2t︸ ︷︷ ︸

:=Rt

, (14)

where the right hand side of the above inequality is defined as Rt, the left hand side is the regret of
selecting θt via ONS at time t.

We sum both sides of the inequality (14) from t = 1 to T , then we get

T∑
t=1

ℓt(θt)−
T∑

t=1

ℓt(θ
∗)︸ ︷︷ ︸

:=RegretT (ONS)

≤
T∑

t=1

Rt. (15)

We recall that Dt is defined as the diameter of Kt, i.e., Dt = maxa,b∈Kt∥a − b∥, and Gt is
defined as a bound on the gradients of the loss function ℓt(θ) = − ln(1 − gtθ) at time t, i.e.,
Gt = maxθt∈Kt

| d
dθt

ℓt(θt)|. In our setting, Kt is [−1/2dt, 1/2dt], thus Dt = 1/dt. The gradient
zt = ∇ℓt(θt) = gt/(1− gtθt). We find that ℓt monotonically increases with gt and θt, which means
Gt can be taken at the maximum gt and the maximum θt. Since gt = ϕ(xt) − ϕ(yt) ∈ [−dt, dt],
we have Gt = dt/(1− dt · 1

2dt
) = 2dt. Above all, we get Gt ·Dt = 2dt · 1/dt = 2 for each t, and

α = 1. The value of γt = 1
2 min{1/GtDt, α} becomes a fixed positive constant for all t. Therefore,

we can simply use γ in the remaining proof since γt is the same for every t.

According to the update rule of the algorithm: θt+1 = projKt+1
(βt+1), and the definition: βt+1 =

θt − 1
γ · zt/at, we get:

βt+1 − θ∗ = θt − θ∗ − 1

γ

zt
at

, (16)

and

at(βt+1 − θ∗) = at(θt − θ∗)− 1

γ
zt. (17)

We multiply (16) by (17) to get

(βt+1 − θ∗)2at = (θt − θ∗)2at −
2

γ
zt(θt − θ∗) +

1

γ2

z2t
at

. (18)

Since θt+1 is the projection of βt+1 to Kt+1, and θ∗ ∈ Kt+1,

(βt+1 − θ∗)2 ≥ (θt+1 − θ∗)2. (19)

Plugging (19) in (18) gives

zt(θt − θ∗) ≤ 1

2γ

z2t
at

+
γ

2
(θt − θ∗)2at −

γ

2
(θt+1 − θ∗)2at. (20)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Summing up over t = 1 to T ,
T∑

t=1

zt(θt − θ∗)

≤
T∑

t=1

(
1

2γ

z2t
at

+
γ

2
(θt − θ∗)2at −

γ

2
(θt+1 − θ∗)2at

)

=

T∑
t=1

1

2γ

z2t
at

+
γ

2
(θ1 − θ∗)2a1 +

T∑
t=2

γ

2
(θt − θ∗)2at −

T−1∑
t=1

γ

2
(θt+1 − θ∗)2at −

γ

2
(θT+1 − θ∗)2aT

=

T∑
t=1

1

2γ

z2t
at

+
γ

2
(θ1 − θ∗)2a1 +

T∑
t=2

γ

2
(θt − θ∗)2(at − at−1)−

γ

2
(θT+1 − θ∗)2aT (since γ > 0, aT > 0)

≤
T∑

t=1

1

2γ

z2t
at

+
γ

2
(θ1 − θ∗)2a1 +

T∑
t=2

γ

2
(θt − θ∗)2(at − at−1) (since at − at−1 = z2t)

≤
T∑

t=1

1

2γ

z2t
at

+
γ

2
(θ1 − θ∗)2(a1 − z21) +

T∑
t=1

γ

2
(θt − θ∗)2z2t .

(21)

According to the definition: Rt := zt(θt − θ∗)− γ
2 (θt − θ∗)2z2t . We move the last term of the right

hand side in (21) to the left hand side and get
T∑

t=1

Rt ≤
1

2γ

T∑
t=1

z2t
at

+
γ

2
(θ1 − θ∗)2(a1 − z21). (22)

According to our algorithm, a1 − z21 = a0. Since K∗ =
⋂T

t=1Kt ⊆ K1, the diameter ∥θ1 − θ∗∥2 ≤
D2

1 . We recall the inequality (15), then

RegretT (ONS) ≤
T∑

t=1

Rt ≤
1

2γ

T∑
t=1

z2t
at

+
γ

2
D2

1a0. (23)

If we let a0 = 1/γ2D2
1 , it gives Lemma 2,

RegretT (ONS) ≤ 1

2γ

T∑
t=1

z2t
at

+
γ

2
D2

1a0 =
1

2γ

T∑
t=1

z2t
at

+
γ

2
D2

1 ·
1

γ2D2
1

=
1

2γ

(
T∑

t=1

z2t
at

+ 1

)
. (24)

To get the upper bound of regret for our algorithm, we first show that the term
∑T

t=1(z
2
t /at) is upper

bounded by a telescoping sum. For real numbers a, b ∈ R+, the first order Taylor expansion of the
natural logarithm of b at a implies (a− b)/a ≤ log (a/b), thus

T∑
t=1

z2t
at

=

T∑
t=1

1

at
· (at − at−1) ≤

T∑
t=1

log

(
at

at−1

)
= log

(
at
a0

)
. (25)

In our setting, at = a0+
∑T

t=1 z
2
t , where a0 = 1, zt = gt/(1− gtθt). We recall the inequality (23),

the upper bound of regret is

RegretT (ONS) ≤ 1

2γ
·

T∑
t=1

z2t
at

+
γ

2
D2

1 · 1

≤ 1

2γ
· log

(
at
a0

)
+

γ

2
D2

1

=
1

2γ
· log

(
1 +

T∑
t=1

g2t
(1− gtθt)2

)
+

γ

2
D2

1. (26)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Since that γD2
1 is a positive constant, gt ∈ [−dt, dt], θt ∈ [−1/2dt, 1/2dt], it follows that

(1− gtθt)
2 ∈ [1/4, 9/4]. Consequently, we obtain that RegretT (ONS) = O

(
log
(∑T

t=1 g
2
t

) 1
2γ

)
.

This conclusion will be used to show that the update of θt in the betting game is to play it on the
exp-concave loss ℓt(θ) = − log(1− gtθ) and to get the lower bound of the wealth.

The reason we can obtain the upper bound of regret is that, although the values of Gt and Dt individ-
ually unknown, their product is deterministic. Consequently, the value of γt = 1

2 min
{

1
GtDt

, α
}

for all t remains consistent. When we use Lemma 2 to establish the regret bound, as illustrated by
equation (21), the uniform γ helps us simplify and combine terms to achieve the final result.

D LOWER BOUND OF THE LEARNER’S WEALTH

Lemma 3. Assume an online learner receives a loss function ℓt(θ) := log(1−gtθ) after committing
a point θt ∈ Kt in its decision space Kt at t. Denote d∗ := max

t≥1
|dt| with dt ≥ |gt|. Then, if the

online learner plays Online Newton Step (Algorithm 2), its wealth satisfies

WT ≳ exp

(
2d∗ − 1

4d2∗
·

(
∑T

t=1 gt)
2∑T

t=1 g
2
t + |

∑T
t=1 gt|

)/(
T∑

t=1

g2t

) 1
2γ

, (27)

where the step size γ satisfies γ ≤ 1
2 min{ dt

Gt
, 1} with Gt := maxθ∈Kt

|∇ℓt(θ)| denoting the upper
bound of the gradient∇ℓt(θ).

Proof. Since the update for the wealth is Wt = Wt−1 − gtθtWt−1, for t = 1, · · · , T ,

WT = WT−1(1− gT θt), (28)
...

W1 = W0(1− g1θ1). (29)

We start with W0 = 1, then by recursion

WT = W0 ·
T∏

t=1

(1− gtθt) =

T∏
t=1

(1− gtθt), (30)

thus we can express log(WT) as:

log(WT) =

T∑
t=1

log(1− gtθt). (31)

Similarly, when we choose a signed constant u in hindsight,

log(WT (u)) =

T∑
t=1

log(1− gtu) (32)

We subtract equation (31) from (32) on both sides to obtain

log(WT (u))− log(WT) =

T∑
t=1

log(1− gtu)−
T∑

t=1

log(1− gtθt)

= −
T∑

t=1

log(1− gtθt)− (−
T∑

t=1

log(1− gtu))

=

T∑
t=1

− log(1− gtθt)−
T∑

t=1

− log(1− gtu).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The equation can be can be interpreted as the regret of an algorithm, where θt is played against
losses defined by ℓt(θ) = − log(1− gtθ). Suppose RegretT (u) is the regret of our method, we have

log(WT) = log(WT (u))− RegretT (u), (33)

Given that the loss function ℓt(θ) = − log(1−gtθ) is exp-concave by definition, the task of choosing
vt is actually an online exp-concave optimization problem. In the previous section, we obtained

RegretT (u) = O

(
log
(∑T

t=1 g
2
t

) 1
2γ

)
for Algorithm 2. Now, we can use equation (33) to obtain the

lower bound for WT . Noting that the term γD2
1/2 in the regret bound (26) is potentially dominated

by the first term 1
2γ · log

(
1 +

∑T
t=1

g2
t

(1−gtθt)2

)
, as the first term grows with T , and taking the

exponential on both sides of (33) lead to:

WT ≳
WT (u)

(
∑T

t=1 g
2
t)

1
2γ

for all |u| ≤ 1

2d∗
. (34)

Next, we will demonstrate that a suitable value of u can be found such that the ratio
WT (u)/(

∑T
t=1 g

2
t)

1
2γ is sufficiently high to assure low regret of Algorithm 2. Consider

u =
−
∑T

t=1 gt

2d∗ ·
(∑T

t=1 g
2
t +

∣∣∣∑T
t=1 gt

∣∣∣) ∈ [− 1

2d∗
,

1

2d∗
],

where d∗ := max
t
|dt|, meaning that d∗ ≥ dt for all t ≥ 1. Since gt ∈ [−dt, dt], u ∈

[−1/2d∗, 1/2d∗], then we have −gtu ∈ [−dt/2d∗, dt/2d∗] ⊆ [−1/2, 1/2].
Define

gi := ϕ(xi)− ϕ(yi), St :=

t∑
i=1

gi, Qt :=

t∑
i=1

g2i . (35)

then based on equation (32) and the tangent bound log(1 + a) ≥ a− a2 for a ∈ [−1/2, 1/2]:

log(WT (u)) =

T∑
t=1

log(1− gtu)

≥ −
T∑

t=1

gtu−
T∑

t=1

(−gtu)2

= −
T∑

t=1

gt · u−
T∑

t=1

g2t · (u)2

= −ST ·
−ST

2d∗QT + 2d∗|ST |
−QT ·

(
−ST

2d∗QT + 2d∗|ST |

)2

=
S2
T

2d∗QT + 2d∗|ST |
− QT

2d∗QT + 2d∗|ST |
· S2

T

2d∗QT + 2d∗|ST |

=
1

2d∗
· S2

t

QT + |ST |
− 1

4d2∗
· QT

QT + |ST |
· S2

T

QT + |ST |

≥ 1

2d∗
· S2

T

QT + |ST |
− 1

4d2∗
· S2

T

QT + |ST |
(since

QT

QT + |ST |
≤ 1)

=
2d∗ − 1

4d2∗
· S2

T

QT + |ST |
.

According to (34), we get the following bound of wealth at time T:

WT ≳ exp

(
2d∗ − 1

4d2∗
·

(
∑T

t=1 gt)
2∑T

t=1 g
2
t + |

∑T
t=1 gt|

)/(
T∑

t=1

g2t

) 1
2γ

. (36)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E PROOF OF PROPOSITION 1

The proof of Proposition 1 and 2 is based on a modification of Chugg et al. (2023). The key
difference is that we have made the exponent 1/2γ in the regret bound explicit, which plays a
crucial role in deriving the expected rejection time of our algorithm Additionally, we extend the
range of gt from [−1, 1] to an adaptive interval[−dt, dt] for each t, and provide a more explicit
proof of the statistical guarantees for our algorithm. This range of θt is necessary for text detection
because scores of texts are unknown and and do not have an explicit predefined bound, as mentioned
in the first paragraph of Appendix C. We can divide the proof of Proposition 1 into 3 parts as below.

1. Level-α Sequential Test. In Algorithm 1, we treat {Wt ≥ 1/α or WT > Z/α} as reject ”H0”.
It is a level-α sequential test means that, when H0 holds:

sup
P∈H0

P (∃t ≥ 1 : Wt ≥ 1/α or WT ≥ Z/α) ≤ α, or equivalently sup
P∈H0

P (τ <∞) ≤ α.

(37)
Previously, we have defined the minimum rejection time as τ = arg inft{Wt ≥ 1/α or WT ≥
Z/α}, where Z ∼ Unif(0, 1).

Proof. When P ∈ H0, i.e., µx = µy , it is true that

EP [ϕ(xt)− ϕ(yt)] = µx − µy = 0. (38)

Wealth process is calculated as Wt = (1− gtθt)×Wt−1, and the initial wealth W0 = 1, then:

Wt = (1− gtθt)×Wt−1 =

t∏
i=1

(1− giθi)×W0 =

t∏
i=1

(1− giθi),

where gi = ϕ(xi)− ϕ(yi). Since θt is Ft−1-measurable and according to (38), we have

EP [Wt|Ft−1] = EP

[
(1− gtθt)×Wt−1

∣∣∣∣∣Ft−1

]
= Wt−1(1− θt · EP [ϕ(xt)− ϕ(yt)]) = Wt−1,

(39)

thus (Wt)t≥1 is a P -martingale with W0 = 1. Since gi ∈ [−di, di] and θi ∈ [−1/2di, 1/2di], we
have giθi ∈ [−1/2, 1/2] for all t, then Wt =

∏t
i=1(1− giθi) remains non-negative for all t. Thus,

we can apply Ville’s inequality (Ville, 1939) to estabilish that P (∃t ≥ 1 : Wt ≥ 1/α) ≤ α. This
inequality shows that the sequential test: “reject H0 once the wealth Wt reaches 1/α” maintains a
level-α type-I error rate. If there exists a time budget T , we will verify the final step WT ≥ Z/α
of the algorithm, which is validated by the randomized Ville’s inequality of Ramdas & Manole
(2023).

2. Asymptotic power one. Test ϕ has asymptotic power β = 1 means that when H1 (µx ̸= µy)
holds, our algorithm will ensure that wealth Wt ≥ 1/α in finite time t to reject H0, that is:

sup
P∈H1

P (τ =∞) ≤ 1− β = 0. (40)

In Appendix D, we get the following guarantee on Wt, with W0 = 1:

WT ≳ exp

2d∗ − 1

4d2∗
·

(∑T
t=1 gt

)2
∑T

t=1 g
2
t +

∣∣∣∑T
t=1 gt

∣∣∣
/(

T∑
t=1

g2t

) 1
2γ

. (41)

According to our definitions: St =
∑t

i=1 gi, Qt =
∑t

i=1 g
2
i , and |gi| ≤ di, where d∗ ≥ di. By the

inequality (41), we can derive:

Wt ≳
1

Q
1
2γ

t

exp

(
2d∗ − 1

4d2∗
· S2

t

Qt + |St|

)
≥ 1

(td2∗)
1
2γ

exp

(
2d∗ − 1

4d2∗
· S2

t

td2∗ + td∗

)
, ∀t ≥ 1 (42)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

By definition of the rejection time and that {τ =∞} ⊆ {τ ≥ t} for all t ≥ 1, we know {τ > t} ⊆
{Wt <

1
α} and P (τ = ∞) ≤ lim inft→∞ P (τ > t) ≤ lim inft→∞ P (Wt < 1/α). By the second

inequality of (42),

P (Wt < 1/α) ≲ P

(
1

(td2∗)
1
2γ

exp

(
2d∗ − 1

4d2∗
· S2

t

td2∗ + td∗

)
< 1/α

)

= P

(
exp

(
2d∗ − 1

4d2∗
· S2

t

td2∗ + td∗

)
< (td2∗)

1
2γ /α

)

≤ P

−
√

4d4∗ + 4d3∗
2d∗ − 1

· log(t
1
2γ d

1
γ
∗ α)

t
<

St

t
<

√
4d4∗ + 4d3∗
2d∗ − 1

· log(t
1
2γ d

1
γ
∗ /α)

t

 .

It is almost surely that St/t =
1
t

∑t
i=1(ϕ(xt)−ϕ(yt)) converges to (µx−µy) as t→∞, according

to the Strong Law of Large Numbers. We recall that under H1 : µx − µy ̸= 0. On the other hand,
4d4

∗+4d3
∗

2d∗−1 ·
log(t

1
2γ d

1
γ
∗ /α)

t → 0 as t→∞. Thus, if we let at be the event that exp
(

2d∗−1
4d2

∗
· S2

t

td2
∗+td∗

)
<

(td2∗)
1
2γ /α , we see that 1at

→ 0 almost surely. By the dominated convergence theorem,

P (τ =∞) ≤ lim inf
t→∞

P (Wt < 1/α) ≲ lim inf
t→∞

P (at) = lim inf
t→∞

∫
1at

dP = 0. (43)

d∗ is the largest absolute difference between two scores ϕ(xt) and ϕ(yt) for all t, thus, d∗ > 0.5 can
always be guaranteed. This completes the argument of asymptotic power one.

3. Expected stopping time. When there is no constraint on time budget T and under the assumption
that H1 is true, we have

E[τ] =
∞∑
t=1

P (τ > t) ≤
∞∑
t=1

P (log(Wt) < log(1/α)) , (44)

where {log(Wt) < log(1/α)} is defined as Et.

By the first inequality of (42), we have

Et ⊆

{
log

(
1

Q
1
2γ

t

exp

(
2d∗ − 1

4d2∗
· S2

t

(Qt + |St|)

))
< log(1/α)

}

⇒ Et ⊆
{
S2
t <

4d2∗
2d∗ − 1

(Qt + |St|)
(
log(1/α)− log(1/Q

1
2γ

t)

)} (
since |St| =

∣∣∣∣∣
t∑

i=1

gi

∣∣∣∣∣ ≤
t∑

i=1

|gi|

)

⊆

{
S2
t <

4d2∗
2d∗ − 1

(
Qt +

t∑
i=1

|gi|

)(
log(1/α)− log(1/Q

1
2γ

t)

)}
. (45)

We denote Vt :=
∑t

i=1|gi| and then we can get the upper bound on Vt and Qt respectively. Since
|gi| for any i are random variables in [0, d∗], then Vt/d∗ is the sum of independent random variables
in [0, 1]. By the Chernoff bound (Harvey, 2023),

P

(
Vt

d∗
> (1 + δ) · E

[
Vt

d∗

])
≤ exp

(
−δ2

3
E
[
Vt

d∗

])
. (46)

We let the right-hand side equal to 1/t2 and thus δ is
√
6 log(t)/E[Vt/d∗]. By definition, |gi| ≤

di ≤ d∗ ⇒ Vt =
∑t

i=1 |gi| ≤ td∗. With a probability of at least (1− 1/t2), we have

Vt

d∗
≤ E

[
Vt

d∗

]
+

√
6E
[
Vt

d∗

]
· log(t) ≤ t+

√
6t · log(t) ≤ 2t, ∀t ≥ 17. (47)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Similarly, as for Qt =
∑t

i=1 g
2
i , we know g2i ≤ d2i ≤ d2∗. Then Qt/d

2
∗ is the sum of independent

random variables in [0, 1]. After applying the Chernoff bound (Harvey, 2023), we have that with a
probability of at least 1− 1/t2,

Qt

d2∗
≤ E

[
Qt

d2∗

]
+

√
6E
[
Qt

d2∗

]
· log(t) ≤ t+

√
6t · log(t) ≤ 2t, ∀t ≥ 17. (48)

Let Ht =
{

Qt

d2
∗
≤ 2t

}
∩
{

Vt

d∗
≤ 2t

}
. Then by (45),

Et ∩Ht ⊆
{
S2
t <

4d2∗
2d∗ − 1

(
2td2∗ + 2td∗

) (
log(1/α) + log(2td2∗)

1
2γ

)}

⊆

∣∣∣∣St

d∗

∣∣∣∣ <
√

8d∗(d∗ + 1)t

2d∗ − 1
· log

(
(2td2∗)

1
2γ /α

)
︸ ︷︷ ︸

:=R

 . (49)

Since St/d∗ =
∑t

i=1 gi/d∗ is the sum of independent random variables in [−1, 1], applying a
Hoeffding bound (Harvey, 2023) gives

P

(∣∣∣∣St

d∗
− E

[
St

d∗

]∣∣∣∣ ≥ u

)
≤ 2 exp

(
−u2

2t

)
. (50)

We still let RHS be 1/t2 to get u =
√

2t · log(2t2). With a probability of at least (1 − 1/t2) and
according to the reverse triangle inequality, we have∣∣∣∣∣∣∣∣St

d∗

∣∣∣∣− ∣∣∣∣E [St

d∗

]∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣St

d∗
− E

[
St

d∗

]∣∣∣∣ ≤√2t · log(2t2). (51)

This implies that,∣∣∣∣St

d∗

∣∣∣∣ ≥ ∣∣∣∣E [St

d∗

]∣∣∣∣−√2t · log(2t2) = t∆

d∗
−
√
2t · log(2t2) ≥ t∆

d∗
−
√
4t · log(2t), (52)

where ∆ = |µx − µy|. The above inequality (52) is given by the fact that

∣∣∣∣E [St

d∗

]∣∣∣∣ =
∣∣∣E [∑t

i=1 gi

]∣∣∣
d∗

=

∣∣∣E [∑t
i=1 (ϕ(xt)− ϕ(yt))

]∣∣∣
d∗

=

∣∣∣∑t
i=1 E [ϕ(xt)− ϕ(yt)]

∣∣∣
d∗

=
|t(µx − µy)|

d∗

=
t |µx − µy|

d∗
.

In the following, we show t∆
d∗
−
√
4t · log(2t) ≥ R for all t ≥ t∗, where

t∗ :=
32d3∗(d∗ + 1)

(2d∗ − 1)∆2
· log

(
(2d2∗)

1
2γ · 32d3∗(d∗ + 1) · t∗
(2d∗ − 1)∆2α

)
,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

where R is defined in (49). We have

t∆

d∗
−
√
4t · log(2t) ≥

√√√√8d∗(d∗ + 1)t

2d∗ − 1
· log

(
(2td2∗)

1
2γ

α

)

t∆

d∗
≥
√
4t · log(2t) +

√√√√8d∗(d∗ + 1)t

2d∗ − 1
· log

(
(2td2∗)

1
2γ

α

)
. (53)

Since d∗ > 0 ensures 8d∗(d∗+1)
2d∗−1 > 4, then (53) can always hold if (54) holds.

t∆

d∗
≥

√√√√16d∗(d∗ + 1)t

2d∗ − 1
· log

(
(2td2∗)

1
2γ

α

)

t ≥ 16d3∗(d∗ + 1)

(2d∗ − 1)∆2
· log

(
(2td2∗)

1
2γ

α

)
. (54)

The derivative on both sides of the above inequality are 1 and 16d3
∗(d∗+1)

(2d∗−1)∆2 · 1
2γt separately. We want

to find t∗ which can satisfy (54). If 1 >
16d3

∗(d∗+1)
(2d∗−1)∆2 · 1

2γt∗
, then t ≥ t∗ can always guarantee the

original inequality (53). We first guess t∗ = A · log(B · t
1
2γ
∗), and then let A =

32d3
∗(d∗+1)

(2d∗−1)∆2 . Since t∗
is the upper bound of the RHS of (54), we have

t∗ ≥
16d3∗(d∗ + 1)

(2d∗ − 1)∆2
· log

(
(2t∗d

2
∗)

1
2γ

α

)

A · log(Bt
1
2γ
∗) ≥ 16d3∗(d∗ + 1)

(2d∗ − 1)∆2
· log

(
(2t∗d

2
∗)

1
2γ

α

)

2 log(Bt
1
2γ
∗) ≥ log

(
(2d2∗)

1
2γ

α
· 32d

3
∗(d∗ + 1)

(2d∗ − 1)∆2

)
+ log

(
log(Bt

1
2γ
∗)

)
.

Since the logarithm of a logarithm grows more slowly than the logarithm itself, the term

log

(
log(Bt

1
2γ
∗)

)
can be neglected compared to log(Bt

1
2γ
∗):

log(Bt
1
2γ
∗) ≥ log

(
(2d2∗)

1
2γ

α
· 32d

3
∗(d∗ + 1)

(2d∗ − 1)∆2

)

log(B) + log(t
1
2γ
∗) ≥ log

(
(2d2∗)

1
2γ

α
· 32d

3
∗(d∗ + 1)

(2d∗ − 1)∆2

)
.

We denote B =
(2d2

∗)
1
2γ ·32d3

∗(d∗+1)
(2d∗−1)∆2α , the above inequality must hold for any time point t∗ ≥ 1.

Above all, we get

t∗ =
32d3∗(d∗ + 1)

(2d∗ − 1)∆2
· log

(
(2d2∗)

1
2γ · 32d3∗(d∗ + 1) · t∗
(2d∗ − 1)∆2α

)
.

Hence, when t ≥ t∗, we have the guarantee t∆
d∗
−
√
4t · log(2t) ≥ R. We can further use some

universal constants C1 and C2 to further simplify the expression. Specifically, from the above and
(52), we can write ∣∣∣∣St

d∗

∣∣∣∣ ≥ R, ∀t ≥ C1 · d3∗
∆2

· log

C2 · d
(3+ 1

γ)
∗

∆2α

 . (55)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Now, by the law of total probability, for t large enough such that inequalities (47), (48), and (55) all
hold:

P (Et) = P (Et ∩Ht) + P (Et ∩Hc
t)

= P (Et ∩Ht) + P (Et|Hc
t)P (Hc

t)

≤ P

(∣∣∣∣St

d∗

∣∣∣∣ < R

)
+ P (Hc

t) (by (49))

=

(
1− P

(∣∣∣∣St

d∗

∣∣∣∣ ≥ R

))
+ (1− P (Ht))

=

(
1− P

(∣∣∣∣St

d∗

∣∣∣∣ ≥ R

))
+ P

({
Qt

d2∗
> 2t

}
∪
{
Vt

d∗
> 2t

})
(by definition of Ht)

≤
(
1− P

(∣∣∣∣St

d∗

∣∣∣∣ ≥ R

))
+ P

(
Qt

d2∗
> 2t

)
+ P

(
Vt

d∗
> 2t

)
≤ 1

t2
+

1

t2
+

1

t2
(by (47), (48), (55))

≤ 3

t2
.

Now we can conclude that when t is large enough such that t ≥ T :=
C1·d3

∗
∆2 · log

(
C2·d

(3+ 1
γ

)

∗
∆2α

)
,

E[τ] ≤
∞∑
t=1

P (Et) = T +
∑
t≥T

P (Et) ≤ T +

∞∑
t=T

3

t2
≤ T +

π2

2
. (56)

The proof is now completed.

F PROOF OF PROPOSITION 2

Previously, we use the symmetry of the absolute value to get two hypothesis:

HA
0 : µx − µy − ϵ ≤ 0 vs. HA

1 : µx − µy − ϵ > 0, (57)

and
HB

0 : µy − µx − ϵ ≤ 0 vs. HB
1 : µy − µx − ϵ > 0. (58)

We now choose a nonpositive θt ∈ [−1/2dt, 0] to ensure the property of nonnegative supermartin-
gale wealth under H0 and a fast wealth growth under H1, rather than maintaining the same range as
the original hypothesis in Chugg et al. (2023). The wealth now becomes

WA
t = W0 ·

t∏
i=1

(1− θt(gt − ϵ)) =

t∏
i=1

(1− θt(gt − ϵ)) (59)

and

WB
t = W0 ·

t∏
i=1

(1− θt(−gt − ϵ)) =

t∏
i=1

(1− θt(−gt − ϵ)) (60)

The parameter ϵ is a small positive constant, and the upper bound of the text score difference (dt ≥
|ϕ(xt) − ϕ(yt)|), is always set conservatively large, which ensures that dt ≥ ϵ. Thus, the range
of θt(gt − ϵ) and θt(−gt − ϵ), which is [−(dt − ϵ)/2dt, (dt + ϵ)/2dt], will always fall within the
interval [−1, 1]. It continues to satisfy the requirement for the wealth to remain nonnegative since
the constant ϵ > 0 is always small. We can decouple Wt into WA

t and WB
t to preserve their

properties of supermartingales. Take WA
t as an example, under the corresponding null hypothesis

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Algorithm 3 Online Detecting LLMs via Online Optimization and Betting for the Composite Hy-
potheses Testing

Require: a score function ϕ(·) : Text→ R.
1: Init: θA1 , θB1 ← 0, aA0 , a

B
0 ← 1, wealth WA

0 ,WB
0 ← 1, step size γ, difference parameter ϵ, and

significance level parameter α ∈ (0, 1).
2: for t = 1, 2, . . . , T do
3: # T is the time budget, which can be∞ if their is no time constraint.
4: Observe a text yt from an unknown source and compute ϕ(yt).
5: Sample xt from a dataset of human-written texts and compute ϕ(xt).
6: Set gAt = ϕ(xt)− ϕ(yt)− ϵ, gBt = ϕ(yt)− ϕ(xt)− ϵ.
7: Update wealth WA

t = WA
t−1 · (1− gAt θ

A
t),W

B
t = WB

t−1 · (1− gBt θBt).
8: if WA

t ≥ 2/α or WB
t ≥ 2/α then

9: Declare that the source producing the sequence of texts yt is an LLM.
10: end if
11: Get a hint dt+1 and specify the convex decision space Kt+1 := [− 1

2dt+1
, 0].

12: // Update θAt+1, θ
B
t+1 ∈ Kt+1 via ONS on the loss function ℓAt (θ) := − ln(1 − gAt θ), and

ℓBt (θ) := − ln(1− gBt θ).
13: Compute zAt =

dℓt(θ
A
t)

dθ =
gA
t

1−gA
t θA

t
, zBt =

dℓt(θ
B
t)

dθ =
gB
t

1−gB
t θB

t
.

14: Compute aAt = aAt−1 + (zAt)
2, aBt = aBt−1 + (zBt)2.

15: Compute θAt+1 = max
(
min

(
θAt − 1

γ
zA
t

aA
t
, 0
)
,− 1

2dt+1

)
,

16: and compute θBt+1 = max
(
min

(
θBt − 1

γ
zB
t

aB
t
, 0
)
,− 1

2dt+1

)
.

17: end for
18: if the source has not been declared as an LLM then
19: Sample Z ∼ Unif(0, 1), declare the sequence of texts yt is from an LLM if WA

T ≥ 2Z/α,
or WB

T ≥ 2Z/α.
20: end if

HA
0 : µx − µy ≤ ϵ, i.e., EP [ϕ(xt)− ϕ(yt)] ≤ ϵ for P ∈ HA

0 . We now select non-positive fractions
θt ≤ 0 and the payoff SA

t = 1− θt(ϕ(xt)− ϕ(yt)− ϵ), then

EP [W
A
t |Ft−1] = EP

[
WA

t−1 × SA
t

∣∣∣∣∣Ft−1

]
= WA

t−1 (1− θt · (EP [ϕ(xt)− ϕ(yt)]− ϵ)) ≤WA
t−1.

(61)

As for the other null hypothesis HB
0 : µy − µx ≤ ϵ, i.e., EP [ϕ(yt)− ϕ(xt)] ≤ ϵ, we can get the

same result. The Ville’s inequality again gives

P (∃t ≤ T : WA
t ≥ 2/α) ≤ α/2, (62)

and
P (∃t ≤ T : WB

t ≥ 2/α) ≤ α/2. (63)

Thus we can get the union bound of (62) and (63)

P (∃t ≤ T : (WA
t ≥ 2/α) ∪ (WB

t ≥ 2/α)) ≤ α (64)

which indicats that reject the null hypothesis when either WA
t ≥ 2/α or WB

t ≥ 2/α is a level-α
sequential test. The detection process for the composite hypothesis is shown as Algorithm 3.

We consider a constant u′ as below, since the score discrepancy gt ∈ [−dt, dt] now becomes (gt −
ϵ) ∈ [−dt − ϵ, dt − ϵ], then

u′ =
−
∑T

t=1(gt − ϵ)

2d′∗ ·
(∑T

t=1(gt − ϵ)2 +
∣∣∣∑T

t=1(gt − ϵ)
∣∣∣) ∈ [− 1

2d′∗
,

1

2d′∗
].

We denote d′∗ = d∗ + ϵ, where d∗ := max
t
|dt|. Since gt ∈ [−dt, dt], u′ ∈ [−1/2d′∗, 1/2d′∗]. The

tangent bound needs to be applied log(1 + a) ≥ a − a2 for a ∈ [−1/2, 1/2] to −(gt − ϵ)u′ to get

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

the lower bound of wealth. We have −(gt− ϵ)u′ ∈ [−(dt− ϵ)/2d′∗, (dt + ϵ)/2d′∗], since 0 < ϵ≪ 1
and d′∗ ≥ dt + ϵ ≥ dt − ϵ for all t, then −(gt − ϵ)u′ ∈ [−1/2, 1/2] can still hold.

Define

gi := ϕ(xi)− ϕ(yi), S′
t :=

t∑
i=1

(gi − ϵ), Q′
t :=

t∑
i=1

(gi − ϵ)2.

We follow the similar process as before and get

WA
t ≳

1

Q′
1
2γ

t

exp

(
2d′∗ − 1

4d′2∗
· S′2

t

Q′
t + |S′

t|

)
≥ 1

(td′2∗)
1
2γ

exp

(
2d′∗ − 1

4d′2∗
· S′2

t

td′2∗ + td′∗

)
, ∀t ≥ 1.

(65)

It can still give the guarantee of asymptotic power one. As for the expected stopping time, when
P ∈ HA

1 . For the stopping time τ > 0, we have

E[τ] =
∞∑
t=1

P (τ > t) ≤
∞∑
t=1

P
(
log(WA

t) < log(2/α) or log(WB
t) < log(2/α)

)
= 2

∞∑
t=1

P (E′
t),

where E′
t =

{
log(WA

t) < log(2/α)
}

.

Based on the first inequality of (65), we have

E′
t ⊆

{
log

(
1

Q′
1
2γ

t

exp

(
2d∗ − 1

4d′2∗
· S′2

t

(Q′
t + |St|)

))
< log(2/α)

}

⇒ E′
t ⊆

{
S′2

t <
4d′

2
∗

2d′∗ − 1
(Q′

t + |S′
t|)
(
log(2/α)− log(1/Q′

1
2γ

t)

)}

⊆

{
S2
t <

4d′
2
∗

2d′∗ − 1

(
Q′

t +

t∑
i=1

|gi − ϵ|

)(
log(2/α)− log(1/Q

1
2γ

t)

)}
. (66)

We define V ′
t :=

∑t
i=1|gi − ϵ|. After applying the Chernoff bound (see e.g., Harvey (2023)) over

random variables V ′
t/d

′
∗ ∈ [0, 1] and Q′

t/d
′2
∗ ∈ [0, 1], the upper bound on V ′

t and Q′
t can be

given, which holds for all t ≥ 17. With a probability of at least (1− 1/t2), we have V ′
t/d

′
∗ ≤ 2t.

With a probability of at least (1− 1/t2), Q′
t/d

′
∗ ≤ 2t.

Now, H ′
t =

{
Q′

t

d′2
∗
≤ 2t

}
∩
{

V ′
t

d′∗
≤ 2t

}
, we get

E′
t ∩H ′

t ⊆

{
S′2

t <
4d′

2
∗

2d′∗ − 1

(
2td′

2
∗ + 2td′∗

)(
log(2/α) + log(2td′

2
∗)

1
2γ

)}

⊆

∣∣∣∣S′

t

d′∗

∣∣∣∣ <
√

8d′∗(d′∗ + 1)t

2d′∗ − 1
· log

(
2 · (2td′2∗)

1
2γ /α

)
︸ ︷︷ ︸

:=R′

 . (67)

All steps are the same as before except for the superscripts, then we apply a Hoeffding’s bound over
the independent random variables S′

t/d
′
∗ ∈ [−1, 1] to get∣∣∣∣S′

t

d′∗

∣∣∣∣ ≥ ∣∣∣∣E [S′
t

d′∗

]∣∣∣∣−√2t · log(2t2) ≥ t(∆− ϵ)

d′∗
−
√
2t · log(2t2) ≥ t(∆− ϵ)

d′∗
−
√
4t · log(2t),

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where ∆ = |µx−µy|, the second inequality is derived based on the triangle inequality that |a+b| ≤
|a|+ |b|. Then we can rearrange |(a− b) + b| ≤ |a− b|+ |b| to get |a− b| ≥ |a| − |b|. Thus,∣∣∣∣E [S′

t

d′∗

]∣∣∣∣ =
∣∣∣E [∑t

i=1(gi − ϵ)
]∣∣∣

d′∗

=

∣∣∣E [∑t
i=1(ϕ(xt)− ϕ(yt)− ϵ)

]∣∣∣
d′∗

=

∣∣∣∑t
i=1 E [ϕ(xt)− ϕ(yt)− ϵ]

∣∣∣
d′∗

=
|t(µx − µy − ϵ)|

d′∗

≥ t |µx − µy| − ϵ

d′∗
(since ϵ is positive).

We thus have t(∆− ϵ)/d′∗ −
√
4t · log(2t) ≥ R′, or alternatively,

t(∆− ϵ)

d′∗
−
√
4t · log(2t) ≥

√√√√8d′∗(d′∗ + 1)t

2d′∗ − 1
· log

(
2 · (2td′2∗)

1
2γ

α

)
.

Now the remaining steps essentially follow those in Proposition 1. Hence, we can obtain that the
expected stopping time satisfies:

E[τ] ≲
d′

3
∗

(∆− ϵ)2
· log

 d′
(3+ 1

γ)
∗

(∆− ϵ)2α

 . (68)

We recall that d′∗ = d∗ + ϵ, this completes the proof.

G EXPERIMENT RESULTS OF DETECTING 2024 OLYMPIC NEWS OR
MACHINE-GENERATED NEWS

Our generation process for fake news is guided by Mitchell et al. (2023); Bao et al. (2023); Su et al.
(2023). Specifically, we use the T5 tokenizer to process each human-written news article to retrieve
the first 30 tokens as {prefix}. Then, we initiate the generation process by sending the following
messages to the model service, such as: ”You are a News writer. Please write an article with about
150 words starting exactly with {prefix}.”
Results of Tests in Two Cases. Figure 7 and 8 show the results of detecting real Olympic news or
news generated by Gemini-1.5-Flash , Gemini-1.5-Pro and PaLM 2 with designating human-written
text from XSum dataset as xt in Scenario 1 and Scenario 2 respectively. In Scenario 1, our algorithm
consistently controls the FPRs below the significance level α for all source models, scoring models
and score functions. It is because we used the real ∆ value between two sequences of human texts
as ϵ, which satisfies the condition of H0, i.e., |µx − µy| ≤ ϵ. This ensures that the wealth remains
a supermartingale. Texts generated by PaLM 2 are detected almost immediately by most score
functions within 100 time steps as illustrated in Figure 7e and Figure 7f. Conversely, fake Olympic
news generated by Gemini-1.5-Pro often fails to be identified as LLM-generated before 500 by some
score functions, as shown in Figure 7c and Figure 7d. Vertical lines in Figure 7a-7d are displayed
because the the ∆ values for human texts and fake news, as shown in Table 1, are smaller than the
corresponding ϵ values. This means that the score discrepancies between fake news and XSum texts
do not exceed the threshold necessary for rejecting H0. Although under H1, the ∆ for Entropy when
using Gemma-2B to score texts generated by Gemini-1.5-Pro is 0.2745, larger than the value of ϵ
(0.2690), the discrepancy is too small to lead to a rejection of H0 within 500 time steps.

According to Figure 8, Scenario 2 exhibits a similar trend to that observed in Scenario 1, where
texts generated by PaLM 2 are quickly declared as originating from an LLM, while texts produced

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

by Gemini-1.5-Pro are identified more slowly. In Scenario 2, Fast-DetectGPT consistently outper-
forms all other score functions when using Neo-2.7 as scoring model, as evidenced by the results in
Figure 8a, 8c and 8e. Only the score functions of supervised classifiers have FPRs slightly above
the significance level α. Although their average estimated values of ϵ in Table 5 are larger than the
actual ∆ value under H0 in Table 1, high FPRs often occur because most ϵ values estimated in 1000
repeated tests are smaller than the actual ∆ values. When using Gemma-2B as the scoring model
in Scenario 2, four score functions: Fast-DetectGPT, LRR, Likelihood, and DNA-GPT consistently
maintain FPRs within the expected range α. Likelihood is the fastest to reject H0. However, esti-
mated ϵ values of DetectGPT, NPR, and Entropy are smaller than real ∆ values under H0. Then,
even when H0 is true, the discrepancy between human texts exceed the estimated threshold ϵ for
rejecting H0, which result in high FPRs, as shown in Figure 8b, 8d and 8f.

(a) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by Gemini-
1.5-Flash, with human-written text xt sampled from
XSum. The scoring model used is Neo-2.7.

(b) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by Gemini-
1.5-Flash, with human-written text xt sampled from
XSum. The scoring model used is Gemma-2B.

(c) Results for detecting the source of text yt, which is
2024 Olympic news or news generated by Gemini-1.5-
Pro, with human-written text xt sampled from XSum.
The scoring model used is Neo-2.7.

(d) Results for detecting the source of text yt, which is
2024 Olympic news or news generated by Gemini-1.5-
Pro, with human-written text xt sampled from XSum.
The scoring model used is Gemma-2B.

(e) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by PaLM 2,
with human-written text xt sampled from XSum. The
scoring model used is Neo-2.7.

(f) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by PaLM 2,
with human-written text xt sampled from XSum. The
scoring model used is Gemma-2B.

Figure 7: Results for detecting 2024 Olympic news and machine-generated news with our algorithm
for Scenario 1. We use 3 source models: Gemini-1.5-Flash, Gemini-1.5-Pro and PaLM 2 to generate
fake news and 2 scoring models: Neo-2.7, Gemma-2B. The left column displays results using the
Neo-2.7 scoring model, while the right column presents results using the Gemma-2B scoring model.
Score functions of supervised classifiers (RoB-base and RoB-large) are independent of scoring mod-
els.

To summarize, the FPRs can be controlled below the significance level α if the preset ϵ is greater
than or equal to the actual absolute difference in mean scores between two sequences of human
texts. However, if ϵ is greater than or is nearly equal to the ∆ value for human text xt and machine-

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by Gemini-
1.5-Flash, with human-written text xt sampled from
XSum. The scoring model used is Neo-2.7.

(b) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by Gemini-
1.5-Flash, with human-written text xt sampled from
XSum. The scoring model used is Gemma-2B.

(c) Results for detecting the source of text yt, which is
2024 Olympic news or news generated by Gemini-1.5-
Pro, with human-written text xt sampled from XSum.
The scoring model used is Neo-2.7.

(d) Results for detecting the source of text yt, which is
2024 Olympic news or news generated by Gemini-1.5-
Pro, with human-written text xt sampled from XSum.
The scoring model used is Gemma-2B.

(e) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by PaLM 2,
with human-written text xt sampled from XSum. The
scoring model used is Neo-2.7.

(f) Results for detecting the source of text yt, which
is 2024 Olympic news or news generated by PaLM 2,
with human-written text xt sampled from XSum. The
scoring model used is Gemma-2B.

Figure 8: Results for detecting 2024 Olympic news and machine-generated news with our algorithm
for Scenario 2. We use 3 source models: Gemini-1.5-Flash, Gemini-1.5-Pro and PaLM 2 to generate
fake news and 2 scoring models: Neo-2.7, Gemma-2B. The left column displays results using the
Neo-2.7 scoring model, while the right column presents results using the Gemma-2B scoring model.
Score functions of supervised classifiers (RoB-base and RoB-large) are independent of scoring mod-
els.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 1: Values of ∆, which are calculated according to ∆ =∣∣∣(∑500
i=1 ϕ(xi)

)
/500−

(∑500
j=1 ϕ(yj)

)
/500

∣∣∣, where xi is score of the i-th text from XSum,
yj is score of the j-th text from the source to be detected. Every two columns starting from the third
column represent the ∆ values under H1 and H0 for each test scenario. For instance, in calculating
∆ for the third column, yj represents the j-th fake news generated by Gemini-1.5-Flash based on
pre-tokens of Olympic 2024 news. For the fourth column, yj refers to the j-th 2024 Olympic news
articles. Values in Column “Human, Human” are also used to set ϵ values for tests in Scenario 1.

Scoring Model Score Function
XSum, Olympic XSum, Olympic XSum, Olympic

Human, Human, Human, Human, Human, Human,
1.5-Flash Human 1.5-Pro Human PaLM 2 Human

Neo-2.7

Fast-DetectGPT 2.4786 0.3634 1.2992 0.3660 3.6338 0.4232
DetectGPT 0.3917 0.0202 0.3101 0.0274 0.6050 0.0052

NPR 0.0232 0.0014 0.0155 0.0015 0.0398 0.0005
LRR 0.1042 0.0324 0.0289 0.0328 0.2606 0.0370

Logrank 0.2590 0.0543 0.1312 0.0561 0.4995 0.0743
Likelihood 0.3882 0.0618 0.2170 0.0652 0.7641 0.0948

Entropy 0.0481 0.0766 0.0067 0.0728 0.1878 0.0483
DNA-GPT 0.1937 0.0968 0.0957 0.1032 0.4086 0.1083

RoBERTa-base 0.2265 0.0461 0.0287 0.0491 0.6343 0.0370
RoBERTa-large 0.0885 0.0240 0.0249 0.0250 0.4197 0.0281

Gemma-2B

Fast-DetectGPT 2.1412 0.5889 0.9321 0.5977 3.7314 0.6758
DetectGPT 0.7146 0.3538 0.6193 0.3530 0.8403 0.3360

NPR 0.0632 0.0254 0.0477 0.0249 0.1005 0.0232
LRR 0.1604 0.0129 0.0825 0.0112 0.3810 0.0038

Logrank 0.3702 0.0973 0.2527 0.0932 0.5917 0.0687
Likelihood 0.6093 0.1832 0.4276 0.1761 0.9705 0.1358

Entropy 0.2668 0.2743 0.2745 0.2690 0.4543 0.2347
DNA-GPT 0.2279 0.0353 0.1144 0.0491 0.4072 0.0681

RoBERTa-base 0.2265 0.0461 0.0287 0.0491 0.6343 0.0370
RoBERTa-large 0.0885 0.0240 0.0249 0.0250 0.4197 0.0281

generated text yt, it would be challenging for our algorithm to declare the source of yt as an LLM
within a limited number of time steps under H1.

Moreover, we found that the rejection time is related to the relative magnitude of (∆ − ϵ) and
(dt − ϵ). According to the definition of nonnegative wealth WA

t = WA
t−1(1 − θt(gt − ϵ)) or

WB
t = WB

t−1(1 − θt(−gt − ϵ)), large (−θt) within the range [0, 1/2dt] will result in large wealth
which allows to quickly reach the threshold for wealth to correctly declare the unknown source as an
LLM. Based on the previous proposition of the expected time upper bound for composite hypothesis,
we guess that the actual rejection time in our experiment is probably related to the relative magnitude
of ∆ − ϵ and dt − ϵ, where dt is a certain value for any t in each test as shown in Table 2. We
define the relative magnitude as (∆ − ϵ)/(dt − ϵ) and sort the score functions by this ratio from
largest to smallest for Scenario 1, as displayed in the Rank column in Table 3. This ranking roughly
corresponds to the chronological order of rejection shown in in Figure 7. The quick declaration of
an LLM source when yt is generated by PaLM 2 and the slower rejection of H0 when yt is generated
by Gemini-1.5-Pro in Figure 7 can thus be attributed to the relatively larger and smaller values of
(∆− ϵ)/(dt − ϵ), respectively. The negative ratios attributes to the reason that ∆ < ϵ, which result
in the vertical lines in figures. Similarly, we also show the values of (∆− ϵ)/(dt − ϵ) for Scenario
2 as shown in Table 4, the conclusions in Scenario 1 still holds true for Scenario 2.

Thus, we prefer a larger discrepancy between scores of human-written texts and machine-generated
texts, which can increase ∆. Furthermore, a smaller variation among scores of texts from the same
source can reduce ϵ. These properties facilitate a shorter rejection time under H1.

Based on the results, when we know the actual value of dt and ϵ, our algorithm is very effective.
When we estimate their values based on the previous samples that we get, the algorithm can still
exhibit a good performance for most score functions. It can be inferred that the rejection time and

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 2: Values of dt used in Scenario 1, for which we assume that the range of gt = |ϕ(xt)−ϕ(yt)|
is known beforehand. Specifically, dt is calculated as maxi,j≤500|ϕ(xi) − ϕ(yj)|, where ϕ(xi) is
the score of i-th XSum text and ϕ(yj) is the score of the j-th text generated by Gemini-1.5-Flash,
prompted by pre-tokens of 2024 Olympic news. This calculation ensures that dt ≥ |ϕ(xt)− ϕ(yt)|
for any time point 1 ≤ t ≤ 500. Every two columns starting from the third column represent the dt
values for each t used under H1 and H0 in each test scenario. For instance, the values in the third
column Similarly, the fourth column calculates the maximum difference between the scores of all
XSum texts and texts sample of 2024 Olympic news.. The derived dt values is then used to define
the domain of θt in our algorithm, where θt ∈ [−1/2dt, 1/2dt].

Scoring Model Score Function
XSum, Olympic XSum, Olympic XSum, Olympic

Human, Human, Human, Human, Human, Human,
1.5-Flash Human 1.5-Pro Human PaLM 2 Human

Neo-2.7

Fast-DetectGPT 7.6444 5.9956 6.5104 6.1546 9.1603 5.8870
DetectGPT 2.3985 2.3102 2.1416 2.2683 2.6095 2.7447

NPR 0.1500 0.1436 0.1295 0.1465 0.1975 0.1353
LRR 0.8129 0.5877 0.6400 0.5875 0.9793 0.5421

Logrank 1.5861 1.6355 1.4065 1.6355 1.7298 1.6355
Likelihood 2.3004 2.4540 1.9491 2.4540 2.6607 2.5559

Entropy 1.6523 1.6630 1.5890 1.6702 1.9538 1.6265
DNA-GPT 1.5063 1.5425 1.3621 1.5649 1.5455 1.6348

RoBERTa-base 0.9997 0.9995 0.9995 0.9995 0.9997 0.9996
RoBERTa-large 0.9983 0.9856 0.8945 0.8945 0.9992 0.8608

Gemma-2B

Fast-DetectGPT 7.7651 6.5619 7.3119 6.4343 8.6156 6.5640
DetectGPT 2.9905 2.5449 2.3846 2.4274 2.6807 2.7878

NPR 0.3357 0.2196 0.3552 0.2318 0.4118 0.2403
LRR 1.1189 0.7123 0.8780 0.7109 1.2897 0.7717

Logrank 1.5731 1.6467 1.4713 1.6468 1.7538 1.6397
Likelihood 2.4934 2.4229 2.3944 2.4228 2.8379 2.4694

Entropy 1.9791 1.9117 1.8572 1.8854 2.1359 1.9210
DNA-GPT 1.3214 1.4808 1.2891 1.4607 1.5014 1.6296

RoBERTa-base 0.9997 0.9995 0.9995 0.9995 0.9997 0.9996
RoBERTa-large 0.9983 0.9856 0.8945 0.8945 0.9992 0.8608

FPRs of Algorithm 1 are effected by the score function ϕ(·) and the scoring model that we select for
our algorithm. If the configuration can further amplify the score discrepancy between human-written
texts and machine-generated texts, the rejection time can be shortened. If the the score discrepancy
between human texts is small, the value FPR will be low.

Comparisons with the Baselines. Permutation test is a fixed-time test. Our goal is to test whether
the source of text yt is the same as that of the human-written text xt, i.e., whether their scores are
from the same distribution. If we choose the mean value as the test statistic, the null hypothesis is
that the means are equal (H0 : µx = µy) with a batch size of k. Once we have generated k samples
from these two sources, we conduct the test. Under the assumption that H0 is true, the samples
are drawn from the same distribution, which means that the observed discrepancy between the two
batches of scores is supposed to be minimal. The test determines whether this difference between
the sample means is large enough to reject at a significance level. Specifically, we compare the
p-value with the significance level: α for each batch in an uncorrected test, and α/2j for the j-th
batch in a corrected test. The permutation test is conducted as below:

(1) Calculate the observed mean difference ∆ = |
∑k

i=1 ϕ(xi)/k −
∑k

i=1 ϕ(yi)/k| of these two
batches, and assume that H0 is true;

(2) Combine these two sequences into one dataset, reshuffle the data, and divide it into two new
groups. This is the permutation operation. Calculate the sampled absolute mean difference for the
n-th permutation, ∆̃(n) = |

∑k
i=1 ϕ(x̃

(n)
i)/k −

∑k
i=1 ϕ(ỹ

(n)
i)/k|;

(5) Repeat step (2) for a sufficient number of permutations (n = 2, 000 in our test);

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 3: Values of the ratio (∆− ϵ)/(dt − ϵ) for Scenario 1, where ∆ and ϵ are listed in Table 1, dt
are shown in Table 2. We sort the score function according to the ratio from largest to smallest, as
shown in the Rank column. This ranking roughly corresponds to the chronological order of rejection
in in Figure 7.

Scoring Model Score Function Human, 1.5-Flash Human, 1.5-Pro Human, PaLM 2

Ratio Rank Ratio Rank Ratio Rank

Neo-2.7

Fast-DetectGPT 0.2905 1 0.1519 1 0.3675 3
DetectGPT 0.1562 3 0.1337 2 0.2303 7

NPR 0.1467 4 0.1093 3 0.1995 9
LRR 0.0920 7 -0.0064 8 0.2373 6

Logrank 0.1336 6 0.0556 5 0.2568 5
Likelihood 0.1458 5 0.0806 4 0.2608 4

Entropy -0.0181 10 -0.0436 10 0.0732 10
DNA-GPT 0.0687 8 -0.0060 7 0.2089 8

RoBERTa-base 0.1892 2 -0.0215 9 0.6205 1
RoBERTa-large 0.0662 9 -0.0001 6 0.4032 2

Gemma-2B

Fast-DetectGPT 0.2163 1 0.0498 7 0.3848 3
DetectGPT 0.1368 6 0.1311 1 0.2151 8

NPR 0.1218 8 0.0690 5 0.1989 9
LRR 0.1334 7 0.0823 4 0.2933 6

Logrank 0.1849 3 0.1157 2 0.3104 4
Likelihood 0.1844 4 0.1134 3 0.3089 5

Entropy -0.0044 10 0.0035 8 0.1155 10
DNA-GPT 0.1498 5 0.0527 6 0.2366 7

RoBERTa-base 0.1892 2 -0.0215 10 0.6205 1
RoBERTa-large 0.0662 9 -0.0001 9 0.4032 2

Table 4: Values of the ratio (∆ − ϵ)/(dt − ϵ) for Scenario 2, where ∆ and ϵ are listed in Table 1
and Table 5 respectively, dt are shown in Table 6. We sort the scoring function according to the
ratio from largest to smallest, as shown in the Rank column. This ranking roughly corresponds to
the chronological order of rejection in in Figure 8.

Scoring Model Score Function Human, 1.5-Flash Human, 1.5-Pro Human, PaLM 2

Ratio Rank Ratio Rank Ratio Rank

Neo-2.7

Fast-DetectGPT 0.1895 1 0.0874 1 0.2420 2
DetectGPT 0.0427 7 0.0103 2 0.1024 9

NPR 0.0592 2 0.0076 3 0.1268 8
LRR 0.0474 5 -0.0653 7 0.1568 7

Logrank 0.0576 4 -0.0218 5 0.1687 4
Likelihood 0.0582 3 -0.0132 4 0.1680 5

Entropy -0.0883 10 -0.1162 10 -0.0051 10
DNA-GPT 0.0405 8 -0.0298 6 0.1636 6

RoBERTa-base 0.0461 6 -0.1042 9 0.2713 1
RoBERTa-large 0.0092 9 -0.0942 8 0.1814 3

Gemma-2B

Fast-DetectGPT 0.1562 1 0.0368 5 0.2444 2
DetectGPT 0.1351 3 0.1147 2 0.1552 8

NPR 0.1492 2 0.1167 1 0.1961 6
LRR 0.0867 6 0.0117 7 0.1959 5

Logrank 0.1205 5 0.0607 4 0.2086 4
Likelihood 0.1267 4 0.0702 3 0.2144 3

Entropy 0.0270 9 0.0293 6 0.1017 10
DNA-GPT 0.0713 7 -0.0144 8 0.1747 9

RoBERTa-base 0.0462 8 -0.1007 9 0.2737 1
RoBERTa-large 0.0060 10 -0.1013 1 0 0.1803 7

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 5: Average values of ϵ used in Scenario 2 estimated by 20 texts in sequence of human-
written text xt. Every two columns starting from the third column represent the ϵ values used
for H1 and H0 for each test scenario. For instance, the third column calculates ϵ for tests be-
tween XSum text and Gemini-1.5-Flash-generated text sequences by scoring 20 XSum texts, di-
viding them into two equal groups, and then doubling the average absolute mean difference be-
tween these groups across 1000 random shuffles. The fourth column follows the same method to
determine the ϵ value for tests between XSum texts and 2024 Olympic news. This is calculated
as ϵ = 2 · 1

1000

∑1000
n=1

∣∣∣(∑10
i=1 ϕ(x

(n)
i)
)
/10−

(∑20
i=11 ϕ(x

(n)
i)
)
/10
∣∣∣, where ϕ(x

(n)
i) denotes the

score of the i-th text after the n-th random shuffling of 20 text scores.

Scoring Model Score Function
XSum, Olympic XSum, Olympic XSum, Olympic

Human, Human, Human, Human, Human, Human,
1.5-Flash Human 1.5-Pro Human PaLM 2 Human

Neo-2.7

Fast-DetectGPT 0.6357 0.6371 0.6395 0.6417 0.6415 0.6426
DetectGPT 0.2781 0.2807 0.2840 0.2870 0.2851 0.2847

NPR 0.0141 0.0141 0.0145 0.0146 0.0140 0.0141
LRR 0.0665 0.0666 0.0674 0.0676 0.0652 0.0649

Logrank 0.1634 0.1632 0.1624 0.1624 0.1597 0.1590
Likelihood 0.2448 0.2450 0.2455 0.2426 0.2419 0.2416

Entropy 0.1994 0.1978 0.2022 0.2000 0.1973 0.2004
DNA-GPT 0.1404 0.1394 0.1321 0.1314 0.1345 0.1320

RoBERTa-base 0.1438 0.1459 0.1463 0.1496 0.1261 0.1206
RoBERTa-large 0.0768 0.0787 0.0732 0.0740 0.0821 0.0853

Gemma-2B

Fast-DetectGPT 0.6806 0.6785 0.6749 0.6726 0.6781 0.6825
DetectGPT 0.2731 0.2725 0.2685 0.2664 0.2822 0.2840

NPR 0.0170 0.0168 0.0171 0.0171 0.0169 0.0169
LRR 0.0724 0.0728 0.0732 0.0735 0.0725 0.0719

Logrank 0.1547 0.1542 0.1567 0.1550 0.1556 0.1521
Likelihood 0.2438 0.2414 0.2472 0.2473 0.2427 0.2429

Entropy 0.2082 0.2088 0.2120 0.2092 0.2076 0.2078
DNA-GPT 0.1354 0.1355 0.1317 0.1325 0.1278 0.1286

RoBERTa-base 0.1438 0.1433 0.1437 0.1448 0.1198 0.1208
RoBERTa-large 0.0807 0.0800 0.0750 0.0743 0.0831 0.0823

(6) Calculate the p-value, which is the proportion of permutations where ∆̃(n) > ∆, relative to the
total number of permutations (2, 000). If the p-value is greater than the significance level α, we
retain H0; otherwise we reject H0.

Proceed to the next batch if H0 is retained in this batch test, and continue the above process until
H0 is rejected or all data are tested.

In the experiment, we consider the composite hypothesis testing, which means the null hypothesis is
H0 : |ϕ(xt) − ϕ(yt) ≤|ϵ. If we still use the above permutation test, it will become much easier for
∆ ≥ ∆̃(n) to hold, even when H0 is actually true. This would result in significantly higher FPRs.
Thus, we only check p-values when the observed ∆ exceeds the estimated ϵ. The rejection time and
FPR that we plot are the average values across 1000 repeated runs for each significance level.

Permutation test is very time-consuming, because if we have m samples for each group, then we
will get m/k batches, each batch need to conduct the above steps.

As observed in Figure 9, the permutation tests without correction always have higher FPRs under
H0 than that with corrected significance levels. This phenomenon aligns with the fact that without
significance level adjustments, it is impossible to control the type-I error. Permutation tests with
large batch sizes demonstrate relatively low FPRs, which are approximate equal to 0. However,
this seemingly excellent performance is due to the fact that the preset ϵ values are much larger than
the actual absolute difference in mean scores between sequences of XSum texts and 2024 Olympic
news. This discrepancy results in fewer or no p-value checks, thus sustaining H0. Consequently,
the FPRs are nearly identical across each significance level α. Permutation tests are sensitive to

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 6: Average values of dt used in Scenario 2 estimated by previous 10 texts of each sequence.
Every two columns starting from the third column represent the dt values used for H1 and H0 for
each test scenario. Specifically, for the third column, we get first 10 samples xi≥10 from XSum
and first 10 observed texts yj≥10 generated by Gemini-1.5-Flash. We then calculate the maximum
difference between ϕ(xi) and ϕ(yj) for any 1 ≤ i ≤ 10, 1 ≤ j ≤ 10. We double this maximum
value to estimate dt value, i.e., dt = 2 · maxi,j≤10|ϕ(xi) − ϕ(yj)|. The fourth column follows a
similar calculation for detecting 2024 Olympic news with XSum texts, where ϕ(xi) represents score
of i-th text from XSum, ϕ(yj) denotes the score of the j-th text of 2024 Olympic news.

Scoring Model Score Function
XSum, Olympic XSum, Olympic XSum, Olympic

Human, Human, Human, Human, Human, Human,
1.5-Flash Human 1.5-Pro Human PaLM 2 Human

Neo-2.7

Fast-DetectGPT 10.3586 6.6788 8.1840 6.7517 13.0086 6.8456
DetectGPT 2.9396 2.6967 2.8232 2.7183 3.4076 2.7313

NPR 0.1680 0.1358 0.1464 0.1397 0.2178 0.1337
LRR 0.8620 0.6418 0.6572 0.6298 1.3115 0.6294

Logrank 1.8230 1.6746 1.5966 1.6676 2.1740 1.6807
Likelihood 2.7089 2.5370 2.4016 2.4975 3.3493 2.5529

Entropy 1.9123 1.9560 1.8840 1.9841 2.0712 1.9249
DNA-GPT 1.4570 1.5696 1.3530 1.5374 1.8097 1.6042

RoBERTa-base 1.9404 1.1136 1.2745 1.1795 1.9993 1.0390
RoBERTa-large 1.3443 0.6548 0.5857 0.5713 1.9435 0.6014

Gemma-2B

Fast-DetectGPT 10.0337 7.4171 7.6691 7.4983 13.1693 7.6051
DetectGPT 3.5422 3.0998 3.3271 3.0398 3.8780 3.1375

NPR 0.3264 0.2326 0.2795 0.2346 0.4432 0.2270
LRR 1.0874 0.7253 0.8615 0.7283 1.6474 0.7234

Logrank 1.9435 1.6850 1.7377 1.6759 2.2468 1.6162
Likelihood 3.1277 2.6890 2.8156 2.6686 3.6366 2.5868

Entropy 2.3749 2.4105 2.3417 2.3869 2.6341 2.3166
DNA-GPT 1.4319 1.3889 1.3308 1.3798 1.7274 1.4109

RoBERTa-base 1.9343 1.1536 1.2867 1.1800 1.9993 0.9913
RoBERTa-large 1.3832 0.6636 0.5695 0.5501 1.9499 0.6488

the discrepancies between two sequences, and the ∆ value tends to change more with smaller batch
sizes due to variation among scores of texts from the same source. Although a permutation test can
reject H0 after the first batch test, it consistently exhibit an FPR greater than α. Moreover, even if
we set the value of ϵ based on a much larger sample size, rather than from estimates derived from a
few points, there will still be variance between the ∆ value calculated in batches and the preset ϵ. As
long as ∆ calculated by a batch of samples is greater than the preset ϵ, the permutation test is likely
to have a large FPR under H0. Compared to fixed-time methods, our method can use parameter
estimates based on just a few points to ensure faster rejection and lower FPRs. It can save time
with high acuuracy especially when there is no prior knowledge of the threshold ϵ for composite
hypotheses.

H EXPERIMENT RESULTS OF DETECTING TEXTS FROM THREE DOMAINS

We also test on the dataset of Bao et al. (2023) to explore the influence of text domains on the
detection result of our algorithm. In this experiment, we only consider Scenario 1. We let xt be
human-written text from three datasets following Mitchell et al. (2023), each chosen to represent
a typical LLMs application scenario. Specifically, we incorporate news articles sourced from the
XSum dataset (Narayan et al., 2018), stories from Reddit WritingPrompts dataset (Fan et al., 2018)
and long-form answers written by human experts from the PubMedQA dataset (Jin et al., 2019).
Then, the capability of our algorithm is evaluated by detecting the source of texts yt originated from
the above source models or human datasets. Source models involved in this experiment are GPT-
3 (Brown, 2020), ChatGPT (OpenAI, 2022), and GPT-4 (Achiam et al., 2023) while the scoring
model is Neo-2.7 (Black et al., 2021). The perturbation function for DetectGPT and NPR is T5-11B,
and the sampling model for Fast-DetectGPT is GPT-J-6B.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

(a) Comparisons between our method and the permu-
tation test without correction for detecting the source
of text yt, which is 2024 Olympic news or news gen-
erated by Gemini-1.5-Flash, with human-written text
xt sampled from XSum. The scoring function used is
Neo-2.7.

(b) Comparisons between our method and the permu-
tation test with correction for detecting the source of
text yt, which is 2024 Olympic news or news gen-
erated by Gemini-1.5-Flash, with human-written text
xt sampled from XSum. The scoring function used is
Neo-2.7.

(c) Comparisons between our method and the permu-
tation test without correction for detecting the source
of text yt, which is 2024 Olympic news or news gen-
erated by Gemini-1.5-Pro, with human-written text xt

sampled from XSum. The scoring function used is
Neo-2.7.

(d) Comparisons between our method and the permu-
tation test with correction for detecting the source of
text yt, which is 2024 Olympic news or news gener-
ated by Gemini-1.5-Pro, with human-written text xt

sampled from XSum. The scoring function used is
Neo-2.7.

(e) Comparisons between our method and the permu-
tation test without correction for detecting the source
of text yt, which is 2024 Olympic news or news gen-
erated by PaLM 2 with human-written text xt sampled
from XSum. The scoring function used is Neo-2.7.

(f) Comparisons between our method and the permu-
tation test with correction for detecting the source of
text yt, which is 2024 Olympic news or news gener-
ated by PaLM 2 with human-written text xt sampled
from XSum. The scoring function used is Neo-2.7.

Figure 9: Comparisons between our method and baselines for detecting 2024 Olympic news and
machine-generated news. Fake news are generated by 3 source models: Gemini-1.5-Flash, Gemini-
1.5-Pro and PaLM 2. The scoring model used is Neo-2.7 with the score function of Fast-DetectGPT.
We consider five batch sizes: k = 25, 50, 100, 250, 500. The left column displays results from the
permutation test without correction, while the right column presents results of permutation test with
corrected significance levels α for each batch test.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Figure 10a and Figure 10b show the averaged results when two streams of texts are from the same
domain and different domains respectively, i.e., both sequences of texts are sampled from/prompted
according to the same dataset/different datasets. Specifically, we get the results by averaging rejec-
tion time and FPR under each α-significance level across the corresponding results of three LLMs
(GPT-3, ChatGPT, GPT-4) and three same/different domain settings shown in Figure 12 and 10b.
After comparing these two figures, we find that the correct declaration of an LLM source happens
more quickly when the prepared texts and the texts to be detected are from the same domain. Our
algorithm can control FPRs below the significance level α for all score functions while the aver-
aged rejection times for them are all shorter than 150. Among all functions, Fast-DetectGPT is the
fastest to reject H0, with average value of τ being around 40 for same-domain texts and about 80
for different-domain texts.

(a) Averaged test results with texts xt and yt from the
same domain across three source models and three text
domains. The scoring model used is Neo-2.7.

(b) Averaged test results with texts xt and yt from dif-
ferent domains across three source models and three
text domains. The scoring model used is Neo-2.7.

Figure 10: Average results of Scenario 1. There are three source models: GPT-3, ChatGPT, and
GPT-4, and three domains. For (a), two text sequences are both of XSum, Writing or PubMed
dataset. For (b), two sequences are of XSum and Writing, XSum and PubMed, Writing and PubMed.
Each sequence has 150 samples, which means the time budget is T = 150. The left subfigure in (a)
and (b) shows the average rejection time under H1 versus. the averaged FPRs under H0 under each
significance level α. Thus, plots closer to the left bottom corner are preferred, which indicate correct
detection of an LLM with shorter rejection times and lower FPRs. In the right subfigure of each
panel, the black dashed line along with the shaded area illustrates the expected FPR, consistently
maintained below the significance level α.

Specifically, according to Figure 12 , when texts are both sampled from PubMedQA datasets, the
behaviour of most score functions are worse than that for texts from XSum and WritingPrompts.
Specifically, it costs more time for them to reject H0. There are more vertical lines in Figure 11c,
12i and 11i, which means texts generated by GPT-4 are more challenging for our algorithm when
using certain score functions such as RoBERTa-base/large to detect before T = 150.

Figure 10b illustrates the performance of our algorithm with different score functions when detecting
two streams of different-domain texts. All functions can guarantee FPRs below the α-significance
level. When xt is from XSum and yt is generated by GPT-4 based on Writing, only Fast-DetectGPT
can declare the source of yt as an LLM before T = 150. Another interesting phenomenon is that
when yt is generated by GPT-3 based on PubMed, tests with most score functions fail to successfully
identify its source as an LLM before the time budget expires, regardless of the domain of the human
text used as xt for detection. Only the score functions of two supervised classifiers consistently
reject H0 before 150, which is shown as Figure 11g, 12d and 12g.

The parameter θt is chosen from the range [−1/2dt, 0]. The value of dt for any t is equal to the
maximum absolute difference between two sequences of scores for each test, as can be seen in
Table 9 for the same-domain texts and Table 9 for the different-domain texts. We get the absolute
difference ∆ between the scores ϕ(xt) and ϕ(yt) for texts from the same domain and different
domains involved in our experiments, as shown in the Table 11 and Table 12 respectively. Averaged
values of ∆ across three source models (GPT-3, ChatGPT and GPT-4) when texts xt and yt are from
the same domain and different domains are presented in Table 7 and 8, respectively. In practice, we
can also select the value of dt and ϵ based on the hint of the bound dt or by the previous observed
samples.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

(a) Results for text sequences from the same domain:
xt is sampled from XSum, and yt is sampled from
XSum or generated by GPT-3 based on XSum.

(b) Results for text sequences from the same domain:
xt is sampled from XSum, and yt is sampled from
XSum or generated by ChatGPT based on XSum.

(c) Results for text sequences from the same domain:
xt is sampled from XSum, and yt is sampled from
XSum or generated by GPT-4 based on XSum.

(d) Results for text sequences from the same domain:
xt is sampled from Writing, and yt is sampled from
Writing or generated by GPT-3 based on Writing.

(e) Results for text sequences from the same domain:
xt is sampled from Writing, and yt is sampled from
Writing or generated by ChatGPT based on Writing.

(f) Results for text sequences from the same domain:
xt is sampled from Writing, and yt is sampled from
Writing or generated by GPT-4 based on Writing.

(g) Results for text sequences from the same domain:
xt is sampled from PubMed, and yt is sampled from
PubMed or generated by GPT-3 based on PubMed.

(h) Results for text sequences from the same domain:
xt is sampled from PubMed, and yt is sampled from
PubMed or generated by ChatGPT based on PubMed.

(i) Results for text sequences from the same domain:
xt is sampled from PubMed, and yt is sampled from
PubMed or generated by GPT-4 based on PubMed.

Figure 11: Test results: mean rejection times (when H1 holds) and FPRs (when H0 holds) under
each significance level α using 10 score functions, with texts xt and yt from the same domain. There
are 3 source models: GPT-3, ChatGPT and GPT-4. The vertical lines represent tests where certain
scoring functions failed to correctly detect the LLM source before the time budget T = 500.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

(a) Results for text sequences from different domains:
xt is sampled from XSum, and yt is sampled from
Writing or generated by GPT-3 based on Writing.

(b) Results for text sequences from different domains:
xt is sampled from XSum, and yt is sampled from
Writing or generated by ChatGPT based on Writing.

(c) Results for text sequences from different domains:
xt is sampled from XSum, and yt is sampled from
Writing or generated by GPT-4 based on Writing.

(d) Results for text sequences from different domains:
xt is sampled from XSum, and yt is sampled from
PubMed or generated by GPT-3 based on PubMed.

(e) Results for text sequences from different domains:
xt is sampled from XSum, and yt is sampled from
PubMed or generated by ChatGPT based on PubMed.

(f) Results for text sequences from different domains:
xt is sampled from XSum, and yt is sampled from
PubMed or generated by GPT-4 based on PubMed.

(g) Results for text sequences from different domains:
xt is sampled from Writing, and yt is sampled from
PubMed or generated by GPT-3 based on PubMed.

(h) Results for text sequences from different domains:
xt is sampled from Writing, and yt is sampled from
PubMed or generated by ChatGPT based on PubMed.

(i) Results for text sequences from different domains:
xt is sampled from Writing, and yt is sampled from
PubMed or generated by GPT-4 based on PubMed.

Figure 12: Test results: mean rejection times (when H1 holds) and FPRs (when H0 holds) under
each significance level α using 10 score functions, with texts xt and yt from different domains.
There are 3 source models: GPT-3, ChatGPT and GPT-4. The vertical lines represent tests where
certain scoring functions failed to correctly detect the LLM source before the time budget T = 150.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Since we let ϵ equal to the actual ∆ value of two sequences of human texts, which ensures FPRs of
all score functions for each significance level α remain below α. As we have mentioned previously,
our algorithm can ensure a nonnegative supermartingale wealth under H0 and thus control the type-I
error. Besides, the relative magnitude of (∆ − ϵ) and (dt − ϵ) would influence the rejection time
under H1.

Table 7: Average Values of ∆ derived by using Neo-2.7 as the scoring model and various score
functions to texts from the same domain across three source models (GPT-3, ChatGPT and GPT-
4). Every two columns starting from the third column represent the average ∆ values across three
LLMs under H1 and H0 in each test scenario. For instance, the third column presents the average
absolute difference in mean scores between 150 Xsum texts and 150 texts generated by LLMs based
on XSum texts. The fourth column illustrates the average ∆ value between 150 XSum texts and 150
XSum texts. Values in Column “Human, Human” are also used to set ϵ value for tests.

Scoring Model Score Function
XSum, XSum Writing, Writing PubMed, PubMed

Human, Human, Human, Human, Human, Human,
LLMs Human LLMs Human LLMs Human

Neo-2.7

Fast-DetectGPT 2.2235 0.0513 2.5690 0.0138 1.0891 0.0179
DetectGPT 0.4048 0.0562 0.4985 0.0121 0.2206 0.0061

NPR 0.0200 0.0025 0.0276 0.0001 0.0135 0.0018
LRR 0.0919 0.0106 0.1002 0.0047 0.0714 0.0075

Logrank 0.2710 0.0303 0.4082 0.0037 0.2707 0.0257
Likelihood 0.4384 0.0420 0.6518 0.0145 0.4604 0.0354

Entropy 0.1017 0.0344 0.2393 0.0086 0.2135 0.0243
DNA-GPT 0.1917 0.0317 0.2852 0.0232 0.5531 0.1456

RoBERTa-base 0.4585 0.0142 0.2825 0.0186 0.1330 0.0143
RoBERTa-large 0.2165 0.0090 0.1387 0.0057 0.1088 0.0072

Table 8: Average Values of ∆ derived by using different score functions to texts from the defferent
domains across three source models (GPT-3, ChatGPT and GPT-4). Neo-2.7 is the scoring model
used for the first eight score functions. Every two columns starting from the third column represent
the average ∆ values across three LLMs under H1 and H0 in each test scenario. For instance, the
third column presents the average absolute difference in mean scores between 150 Xsum texts and
150 texts generated by LLMs based on Writing texts. The fourth column illustrates the average ∆
value between 150 XSum texts and 150 Writing texts.

Scoring Model Score Function
XSum, Writing XSum, PubMed Writing, PubMed

Human, Human, Human, Human, Human, Human,
LLMs Human LLMs Human LLMs Human

Neo-2.7

Fast-DetectGPT 2.2848 0.2841 0.7267 0.3624 1.0108 0.0783
DetectGPT 0.4828 0.0342 0.0786 0.2992 0.0630 0.2835

NPR 0.0246 0.0030 0.0115 0.0031 0.0145 0.0012
LRR 0.0428 0.0665 0.0572 0.0219 0.1094 0.0447

Logrank 0.1050 0.3149 0.2429 0.0278 0.5579 0.2872
Likelihood 0.1603 0.5025 0.4548 0.0081 0.9573 0.4969

Entropy 0.2071 0.4464 0.2778 0.1154 0.7242 0.5617
DNA-GPT 0.1301 0.1551 3.0447 2.4916 3.1997 2.6467

RoBERTa-base 0.3284 0.0459 0.3304 0.1974 0.2844 0.1514
RoBERTa-large 0.1351 0.0073 0.1962 0.0874 0.1889 0.0801

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 9: Values of dt with the assumption that we know the range of gt = |ϕ(xt)−ϕ(yt)| beforehand.
Every two columns starting from the third column represent the dt values for each t used under
H1 and H0 in each test scenario. For instance, the values in the third column are calculated as
maxi,j≤150|ϕ(xi)−ϕ(yj)|, where ϕ(xi) is the score of i-th XSum text and ϕ(yj) is the score of the
j-th text generated by GPT-3 based on XSum. Similarly, the fourth column calculates the maximum
difference between the scores of two text sequences which are both sampled from XSum dataset.
The dt values is then used to define the domain of θt in our algorithm, where θt ∈ [−1/2dt, 0].

Text Domain Score Functions
Test1 Test2 Test3

Human, Human, Human, Human, Human, Human,
GPT-3 Human ChatGPT Human GPT-4 Human

XSum, Xsum

Fast-DetectGPT 7.4812 6.0978 7.9321 5.8211 7.1870 5.9146
DetectGPT 2.7997 2.3369 2.4485 2.4753 2.0792 2.1686

NPR 0.2025 0.1469 0.1418 0.1449 0.1184 0.1248
LRR 0.5798 0.5798 0.6088 0.4623 0.5913 0.5412

Logrank 1.3841 1.4601 1.1775 1.0302 1.4912 1.4399
Likelihood 2.1195 2.1755 1.8610 1.5937 2.2947 2.1624

Entropy 2.0369 1.9155 1.4552 1.3976 1.9421 1.8986
DNA-GPT 1.0847 0.9399 0.9219 0.8006 1.0386 0.9783

RoBERTa-base 0.9997 0.9977 0.9997 0.9977 0.9997 0.9977
RoBERTa-large 0.9970 0.8191 0.9944 0.3471 0.9862 0.8191

Writing, Writing

Fast-DetectGPT 8.0598 6.5768 8.4128 5.9812 6.6396 6.5999
DetectGPT 3.5032 3.1609 3.2897 3.1502 2.7128 3.3487

NPR 0.2103 0.1500 0.1920 0.1356 0.1286 0.1502
LRR 0.6487 0.5483 0.7428 0.5115 0.5417 0.4754

Logrank 2.1419 1.4950 1.5963 1.4485 1.6212 1.4024
Likelihood 3.3565 2.0134 2.4280 1.8810 2.3618 2.0046

Entropy 2.8300 1.6976 1.6677 1.4732 2.0601 1.5292
DNA-GPT 1.2223 1.2879 1.1989 1.0239 1.3639 1.2719

RoBERTa-base 0.9997 0.9997 0.9997 0.9997 0.9996 0.9997
RoBERTa-large 0.9992 0.9172 0.9456 0.5028 0.9172 0.9172

Pubmed, Pubmed

Fast-DetectGPT 5.6200 4.7132 5.8150 4.8065 4.6136 4.6400
DetectGPT 2.0692 1.8394 2.1635 2.3610 1.5185 2.0677

NPR 0.1888 0.2020 0.1867 0.2185 0.2028 0.2173
LRR 0.6811 0.7180 0.7433 0.6000 0.8885 0.7180

Logrank 1.8434 2.4121 1.9131 1.7634 2.6000 2.3949
Likelihood 2.8480 3.4780 3.1426 2.8756 3.8419 3.5055

Entropy 2.0549 2.2002 2.0570 1.8376 2.4877 2.3156
DNA-GPT 5.1276 4.7710 4.3683 4.7319 4.9899 4.8031

RoBERTa-base 0.9982 0.9962 0.9984 0.9953 0.9995 0.9963
RoBERTa-large 0.9688 0.8863 0.8860 0.8863 0.8702 0.8863

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Table 10: Values of dt with the assumption that we know the range of gt = |ϕ(xt) − ϕ(yt)| be-
forehand. Every two columns starting from the third column represent the dt values for each t used
under H1 and H0 in each test scenario. For instance, the values in the third column are calculated
as maxi,j≤150|ϕ(xi) − ϕ(yj)|, where ϕ(xi) is the score of i-th XSum text and ϕ(yj) is the score
of the j-th text generated by GPT-3 based on Writing. Similarly, the fourth column calculates the
maximum difference between the scores of two text sequences with xi sampled from XSum and yj
sampled from Writing dataset. The dt values is then used to define the domain of θt in our algorithm,
where θt ∈ [−1/2dt, 0].

Text Domain Score Function
Test1 Test2 Test3

Human, Human, Human, Human, Human, Human,
GPT-3 Human ChatGPT Human GPT-4 Human

XSum, Writing

Fast-DetectGPT 7.7260 6.2430 8.0558 6.0578 7.3268 6.1780
DetectGPT 3.1711 2.8288 2.8371 2.6976 2.5561 2.6884

NPR 0.2001 0.1398 0.1736 0.1571 0.1249 0.1352
LRR 0.5817 0.5355 0.6395 0.6469 0.4837 0.5354

Logrank 1.8576 1.6371 1.4423 1.7444 1.0620 1.5484
Likelihood 3.1515 2.2793 2.0097 2.3806 1.5890 2.3587

Entropy 2.6910 2.0533 1.8358 2.0545 1.5863 1.7798
DNA-GPT 1.0351 1.3620 0.8960 1.1271 0.7700 1.1035

RoBERTa-base 0.9997 0.9920 0.9997 0.9997 0.9996 0.9997
RoBERTa-large 0.9992 0.9172 0.9455 0.3471 0.2952 0.5028

XSum, Pubmed

Fast-DetectGPT 5.7796 5.2418 6.0477 5.5643 5.2864 5.5884
DetectGPT 1.9280 2.1249 2.2991 2.7521 2.0123 2.8121

NPR 0.1529 0.1813 0.1607 0.1745 0.1608 0.1609
LRR 0.7144 0.6422 0.6765 0.5376 0.6952 0.5247

Logrank 1.6718 2.2405 1.3408 1.6702 1.3285 1.5756
Likelihood 2.4632 3.1031 2.3094 2.5604 2.2453 2.3964

Entropy 2.2528 2.3452 1.9397 1.6543 1.9994 1.8273
DNA-GPT 6.6172 6.2606 5.6482 6.0117 6.3382 6.0307

RoBERTa-base 0.9983 0.9964 0.9984 0.9976 0.9995 0.9976
RoBERTa-large 0.9688 0.8191 0.8610 0.8863 0.8703 0.8863

Writing, Pubmed

Fast-DetectGPT 4.9091 5.3870 6.3816 5.4647 5.8265 5.3231
DetectGPT 2.7326 2.9296 2.5926 3.0456 2.3285 3.1283

NPR 0.1546 0.1829 0.1609 0.1927 0.1733 0.1588
LRR 0.7289 0.6567 0.8526 0.7093 0.8070 0.6364

Logrank 1.7772 2.0524 2.0617 1.8547 1.8669 1.6617
Likelihood 2.6541 2.8230 3.1136 2.6684 3.0234 2.6871

Entropy 2.4478 2.5402 2.6542 2.3688 2.3984 2.2263
DNA-GPT 7.0524 6.6958 6.0130 6.3766 6.6221 6.3146

RoBERTa-base 0.9983 0.9964 0.9996 0.9995 0.9996 0.9996
RoBERTa-large 0.9688 0.9172 0.8610 0.8863 0.8703 0.8863

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Table 11: Values of ∆ derived by using Neo-2.7 as the scoring model for the first eight score
functions to score texts from the same domain. There are three source models: GPT-3, ChatGPT
and GPT-4. Every two columns starting from the third column represent the ∆ values under H1 and
H0 in each test scenario. For instance, the third column presents the average absolute difference in
scores between 150 Xsum texts and 150 texts generated by GPT-3 based on XSum texts. The fourth
column illustrates the ∆ value between 150 XSum texts and 150 XSum texts.

Text Domain Score Function
Test1 Test2 Test3

Human, Human, Human, Human, Human, Human,
GPT-3 Human ChatGPT Human GPT-4 Human

XSum, Xsum

Fast-DetectGPT 1.9598 0.0770 2.9471 0.0106 1.7638 0.0664
DetectGPT 0.5656 0.0729 0.4816 0.0114 0.1672 0.0844

NPR 0.0305 0.0031 0.0248 0.0006 0.0047 0.0037
LRR 0.0349 0.0159 0.1568 0.0032 0.0839 0.0127

Logrank 0.1938 0.0455 0.3794 0.0077 0.2397 0.0378
Likelihood 0.3488 0.0630 0.5960 0.0109 0.3704 0.0521

Entropy 0.0586 0.0517 0.1456 0.0117 0.1009 0.0400
DNA-GPT 0.1579 0.0476 0.2742 0.0287 0.1432 0.0188

RoBERTa-base 0.5939 0.0210 0.5946 0.0002 0.1871 0.0212
RoBERTa-large 0.3941 0.0133 0.2037 0.0001 0.0516 0.0135

Writing, Writing

Fast-DetectGPT 2.3432 0.0204 3.1805 0.0206 2.1831 0.0002
DetectGPT 0.5752 0.0181 0.6980 0.0093 0.2223 0.0088

NPR 0.0330 0.0001 0.0415 0.0001 0.0083 0.0001
LRR 0.0979 0.0062 0.1512 0.0009 0.0516 0.0070

Logrank 0.3737 0.0055 0.5407 0.0026 0.3103 0.0028
Likelihood 0.5915 0.0217 0.8511 0.0046 0.5126 0.0171

Entropy 0.2260 0.0130 0.3428 0.0036 0.1490 0.0093
DNA-GPT 0.2441 0.0348 0.3745 0.0155 0.2370 0.0193

RoBERTa-base 0.6070 0.0279 0.2184 0.0093 0.0220 0.0186
RoBERTa-large 0.3845 0.0085 0.0143 0.0033 0.0175 0.0052

Pubmed, Pubmed

Fast-DetectGPT 0.7397 0.0025 1.3683 0.0243 1.1594 0.0268
DetectGPT 0.2417 0.0092 0.2470 0.0051 0.1729 0.0041

NPR 0.0146 0.0015 0.0175 0.0012 0.0084 0.0028
LRR 0.0101 0.0070 0.1099 0.0042 0.0944 0.0112

Logrank 0.0282 0.0293 0.4115 0.0092 0.3725 0.0385
Likelihood 0.0771 0.0411 0.6922 0.0121 0.6119 0.0532

Entropy 0.0766 0.0316 0.2939 0.0048 0.2701 0.0364
DNA-GPT 0.3518 0.1309 0.8721 0.0875 0.4354 0.2184

RoBERTa-base 0.1859 0.0078 0.1666 0.0137 0.0466 0.0215
RoBERTa-large 0.1318 0.0077 0.1294 0.0031 0.0652 0.0108

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Table 12: Values of ∆ derived by using Neo-2.7 as the scoring model for the first eight score
functions to score texts from different domains. There are three source models: GPT-3, ChatGPT
and GPT-4. Every two columns starting from the third column represent the ∆ values under H1 and
H0 in each test scenario. For instance, the third column presents the average absolute difference
in scores between 150 Xsum texts and 150 texts generated by GPT-3 based on Writing texts. The
fourth column illustrates the ∆ value between 150 XSum texts and 150 XSum texts.

Text Domain Score Functions
Test1 Test2 Test3

Human, Human, Human, Human, Human, Human,
GPT-3 Human ChatGPT Human GPT-4 Human

XSum, Writing

Fast-DetectGPT 2.1206 0.2430 2.8602 0.2996 1.8737 0.3096
DetectGPT 0.6211 0.0278 0.6617 0.027 0.1657 0.0478

NPR 0.0323 0.0008 0.0377 0.0038 0.0039 0.0044
LRR 0.0391 0.0526 0.0757 0.0747 0.0137 0.0723

Logrank 0.0893 0.2899 0.2081 0.33 0.0175 0.3249
Likelihood 0.1362 0.4771 0.3281 0.5184 0.0166 0.5121

Entropy 0.1843 0.4233 0.1228 0.462 0.3142 0.4539
DNA-GPT 0.1279 0.1509 0.1953 0.1638 0.0672 0.1505

RoBERTa-base 0.6513 0.0163 0.2744 0.0653 0.0596 0.0562
RoBERTa-large 0.3789 0.0029 0.0253 0.0078 0.0011 0.0112

XSum, Pubmed

Fast-DetectGPT 0.4179 0.3244 0.9937 0.3989 0.7686 0.3639
DetectGPT 0.0098 0.2424 0.0723 0.3245 0.1538 0.3308

NPR 0.0148 0.0017 0.0133 0.0029 0.0064 0.0048
LRR 0.0214 0.0184 0.0868 0.0273 0.0633 0.0199

Logrank 0.0349 0.0226 0.3819 0.0388 0.312 0.0219
Likelihood 0.1195 0.0014 0.6838 0.0205 0.5612 0.0024

Entropy 0.0782 0.1232 0.4019 0.1032 0.3533 0.1197
DNA-GPT 2.8511 2.6302 3.2363 2.4517 3.0468 2.3930

RoBERTa-base 0.3711 0.193 0.3591 0.2063 0.2609 0.1928
RoBERTa-large 0.2087 0.0846 0.2165 0.0902 0.1633 0.0873

Writing, Pubmed

Fast-DetectGPT 0.6609 0.0813 1.2933 0.0993 1.0782 0.0543
DetectGPT 0.0376 0.2702 0.0453 0.2974 0.1060 0.2830

NPR 0.0156 0.0025 0.0170 0.0008 0.0108 0.0004
LRR 0.0312 0.0342 0.1614 0.0474 0.1356 0.0525

Logrank 0.3248 0.2673 0.7119 0.2912 0.6369 0.3030
Likelihood 0.5966 0.4785 1.2021 0.4978 1.0733 0.5145

Entropy 0.5015 0.5465 0.8638 0.5651 0.8072 0.5735
DNA-GPT 3.002 2.7812 3.4000 2.6155 3.1972 2.5435

RoBERTa-base 0.3548 0.1767 0.2939 0.1410 0.2046 0.1366
RoBERTa-large 0.2057 0.0817 0.2088 0.0825 0.1521 0.0761

I ADDRESSING PARAMETER ESTIMATION CHALLENGES AND MIXED LLMS
OR SOURCES TASKS

Estimate Parameters Based on More Samples. Better parameter estimation can enhance the per-
formance of our algorithm. For instance, in the previous experiments, we used the first 10 samples
to estimate parameters dt and ϵ. Here, we give an example to show that using a larger sample size
for estimation could possibly yield better results. Specifically, using 20 samples for estimation, with
test begins at the 21-th time step, could lead to improved algorithm performance.

Figure 5 demonstrates that when parameters are estimated with more samples from the initial time
steps, all score functions maintain False Positive Rates (FPRs) below the specified significance lev-
els. Additionally, almost all functions identify the LLM source more quickly compared to when
fewer samples are used for estimation. This example indicates the potential benefits of using more
extensive data for parameter estimation in enhancing the effectiveness of our approach.

Tasks for a Mixture of LLMs or Sources. Our method can be extended to additional tasks. Its
fundamental goal in sequential hypothesis testing is to determine whether texts from an unknown

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

source originate from the same distribution as those in a prepared human text dataset, where we
consider mean value as the statistical metric.

Even if texts from the LLM source are produced by various LLMs, they still satisfy the alterna-
tive hypothesis, which means that our statistical guarantees remain valid and the algorithm could
continue to perform effectively. The results are illustrated in Figure 6a.

When the unknown source publishes both human-written and LLM-generated texts, our method can
effectively address this scenario. Here, the null hypothesis assumes that all texts from the unknown
source are human-written. In contrast, the alternative hypothesis posits that not all texts are human-
written, which indicates the presence of texts generated by LLMs. Figure 6b demonstrates that our
algorithm, equipped with nearly all score functions, consistently performs well in this new context.

The above results reflect a real-world scenario where parameter values are estimated from the first
10 samples. The performance of our method could be further enhanced with prior knowledge of the
parameters.

48

	Introduction
	Preliminaries
	Our Algorithm
	Experiments
	Settings
	Experimental Results

	Limitations and Outlooks
	More related works
	Related works of detecting machine-generated texts
	Related Works of sequential hypothesis testing by betting

	Related Score Functions
	Proof of Regret Bound of ONS
	Lower Bound of the Learner's Wealth
	Proof of Proposition 1
	Proof of Proposition 2
	Experiment Results of Detecting 2024 Olympic News or Machine-generated News
	Experiment Results of detecting texts from three domains
	Addressing Parameter Estimation Challenges and Mixed LLMs or Sources Tasks

