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Abstract

This work presents SingaX’s approach to the Embodied Agent Interface Challenge,
where we develop an LLM-driven pipeline for interpreting, decomposing, and executing
natural language instructions in simulated household environments. Our methodology
centers on leveraging large language models as semantic planners. A key innovation
of our approach is a novel instruction induction framework that utilizes past error
logging statements from development tasks to iteratively improve the LLM’s ability to
produce semantically consistent and logically correct actions. Our approach is training-
free, cheap and efficient to run, and replaces manual effort required in crafting system
prompts. In addition, we experimented with various other inference time verification
and LLM aggregation approaches. In our report, we also discussed and analyzed
approaches that did not work well in the evaluation task. Across the four challenge
tasks—Goal Interpretation, Subgoal Decomposition, Action Sequencing, and Transition
Modeling—we design task-specific prompt structures and cross-task validation routines
that encourage coherent, executable outputs.

1 Introduction
Embodied agents operating in simulated or real-world household environments must reason over
long-horizon natural language instructions, track intermediate states, and produce action sequences
that are both semantically grounded and executable. Despite recent progress in large language
models (LLMs), translating high-level objectives into precise low-level actions remains challenging
due to ambiguities in instruction semantics, domain-specific constraints, and inconsistencies in
multi-step reasoning [3]. In the Embodied Agent Interface Challenge, our work focuses on
developing LLM-powered semantic planning pipelines that can propose natural language instructions
in four structured challenges: Goal Interpretation, Subgoal Decomposition, Action Sequencing, and
Transition Modeling.

Our work makes two novel contributions. The first stems from the key insight from our work is
that is that errors in embodied task planning often stem not from a lack of knowledge, but from brittle
prompt structures and insufficient exposure to system-level constraints during LLM inference. As a
result, solutions from these LLMs often cannot be parsed effectively by existing verifiers, causing
them to be marked as incorrect. To address this, we propose a novel instruction induction framework
that incorporates historical error logs collected during development tasks. By feeding failure cases
back into the prompting cycle as structured feedback, the LLM progressively learns to avoid prior
logical inconsistencies and pre-emptively safeguards its responses in future unseen problems. This
produces more reliable action plans without requiring model fine-tuning.
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Figure 1: Overview of the iterative prompt induction framework. During development phase, output from
the Answering LLM are evaluated with the provided verifiers to produce evaluation logs. These are fed into
the Safeguard Generation LLM to produce a new set of system prompts. During the test phase, as the
verifier is no longer available, the improved system prompt is directly used for generation without the prompt
improvement block.

The second contribution is a lightweight verification module that validates the consistency of
predicted subgoals and actions against environment constraints, filtering or revising plans before
execution. Together, these contributions demonstrate a scalable and modular approach to embodied
task planning, offering insights for integrating LLMs into interactive agent pipelines.

2 Our Methodology
From our preliminary experiments, we found that the LLM often give solutions that yield poor results.
There are a few reasons why this occurs. First, the LLM solution often does not abide to the JSON
format required by the submission verifier. As a result, solutions that are almost correct are often
marked as incorrect due to parsing errors. Second, in many tasks, the LLM produces correct action
sequences at first but then produces actions which are invalid in the given environment. For example,
the LLM frequently tries to retrieve items inside closed containers, or requires the character move
when the character is sitting or lying down.

2.1 Iterative Prompt Induction Framework
Motivation. Prompt induction enables LLMs to infer natural language instructions from few-shot
examples, improving task generalization without fine-tuning [7, 4, 1]. A key insight is that prompt
induction can systematically exploit the build-in capabilities of LLMs: rather than relying on model
retraining or external knowledge injection, we leverage the model’s existing reasoning abilities
by learning from its own failure patterns. By analyzing errors produced by vanilla prompts, we
can synthesize refined instructions that better elicit the model’s latent task-specific knowledge.
This approach is particularly valuable for embodied task planning, where errors often stem not from
knowledge deficiencies but from brittle prompt structures and insufficient exposure to domain-specific
constraints during inference.

Overview. Our iterative prompt induction operates by generating error logs associated with the
LLM solution generated on the training dataset by the initial provided system prompts (1 and 2 in
Fig. 1). We initially considered manually looking through the logs to identify the key mistakes made
by the LLM (by eye and by code). However, this proved to be too time consuming, due to initial
provided prompts performing quite poorly resulting in a large number of mistakes to sieve through.
This gave us the idea of simply making use of an LLM to perform this task, as LLMs are known to
be able to extract information and perform summarization well from long contexts. We integrate and
refine these error logs into our LLM prompts (3 and 4 in Fig. 1), generating guardrail statements and
"emphasis rules" for the LLM across different environments. Briefly,
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1. During development phase, we use the standard prompts (given by the challenge organizers) with
an Answering LLM to generate default solutions for the development scenarios in the challenge
(1 in Fig. 1). These solutions are then evaluated using the local evaluation pipeline provided by the
organizers (2 in Fig. 1. The evaluation pipeline produces error logs, indicating why a solution is
incorrect - for instance, if our solution contains the action of moving a cup from the top of a book
to the table but the cup currently is not on a book, then the error log would point out this error.

2. We pass these error logs into an Safeguard Generation LLM (3 in Fig. 1) to reason about
the most common error types faced during development and generate a list of pre-emptive
safeguards that we include in our prompts (4 in Fig. 1). For instance, if the LLM frequently creates
invalid solutions because of missing a closing bracket in its JSON outputs, then the external LLM
will create a pre-emptive safeguard: "When structuring your solution into a JSON file, make sure
the number of closing brackets matches the number of opening brackets". We also ask the LLM to
generate a new prompt that incorporates these safeguards into the original prompts given by the
challenge organizers.

3. Using the new prompt that contains these safeguards, we pass it into the Answering LLM to
generate the solutions for different action tasks during the evaluation phase. Because safeguards
are emphasized in the new prompts, the LLM is less likely to make the same mistakes during
evaluation. What is noteworthy is that these safeguards are generalizable to tasks scenarios not
seen in the development phase. Hence, the optimized prompts generated from the development
phase can be deployed effectively during the evaluation phase.

2.2 Prompt Optimization
We also investigated the effectiveness of generic prompt optimization methods. To do so, we
adopted a framework that utilizes Bayesian Optimization to optimize prompts [2]. The prompt
optimization framework uses our LLM to generate 100 candidate prompts for each evaluation task.
These prompts contain varying information surrounding the formatting and task instructions (with
varying effectiveness). We then project each candidate prompt into a semantic embedding space
using an off-the-shelf embedding model [6]. We then use Bayesian Optimization to approximately
learn the performance landscape associated to each candidate prompt in the embedding space without
needing the query the performance of every prompt. This allows us to retrieve the best-performing
prompt from the candidate pool. From our preliminary experiments in Table 6, this yields about 4-5%
performance gains over our evaluation tasks. However, our Iterative Prompt Induction Framework
performed better in the leaderboard.

2.3 Multi-Model Best-of-N at Test Time
Besides prompt-induction–based optimization, we also investigate a test-time scaling strategy that
improves solution quality without modifying model parameters. The baseline we consider is a
standard Best-of-N (BoN) scheme: for each instance, a single base LLM is queried N times with
stochastic decoding, and a verifier then selects the best candidate among these samples. While this
approach can reduce random errors, the candidates are still drawn from essentially the same proposal
distribution and often exhibit highly correlated failure modes.

Our method generalizes this idea from “more samples from one model” to “diverse samples from
multiple models”. Concretely, for each task instance we query three heterogeneous LLM families—
Qwen, Gemini, and GPT—using the same task-specific prompt template described in Section 3. This
yields a small but diverse candidate set C = {cQwen, cGemini, cGPT}, where each element represents a
complete JSON-formatted solution proposed by one model. Compared to repeatedly sampling from a
single model, this multi-model design enlarges the effective proposal space at roughly the same total
compute budget.

To choose the final output, we employ a strong LLM verifier as a scoring module. Given all
candidates in C, the verifier is prompted to assess (i) syntactic validity with respect to the required
JSON schema, (ii) consistency with environment and action constraints, and (iii) plausibility of
achieving the given goal. The verifier produces a scalar score for each candidate, and we return the
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solution with the highest score as the final prediction: c∗ = argmaxc∈C VerifierScore(c). In practice,
we observe that cross-model diversity makes the verifier substantially more effective than in the
single-model BoN setting, since different models tend to make different types of mistakes. As a
result, this multi-model BoN strategy serves as a lightweight yet effective form of test-time compute
scaling that is fully compatible with the overall pipeline in Section 3.

2.4 Critic Best-of-N
In addition, we propose a Critic Best-of-N (Critic BoN) framework to enhance generation quality
through iterative refinement. The workflow initiates with an initial query q (representing the original
goal and constraints) fed into a Generator model, which produces a set of n candidate outputs, denoted
as {o1, o2, . . . , on}.

Subsequently, each candidate is evaluated by a Critic agent. This agent validates the generated
JSON against the original constraints using a specific checklist of instructions. The Critic outputs
a structured JSON object comprising a critique_summary and a list of specific, actionable
issues. If the issues list for any candidate ci is empty, indicating a flawless output, that
candidate is immediately returned as the final result.

If errors persist across all candidates, the system applies a Best-of-N selection strategy to identify
the optimal candidate o∗ by minimizing the number of identified issues:

o∗ = ok where k = argmin
i

(|cissues
i |) (1)

To facilitate iterative refinement, the selected best candidate and its associated critique summary
(o∗, c∗) are fed back into the Generator. The model then produces N new refined outputs conditioned
on this pair, repeating the cycle until the validation criteria are met.

3 Insights and Discussion
We further analyze the safeguards produced by the Safeguard Generation LLM and observe
that many of the resulting guardrails correspond to generalizable action-pattern rules that prevent
common classes of errors. Rather than overfitting to specific development scenarios, these safeguards
capture high-level principles that ensure state validity, enforce correct action ordering, and maintain
consistent output formatting. In Table 1, we summarize the key categories of safeguards identified
across tasks by GitHub Copilot. Note that these are actual guardrails generated by the Safeguard
Generation LLM.

These safeguards collectively contribute to improved robustness by constraining the LLM to
produce logically consistent, state-valid, and structurally correct action plans across both development
and evaluation scenarios. From our experimental results (Table 2), these guardrails are shown to be
effective and more importantly, generalizable on the evaluation task.

4 Experiments
We evaluated our method on the development scenarios provided by the organizers, before moving
onto applying it on the test scenarios (whose performance eventually appears on the leaderboard).

4.1 Iterative Prompt Induction Framework
We used the Qwen3-235B-Thinkingmodel [5] as our Answering LLM. For our Safeguard
Generation LLM, we surprisingly found GPT-5 via GitHub Copilot’s agent mode to be effective
at scanning the error logs and producing safeguards for our optimized prompts. For the logs to be
more informative, we made minor modifications to provided source code to clean up and format
the logs. Due to the long context length of GPT-5 (128,000 tokens), it is able to ingest the entire
log JSON file generated by the verifiers in the development loop, extract and reason about the key
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Table 1: Some of the guardrails generated by the Safeguard Generation LLM (GitHub Copilot) to reduce
errors when generating solutions for development scenarios. These are integrated into by the Safeguard
Generation LLM into the new system prompts. Concrete examples are provided in Section F

Category Guardrail
Spatial
grounding

Always WALK to the specific object you act on (not just the room).

State precon-
ditions • If CLOSED: OPEN.

• If PLUGGED_OUT and needs power: PLUGIN.
• If faucet needed: SWITCHON faucet.

Action order-
ing • Device use: WALK → (PLUGIN?) → SWITCHON → USE.

• Cleaning: WALK → WASH → RINSE.
• Drinking: WALK → GRAB → (POUR) → DRINK.

Avoid redun-
dancy

Avoid duplicates and irrelevant actions; stop once the goal is satisfied.

Output format Output strictly in the specified JSON schema.
PDDL rules

• The :effect lists the changes which the action imposes on the current state. The
:precondition consists of predicates and 6 possible logical operators: or, and,
not, exists, when, forall.

• Effects should generally be several effects connected by and operators.
• For each effect, if it is a conditional effect, use when to check the conditions. Semantics:
(when [condition] [effect]) means if the condition is true before the action,
the effect occurs afterwards.

• If it is not a conditional effect, use predicates directly.
• The not operator negates a predicate, meaning the condition will not hold after the

action is executed.
• The forall operator is followed by a variable and a body. Format: forall (?x -
type) (predicate1 ?x), meaning for all objects of that type, the predicate holds.

mistakes made by the Answering LLM and make use of tool calls to update the prompt. Fig. 2
shows a sample section of the prompt and response by the Safeguard Generation LLM. Our
submission used a single prompt induction loop (system prompt was only updated once by the
Safeguard Generation LLM).

4.1.1 Performance gains from optimized prompts

To verify the performance gains from the optimized prompts, we evaluated our method over different
smaller LLMs to verify its effectiveness. Table 2 shows our method consistently improves the task
performance of different LLMs over all development tasks significantly even on the smaller LLMs.

Since we used the same development scenarios to generate the initial error logs and optimized
prompts, it comes at no surprise that our optimized prompts would work well over the same develop-
ment scenarios. For instance, if the development scenarios consistently requires us to move a cup
from the top of a book to the table, and our Answering LLM constantly thinks that the cup is not
on the book (which is an error), then our optimized prompt would safeguard against such common
errors.

Next, we applied our method to the evaluation scenarios for the leaderboard submission. It is
important to note that because the evaluation scenarios for the leaderboard submission cannot be
run locally, we cannot generate error logs for them and consequentially, cannot specifically optimize
our prompts towards these evaluation scenarios. Instead, we use the optimized prompts from the
development scenarios and use it on the evaluation scenarios.

4.1.2 Performance on leaderboard

We show in Table 3 our improvements from using optimized prompts from the Iterative Prompt
Induction Framework on the test set as reported by the leaderboard under the column “Ours”. As
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Table 2: Overview of results (%) on the evaluation phase. V: VirtualHome, B: BEHAVIOR.

Goal Interpretation Action Sequencing Subgoal Decomposition Transition Modeling Average Perf.

Overall Perf.F1 TaskSR ExecSR TaskSR ExecSR F1 PlannerSR ModuleSR

Model V B V B V B V B V B V B V B V B

Qwen 3 4B 23.9 39.7 58.4 39.0 67.0 56.0 54.9 43.0 79.1 54.0 30.3 35.9 43.5 46.0 43.53 40.66 42.09
(+ Optimized Prompt) 38.6 30.6 63.7 41.0 74.6 51.0 55.7 55.0 79.8 70.0 68.8 52.0 47.0 70.0 53.98 46.90 50.44

(↑ 14.7) (↓ 9.1) (↑ 5.3) (↑ 2.0) (↑ 7.6) (↓ 5.0) (↑ 0.8) (↑ 12.0) (↑ 0.7) (↑ 16.0) (↑ 38.5) (↑ 16.1) (↑ 3.5) (↑ 24.0) (↑ 10.4) (↑ 6.2) (↑ 8.4)

Qwen 3 8B 23.4 69.7 58.4 44.0 69.5 58.0 58.9 40.0 81.3 50.0 38.3 53.7 80.2 73.0 49.99 54.26 52.13
(+ Optimized Prompt) 39.5 73.3 67.9 56.0 80.7 65.0 61.1 56.0 82.7 70.0 81.0 63.7 92.5 91.0 63.81 65.66 64.74

(↑ 16.1) (↑ 3.6) (↑ 9.5) (↑ 12.0) (↑ 11.2) (↑ 7.0) (↑ 2.2) (↑ 16.0) (↑ 1.4) (↑ 20.0) (↑ 42.7) (↑ 10.0) (↑ 12.3) (↑ 18.0) (↑ 13.8) (↑ 11.4) (↑ 12.6)

Qwen 3 14B 24.8 71.0 66.0 46.0 82.1 58.0 62.5 45.0 82.1 53.0 43.0 59.6 63.5 44.0 51.64 53.45 52.54
(+ Optimized Prompt) 41.5 73.0 65.5 57.0 80.9 65.0 66.3 66.0 86.6 78.0 79.9 64.6 82.4 83.0 63.61 67.45 65.53

(↑ 16.7) (↑ 2.0) (↓ 0.5) (↑ 11.0) (↓ 1.2) (↑ 7.0) (↑ 3.8) (↑ 21.0) (↑ 4.5) (↑ 25.0) (↑ 36.9) (↑ 5.0) (↑ 18.9) (↑ 39.0) (↑ 12.0) (↑ 14.0) (↑ 13.0)

Qwen 3 32B 28.0 65.5 63.2 59.0 77.3 71.0 65.9 47.0 86.3 55.0 45.4 62.5 76.2 78.0 54.48 60.44 57.46
(+ Optimized Prompt) 39.4 68.5 67.4 63.0 81.1 72.0 66.3 66.0 85.7 79.0 78.2 68.3 84.4 89.0 63.60 69.04 66.32

(↑ 11.4) (↑ 3.0) (↑ 4.2) (↑ 4.0) (↑ 3.8) (↑ 1.0) (↑ 0.4) (↑ 19.0) (↓ 0.6) (↑ 24.0) (↑ 32.8) (↑ 5.8) (↑ 8.2) (↑ 11.0) (↑ 9.1) (↑ 8.6) (↑ 8.9)

Qwen 3 30B A3B 26.80 79.10 69.30 53.00 81.50 68.00 61.10 56.00 83.90 66.00 36.70 49.70 82.10 69.00 54.15 61.86 58.01
(+ Optimized Prompt) 42.80 69.70 70.00 54.00 83.60 65.00 64.30 73.00 86.10 88.00 75.60 61.50 92.60 88.00 65.30 67.86 66.58

(↑ 16.00) (↓ 9.40) (↑ 0.70) (↑ 1.00) (↑ 2.10) (↓ 3.00) (↑ 3.20) (↑ 17.00) (↑ 2.20) (↑ 22.00) (↑ 38.90) (↑ 11.80) (↑ 10.50) (↑ 19.00) (↑ 11.15) (↑ 6.00) (↑ 8.6)

Table 3: Comparison against default prompts on the leaderboard. Due to limited budget, for virtualhome, we
did not run “Ours + edits” for the dev set and “Default prompts” for test set.

behavior virtualhome
dev/test set dev set test set

Default Ours Ours Default Ours Ours Ours
prompt + edits prompt + edits

goal_interpretation (f1) 79.7 82.3 86.2 43.6 61.1 46.5 64.5
subgoal_decomposition (task sr) 69.0 77.0 79.0 90.5 92.9 72.6 79.3

action_sequencing (task sr) 79.0 84.0 85.0 65.9 77.0 70.8 92.0
transition_modeling (f1) 67.9 84.5 98.9 47.3 81.0 96.0 99.5
transition_modeling (sr) 86.0 98.4 99.0 75.0 97.9 98.5 99.9

avg_perf 76.2 83.7 87.3 65.3 80.1 71.8 81.4

shown in Table 1, we noticed that the Safeguard Generation LLM would frequently classify
similar problems and provide guidelines or templates for the Answering LLM to follow. It also
provided checklists for the Answering LLM to verify against before the final output is produced.
These resulted in significant performance gains across all tasks.

However, as the competition deadline drew nearer, we realized that our approach of simply relying
on the LLM optimized prompt was being out competed by other teams on the leaderboard. As such,
we decided to take a closer look at the actual improved prompts generated by the LLM. On closer
inspection, we noticed that the optimized prompts generated by the Safeguard Generation
LLM occasionally made minor mistakes. For instance, the Safeguard Generation LLM would
occasionally copy extraneous or miss out copying over certain examples from the logs. There were
also some nuances in the problem tasks which where not captured by the LLM. For instance, for the
virtualhome environment, the LLM would sometimes generate “FIND” after “SIT”, as it did not
know that “FIND” requires that the character to not be sitting.

With our edits, we were able to further improve our performance, shown as “Ours + edits” in
Table 3. Although manual in nature, majority of the work has already been done by the Safeguard
Generation LLM in the first round of prompt optimization, which drastically reduced the number
of logs we had to inspect and the amount of effort needed in crafting the prompts. The overall
structure of the prompt and key rule set were already integrated into the prompt by the Safeguard
Generation LLM, and only a small effort was required to further improve the overall performance
across the tasks.

At the time of writing, our approach ranked second on the leaderboard, despite not requiring any
training and does not seem to be overfitted to the development set of the behavior set.
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4.1.3 Cost analysis of prompt induction optimization

To optimize our prompts, we need to perform one round of answer generation (before using the error
logs to optimize the prompts). Because we mostly used OpenRouter (https://openrouter.
ai/) to generate outputs from Qwen3-235B-Thinking, it is not free to use the Answering
LLM to generate the initial responses. Before we began our experiments, we estimated the cost
needed to perform a single round of answer generation. Although other models such as GPT-5
might be able to perform better, we chose Qwen3-235B-Thinking as the Answering LLM as
it is Open-source, and has a very competitive pricing on OpenRouter of $0.11 and $0.60 per million
input and output tokens respectively1. As shown in Table 4, only approximately $21 is required for
the entire experiment (over 8000 prompts across development and test phases for all 4 tasks over 2
environments). In comparison, GPT-5 costs about $1.25 and $10.00 per million input and output
tokens respectively2, and would have costed more than 10 times as much for the entire experiment.

We also note that although the token length of the input prompts became longer (with the added
templates and checklists generated by the Safeguard Generation LLM), the token length of
the output generally decreased across the tasks. From analyzing the LLM reasoning, we noticed
that the LLM became confused due to some ambiguity in the original prompt, resulting in a large
number of tokens generated where it tried to consider the different interpretations of the problem.
This reduction in number of output tokens with the improved prompts results in a reduction in the
average cost per query.

Table 4: Estimated cost of optimizing prompts using our method. This assumes all queries successful, actual
cost will be slightly higher due to failed generations. Output token length includes reasoning tokens. Cost for
task reports the combined cost for all the prompts in the task. Note that for virtualhome, we report the values for
the dev and test set respectively, which have different number of problems.

Environment Task Dev set Test set
Mean token length Cost for Mean token length Cost for

Prompt Output task ($) Prompt Output task ($)

behavior goal_interpretation 1216 5717 0.36 2119 5229 0.35
subgoal_decomposition 2657 12014 0.75 3683 8851 0.58
action_sequencing 3415 8188 0.53 3701 7298 0.50
transition_modeling 3414 10399 0.66 3660 8352 0.57

virtualhome goal_interpretation 1874 7706 1.65 2994 5513 5.46
subgoal_decomposition 3056 7225 1.58 3571 8386 8.14
action_sequencing 2256 5264 1.16 3336 5777 5.75
transition_modeling 3635 9902 1.88 5398 8681 8.70

Total cost 3.75 17.41

4.2 Critic BoN Experiments
Experimental Setup. We evaluated the Critic BoN framework on the BEHAVIOR benchmark using
two base models: Qwen3-8B and Qwen3-14B. The experiments were conducted with a candidate pool
size of N = 4 and a maximum limit of 4 refinement loops per query. We assessed performance across
all four tasks in BEHAVIOR: Goal Interpretation (F1), Action Sequencing, Subgoal Decomposition,
and Transition Modeling, reporting both Task and Execution Success Rates (SR) where applicable.

Results. Table 5 summarizes the results. In this configuration, the iterative refinement process did
not yield consistent improvements over the baseline. For both model sizes, the initial generation
(Refinement 0) generally achieved the highest average performance, with Qwen3-8B peaking at
67.23% and Qwen3-14B at 69.10%.

1https://openrouter.ai/qwen/qwen3-235b-a22b-thinking-2507/providers
2https://openrouter.ai/openai/gpt-5-chat/providers
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Table 5: Overview of results (%) on BEHAVIOR for Critic BoN.

Goal Interpretation Action Sequencing Subgoal Decomposition Transition Modeling Average Perf.
Model Refinement F1 TaskSR ExecSR TaskSR ExecSR F1 PlannerSR

Qwen3-8B

0 73.47 56.00 64.00 65.00 75.00 62.91 86.00 67.23
1 74.93 51.00 61.00 48.00 57.00 62.67 82.00 61.57
2 75.07 54.00 61.00 46.00 62.00 62.85 81.00 61.75
3 74.98 50.00 59.00 45.00 58.00 62.82 86.00 61.10
4 75.08 52.00 58.00 45.00 56.00 62.78 85.00 61.49

Qwen3-14B

0 76.67 60.00 75.00 64.00 75.00 65.50 86.00 69.10
1 70.48 58.00 66.00 57.00 67.00 65.79 80.00 64.60
2 72.72 61.00 71.00 55.00 64.00 66.03 80.00 65.43
3 72.44 61.00 69.00 58.00 68.00 65.96 82.00 66.35
4 72.61 62.00 72.00 55.00 64.00 65.91 81.00 65.77

Subsequent refinement iterations resulted in a regression in metrics, particularly within Subgoal
Decomposition, where Qwen3-8B dropped from 65.00% (Refinement 0) to 45.00% (Refinement 4).
While Goal Interpretation remained relatively stable for the 8B model, the 14B model exhibited a
decline from 76.67% to 72.61%. These results suggest that while the Critic mechanism identifies
issues, the iterative loop with N = 4 may introduce instability or over-correction in this specific
domain, preventing the generator from surpassing its zero-shot baseline.

In our final submission, we provided the results of the iterative prompt induction framework.
Although it produced promising results, the BoN approach proved too expensive and time-intensive
to run with our limited budget. Despite this, we believe it can be further integrated to further improve
the performance of the overall framework.

5 Discussion
The safeguards produced by the Safeguard Generation LLM tend to capture high-level rea-
soning patterns rather than scenario-specific heuristics. This contributes to their ability to generalize
to unseen evaluation tasks, even when the underlying error types arise in new forms. In effect, our
approach teaches the LLM how to avoid classes of mistakes, not just how to correct specific instances.
This contrasts with conventional fine-tuning or reward-based methods, which often overfit to the
development data or require costly repeated training cycles.

Another important observation is that integrating safeguards directly into prompts leverages
the LLM’s inherent strengths: rule-following, adherence to explicit constraints, and improved self-
consistency when guidance is clearly specified. By elevating common pitfalls to “emphasis rules,” the
system reduces syntactic, semantic, and state-consistency errors without modifying model weights or
requiring computationally intensive retraining.

Overall, our findings suggest that error-log–guided prompt optimization is a lightweight yet
powerful strategy for enhancing reliability. It provides a scalable path for improving LLM perfor-
mance in structured decision-making tasks where correctness hinges on avoiding subtle logical or
environmental inconsistencies. As LLMs continue to be deployed in increasingly complex domains,
methods that transform error signals into generalizable procedural safeguards may offer an efficient
alternative to model-level optimization.

6 Conclusion
Our method demonstrates that structured error-driven prompt refinement can substantially improve
the robustness of LLM-based planners in embodied or procedural reasoning tasks. A key insight is
that error logs—often treated as terminal outputs of an evaluation pipeline—can instead be repurposed
as a valuable source of supervision. By systematically aggregating these logs and distilling them into
explicit safeguard rules, we create an iterative feedback loop that strengthens the LLM’s ability to
avoid common failure modes.
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Reproducibility Statement
Our experiments made use of open and closed sourced LLMs (Qwen3-235B-Thinking and
GPT-5 respectively). As described in Section B, we used greedy sampling with a temperature of 0.0
when generating for the task problems for more deterministic experiments. Code and prompts used
in the experiments will be published on our GitHub page. Only the development set was used in the
prompt improvement portion of the experiment, along with information provided by the verifier logs
extracted from the provided source code.
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B Openrouter payload
Below is the payload used to query Openrouter. We used temperature of 0.0, greedy sampling, to
minimize randomness in the experiments.
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payload = {
"model": "qwen/qwen3-235b-a22b-thinking-2507",
"temperature": 0.0,
"provider": {

"require_parameters": True,
"quantizations": ["bf16"],
"allow_fallbacks": False,
"sort": "price"

}
}

C Additional experimental results for Bayesian Optimization of
Prompts

Table 6 shows the result of Prompt Optimization via Bayesian Optimization (BO). Although it
showed some improvement, we ultimately did not use it for the leaderboard submission as the other
approaches showed better results.

Table 6: Performance improvement with Prompt Optimization via Bayesian Optimization (BO)

behavior (dev/test) virtualhome (dev)
Default Optimized Default Optimized

prompt from BO prompt from BO

goal_interpretation (f1) 74.0 75.6 36.2 41.3
subgoal_decomposition (task sr) 48.0 53.2 83.5 88.7

action_sequencing (task sr) 67.3 69.9 65.9 72.1
transition_modeling (f1) 76.1 91.3 64.1 69.0
transition_modeling (sr) 98.0 98.3 74.1 80.5

average performance 72.6 77.7 64.8 70.3

D Output processing

D.1 Rejection sampling
To prevent parsing errors of the generated output, we performed rejection sampling by checking if the
generated output conforms to a JSON format, and re-querying for the problem until a valid response
is returned. This is done during inference time as the LLM outputs are returned from the API, and
any outputs that fail the check are re-queried up to a maximum of 3 times (in practice, we did not
observe any problems which required more than a single round of rejection sampling). Although
we selected to use the temperature of 0.0, multiple different outputs are still possible for greedy
sampling, allowing rejection sampling to work. This is because there can be positions in the text
during generation where more than one token are tied with the exact the same highest logit value, and
any of these tokens could be selected with greedy sampling, resulting in multiple possible generation
outputs.

D.2 Formatting for regex
In virtualhome action_sequencing task, regex was used in the evaluation script to parse the LLM
generated outputs, specifically: “"(\w+)"\s*:\s*(\[[^\]]+\])”. We noticed for actions
without arguments (e.g., “{"STANDUP":[]}”), the LLM would frequently generate the square
brackets without any spaces (i.e., “[]” instead of “[ ]”), no matter what we instruct or specify in
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the prompt. This fails to match the second capturing group “\[[^\]]+\]”, resulting in the action
failing to be parsed by the verifier. To resolve this, we added a post-processing step to replace all
“[]” with “[ ]”.

E Prompts to the Safeguard Generation LLM

To query the GPT-5 GitHub Copilot agent, we used the following prompts.
First, we asked the LLM to examine the log file. We attached the system prompt (Python file) and

the log file (JSON file) with this prompt.

Look through the whole JSON file, and summarize the key
mistakes made by the LLM generation for the tasks.

We then asked the LLM to update and improve the prompt based on the points collated from the
above query. We attached the system prompt (Python file) with this prompt for the Copilot to modify.

Improve the prompts to address the issues

F Sample output from the Safeguard Generation LLM

We used Visual Studio’s GitHub Copilot extension with GPT-5 in agent model. Our method can be
easily integrated into the coding workflow as the approach is easily implemented directly in the code
editor with minimal effort. We show the agent output in Fig. 2 and improvements made to the prompt
by the agent in Fig. 3.
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Figure 2: Sample outputs from the Safeguard Generation LLM for task behavior task
goal_interpretation.
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Figure 3: Example of the edits made to the prompt by the Safeguard Generation LLM for task
behavior task goal_interpretation.

13


	Introduction
	Our Methodology
	Iterative Prompt Induction Framework
	Prompt Optimization
	Multi-Model Best-of-N at Test Time
	Critic Best-of-N

	Insights and Discussion
	Experiments
	Iterative Prompt Induction Framework
	Performance gains from optimized prompts
	Performance on leaderboard
	Cost analysis of prompt induction optimization

	Critic BoN Experiments

	Discussion
	Conclusion
	Biography of all team members
	Openrouter payload
	Additional experimental results for Bayesian Optimization of Prompts
	Output processing
	Rejection sampling
	Formatting for regex

	Prompts to the Safeguard Generation LLM
	Sample output from the Safeguard Generation LLM

