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Abstract

Multimodal sentiment analysis aims to uti-
lize the combined information from different
modalities to gain a comprehensive understand-
ing of human sentiment expressions. Previous
research works have mostly focused on simple
fusion of fine-grained features from text and im-
ages, neglecting the relationship between fine-
grained features and high-level semantic global
representations. In this paper, we propose a
framework, dubbed INFIG, that integrates hier-
archical fine-grained and global information to
accurately capture sentiment expressions. We
also leverage existing foundational models like
CLIP to enhance the connection between simi-
lar image-text pairs and extract the latent high-
level semantic information contained within
weakly correlated image-text pairs. Extensive
experiments on four publicly available mul-
timodal datasets demonstrate the superiority
and effectiveness of our proposed approach.
The visualization further confirms the success
of our model in integrating both fine-grained
and global information, leading to better inter-
pretability.

1 Introduction

Given the rising popularity of multimedia platforms
and the advancement of information technology,
there has been a significant surge in data that en-
compasses multiple modalities such as text, images,
and video. Multimodal Sentiment Analysis (MSA)
has gained considerable attention as a research area
(Kaur and Kautish, 2022; Zhang et al., 2018; Yue
et al., 2019). It plays a crucial role in domains like
understanding human behavior, providing person-
alized services, and analyzing social media.

When dealing with multimodal data, the strong
correlation between text and image can assist the
model in effectively gauging the genuine sentiment
behind the multimodal information, otherwise the
opposite. In most cases, the weakly correlated
modalities may contain more interference informa-
tion. Such as Figure 1a, the girl’s smile conveys

(a) Nothing beats the joy of
waking up to a winter won-

derland! #SnowyMornings
#WinterBliss
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(c) Happy spring! loving all
the blossoming flowers hap-
pening here! so beautiful!

(b) At the scene of a fatal
collision on paramount near
Upper Mount Albion Rd.
@CHCHNews #hamont

(d) So sad. 14th minute ap-
plause to commemorate a
life gone far too soon

Figure 1: Examples of multimodal sentiment tweets

pure joy in the snowy weather. Conversely, when
analyzing Figure 1d with the accompanying text,
it becomes evident that despite the girl’s smile,
the overall sentiment conveyed is one of sorrow
and longing. If multiple modalities share simi-
lar emotional characteristics, there is an increased
likelihood of making precise judgments regarding
the polarity of the ultimate unified sentiment (Xu,
2017). However, if multiple modalities have differ-
ent emotional characteristics, more complex judg-
ment analysis will be required.

Some models (Xu, 2017; Kumar and Vepa, 2020)
adopt a framework that involves training two en-
coders to extract visual and textual information.
In this framework, the visual encoder typically re-
lies on CNN architecture, while the text encoder
is based on either RNN or Transformer models.
Next, a fusion module is used to concatenate dif-
ferent modal features. (Xu and Mao, 2017) intro-



duces an LSTM model guided by visual features,
to extract crucial words that determine the senti-
ment of the entire tweet and combined the rep-
resentation of these words with visual semantic
features, objects, and scenes. (Yang et al., 2020)
proposes to use memory networks to realize the in-
teraction between modalities. Some works develop
a framework for multimodal multi-task learning
based on late-fusion methods (Yu et al., 2020), or
a network fusion model with residual connections
based on late fusion (Ding et al., 2022). Despite the
relative superiority of the above-mentioned mod-
els over unimodal models, the inputs with varying
modalities are embedded in separate vector spaces.
Hence, employing a simplistic concatenation ap-
proach without any pre-alignment operations to
fuse the features of textual and visual data exhibits
inferior performance.

Several early works have explored the imple-
mentation of contrastive learning techniques in the
multimodal field. Such as CLIP (Radford et al.,
2021) is trained using a contrastive loss on on a
global similarity between its output embeddings.
(Yuan et al., 2021) applies contrastive learning to
learn visual representations in a unified multimodal
training framework. In recent works, (Hu et al.,
2022) fuses multimodal representation from multi-
level textual information by injecting acoustic and
visual signals into the T5 (Raffel et al., 2020) and
acquires different multimodal representations by
employing contrastive learning across modalities.
(Gu et al., 2022) excels in leveraging fine-grained
information between image encoder and text en-
coder. However, these works ignore the interplay
between the interaction of fine-grained features and
global features.

In this paper, we focus on visual-textual sen-
timent analysis in social media data and present
an INtegrating FIne-grained and Global informa-
tion(INFIG) method based on contrastive learning,
which will help the model learn relevant or more
profound levels of sentiment information within
the textual and visual content.

Our contributions are summarized as follows:

1. We propose global alignment module and
hierarchical fine-grained alignment module
for mining more detailed semantic alignment.
Furthermore, we investigate the optimal com-
bination of these two modules, aiming to max-
imize their potential.

2. We use the pre-trained CLIP model to acquire

implicit prior knowledge embedded within the
visual and textual modalities, assisting global
alignment module in capturing more precise
multimodal features, thereby enhancing the
model’s capability to capture sentiment.

3. Our whole framework achieves better results
than the state-of-the-art methods on most ex-
isting datasets, demonstrating its effectiveness
and superiority.

2 Related Work

Multimodal Sentiment Analysis The objective
of multimodal sentiment analysis is to extract emo-
tions, interpretations, and sentiments by analyzing
various modalities such as language, facial expres-
sions, speech. (You et al., 2016) proposes a cross-
modality consistent regression model to force the
representations extracted from text and image to be
consistent. (Zadeh et al., 2017) proposes a tensor
fusion network that generates a novel tensor repre-
sentation by performing the outer product operation
on unimodal representations. (Zadeh et al., 2018)
designs a memory fusion network for cross-view in-
teractions. (Yu et al., 2021; Mai et al., 2020) focus
on modal consistency and difference through multi-
task joint learning and translating from one modal-
ity to another. (Ling et al., 2022) utilizes a combi-
nation of diverse pre-training tasks, such as masked
language/region modeling and textual/visual opin-
ion generation, to enhance the extraction of fine-
grained aspect-based sentiment and the alignment
across modalities. (Yang et al., 2021) applies a
multi-channel graph neural network that is built
based on the overall characteristics of the dataset.
It incorporates a sentiment-awareness mechanism
to perform multimodal sentiment analysis. (Zhu
et al., 2022) proposes an innovative image-text
interaction network that analyzes sentiments ex-
pressed in social media posts by leveraging the
interaction between images and texts. (Liu et al.,
2022) employs a hybrid curriculum learning ap-
proach to address the problem of semantic incon-
sistency between modalities. (Li et al., 2022) uti-
lizes sentiment-label-based and data-augmentation-
based contrastive learning to help the model cap-
ture the sentiment-related features in multimodal
data.

Global and Fine-Grained Contrastive Learning
Contrastive learning has gained major advances by
viewing sample from multiple view, especially in
representation learning. Its principle is quite clear,
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Figure 2: The overview of INFIG.

following the idea that an anchor and its positive
sample should be pulled closer, while the anchor
and negative samples should be pushed apart in
feature space (Hadsell et al., 2006). (Gao et al.,
2021; Yan et al., 2021) and (He et al., 2020; Chen
et al., 2020; Chen and He, 2021) utilize global
contrastive learning approach in the respective do-
mains of natural language processing and computer
vision. (Jia et al., 2021; Dou et al., 2022) encode
visual and textual queries to global features and
accordingly map them into a common latent space
to compute the cosine similarity between two em-
bedding vectors. Some efforts have been made to
learn fine-grained cross-modal interaction between
two modalities by leveraging token-wise or region-
word similarities in the contrastive loss. (Lee et al.,
2018) pays attention to fine-grained alignments by
selectively attending to significant words or im-
age regions. (Messina et al., 2021) detects and
encodes image regions at the object level and sums
the maximum of the region-word similarity scores
with respect to each word or region. (Yao et al.,
2021) aggregates the maximum token-wise similar-
ity scores according to every single feature. Some
works develop the reconstruction loss (Hazarika
et al., 2020), or hierarchical mutual information
maximization (Han et al., 2021) to achieve better
modality fusion. Compared with the above works,

we focus on the relationship between fine-grained
features and global features, with the objective of
effectively integrating them.

3 Method

3.1 Overall Framework

As shown in Figure 2, INFIG contains 5 compo-
nents: an image encoder, a text encoder, a global
alignment module, a hierarchical fine-grained align-
ment module and fusion layers.

We use ResNet (He et al.,, 2016) and N;
transformer layers as the image encoder to map
the image into M+1 viusal token embeddings
{i1, .., in,;, c1s } Where i, is the embedding of the
visual [CLS] token. We use debertav3 (He et al.,
2021) based on N, transformer layers as the text
encoder to obtain the textual token representations
{t1, ..., tn,, tes} where t. is the representation of
the textual [CLS] token.

3.2 Global Alignment Module

Global Alignment Module aims to learn better rep-
resentations at a global level before fusion. When
the text and image are weakly correlated, mean-
ing that the text may contain words unrelated to
the image, it poses challenges to the fine-grained
alignment learning in the model. In such cases, it



becomes crucial to enable the model to learn the
deeper overall sentiment expressed by the image-
text pair. We propose utilizing CLIP to provide
a global prior information. Let 4., and ?.;, de-
note the representations of the image and text, re-
spectively, obtained through linear projection after
applying the CLIP model. Inspired by (He et al.,
2020), we maintain two queues to store the most
recent M image-text representations from the mo-
mentum unimodal encoders and adopt the follow-
ing two InfoNCE (Oord et al., 2018) loss functions
for global alignment module:

exp( (ig; tg)/T)
1 €xp(0(ig, tm) /)

exp(o(ly,ig)/T)
Z%:l exp(o(ty,im)/T)

where 7 is a temperature factor, which is initialized
as 0.07. We define iy = concat(ics,icip), tg =
concat(t s, teiip). Function o computes the cosine
similarity between two vectors. ¢,, and t,, are
from momentum queues. The total loss of global
alignment module is:

Lio; = —log
()

Lip; = —log

1
L, = i(LtZz' + Liot) @)

3.3 Hierarchical Fine-Grained Alignment
Module

The role of Hierarchical Fine-Grained Alignment
Module is to find the most similarity textual token
for each image patch, and similarly, for each textual
token, to find its closest image patch. This enables
the model to learn how the image and the text in-
teract and influence each other, thereby enhancing
its ability to accurately comprehend sentiment in-
formation. It takes I = {4y, 2, ..., ip, }, 1 € R™*4
and T = {t1,t2,...,tn, }, T € R™*%asinputs. For
the k-th visual token i, we calculate its similarities
with textual tokens and select the top j maximum
similarity scores. Similarly, for textual tokens, we
compute their similarity with visual tokens."

,,Z_ZL‘Qt = Sum{topj(a(ik, tl), ceny U(ik, tnt))} (3)
Ttgi = Sum{topj(a(tk, il), ceny O'(tk, an>)}
In (3), we only consider the similarities between
visual tokens and non-padding textual tokens. The
similarities of p-th image to g-th text and the g-th

text to the p-th image can be formulated as:
1
Sp2q = E TléQt
I et

1 “4)
Sq2p = e Z Tio;

and the fine-grained alignment loss of one layer
can be expressed as follows:

> b1 €Xp(Sp2g, /T)
exp(Sq2p/T) )
LT = — log =P

B
> b1 €XP(Sqap, /T)
where B is the batch size. g, and py, are the rest of
images and texts in batch excluding g and p. The
total loss of fine-grained alignment module is:

L M

= L L 6

Wi (Lt + Ly) (6)

m=1

Ly

where m represents the layer m from the end. Our
method is based on the recent FLIP approach,
but instead of performing fine-grained alignment
only at the last layer, we propose hierarchical fine-
grained alignment at the last M layers of both text
and image encoders,enabling the model to align
deeper levels of information. And we select the
top j similarity scores among tokens, rather than
just the maximum, to enhance the robustness and
generalization of model.

3.4 Fusion Layers

We use Transformer-Encoder as text-image fusion
layers to fuse multimodal features. It is as follows:

F = TE(i1, eving, 1y oo tny)
F= {f17f27 fda fnr‘r—nt}

where TE is the transformer-encoder. We obtain
the sequence features F, but they cannot be directly
used for the sentiment classification task. So we
acquire the multimodal representation through the
utilization of a straightforward attention layer.

(N

G = Attention(F')

3
G = {gla g2, 93--- gni+nt}
~ ng+n;
K = Z gifi ©)
=1
K = GELU(KWg + b) (10)



where G is the sequence of attention scores. GLUE
is the activation function. K € R? is the muti-
modal representation. Finally we use the cross-
entropy loss as the sentiment classification loss:

Ls. = Cross — Entropy(GELU (KW + b))
a1

3.5 Model Training

The fine-grained alignment loss and global align-
ment loss can be incorporated into the total loss
as regularization components.The total loss can be
written as:
where )\, and A are coefficients to balance the
different training loss.

4 Experiments

4.1 Datasets

We conduct experiments on four publicly available
visual-textual datasets which are MVSA-Single,
MVSA-Multiple (Niu et al., 2016), HFM (Cai et al.,
2019) and TumEmo (Yang et al., 2020). The de-
tailed statistics of four datasets are shown in Table
1.

MYVSA-Single and MVSA-Multiple are collected
from Twitter posts. The former contains 4511 text-
image pairs. Each pair is shown to a single annota-
tor, who assigns one of three sentiments (positive,
negative and neutral) to the text and image respec-
tively. The latter contains 17024 image-text pairs,
and each sample is labeled by three annotators. We
use majority voting to obtain the single modality
sentiment label. For a fair comparison, we process
this two datasets in the same way uesd in (Li et al.,
2022).

TumEmo is a large multimodal weak-supervision
emotion dataset collected from Tumblr. Each text-
image is categorized into one of seven sentiment
classes (i.e., angry, bored, calm, fearful, happy,
loving, and sad). We follow the same split of (Yang
etal., 2021).

HFM is also collected from Twitter posts, which
is contains 24635 image-text pairs. It is a binary
sentiment dataset comprising positive and negative
sentiments. We adopt the same data preprocessing
method in (Cai et al., 2019).

4.2 Experimental Settings

We use debertav3-base as text encoder and ResNet-
50, along with a 6-layer Transformer, as the im-
age encoder. The number of the fusion layers is
3 for MVSA-Single, MVSA-Multiple, TumEmo
and 4 for HFM. To save memory and scale up the
batch size, automatic mixed-precision (Micikevi-
cius et al., 2017) is used. The batch size is set to
64 for MVSA-Single, MVSA-Multiple, TumEmo
and 128 for HFM. We use Adam optimizer. We
set j is 2 for MVSA-Single, MVSA-Multiple and 3
for TumEmo and HFM. The learning rate is 2e-5.
Apand A4 are 0.2 and 0.3 respectively. The hierar-
chical fine-grained alignment module performs the
last 3 Transformer layers of image encoder and text
encoder, while the global contrastive is applied to
the last layer. For more discussion on which layer
global alignment module applies to, please refer to
Section 4.6. All the experiments are done on four
NVIDIA 4090 GPUS.

Train Valid Test All
MVSA-S 3611 450 450 4511
MVSA-M 13624 1700 1700 17024
HFM 19816 2410 2409 24635
TumEmo 156,204 19,525 19,536 195,265

Table 1: The detailed data splitting of MVSA-S, MVSA-
M, TumEmo and HFM.

4.3 Baselines

We compare the proposed method with the follow-
ing baselines:

MultiSentiNet (Xu and Mao, 2017) is a deep se-
mantic network, which explicitly identifiers object
and scene as semantic features of images with at-
tention mechanism for multimodal sentimenti anal-
ysis.

Co-Memory (Xu et al., 2018) represents a co-
memory network that employs an iterative ap-
proach to effectively model the interactions be-
tween multiple modalities.

MVAN (Yang et al., 2020) integrates Co-Memory
and MultiSentiNet to enhance the modeling of cor-
respondence between two modalities by learning
scene-guided and object-guided text features as
well as text-guided scene/object features.
MGNNS (Yang et al., 2021) introduces a multi-
channel graph neural network that captures object,
scene, and text representations by leveraging the
global characteristics of the entire dataset.



MVSA-Single | MVSA-Multiple TumEmo HFM

Model Acct  F1+ | Acet  FIt | Acet F1t | Mo | e Fnt
MultiSentiNet | 0.6984 0.6963 | 0.6886 0.6811 | 0.6418 0.5692 _ ; _
HSAN 0.6988 0.6690 | 0.6796 0.6776 | 0.6309 0.5398 | Concat(2) | 0.8103 0.7799
Co-Memory | 0.7051 0.7001 | 0.6892 0.6883 | 0.6426 0.5909 | Concat(3) | 0.8174 0.7874
MVAN | 0.7298 0.7139 | 0.7183 0.7038 | 0.6553 0.6543 | MMSD | 0.8344 0.8018
MGNNS | 07377 07270 | 07249  0.6934 | 0.6672 0.6669 | D&R Net | 0.8402  0.8060
CLMLF | 07533 0.7346 | 0.7200 0.6983 | - - CLMLF | 0.8543 (0.8487
INFIG 0.7641 0.7487 | 0.7169 0.6972 | 0.6781 0.6749 | INFIG | 0.8814 0.8780

Table 2: Experimental results of different models on MVSA-Single, MVSA-Multiple, TumEmo and HFM datasets

CLMLF (Lietal., 2022) designs a label based con-
trastive learning and data based contrastive learning
framework and fusion module to help the model
learn general representations of image-text pairs.
(Schifanella et al., 2016) combines different fea-
tures from multiple modalities to obtain multi-
modal representations. Concat(2) denotes the con-
catenation of textual features and image features,
while Concat(3) includes an additional set of image
attribute features.

MMSD (Cai et al., 2019) integrates text, visual and
image attribute information using a hierarchical
multimodal fusion model.

D&R Net (Li et al., 2022) constructs the Decom-
position and Relation Network to fuse text, image
and image attributes.

4.4 Results

Table 2 shows the quantitative comparison of our
INFIG model with the baseline methods. We
employ Weighted-F1 and ACC as the evaluation
metrics for MVSA-Single, MVSA-Multiple and
TumEmo, while Macro-F1 and ACC are used as
the evaluation metrics for HFM. Compared to the
previous SOTA, INFIG improves ACC of MVSA-
Single, ACC of TumEmo, and ACC of HFM by
1.08%, 1.09%, and 2.71% respectively, and im-
porve F1 of MVSA-Single, F1 of TumEmo, and
F1 of HFM by 1.41%, 0.8%, and 2.93% respec-
tively. Due to the diverse types of multimodal in-
formation shared by users on social media, some
instances contain consistent emotional information,
while others are sparse and noisy. Our model still
achieved the state-of-the-art performance in most
cases. The experimental results presented above
demonstrate that the proposed method of hierar-
chical fine-grained and global alignment can effec-
tively leverage the implicit visual-textual informa-
tion provided by CLIP to enhances the alignment of
matched image-text pairs and explores deeper-level

information within weakly correlated text-image
pairs to learn the common features related to senti-
ment.

4.5 Ablation Study

We conducted a series of ablation studies on
MVSA-Single, MVSA-Multiple, TumEmo and
HFM datasets to evaluate the influence of Global
Alignment Module(GAM), Hierarchical Fine-
Grained Alignment Module(HFAM) and CLIP. The
results are shown in 3. We can observe that remov-
ing the CLIP results in a decrease in both accuracy
and F1 score, indicating the effectiveness of the
implicit prior visual-textual information provided
by the CLIP model. Additionally, we find that in
certain cases, removing GAM results in a bigger
performance degradation, while in other cases, re-
moving HFAM has a more significant impact on
performance decline. This indicates that GAM and
HFAM exhibit varying degrees of importance in
different situations. Moreover, the largest perfor-
mance drop happens when GAM and HFAM are
removed. It shows that the combination of GAM
and HFAM produces better results than the individ-
ual utilization of either.

4.6 Influence of the GAM at Which Layer

We explore the optimal layer for applying the GAM.
As shown in Figure 3, we fix HFAM in last three
layers and conduct experiments using the last layer
to the fourth-last layer of both the text encoder and
the image encoder. We observe that when applying
the GAM before the HFAM, specifically in the
fourth-last layer, the performance is the poorest.
The best performance is achieved when applying
the GAM in the last layer. We attribute this to the
possibility of the HFAM module disregarding the
globaly information obtained by the GAM when
placed before it. In contrast, by plcaing the GAM in
the last layer, both the HFAM and GAM can jointly



Model MVSA-Single | MVSA-Multiple TumEmo HFM
Acct F11 Acc?t F11 Acct F11 Acct F11
INFIG 0.7641 0.7487 | 0.7169 0.6972 | 0.6781 0.6749 | 0.8814 0.8780
- w/o CLIP 0.7608 0.7423 | 0.7144 0.6946 | 0.6752 0.6698 | 0.8795 0.8729
- w/o GAM 0.7485 0.7336 | 0.7098 0.6813 | 0.6661 0.6630 | 0.8742 0.8699
- w/o HFAM 0.7433 0.7233 | 0.7051 0.6802 | 0.6679 0.6635 | 0.8760 0.8709
- w/o GAM, HFAM | 0.7274 0.7193 | 0.6997 0.6738 | 0.6588 0.6561 | 0.8647 0.8600

Table 3: Ablation study of INFIG on MVSA-Single, MVSA-Multiple, TumEmo and HFM datasets

learn the global and fine-grained information of the
multimodal features.
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Figure 3: The solid line represents accuracy, the dashed
line represents F1 score, and the x-axis indicates the
layer at which the GAM module is applied from the last
layer.

4.7 Visualization

To verify the effectiveness of GAM and HFAM, we
visualize the attention weight of the Transformer-
Encoder in the last layer of the fusion layers. Their
visualization is shown in Figure 4. We can observe
that the model can identify semantically related
target on the image, even capturing target with
deeper-level semantics, for a given keywords. This
finding suggests that the model is capable of fine-
grained alignment between the word in the text and
the corresponding patch region in the image, as
well as learning global information, which plays
an important role in model for merging textual and
visual features. For example, in Figure 4b, the
model can effectively associate the word "flowers"
with the target from the image. Furthermore, even
though Figure 4a does not depict an actual boom,
the model still manages to establish a correspon-
dence between the aftermath of an explosion and

the word "boom".

(b) Today is #Valentines-
Day! Share flowers with
that special someone!

(a) I was here when this bar-
rel boom hit Shaar market.
It could’ve been me, turned
into another victim of #As-
sadHolocaust http

(d) Author @CarolynjMor-
ris reads to an enthusias-
tic audience #BigHeartDays
@CreemoreOntario

(c) houseguest coming to
stay so I thought I'd tidy.
It’s turned into a mass sort-
ing session.

Figure 4: Attention visualization of fine-grained and
global alignment on multimodal datasets

5 Conclusion

We propose a simple and effective method for in-
tegrating hierarchical fine-grained and global in-
formation. Through visualization, the proposed
method can be verified with intuitive interpreta-
tions. We also explore the optimal fusion strategy
to achieve the best results and leverage the prior
knowledge provided by CLIP to facilitate the learn-
ing of global information and intricate details of
the visual-textual representations. Therefore, the
model can capture the underlying sentiment ex-
pressions in the visual and textual content more
accurately. We have achieved competitive perfor-
mance compared to strong baseline models on pub-
lic datasets.



Limitations

In this paper, we have only focused on alignment
operations prior to the fusion layers. However, in
the future, we plan to explore the utilization of
more advanced techniques within the fusion layers
to facilitate the learning of more correlated senti-
ment information across modalities. Additionally,
we consider to incorporate the acoustic modality to
enhance the model’s capacity in acquiring richer
sentiment features.

Ethics Statement

In this study, datasets are all open-source data
for research purpose. Multimodal sentiment anal-
ysis has extensive applications in various do-
mains, including social media analysis and intel-
ligent robotics, and so on. However, achieving
only 67.81% accuracy on a simple 7-class dataset
TumEmo may not raise ethical or moral concerns
in the real world. In practical applications, we will
continue to monitor any potential ethical or moral
issues.
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