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Abstract

Simulating in silico cellular responses to inter-
ventions is a promising direction to accelerate
high-content image-based assays, critical for ad-
vancing drug discovery and gene editing. To
support this, we introduce MorphGen, a state-
of-the-art diffusion-based generative model for
fluorescent microscopy that enables controllable
generation across multiple cell types and pertur-
bations. To capture biologically meaningful pat-
terns consistent with known cellular morpholo-
gies, MorphGen is trained with an alignment loss
to match its representations to the phenotypic em-
beddings of OpenPhenom, a biological founda-
tion model. Unlike prior approaches that com-
press multichannel stains into RGB images –thus
sacrificing organelle-specific detail– MorphGen
generates the complete set of fluorescent channels
jointly, preserving per-organelle structures. De-
spite modeling four cell types and generating the
complete set of fluorescent channels, MorphGen
achieves an FID score over 35% lower than the
prior state-of-the-art MorphoDiff, which only gen-
erates RGB images for a single cell type.

1. Introduction
Deep generative models are emerging tools for simulating
cellular behavior in computational biology, with early
works in modeling gene expression profiles (Bereket
& Karaletsos, 2024) and more recently synthesizing
microscopy images (Navidi et al., 2025; Palma et al., 2025),
which can be easily collected at scale. These models offer
the potential to create in silico surrogates of biological
experiments. This is a critical step in the vision of Virtual
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Cells (Bunne et al., 2024): a generative instrument capable
of populating diverse cellular contexts and emulating the
effects of genetic or chemical interventions. Realizing such
a system could accelerate biological discovery by producing
high-quality hypotheses without the time and cost con-
straints of exhaustive wet-lab experiments. As a practical
step toward this vision, we focus on phenotypic image
generation under experimentally defined perturbations.

However, current image generators fall short of these goals:
(i) they operate at low resolution and rely on outdated archi-
tectures (Palma et al., 2025); (ii) they collapse six-channel
fluorescence stacks into lossy RGB; and (iii) they are
restricted to a single cell type and modest-sized datasets (Na-
vidi et al., 2025). As a result, they miss out on both fine-
grained morphological analysis and realism. Instead, we
posit that a generative model should maintain local biologi-
cal information, at the individual fluorescence level. Further,
restricting generation to a single cell type limits the model’s
generality, posing limitations toward applications. For a
more detailed related work, please refer to Appendix A.

We present MorphGen, a generative model that ad-
dresses these gaps and supports generation across many
perturbations and four cell lines. Its contributions are:

• Organelle-level generation. MorphGen synthesizes na-
tive fluorescence channels directly, avoiding RGB conver-
sion and preserving subcellular detail.

• Controllable synthesis. A structured latent space disen-
tangles perturbation and cell-type factors, enabling com-
positional and targeted generation.

• Scalable training. MorphGen is trained at full resolution
on the RxRx1 dataset (Sypetkowski et al., 2023), covering
four cell types and 125K images at 512× 512.

• Biological fidelity. An alignment loss guided by Open-
Phenom (Kraus et al., 2024) embeddings ensures bio-
logically meaningful features, supported by downstream
validation using CATEs.

Figure 1 illustrates the visual fidelity of our model across
four representative cell-type/perturbation pairs. To the best
of our knowledge, MorphGen is the first generator that
delivers high-resolution, organelle-aware, and biologically
faithful Cell Painting images at scale.
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Figure 1: Original (top row) and generated (bottom row) images for various cell-type/perturbation pairs from the RxRx1
dataset. MorphGen generates high fidelity images across different cell-types and perturbations.

2. MorphGen
MorphGen is a generative model for synthesizing high-
resolution, biologically meaningful cell images across
diverse perturbations and cell types. It combines a
pretrained VAE with a latent diffusion model tailored for
multi-channel Cell Painting data. To address challenges of
high-dimensional latents (e.g., from channel concatenations)
and enhance biological fidelity, we use a REPA-inspired (Yu
et al., 2025) alignment loss and train the diffusion model
using features from a biological foundation model.

We consider a conditional latent diffusion setting for
high-resolution, multi-channel fluorescence microscopy
images. Let X ⊂ R6×H×W denote the image space of
six-channel Cell Painting images.

Organelle-aware processing. Since the pretrained VAE
encoder is designed for three-channel RGB images, we
adapt each grayscale input channel by stacking it three times
along the channel dimension. Let x(c) ∈ R1×H×W be the
c-th channel of an image x ∈ X . We define its RGB-
stacked version as x̃(c) ∈ R3×H×W . This design allows us
to encode organelle-specific fluorescence channels indepen-
dently, preserving its biological specificity.

Each stacked channel x̃(c) is passed through a frozen pre-
trained VAE encoder EVAE to obtain a compressed latent
representation: z(c) = EVAE(x̃

(c)) ∈ R4×H′×W ′
, where

H ′ and W ′ denote the spatial resolution of the VAE latent
space. We then concatenate the six channel-wise latents
along the channel dimension to form the full latent repre-
sentation: z = concat(z(1), . . . , z(6)) ∈ R24×H′×W ′

.

Joint diffusion process. The concatenated latent z serves
as the input to a latent diffusion model parameterized by a
Scalable Interpolant Transformer (SiT) (Ma et al., 2024).

Conditioning is achieved through the combination of pertur-
bation, cell type, and diffusion timestep embeddings. Let
p ∈ P and ct ∈ CT denote the perturbation and cell type
labels, respectively, which are mapped to learnable embed-
dings ep, ect ∈ Rd. With the timestep embedding et, the
conditioning vector c = ep + ect + et is used as the cross-
attention context in SiT.

Following Karras et al. (2022a), the forward diffusion pro-
cess generates noisy latent samples by interpolating clean
latents z0 with Gaussian noise. At a random timestep t ∈
[0, T ], this interpolation is given by zt = αtz0+σtϵ, ϵ ∼
N (0, I), where αt and σt are deterministic scaling factors
with boundary conditions α0 = σT = 1 and αT = σ0 = 0.
The diffusion model predicts the velocity vt of the trajectory,
defined as the time derivative of the latent:

vt =
dzt
dt

= α̇tz0 + σ̇tϵ.

Given the noisy latent zt and conditioning vector c, the
Scalable Interpolant Transformer (SiT) fθ estimates this
velocity: v̂t = fθ(zt, c), and is trained via mean squared
error against the ground-truth velocity:

Ldiff = Ez0,t,ϵ

[
∥fθ(zt, c)− (α̇tz0 + σ̇tϵ)∥22

]
.

Incorporating biological representations. To improve the
biological fidelity, we use REPA with OpenPhenom (Kraus
et al., 2024) features during training. The alignment loss
guides the model toward biologically meaningful represen-
tations and therefore, improve the image quality. Given a
clean image x, we extract reference patch-level embeddings:
y⋆ = F (x) ∈ RN×d′

, where N is the number of patches
and d′ is the embedding dimension. Let h(k)

t ∈ RN×d

denote the representations at layer k of the SiT at timestep t.
This hidden representation is projected through a learnable
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MLP hϕ into dimension d′ to align with y⋆. The REPA loss
encourages alignment via cosine similarity:

LREPA = − 1

N

N∑
n=1

sim
(
y⋆n, hϕ(h

(k)
t,n)

)
.

The total loss is L = Ldiff + λLREPA, where λ balances the
alignment loss.

Sampling process. At inference, we use the Eu-
ler–Maruyama sampler to generate images from Gaussian
noise in the concatenated latent space. At each noise level,
the trained SiT predicts the drift that guides the latent toward
a clean signal. Once the final step is reached, we split the
24×H ′ ×W ′ tensor back into six channel-specific latent
representations. Each of these is decoded separately through
the VAE decoder, yielding six RGB stacks of size 3×H×W .
We then collapse each stack to single grayscale channel by
averaging its three color planes, and recombine all six to
form the final 6×H ×W . This inverse procedure enables
six-channel fluorescent Cell Painting image generation.

3. Experiments
We evaluate MorphGen’s quality through comparisons with
prior models, perturbation- and cell-type conditioned gener-
ation, organelle-specific synthesis, and analysis using Open-
Phenom features (Kraus et al., 2024). Dataset details, evalu-
ation setup, and ablations are in Appendix B.1,B.2 and B.3.

3.1. Comparison with state-of-the-art

Table 1: FID and KID scores (lower is better) on HUVEC
cell type. MorphGen significantly outperforms models that
are trained to only generate HUVEC cells.

Method FID ↓ KID ↓
Stable Diffusion 115 0.11
MorphoDiff 78 0.05
MorphGen (Ours) 50.2 0.01

Results. Table 1 demonstrates that, even under Mor-
phoDiff’s constrained HUVEC-only, RGB-mapped
evaluation, MorphGen achieves substantial improvements:
it reduces FID by 64.8 and 27.8, and KID by 0.10 and
0.04, compared to Stable Diffusion and MorphoDiff,
respectively. Such large gains under a constrained setting
highlight MorphGen’s fidelity. Moreover, Figure 1 provides
complementary qualitative evidence: across multiple
cell-type/perturbation pairs, MorphGen’s outputs faithfully
reproduce the original morphology and texture, visually
corroborating our quantitative results.

Table 2: FID and KID scores across cell types. MorphGen
enables channel-wise generation for all four cell types

Metric Nucleus ER Actin Cyto Nucleolus Mito

FID ↓ 27.6 48.1 57.6 49.6 43.6 59.0
KID ↓ 0.010 0.011 0.015 0.013 0.012 0.012

3.2. Additional Capabilities

Organelle-Specific Generation We repeat the same
procedure across all four cell types, generating images
while matching the original cell-type distribution. As shown
in Table 2, the nucleus channel yields the lowest FID (27.6)
and KID (0.010), making it the easiest to model. In contrast,
actin (FID 57.6, KID 0.015) and mitochondria (FID 59, KID
0.012) are comparatively harder. Importantly, even under
this more general, multi-cell-type evaluation, MorphGen
not only outperforms MorphoDiff’s RGB-only HUVEC
baseline, but also beats it on every individual channel. We
demonstrate the qualitative comparison in Appendix D.

Table 3: Cell-type specific results. MorphGen is capable of
generating high-fidelity images for different cell types.

Cell Type FID ↓ KID ↓
HEPG2 39.4 0.016
HUVEC 29.8 0.006
RPE 33.6 0.007
U2OS 37.7 0.017

Cell-Type-Specific Generation. To assess MorphGen
under more natural data distributions, we randomly sample
images by cell type without conditioning on perturba-
tions—avoiding any data augmentation to reach a fixed
sample count. Table 3 reports FID and KID on the resulting
RGB-converted images. MorphGen achieves its best scores
on HUVEC and maintains strong performance across the
other cell types. These cell-type-specific results outper-
form our earlier experiments, which required aggressive
augmentation (random flips and rotations) to inflate small-
perturbation sets to ensure compatibility with MorphoDiff,
at the cost of introducing bias into the real data distribution.
By contrast, when following the natural data distribution
without artificial augmentation, our model’s performance
excels further, demonstrating MorphGen’s superior fidelity.

3.3. Morphology Analysis with OpenPhenom Features

Feature Extraction and PCA Visualization. To quali-
tatively assess the biological plausibility of our generated
images, we extract features using the foundation model
OpenPhenom. We focus on the four most frequent pertur-
bations in the dataset—including the control (p1138)—and
visualize both real and generated samples in a shared
PCA embedding space. Figure 2. shows that (i) real and
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Figure 2: PCA of OpenPhenom features from real and generated images. Left: frequent perturbations (incl. control p1138)
for HUVEC, colored by perturbation. Right: perturbation 1108 across cell types. Marker shapes denote real vs. generated.

generated embeddings largely overlap within the same per-
turbation class—indicating that generated images reproduce
morphology faithfully, and (ii) perturbation-specific devi-
ations from the control are similarly captured in both real
and generated distributions—evident from the clear color
separation. These patterns suggest that our generative model
successfully encodes biologically relevant phenotypic
variation while preserving class-level consistency.

CATE: Average Treatment Effect in Feature Space. To
quantitatively validate that our generated images capture
biologically meaningful perturbation effects (Bereket &
Karaletsos, 2024) at the population level, we compute the
Conditional Average Treatment Effect (CATE) between
control and perturbed samples using OpenPhenom features.
We use OpenPhenom features to represent cellular morphol-
ogy and denote the image-level embedding as Y , obtained
by averaging patch-level representations across the image.
Given a perturbation p, we define CATE as associational
difference between a treated population and a control group
for a specific cell type:

CATE(p) =
∥∥E[Y | P = control, ct = HUVEC]

− E[Y | P = p, ct = HUVEC]
∥∥2

This metric captures the squared Euclidean distance
between the average feature vectors of the control group
(p1138) and a perturbed group p. We compute the CATE
separately for real and generated samples across the three
most common perturbations: 1108, 1124, and 1137. While
clearly the image-level embeddings do not correspond
directly to biological quantities where the treatment effect
can immediately be interpreted, Kraus et al. (2024) showed
that the OpenPhenom features are very strong predictors of
the CellProfiler (Carpenter et al., 2006) features. Therefore,
we estimate the Average Treatment Effect in feature space,
as the associational difference will carry over to any down-
stream morphological predictor (Cadei et al., 2024; 2025).

Table 4: Conditional Average Treatment Effect (CATE)
between control (p1138) and perturbed samples, computed
using real and generated HUVEC images.

Comparison CATEreal CATEgen ∆CATE ↓
p1138 vs p1137 7.85 7.41 0.43
p1138 vs p1124 2.13 2.31 0.18
p1138 vs p1108 0.44 0.38 0.06

As shown in Table 4, p1137 results in the largest morpholog-
ical deviation from the control, while p1108 has the smallest
effect. These magnitudes align well with the spatial patterns
in Figure 2. The close agreement between CATE values
computed from real and generated images further indicates
that our model reliably captures biologically meaningful
perturbation effects. While alignment with OpenPhenom
features may be expected due to the alignment loss, this loss
operates in the latent space of a frozen VAE, so preservation
of morphological features is not guaranteed. Our results
confirm that they are, and that population-level statistical
associations closely match those from real images.

4. Conclusion
We introduce MorphGen, a generative model that synthe-
sizes high-resolution, six-channel Cell Painting images
while preserving biologically meaningful structure across
diverse perturbations and cell types. Trained at scale on
the full RxRx1 dataset, MorphGen leverages a novel align-
ment loss guided by embeddings from a microscopy-specific
foundation model. Beyond visual fidelity, features from
generated images capture population trends, with CATEs
closely matching those from real data—supporting their use
in downstream phenotypic analysis. As future work, we
aim to enable instance-based conditioning by learning em-
beddings from single exemplars, even in unseen settings.
Despite limitations, MorphGen marks a step toward virtual
instruments that accelerate hypothesis generation and exper-
imental design in functional genomics and drug discovery.
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A. Related Work on Generative Models in Microscopy-Based HCS
In this section we discuss the recent work that attempts controllable generation of Cell-Painting images – MorphoDiff (Navidi
et al., 2025) and IMPA (Palma et al., 2025). Both aim to illustrate the morphological response of a given perturbation,
but they differ in model class, channel handling, resolution and biological evaluation. Here, we outline the essentials and
provide a comparison with key design choices in MorphGen.

Morphodiff. MorphoDiff adapts a Stable-Diffusion (Rombach et al., 2022) latent DDPM (Ho et al., 2020) to Cell Painting.
Perturbations are encoded with scGPT embeddings (Cui et al., 2024). Six fluorescence channels are projected into RGB
through an irreversible compression that merges organelle-specific cues (Phillips, 2025) to remain compatible with the
pretrained Stable Diffusion VAE (Kingma & Welling, 2013). The model trains on full resolution images from a single
cell type in RxRx1 (Sypetkowski et al., 2023) and since unannotated perturbations lack scGPT indices the authors discard
those images, limiting its general applicability, thus the model explores only a single factor of variation –the annotated
perturbations.

IMPA. IMPA treats perturbation or batch as “style” and performs image-to-image translation with an AdaIN-conditional
GAN (Goodfellow et al., 2014; Huang & Belongie, 2017). To fit the GAN, native 512 × 512 Cell-Painting images are
cropped to 96× 96 patches, sharply reducing spatial resolution and blurring organelle-level signals. The study trains only
on the U2OS cell line from RxRx1 for batch-effect removal and small BBBC/JUMP-CP subsets (Caie et al., 2010) for
perturbations. Therefore, cross-cell-type generation is untested. Compared to diffusion models, the GAN backbone offers
lower fidelity (Karras et al., 2022b) and less stable training (Lucic et al., 2018), making IMPA less suited to high-resolution
virtual phenotyping.

Comparison to MorphGen. Both prior methods leave critical gaps that MorphGen closes. Unlike MorphoDiff’s
irreversible RGB compression and IMPA’s 96× 96 down-sampling, MorphGen keeps every fluorescence channel intact
by wrapping each grayscale slice in a three-channel latent and running diffusion jointly across all six channels. The latents
are then split and decoded per channel, preserving organelle detail at the native 512 × 512 scale. The resulting higher
latent dimensionality is tamed with a representation alignment loss –adapted from REPA (Yu et al., 2025)– but driven by
OpenPhenom embeddings (Kraus et al., 2024), instead of generic vision features. This alignment loss stabilizes training and
sharpens biological fidelity. Because our perturbation and cell-type embeddings are learned directly from images, MorphGen
uses all RxRx1 plates (four cell lines, all perturbations), whereas MorphoDiff discards unlabelled perturbations while working
only on HUVEC and IMPA is limited to U2OS. Together, full-channel diffusion, alignment loss and data-driven conditioning
give MorphGen higher resolution, multi-cell-type generality and tighter biological concordance than either earlier model.

B. Experimental Details
B.1. Dataset

RxRx1 dataset. This dataset is a large-scale, high-resolution collection of fluorescence microscopy images designed to
support the study of phenotypic cellular responses to gene knockdowns and to benchmark batch effect correction methods
(Sypetkowski et al., 2023). It comprises 125, 510 images from four human cell types (HUVEC, RPE, HepG2 and U2OS),
each exposed to one of 1, 108 siRNA treatments targeting distinct genes, along with 30 non-targeting control conditions.
Imaging is performed using a modified Cell Painting assay, generating six-channel 512× 512 pixel images that visualize
major subcellular structures including the nucleus, endoplasmic reticulum, actin cytoskeleton, nucleoli, mitochondria and
golgi apparatus. By capturing morphological changes induced by gene-specific knockdowns, RxRx1 serves as a challenging
benchmark for models aiming to generalize across perturbations, cell types and experimental batches.

B.2. Evaluation Setup

Metrics. We report Fréchet Inception Distance (FID) and Kernel Inception Distance (KID). Unlike (Navidi et al., 2025),
we do not report the FID and KID scores divided by a factor of 100, but rather report the unscaled value as typical in
computer vision (Karras et al., 2022a; Ma et al., 2024). Every score is computed from 500 generated versus 500 real images.
All experiments are repeated with three random seeds; we report the mean.

• Perturbation-level (Sec. 3.1): To ensure a fair comparison with MorphoDiff, we adopt their RxRx1 protocol. Metrics
are independently computed for randomly selected 50 siRNAs in HUVEC; then averaged across perturbations. Although
MorphGen natively generates full 6-channel images across multiple cell lines, we restrict it to HUVEC-only genera-
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tion—matching MorphoDiff’s capacity—and convert our outputs to the RGB space using Recursion’s visualization
script (Sypetkowski et al., 2023).

• Organelle-specific (Sec. 3.2): metrics are computed using the same 50 siRNAs but evaluated in each of the four cell
types and in every single channel representing organelles

• Cell-type-level (Sec. 3.1): metrics are computed per cell type without perturbation conditioning

Augmentation policy. When the real dataset for a given perturbation contained < 500 examples, we followed (Navidi
et al., 2025) and synthetically expanded it using random flips and 90◦ rotations.

B.3. Implementation Details

MorphGen is trained as a latent-diffusion model operating on SD-VAE (Rombach et al., 2022) latents of six-channel
RxRx1 (Sypetkowski et al., 2023) training set images of 512 × 512 resolution. Each single-channel grayscale image
is stacked into a 3-channel RGB format, scaled to [−1, 1], encoded with the public stabilityai/sd-vae-ft-mse VAE (AI,
2022), and rescaled by the SD constants (0.18215, 0). The diffusion backbone is a Scalable Interpolant Transformer (SiT
XL/2) (Ma et al., 2024). During training, OpenPhenom (Kraus et al., 2024) embeddings of the raw image are injected via a
REPA-style projection loss (weight = 0.5), mirroring the original REPA formulation (Yu et al., 2025).

Optimization uses AdamW (β = 0.9/0.999, lr = 1× 10−4) (Loshchilov & Hutter, 2017) in mixed precision (fp16 or bf16)
under HuggingFace Accelerate (Gugger et al., 2022); TF32 kernels can be enabled for additional speed. An EMA (Karras
et al., 2024) shadow network (decay = 0.9999) is maintained for sampling. Sampling uses a 50-step Euler–Maruyama
schedule (Ma et al., 2024).

Training runs with a batch size of 16 for up to 400 k steps using 8 H100 GPUs. Checkpoints are written every 50 k steps,
and the best model is chosen by the average FID across distributed workers, computed on 100 real vs. generated images
of pre-selected perturbations using Inception-V3 (Szegedy et al., 2016) features. Logging and image grids are tracked in
Weights and Biases (Biewald, 2020), and all hyper-parameters, metrics, and checkpoints are stored for full reproducibility.

C. Ablation Study

Table 5: Ablation study on the alignment loss. We compare
models trained without (top row) and with (bottom row) align-
ment regularization. FID and KID scores (lower is better)
are reported for 50 randomly sampled perturbations from the
HUVEC cell type.

Method FID ↓ KID ↓
MorphGen wo/ align. 56.87 ± 3.35 0.023 ± 0.001
MorphGen (Ours) 50.2 ± 2.45 0.018 ± 0.000

Morphgen without the alignment loss. Table 5
presents an ablation study evaluating the effect of incorpo-
rating an alignment loss on OpenPhenom features. While
Yu et al. (2025) introduced a similar alignment strategy
to accelerate diffusion training, we instead leverage it to
guide the model toward learning biologically meaningful
representations during generation. With the alignment
loss, MorphGen achieves more than a 10% reduction
in FID and over a 20% reduction in KID, indicating a
substantial improvement in image fidelity. These results
support the effectiveness of our proposed approach in
integrating biological priors through pretrained features during training.

Table 6: Comparison of reconstruction fidelity across different channel processing strategies using a frozen VAE.

Channel Processing MSE ↓
RGB 7.13× 10−4

Organelle-aware 4.93× 10−5

Organelle-aware + RGB 4.06× 10−4

Channel-wise Processing. To evaluate how different preprocessing strategies affect reconstruction fidelity using a
pretrained VAE, we compared three settings. In the baseline setup (RGB), all six fluorescence channels are first compressed
into an RGB image before encoding, as done in prior work like MorphoDiff. In contrast, our organelle-aware strategy
(MorphGen) processes each channel independently by replicating it across RGB channels to match the VAE’s input
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Figure 3: Comparison of original and generated fluorescence images for each organelle in a control HEPG2 cell. Our model
reconstructs the six distinct fluorescent channels using RxRx1-recommended colormaps, preserving morphology across
subcellular structures. Image best seen in color. Generated images are not cherry-picked, and we selected original images
that are neighbors of the generated ones for visualization.

expectations. We then consider two ways of reporting reconstruction loss. First, we compute the per-channel reconstruction
loss and average across channels, yielding a remarkably low MSE of 4.93× 10−5. Second, we recompose the reconstructed
channels into a 6-channel image and apply the same RGB conversion used in the baseline, resulting in an MSE of 4.06×10−4.
As shown in Table 6, both variants outperform the RGB baseline, demonstrating that organelle-aware processing enables
better use of the pretrained VAE and leads to consistently improved fidelity—even under the same evaluation transformation.

Virtual Instrument. We repeat the model training and morphological analysis, leaving out perturbation 1137 on HUVEC
from the training set. We selected this particular combination as this is the most frequent cell type in the dataset and, of
the four most frequent perturbations, the one with the largest CATE. In other words, MorphGen has seen many images
of this cell type (albeit without this perturbation), and this perturbation, which has a strong effect, was applied to many
other samples from other cell types. Perhaps unsurprisingly, we observe no significant performance drop on the held-out
group, with FID (38.14 vs. 38.07) and ∆CATE (0.46 vs. 0.43) remaining nearly unchanged. As a result, compositional
generalization emerges naturally from the diversity of the training set.

D. Organelle Specific Full Results
Table 7 reports the same metrics as Table 2, with the addition of 95% confidence intervals.

Table 7: FID and KID scores (mean ± 95% CI) for 50 random perturbations across all cell types. Our method supports
generation for all four cell types (HEPG2, HUVEC, RPE, U2OS) and provides channel-wise control.

Channel FID ↓ KID ↓
RGB 50.2± 1.3 0.0082± 0.0003
Nucleus 27.6± 0.6 0.0101± 0.0008
ER 48.1± 0.4 0.0116± 0.0008
Actin 57.6± 1.2 0.0155± 0.0003
Cyto 49.6± 0.4 0.0132± 0.0005
Nucleolus 43.6± 0.4 0.0123± 0.0009
Mito 59.0± 2.3 0.0121± 0.0018
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E. Cell-Type-Specific CATE and Visualizations
Table 8: Conditional Average Treatment Effect (CATE) between control (1138) and perturbed samples, reported per cell
type.

Cell Type p1138 vs p1137 p1138 vs p1108 p1138 vs p1124

CATEreal CATEgen ∆CATE CATEreal CATEgen ∆CATE CATEreal CATEgen ∆CATE

HEPG2 1.07 1.06 0.01 1.19 0.48 0.71 1.27 0.98 0.29
HUVEC 7.85 7.41 0.44 0.44 0.38 0.06 2.13 2.31 0.18
RPE 1.28 1.09 0.19 1.00 0.65 0.35 1.04 0.83 0.21
U2OS 3.53 2.77 0.76 0.38 0.34 0.04 3.46 2.42 1.04

Table 8 shows the Conditional Average Treatment Effect (CATE) between control (p1138) and perturbed samples, computed
using real and generated images across different cell types. Results indicate that images generated by MorphGen preserve
treatment-specific cellular features with high fidelity, closely mirroring those from real images. Unsurprisingly, the
consistency is strongest for HUVEC cells, likely due to their higher representation in the dataset. The highest treatment
effect (i.e., deviation from p1138) in real samples is observed for HUVEC under treatment p1137, with a CATE of 7.85.
MorphGen-generated images closely match this effect with a CATE of 7.41, demonstrating consistency even in cases of
strong perturbation response. Overall, the closeness of real and generated CATE values suggests that MorphGen-generated
images can support accurate downstream analysis.

Real vs Generated

Figure 4 presents PCA visualizations of OpenPhenom (Kraus et al., 2024) features for four representative perturbations –
1108, 1124, 1137 and the control 1138 – arranged in rows. The left column compares real and generated samples by coloring
the points by image type. The strong overlap between real and generated distributions across all perturbations indicates that
the generated images faithfully reproduce the morphological feature space of the real data. Whereas the right column colors
the same embeddings by cell type, revealing clear separability across cell types. This suggest that OpenPhenom features,
even when derived from generated images, retain meaningful cell-type structure and can support downstream analyses
such as classification. Together, these results demonstrate that MorphGen produces high-quality, morphologically accurate
samples that preserve both perturbation effects and intrinsic cell-type differences.

Figures 5, 6, 7, and 8 show PCA visualizations at the cell-type level (HEPG2, HUVEC, RPE, and U2OS, respectively),
allowing a qualitative assessment of color separation across different perturbations. Overall, the results demonstrate that
features extracted from MorphGen-generated images exhibit: (i) strong alignment with real features, making them visually
indistinguishable, and (ii) clear separability with respect to both cell type and perturbation—the two generative factors we
explicitly control.
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Figure 4: PCA visualizations of OpenPhenom features for four perturbations (rows: 1108, 1124, 1137, and control 1138).
Each row compares real and generated embeddings for a single perturbation. Left column: points are colored by image
type (real vs. generated), revealing strong overlap—indicating that generated images closely match the distribution of
real samples. Right column: the same embeddings are now colored by cell type, showing that cell-type-specific structure
is preserved in both real and generated data. Together, these plots demonstrate that our model produces high-quality,
morphologically faithful samples that capture both perturbation effects and intrinsic cell type differences.
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Perturbation Effects Visualizations HEPG2
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(a) PCA visualization across all four perturbations, including the control (1138).
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Figure 5: PCA projections of phenotypic embeddings of HEPG2 cells. The top panel shows global variation across all
perturbations. The bottom panels show focused pairwise comparisons between the control (1138) and specific perturbations.
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Perturbation Effects Visualizatons HUVEC
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(a) PCA visualization across all four perturbations, including the control (1138).
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Figure 6: PCA projections of phenotypic embeddings of HUVEC cells. The top panel shows global variation across all
perturbations. The bottom panels show focused pairwise comparisons between the control (1138) and specific perturbations.
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Perturbation Effects Visualizations RPE
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(a) PCA visualization across all four perturbations, including the control (1138).
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Figure 7: PCA projections of phenotypic embeddings of RPE cells. The top panel shows global variation across all
perturbations. The bottom panels show focused pairwise comparisons between the control (1138) and specific perturbations.
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Perturbation Effects Visualizations U2OS
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(a) PCA visualization across all four perturbations, including the control (1138).
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Figure 8: PCA projections of phenotypic embeddings of U2OS cells. The top panel shows global variation across all
perturbations. The bottom panels show focused pairwise comparisons between the control (1138) and specific perturbations.
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F. Organelle-Specific CATE and Visualizations
Table 9 reports organelle-specific CATEs, measuring the deviation of perturbations p1108, p1124, and p1137 from the
control p1138. Notably, our estimates closely match the real values even at the organelle level, suggesting that MorphGen
can accurately capture organelle-specific response patterns. Figure 9 further illustrates this by showing PCA visualizations
of Nuclei responses across different perturbations.

Table 9: Conditional Average Treatment Effect (CATE) between control (1138) and perturbed HUVEC cells, reported per
organelle.

Organelle p1138 vs p1137 p1138 vs p1108 p1138 vs p1124

CATEreal CATEgen ∆CATE CATEreal CATEgen ∆CATE CATEreal CATEgen ∆CATE

Nuclei 9.47 9.50 0.03 0.69 0.59 0.10 2.86 2.97 0.11
ER 9.46 9.54 0.08 0.69 0.60 0.09 2.85 2.97 0.12
Actin 9.49 9.50 0.01 0.69 0.59 0.10 2.86 2.97 0.11
Nucleoli 9.49 9.51 0.02 0.69 0.59 0.10 2.85 2.96 0.11
Mitochandria 9.54 9.51 0.03 0.70 0.59 0.11 2.86 2.97 0.11
Golgi 9.49 9.52 0.03 0.69 0.60 0.09 2.86 2.97 0.11
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(a) PCA visualization across all four perturbations, including the
control (1138).
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Figure 9: PCA projections of Nuclei embeddings of HUVEC cells. The top panel shows global variation across all
perturbations. The bottom panels show focused pairwise comparisons between the control (1138) and specific perturbations.
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