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Abstract
Multimodal sentiment analysis aims to uti-001
lize the combined information from different002
modalities to gain a comprehensive understand-003
ing of human sentiment expressions. Previous004
research works have mostly focused on simple005
fusion of fine-grained features from text and im-006
ages, neglecting the relationship between fine-007
grained features and high-level semantic global008
representations. In this paper, we propose a009
framework, dubbed INFIG, that integrates hier-010
archical fine-grained and global information to011
accurately capture sentiment expressions. We012
also leverage existing foundational models like013
CLIP to enhance the connection between simi-014
lar image-text pairs and extract the latent high-015
level semantic information contained within016
weakly correlated image-text pairs. Extensive017
experiments on four publicly available mul-018
timodal datasets demonstrate the superiority019
and effectiveness of our proposed approach.020
The visualization further confirms the success021
of our model in integrating both fine-grained022
and global information, leading to better inter-023
pretability.024

1 Introduction025

Given the rising popularity of multimedia platforms026

and the advancement of information technology,027

there has been a significant surge in data that en-028

compasses multiple modalities such as text, images,029

and video. Multimodal Sentiment Analysis (MSA)030

has gained considerable attention as a research area031

(Kaur and Kautish, 2022; Zhang et al., 2018; Yue032

et al., 2019). It plays a crucial role in domains like033

understanding human behavior, providing person-034

alized services, and analyzing social media.035

When dealing with multimodal data, the strong036

correlation between text and image can assist the037

model in effectively gauging the genuine sentiment038

behind the multimodal information, otherwise the039

opposite. In most cases, the weakly correlated040

modalities may contain more interference informa-041

tion. Such as Figure 1a, the girl’s smile conveys042

(a) Nothing beats the joy of
waking up to a winter won-
derland! #SnowyMornings
#WinterBliss

(b) At the scene of a fatal
collision on paramount near
Upper Mount Albion Rd.
@CHCHNews #hamont

(c) Happy spring! loving all
the blossoming flowers hap-
pening here! so beautiful!

(d) So sad. 14th minute ap-
plause to commemorate a
life gone far too soon

Figure 1: Examples of multimodal sentiment tweets

pure joy in the snowy weather. Conversely, when 043

analyzing Figure 1d with the accompanying text, 044

it becomes evident that despite the girl’s smile, 045

the overall sentiment conveyed is one of sorrow 046

and longing. If multiple modalities share simi- 047

lar emotional characteristics, there is an increased 048

likelihood of making precise judgments regarding 049

the polarity of the ultimate unified sentiment (Xu, 050

2017). However, if multiple modalities have differ- 051

ent emotional characteristics, more complex judg- 052

ment analysis will be required. 053

Some models (Xu, 2017; Kumar and Vepa, 2020) 054

adopt a framework that involves training two en- 055

coders to extract visual and textual information. 056

In this framework, the visual encoder typically re- 057

lies on CNN architecture, while the text encoder 058

is based on either RNN or Transformer models. 059

Next, a fusion module is used to concatenate dif- 060

ferent modal features. (Xu and Mao, 2017) intro- 061

1



duces an LSTM model guided by visual features,062

to extract crucial words that determine the senti-063

ment of the entire tweet and combined the rep-064

resentation of these words with visual semantic065

features, objects, and scenes. (Yang et al., 2020)066

proposes to use memory networks to realize the in-067

teraction between modalities. Some works develop068

a framework for multimodal multi-task learning069

based on late-fusion methods (Yu et al., 2020), or070

a network fusion model with residual connections071

based on late fusion (Ding et al., 2022). Despite the072

relative superiority of the above-mentioned mod-073

els over unimodal models, the inputs with varying074

modalities are embedded in separate vector spaces.075

Hence, employing a simplistic concatenation ap-076

proach without any pre-alignment operations to077

fuse the features of textual and visual data exhibits078

inferior performance.079

Several early works have explored the imple-080

mentation of contrastive learning techniques in the081

multimodal field. Such as CLIP (Radford et al.,082

2021) is trained using a contrastive loss on on a083

global similarity between its output embeddings.084

(Yuan et al., 2021) applies contrastive learning to085

learn visual representations in a unified multimodal086

training framework. In recent works, (Hu et al.,087

2022) fuses multimodal representation from multi-088

level textual information by injecting acoustic and089

visual signals into the T5 (Raffel et al., 2020) and090

acquires different multimodal representations by091

employing contrastive learning across modalities.092

(Gu et al., 2022) excels in leveraging fine-grained093

information between image encoder and text en-094

coder. However, these works ignore the interplay095

between the interaction of fine-grained features and096

global features.097

In this paper, we focus on visual-textual sen-098

timent analysis in social media data and present099

an INtegrating FIne-grained and Global informa-100

tion(INFIG) method based on contrastive learning,101

which will help the model learn relevant or more102

profound levels of sentiment information within103

the textual and visual content.104

Our contributions are summarized as follows:105

1. We propose global alignment module and106

hierarchical fine-grained alignment module107

for mining more detailed semantic alignment.108

Furthermore, we investigate the optimal com-109

bination of these two modules, aiming to max-110

imize their potential.111

2. We use the pre-trained CLIP model to acquire112

implicit prior knowledge embedded within the 113

visual and textual modalities, assisting global 114

alignment module in capturing more precise 115

multimodal features, thereby enhancing the 116

model’s capability to capture sentiment. 117

3. Our whole framework achieves better results 118

than the state-of-the-art methods on most ex- 119

isting datasets, demonstrating its effectiveness 120

and superiority. 121

2 Related Work 122

Multimodal Sentiment Analysis The objective 123

of multimodal sentiment analysis is to extract emo- 124

tions, interpretations, and sentiments by analyzing 125

various modalities such as language, facial expres- 126

sions, speech. (You et al., 2016) proposes a cross- 127

modality consistent regression model to force the 128

representations extracted from text and image to be 129

consistent. (Zadeh et al., 2017) proposes a tensor 130

fusion network that generates a novel tensor repre- 131

sentation by performing the outer product operation 132

on unimodal representations. (Zadeh et al., 2018) 133

designs a memory fusion network for cross-view in- 134

teractions. (Yu et al., 2021; Mai et al., 2020) focus 135

on modal consistency and difference through multi- 136

task joint learning and translating from one modal- 137

ity to another. (Ling et al., 2022) utilizes a combi- 138

nation of diverse pre-training tasks, such as masked 139

language/region modeling and textual/visual opin- 140

ion generation, to enhance the extraction of fine- 141

grained aspect-based sentiment and the alignment 142

across modalities. (Yang et al., 2021) applies a 143

multi-channel graph neural network that is built 144

based on the overall characteristics of the dataset. 145

It incorporates a sentiment-awareness mechanism 146

to perform multimodal sentiment analysis. (Zhu 147

et al., 2022) proposes an innovative image-text 148

interaction network that analyzes sentiments ex- 149

pressed in social media posts by leveraging the 150

interaction between images and texts. (Liu et al., 151

2022) employs a hybrid curriculum learning ap- 152

proach to address the problem of semantic incon- 153

sistency between modalities. (Li et al., 2022) uti- 154

lizes sentiment-label-based and data-augmentation- 155

based contrastive learning to help the model cap- 156

ture the sentiment-related features in multimodal 157

data. 158

Global and Fine-Grained Contrastive Learning 159

Contrastive learning has gained major advances by 160

viewing sample from multiple view, especially in 161

representation learning. Its principle is quite clear, 162
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Figure 2: The overview of INFIG.

following the idea that an anchor and its positive163

sample should be pulled closer, while the anchor164

and negative samples should be pushed apart in165

feature space (Hadsell et al., 2006). (Gao et al.,166

2021; Yan et al., 2021) and (He et al., 2020; Chen167

et al., 2020; Chen and He, 2021) utilize global168

contrastive learning approach in the respective do-169

mains of natural language processing and computer170

vision. (Jia et al., 2021; Dou et al., 2022) encode171

visual and textual queries to global features and172

accordingly map them into a common latent space173

to compute the cosine similarity between two em-174

bedding vectors. Some efforts have been made to175

learn fine-grained cross-modal interaction between176

two modalities by leveraging token-wise or region-177

word similarities in the contrastive loss. (Lee et al.,178

2018) pays attention to fine-grained alignments by179

selectively attending to significant words or im-180

age regions. (Messina et al., 2021) detects and181

encodes image regions at the object level and sums182

the maximum of the region-word similarity scores183

with respect to each word or region. (Yao et al.,184

2021) aggregates the maximum token-wise similar-185

ity scores according to every single feature. Some186

works develop the reconstruction loss (Hazarika187

et al., 2020), or hierarchical mutual information188

maximization (Han et al., 2021) to achieve better189

modality fusion. Compared with the above works,190

we focus on the relationship between fine-grained 191

features and global features, with the objective of 192

effectively integrating them. 193

3 Method 194

3.1 Overall Framework 195

As shown in Figure 2, INFIG contains 5 compo- 196

nents: an image encoder, a text encoder, a global 197

alignment module, a hierarchical fine-grained align- 198

ment module and fusion layers. 199

We use ResNet (He et al., 2016) and Ni 200

transformer layers as the image encoder to map 201

the image into M+1 viusal token embeddings 202

{i1, ..., ini , icls} where icls is the embedding of the 203

visual [CLS] token. We use debertav3 (He et al., 204

2021) based on Nt transformer layers as the text 205

encoder to obtain the textual token representations 206

{t1, ..., tnt , tcls} where tcls is the representation of 207

the textual [CLS] token. 208

3.2 Global Alignment Module 209

Global Alignment Module aims to learn better rep- 210

resentations at a global level before fusion. When 211

the text and image are weakly correlated, mean- 212

ing that the text may contain words unrelated to 213

the image, it poses challenges to the fine-grained 214

alignment learning in the model. In such cases, it 215
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becomes crucial to enable the model to learn the216

deeper overall sentiment expressed by the image-217

text pair. We propose utilizing CLIP to provide218

a global prior information. Let iclip and tclip de-219

note the representations of the image and text, re-220

spectively, obtained through linear projection after221

applying the CLIP model. Inspired by (He et al.,222

2020), we maintain two queues to store the most223

recent M image-text representations from the mo-224

mentum unimodal encoders and adopt the follow-225

ing two InfoNCE (Oord et al., 2018) loss functions226

for global alignment module:227

Li2t = − log
exp(σ(ig, tg)/τ)∑M

m=1 exp(σ(ig, tm)/τ)

Lt2i = − log
exp(σ(tg, ig)/τ)∑M

m=1 exp(σ(tg, im)/τ)

(1)228

where τ is a temperature factor, which is initialized229

as 0.07. We define ig = concat(icls, iclip), tg =230

concat(tcls, tclip). Function σ computes the cosine231

similarity between two vectors. im and tm are232

from momentum queues. The total loss of global233

alignment module is:234

Lg =
1

2
(Lt2i + Li2t) (2)235

3.3 Hierarchical Fine-Grained Alignment236

Module237

The role of Hierarchical Fine-Grained Alignment238

Module is to find the most similarity textual token239

for each image patch, and similarly, for each textual240

token, to find its closest image patch. This enables241

the model to learn how the image and the text in-242

teract and influence each other, thereby enhancing243

its ability to accurately comprehend sentiment in-244

formation. It takes I = {i1, i2, ..., ini}, I ∈ Rni×d245

and T = {t1, t2, ..., tnt}, T ∈ Rnt×d as inputs. For246

the k-th visual token ik, we calculate its similarities247

with textual tokens and select the top j maximum248

similarity scores. Similarly, for textual tokens, we249

compute their similarity with visual tokens."250

Ti2t = Sum{topj(σ(ik, t1), ..., σ(ik, tnt))}
Tt2i = Sum{topj(σ(tk, i1), ..., σ(tk, ini))}

(3)251

In (3), we only consider the similarities between252

visual tokens and non-padding textual tokens. The253

similarities of p-th image to q-th text and the q-th254

text to the p-th image can be formulated as: 255

Sp2q =
1

jni

∑
i∈I

Ti2t

Sq2p =
1

jnt

∑
t∈T

Tt2i

(4) 256

and the fine-grained alignment loss of one layer 257

can be expressed as follows: 258

LI = − log
exp(Sp2q/τ)∑B

b=1 exp(Sp2qb/τ)

LT = − log
exp(Sq2p/τ)∑B

b=1 exp(Sq2pb/τ)

(5) 259

where B is the batch size. qb and pb are the rest of 260

images and texts in batch excluding q and p. The 261

total loss of fine-grained alignment module is: 262

Lf =
1

2M

M∑
m=1

(LT + LI) (6) 263

where m represents the layer m from the end. Our 264

method is based on the recent FLIP approach, 265

but instead of performing fine-grained alignment 266

only at the last layer, we propose hierarchical fine- 267

grained alignment at the last M layers of both text 268

and image encoders,enabling the model to align 269

deeper levels of information. And we select the 270

top j similarity scores among tokens, rather than 271

just the maximum, to enhance the robustness and 272

generalization of model. 273

3.4 Fusion Layers 274

We use Transformer-Encoder as text-image fusion 275

layers to fuse multimodal features. It is as follows: 276

F = TE(i1, ..., ini , t1, ..., tnt)

F = {f1, f2, f3..., fni+nt}
(7) 277

where TE is the transformer-encoder. We obtain 278

the sequence features F, but they cannot be directly 279

used for the sentiment classification task. So we 280

acquire the multimodal representation through the 281

utilization of a straightforward attention layer. 282

G = Attention(F )

G = {g1, g2, g3..., gni+nt}
(8) 283

284

K̃ =

nt+ni∑
i=1

gifi (9) 285

K = GELU(K̃WK + bK) (10) 286
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where G is the sequence of attention scores. GLUE287

is the activation function. K ∈ Rd is the muti-288

modal representation. Finally we use the cross-289

entropy loss as the sentiment classification loss:290

Lsc = Cross− Entropy(GELU(KW + b))
(11)

291

3.5 Model Training292

The fine-grained alignment loss and global align-293

ment loss can be incorporated into the total loss294

as regularization components.The total loss can be295

written as:296

L = Lsc + λgLg + λfLf (12)297

where λg and λf are coefficients to balance the298

different training loss.299

4 Experiments300

4.1 Datasets301

We conduct experiments on four publicly available302

visual-textual datasets which are MVSA-Single,303

MVSA-Multiple (Niu et al., 2016), HFM (Cai et al.,304

2019) and TumEmo (Yang et al., 2020). The de-305

tailed statistics of four datasets are shown in Table306

1.307

MVSA-Single and MVSA-Multiple are collected308

from Twitter posts. The former contains 4511 text-309

image pairs. Each pair is shown to a single annota-310

tor, who assigns one of three sentiments (positive,311

negative and neutral) to the text and image respec-312

tively. The latter contains 17024 image-text pairs,313

and each sample is labeled by three annotators. We314

use majority voting to obtain the single modality315

sentiment label. For a fair comparison, we process316

this two datasets in the same way uesd in (Li et al.,317

2022).318

TumEmo is a large multimodal weak-supervision319

emotion dataset collected from Tumblr. Each text-320

image is categorized into one of seven sentiment321

classes (i.e., angry, bored, calm, fearful, happy,322

loving, and sad). We follow the same split of (Yang323

et al., 2021).324

HFM is also collected from Twitter posts, which325

is contains 24635 image-text pairs. It is a binary326

sentiment dataset comprising positive and negative327

sentiments. We adopt the same data preprocessing328

method in (Cai et al., 2019).329

4.2 Experimental Settings 330

We use debertav3-base as text encoder and ResNet- 331

50, along with a 6-layer Transformer, as the im- 332

age encoder. The number of the fusion layers is 333

3 for MVSA-Single, MVSA-Multiple, TumEmo 334

and 4 for HFM. To save memory and scale up the 335

batch size, automatic mixed-precision (Micikevi- 336

cius et al., 2017) is used. The batch size is set to 337

64 for MVSA-Single, MVSA-Multiple, TumEmo 338

and 128 for HFM. We use Adam optimizer. We 339

set j is 2 for MVSA-Single, MVSA-Multiple and 3 340

for TumEmo and HFM. The learning rate is 2e-5. 341

λf and λg are 0.2 and 0.3 respectively. The hierar- 342

chical fine-grained alignment module performs the 343

last 3 Transformer layers of image encoder and text 344

encoder, while the global contrastive is applied to 345

the last layer. For more discussion on which layer 346

global alignment module applies to, please refer to 347

Section 4.6. All the experiments are done on four 348

NVIDIA 4090 GPUS. 349

Train Valid Test All

MVSA-S 3611 450 450 4511
MVSA-M 13624 1700 1700 17024
HFM 19816 2410 2409 24635
TumEmo 156,204 19,525 19,536 195,265

Table 1: The detailed data splitting of MVSA-S, MVSA-
M, TumEmo and HFM.

4.3 Baselines 350

We compare the proposed method with the follow- 351

ing baselines: 352

MultiSentiNet (Xu and Mao, 2017) is a deep se- 353

mantic network, which explicitly identifiers object 354

and scene as semantic features of images with at- 355

tention mechanism for multimodal sentimenti anal- 356

ysis. 357

Co-Memory (Xu et al., 2018) represents a co- 358

memory network that employs an iterative ap- 359

proach to effectively model the interactions be- 360

tween multiple modalities. 361

MVAN (Yang et al., 2020) integrates Co-Memory 362

and MultiSentiNet to enhance the modeling of cor- 363

respondence between two modalities by learning 364

scene-guided and object-guided text features as 365

well as text-guided scene/object features. 366

MGNNS (Yang et al., 2021) introduces a multi- 367

channel graph neural network that captures object, 368

scene, and text representations by leveraging the 369

global characteristics of the entire dataset. 370
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Model MVSA-Single MVSA-Multiple TumEmo Model HFM
Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

MultiSentiNet 0.6984 0.6963 0.6886 0.6811 0.6418 0.5692 - - -
HSAN 0.6988 0.6690 0.6796 0.6776 0.6309 0.5398 Concat(2) 0.8103 0.7799

Co-Memory 0.7051 0.7001 0.6892 0.6883 0.6426 0.5909 Concat(3) 0.8174 0.7874
MVAN 0.7298 0.7139 0.7183 0.7038 0.6553 0.6543 MMSD 0.8344 0.8018

MGNNS 0.7377 0.7270 0.7249 0.6934 0.6672 0.6669 D&R Net 0.8402 0.8060
CLMLF 0.7533 0.7346 0.7200 0.6983 - - CLMLF 0.8543 0.8487
INFIG 0.7641 0.7487 0.7169 0.6972 0.6781 0.6749 INFIG 0.8814 0.8780

Table 2: Experimental results of different models on MVSA-Single, MVSA-Multiple, TumEmo and HFM datasets

CLMLF (Li et al., 2022) designs a label based con-371

trastive learning and data based contrastive learning372

framework and fusion module to help the model373

learn general representations of image-text pairs.374

(Schifanella et al., 2016) combines different fea-375

tures from multiple modalities to obtain multi-376

modal representations. Concat(2) denotes the con-377

catenation of textual features and image features,378

while Concat(3) includes an additional set of image379

attribute features.380

MMSD (Cai et al., 2019) integrates text, visual and381

image attribute information using a hierarchical382

multimodal fusion model.383

D&R Net (Li et al., 2022) constructs the Decom-384

position and Relation Network to fuse text, image385

and image attributes.386

4.4 Results387

Table 2 shows the quantitative comparison of our388

INFIG model with the baseline methods. We389

employ Weighted-F1 and ACC as the evaluation390

metrics for MVSA-Single, MVSA-Multiple and391

TumEmo, while Macro-F1 and ACC are used as392

the evaluation metrics for HFM. Compared to the393

previous SOTA, INFIG improves ACC of MVSA-394

Single, ACC of TumEmo, and ACC of HFM by395

1.08%, 1.09%, and 2.71% respectively, and im-396

porve F1 of MVSA-Single, F1 of TumEmo, and397

F1 of HFM by 1.41%, 0.8%, and 2.93% respec-398

tively. Due to the diverse types of multimodal in-399

formation shared by users on social media, some400

instances contain consistent emotional information,401

while others are sparse and noisy. Our model still402

achieved the state-of-the-art performance in most403

cases. The experimental results presented above404

demonstrate that the proposed method of hierar-405

chical fine-grained and global alignment can effec-406

tively leverage the implicit visual-textual informa-407

tion provided by CLIP to enhances the alignment of408

matched image-text pairs and explores deeper-level409

information within weakly correlated text-image 410

pairs to learn the common features related to senti- 411

ment. 412

4.5 Ablation Study 413

We conducted a series of ablation studies on 414

MVSA-Single, MVSA-Multiple, TumEmo and 415

HFM datasets to evaluate the influence of Global 416

Alignment Module(GAM), Hierarchical Fine- 417

Grained Alignment Module(HFAM) and CLIP. The 418

results are shown in 3. We can observe that remov- 419

ing the CLIP results in a decrease in both accuracy 420

and F1 score, indicating the effectiveness of the 421

implicit prior visual-textual information provided 422

by the CLIP model. Additionally, we find that in 423

certain cases, removing GAM results in a bigger 424

performance degradation, while in other cases, re- 425

moving HFAM has a more significant impact on 426

performance decline. This indicates that GAM and 427

HFAM exhibit varying degrees of importance in 428

different situations. Moreover, the largest perfor- 429

mance drop happens when GAM and HFAM are 430

removed. It shows that the combination of GAM 431

and HFAM produces better results than the individ- 432

ual utilization of either. 433

4.6 Influence of the GAM at Which Layer 434

We explore the optimal layer for applying the GAM. 435

As shown in Figure 3, we fix HFAM in last three 436

layers and conduct experiments using the last layer 437

to the fourth-last layer of both the text encoder and 438

the image encoder. We observe that when applying 439

the GAM before the HFAM, specifically in the 440

fourth-last layer, the performance is the poorest. 441

The best performance is achieved when applying 442

the GAM in the last layer. We attribute this to the 443

possibility of the HFAM module disregarding the 444

globaly information obtained by the GAM when 445

placed before it. In contrast, by plcaing the GAM in 446

the last layer, both the HFAM and GAM can jointly 447
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Model MVSA-Single MVSA-Multiple TumEmo HFM
Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

INFIG 0.7641 0.7487 0.7169 0.6972 0.6781 0.6749 0.8814 0.8780
- w/o CLIP 0.7608 0.7423 0.7144 0.6946 0.6752 0.6698 0.8795 0.8729
- w/o GAM 0.7485 0.7336 0.7098 0.6813 0.6661 0.6630 0.8742 0.8699
- w/o HFAM 0.7433 0.7233 0.7051 0.6802 0.6679 0.6635 0.8760 0.8709

- w/o GAM, HFAM 0.7274 0.7193 0.6997 0.6738 0.6588 0.6561 0.8647 0.8600

Table 3: Ablation study of INFIG on MVSA-Single, MVSA-Multiple, TumEmo and HFM datasets

learn the global and fine-grained information of the448

multimodal features.

1 2 3 4

0.675

0.700
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0.775
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MVSA-Single
MVSA-Multiple
TumEmo
HFM

Figure 3: The solid line represents accuracy, the dashed
line represents F1 score, and the x-axis indicates the
layer at which the GAM module is applied from the last
layer.

449

4.7 Visualization450

To verify the effectiveness of GAM and HFAM, we451

visualize the attention weight of the Transformer-452

Encoder in the last layer of the fusion layers. Their453

visualization is shown in Figure 4. We can observe454

that the model can identify semantically related455

target on the image, even capturing target with456

deeper-level semantics, for a given keywords. This457

finding suggests that the model is capable of fine-458

grained alignment between the word in the text and459

the corresponding patch region in the image, as460

well as learning global information, which plays461

an important role in model for merging textual and462

visual features. For example, in Figure 4b, the463

model can effectively associate the word "flowers"464

with the target from the image. Furthermore, even465

though Figure 4a does not depict an actual boom,466

the model still manages to establish a correspon-467

dence between the aftermath of an explosion and468

the word "boom". 469

(a) I was here when this bar-
rel boom hit Shaar market.
It could’ve been me, turned
into another victim of #As-
sadHolocaust http

(b) Today is #Valentines-
Day! Share flowers with
that special someone!

(c) houseguest coming to
stay so I thought I’d tidy.
It’s turned into a mass sort-
ing session.

(d) Author @CarolynjMor-
ris reads to an enthusias-
tic audience #BigHeartDays
@CreemoreOntario

Figure 4: Attention visualization of fine-grained and
global alignment on multimodal datasets

5 Conclusion 470

We propose a simple and effective method for in- 471

tegrating hierarchical fine-grained and global in- 472

formation. Through visualization, the proposed 473

method can be verified with intuitive interpreta- 474

tions. We also explore the optimal fusion strategy 475

to achieve the best results and leverage the prior 476

knowledge provided by CLIP to facilitate the learn- 477

ing of global information and intricate details of 478

the visual-textual representations. Therefore, the 479

model can capture the underlying sentiment ex- 480

pressions in the visual and textual content more 481

accurately. We have achieved competitive perfor- 482

mance compared to strong baseline models on pub- 483

lic datasets. 484
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Limitations485

In this paper, we have only focused on alignment486

operations prior to the fusion layers. However, in487

the future, we plan to explore the utilization of488

more advanced techniques within the fusion layers489

to facilitate the learning of more correlated senti-490

ment information across modalities. Additionally,491

we consider to incorporate the acoustic modality to492

enhance the model’s capacity in acquiring richer493

sentiment features.494

Ethics Statement495

In this study, datasets are all open-source data496

for research purpose. Multimodal sentiment anal-497

ysis has extensive applications in various do-498

mains, including social media analysis and intel-499

ligent robotics, and so on. However, achieving500

only 67.81% accuracy on a simple 7-class dataset501

TumEmo may not raise ethical or moral concerns502

in the real world. In practical applications, we will503

continue to monitor any potential ethical or moral504

issues.505
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