Technical Report: Team SingaX for Embodied Agent
Interface Challenge @ NeurlIPS 2025

Xinyuan Niu'* Zhiliang Chen' Vernon Yan Han Toh?

Yanchao Li> Zhengyuan Liu®> Nancy F. Chen?

!National University of Singapore
2Nanyang Technological University
3Institute for Infocomm Research, A*STAR

Abstract

This work presents SingaX’s approach to the Embodied Agent Interface Challenge,
where we develop an LLM-driven pipeline for interpreting, decomposing, and executing
natural language instructions in simulated household environments. Our methodology
centers on leveraging large language models as semantic planners. A key innovation
of our approach is a novel instruction induction framework that utilizes past error
logging statements from development tasks to iteratively improve the LLM’s ability to
produce semantically consistent and logically correct actions. Our approach is training-
free, cheap and efficient to run, and replaces manual effort required in crafting system
prompts. In addition, we experimented with various other inference time verification
and LLM aggregation approaches. In our report, we also discussed and analyzed
approaches that did not work well in the evaluation task. Across the four challenge
tasks—Goal Interpretation, Subgoal Decomposition, Action Sequencing, and Transition
Modeling—we design task-specific prompt structures and cross-task validation routines
that encourage coherent, executable outputs.

1 Introduction

Embodied agents operating in simulated or real-world household environments must reason over
long-horizon natural language instructions, track intermediate states, and produce action sequences
that are both semantically grounded and executable. Despite recent progress in large language
models (LLMs), translating high-level objectives into precise low-level actions remains challenging
due to ambiguities in instruction semantics, domain-specific constraints, and inconsistencies in
multi-step reasoning [2]. In the Embodied Agent Interface Challenge, our work focuses on
developing LLM-powered semantic planning pipelines that can propose natural language instructions
in four structured challenges: Goal Interpretation, Subgoal Decomposition, Action Sequencing, and
Transition Modeling.

Our work makes two novel contributions. The first stems from the key insight from our work is
that is that errors in embodied task planning often stem not from a lack of knowledge, but from brittle
prompt structures and insufficient exposure to system-level constraints during LLM inference. As a
result, solutions from these LLMs often cannot be parsed effectively by existing verifiers, causing
them to be marked as incorrect. To address this, we propose a novel instruction induction framework
that incorporates historical error logs collected during development tasks. By feeding failure cases
back into the prompting cycle as structured feedback, the LLM progressively learns to avoid prior
logical inconsistencies and pre-emptively safeguards its responses in future unseen problems. This
produces more reliable action plans without requiring model fine-tuning.

*Corresponding author: xinyuan@u.nus.edu

/LLM inference Query 1

Quéry N

e o@ —
: prompt m OutputN

@

\

Prompt improvement

New system @ Verification log 1
R0 —
prompt Verification log N

Figure 1: Overview of the iterative prompt induction framework. During development phase, output from
the Answering LLM are evaluated with the provided verifiers to produce evaluation logs. These are fed into
the Safeguard Generation LLM to produce a new set of system prompts. During the test phase, as the
verifier is no longer available, the improved system prompt is directly used for generation without the prompt
improvement block.

The second contribution is a lightweight verification module that validates the consistency of
predicted subgoals and actions against environment constraints, filtering or revising plans before
execution. Together, these contributions demonstrate a scalable and modular approach to embodied
task planning, offering insights for integrating LLMs into interactive agent pipelines.

2 Related Work

Prompt induction enables LLMs to infer natural language instructions from few-shot examples,
improving task generalization without fine-tuning [4, 3, 1]. Beyond generalization, prompt induction
reveals the inherent capabilities of base models on specialized tasks by learning from failure cases:
analyzing errors produced by vanilla prompts allows the model to synthesize refined instructions that
better elicit its task-specific knowledge.

3 Method

From our preliminary experiments, we found that the LLM often give solutions that yield poor results.
There are a few reasons why this occurs. First, the LLM solution often does not abide to the JSON
format required by the submission verifier. As a result, solutions that are almost correct are often
marked as incorrect due to parsing errors. Second, in many tasks, the LLM produces correct action
sequences at first but then produces actions which are invalid in the given environment. For example,
the LLM frequently tries to retrieve items inside closed containers, or requires the character move
when the character is sitting or lying down.

3.1 Iterative Prompt Induction Framework

Our approach operates by generating error logs associated with the LLM solution generated on the
training dataset by the initial provided system prompts (1 and 2 in fig. 1). We initially considered
manually looking through the logs to identify the key mistakes made by the LLM (by eye and by
code). However, this proved to be too time consuming, due to initial provided prompts performing
quite poorly resulting in a large number of mistakes to sieve through. This gave us the idea of simply
making use of an LLM to perform this task, as LLMs are known to be able to extract information and
perform summarization well from long contexts. We integrate and refine these error logs into our
LLM prompts (3 and 4 in fig. 1), generating guardrail statements and "emphasis rules" for the LLM

across different environments. Briefly,

1. During development phase, we use the standard prompts (given by the challenge organizers) with
an Answering LLM to generate default solutions for the development scenarios in the challenge
(11in fig. 1). These solutions are then evaluated using the local evaluation pipeline provided by the
organizers (2 in fig. 1. The evaluation pipeline produces error logs, indicating why a solution is
incorrect - for instance, if our solution contains the action of moving a cup from the top of a book
to the table but the cup currently is not on a book, then the error log would point out this error.

2. We pass these error logs into an Safeguard Generation LLM (3 in fig. 1) to reason about
the most common error types faced during development and generate a list of pre-emptive
safeguards that we include in our prompts (4 in fig. 1). For instance, if the LLM frequently creates
invalid solutions because of missing a closing bracket in its JSON outputs, then the external LLM
will create a pre-emptive safeguard: "When structuring your solution into a JSON file, make sure
the number of closing brackets matches the number of opening brackets". We also ask the LLM to
generate a new prompt that incorporates these safeguards into the original prompts given by the
challenge organizers.

3. Using the new prompt that contains these safeguards, we pass it into the Answering LLM to
generate the solutions for different action tasks during the evaluation phase. Because safeguards
are emphasized in the new prompts, the LLM is less likely to make the same mistakes during
evaluation. What is noteworthy is that these safeguards are generalizable to tasks scenarios not
seen in the development phase. Hence, the optimized prompts generated from the development
phase can be deployed effectively during the evaluation phase.

3.2 Multi-Model Best-of-N at Test Time

Besides prompt-induction—based optimization, we also investigate a test-time scaling strategy that
improves solution quality without modifying model parameters. The baseline we consider is a
standard Best-of-/V (BoN) scheme: for each instance, a single base LLM is queried IV times with
stochastic decoding, and a verifier then selects the best candidate among these samples. While this
approach can reduce random errors, the candidates are still drawn from essentially the same proposal
distribution and often exhibit highly correlated failure modes.

Our method generalizes this idea from “more samples from one model” to “diverse samples
from multiple models”. Concretely, for each task instance we query three heterogeneous LLM
families—Qwen, Gemini, and GPT—using the same task-specific prompt template described in
Section 3. This yields a small but diverse candidate set

C= {CQwem CGemini CGPT},

where each element represents a complete JSON-formatted solution proposed by one model. Com-
pared to repeatedly sampling from a single model, this multi-model design enlarges the effective
proposal space at roughly the same total compute budget.

To choose the final output, we employ a strong LLM verifier as a scoring module. Given all
candidates in C, the verifier is prompted to assess (i) syntactic validity with respect to the required
JSON schema, (ii) consistency with environment and action constraints, and (iii) plausibility of
achieving the given goal. The verifier produces a scalar score for each candidate, and we return the
solution with the highest score as the final prediction:

" = arg max VerifierScore(c).
ce

In practice, we observe that cross-model diversity makes the verifier substantially more effective than
in the single-model BoN setting, since different models tend to make different types of mistakes. As a
result, this multi-model BoN strategy serves as a lightweight yet effective form of test-time compute
scaling that is fully compatible with the overall pipeline in Section 3.

3.3 Critic Best-of-N

In addition, we propose a Critic Best-of-N (Critic BoN) framework to enhance generation quality
through iterative refinement. The workflow initiates with an initial query q (representing the original
goal and constraints) fed into a Generator model, which produces a set of n candidate outputs, denoted
as {01,02,...,0,}.

Subsequently, each candidate is evaluated by a Critic agent. This agent validates the generated
JSON against the original constraints using a specific checklist of instructions. The Critic outputs
a structured JSON object comprising a critique_summary and a list of specific, actionable
issues. If the issues list for any candidate c; is empty, indicating a flawless output, that
candidate is immediately returned as the final result.

If errors persist across all candidates, the system applies a Best-of-N selection strategy to identify
the optimal candidate o* by minimizing the number of identified issues:

0* =0, where k= argmin(|c*"|) (1
i

To facilitate iterative refinement, the selected best candidate and its associated critique summary

(0*, ¢*) are fed back into the Generator. The model then produces N new refined outputs conditioned

on this pair, repeating the cycle until the validation criteria are met.

3.4 Output processing

To prevent parsing errors of the generated output, we performed rejection sampling by checking if the
generated output conforms to a JSON format. This is done during inference time as the LLM outputs
are returned from the API, and any outputs that fail the check are re-queried up to a maximum of 3
times.

4 Insights and Discussion

We further analyze the safeguards produced by the Safeguard Generation LLM and observe
that many of the resulting guardrails correspond to generalizable action-pattern rules that prevent
common classes of errors. Rather than overfitting to specific development scenarios, these safeguards
capture high-level principles that ensure state validity, enforce correct action ordering, and maintain
consistent output formatting. In table 1, we summarize the key categories of safeguards identified
across tasks by GitHub Copilot. Note that these are actual guardrails generated by the Safeguard
Generation LLM.

These safeguards collectively contribute to improved robustness by constraining the LLM to
produce logically consistent, state-valid, and structurally correct action plans across both development
and evaluation scenarios. From our experimental results (Table 4), these guardrails are shown to be
effective and more importantly, generalizable on the evaluation task.

S Experiments

We evaluated our method on the development scenarios provided by the organizers, before moving
onto applying it on the test scenarios (whose performance eventually appears on the leader board).

5.1 [Iterative Prompt Induction Framework

For our leader board submission, we used the Qwen3-235B-Thinking model as our Answering
LLM. For our Safeguard Generation LLM, we surprisingly found GPT-5 via GitHub Copi-
lot’s agent mode to be effective at scanning the error logs and producing safeguards for our optimized
prompts. For the logs to be more informative, we made minor modifications to provided source code
to clean up and format the logs. Due to the long context length of GPT-5 (128,000 tokens), it is
able to ingest the entire log JSON file generated by the verifiers in the development loop, extract

Category Guardrail
Spatial grounding Always WALK to the specific object you act on (not just the room).
State preconditions

e If CLOSED: OPEN.
* If PLUGGED_OUT and needs power: PLUGIN.
* If faucet needed: SWITCHON faucet.

Action orderi
ction ordering « Device use: WALK — (PLUGIN?) — SWITCHON —s USE.

* Cleaning: WALK — WASH — RINSE.
* Drinking: WALK — GRAB — (POUR) — DRINK.

Avoid redundancy Avoid duplicates and irrelevant actions; stop once the goal is satisfied.
Output format Output strictly in the specified JSON schema.
PDDL rules

* The : ef fect lists the changes which the action imposes on the cur-

rent state. The : precondition consists of predicates and 6 pos-

sible logical operators: or, and, not, exists, when, forall.

Effects should generally be several effects connected by and opera-

tors.

For each effect, if it is a conditional effect, use when to check

the conditions. Semantics: (when [condition] [effect])

means if the condition is true before the action, the effect occurs

afterwards.

If it is not a conditional effect, use predicates directly.

* The not operator negates a predicate, meaning the condition will
not hold after the action is executed.

* The forall operator is followed by a variable and a body. Format:
forall (?x - type) (predicatel ?x), meaning for all
objects of that type, the predicate holds.

Table 1: Some of the guardrails generated by the Safeguard Generation LLM (GitHub Copilot) to reduce
errors when generating solutions for development scenarios. These are integrated into by the Safeguard
Generation LLM into the new system prompts.

and reason about the key mistakes made by the Answering LLM and make use of tool calls to
update the prompt. fig. 2 shows a sample section of the prompt and response by the Safeguard
Generation LLM. Our submission used a single prompt induction loop (system prompt was only
updated once by the Safeguard Generation LLM).

As shown in table 1, we noticed that the Safeguard Generation LLM would frequently
classify similar problems and provide guidelines or templates for the Answering LLM to follow.
It also provided checklists for the Answering LLM to verify against before the final output is
produced. This resulted in the greatest performance gains across all tasks. However, we occasionally
still had to manually edit some of the prompts to correct minor mistakes made by the Safeguard
Generation LLM and account for nuances in the problem tasks. For instance, the Safeguard
Generation LLM would occasionally copy extraneous or miss out copying over certain examples
from the logs. However, utilizing the Safeguard Generation LLM drastically reduced the
number of logs we had to manually look through and the amount of effort needed in crafting the
prompts.

5.1.1 Cost analysis of prompt induction optimization

To optimize our prompts, we need to perform one round of answer generation (before using the error
logs to optimize the prompts). Because we mostly used OpenRouter (https://openrouter.
ai/) to generate outputs from Qwen3-235B-Thinking, it is not free to use the Answering
LLM to generate the initial responses. Before we began our experiments, we estimated the cost
needed to perform a single round of answer generation. Although other models such as GPT-5

https://openrouter.ai/
https://openrouter.ai/

might be able to perform better, we chose Qwen3-235B-Thinking as the Answering LLM as
it is Open-source, and has a very competitive pricing on OpenRouter of $0.11 and $0.60 per million
input and output tokens respectively!. As shown in table 2, only approximately $21 is required for
the entire experiment (over 8000 prompts across development and test phases for all 4 tasks over 2
environments). In comparison, GPT-5 costs about $1.25 and $10.00 per million input and output
tokens respectively?, and would have costed more than 10 times as much for the entire experiment.

Table 2: Estimated cost of optimizing prompts using our method. This assumes all queries successful, actual
cost will be slightly higher due to failed generations. Output token length includes reasoning tokens. Cost for
task reports the combined cost for all the prompts in the task.

Environment Task Dev loop Test loop
Mean token length | Cost for | Mean token length | Cost for
Prompt Output| task ($) |Prompt ~ Output| task ($)
behavior goal_interpretation 1216 5717 0.36] 2119 5229 0.35
subgoal_decomposition| 2657 12014 0.75| 3683 8851 0.58
action_sequencing 3415 8188 0.53| 3701 7298 0.50
transition_modeling 3414 10399 0.66| 3660 8352 0.57
virtualhome goal_interpretation 1874 7706 1.65| 2994 5513 5.46
subgoal_decomposition| 3056 7225 1.58| 3571 8386 8.14
action_sequencing 2256 5264 1.16| 3336 5777 5.75
transition_modeling 3635 9902 1.88| 5398 8681 8.70
Total cost 3.75 17.41

5.1.2 Performance gains from optimized prompts

‘ behavior ‘ virtualhome

| Baseline Ours | Baseline Ours

goal_interpretation (f1) 85.4 86.2 37.8 64.5
subgoal_decomposition (task sr) 59.0 79.0 71.3 79.3
action_sequencing (task sr) 72.0 85.0 67.6 92.0
transition_modeling (f1) 58.1 98.9 45.1 99.5
transition_modeling (sr) 96.0 99.0 91.0 99.9

Table 3: Comparison against baseline results by Host_84085_Team on the leaderboard.

We show in table 3 our improvements from the optimized prompts beyond the baseline as reported
by Host_84085_Team on the leaderboard. At the time of writing, our approach ranked second
on the leaderboard, despite not requiring any training and does not seem to be overfitted to the
development set of the behavior set.

To verify the performance gains from the optimized prompts, we evaluated our method over
different smaller LLMs to verify its effectiveness. Table 4 shows our method consistently improves
the task performance of different LLMs over all development tasks significantly even on the smaller
LLMs.

Since we used the same development scenarios to generate the initial error logs and optimized
prompts, it comes at no surprise that our optimized prompts would work well over the same develop-
ment scenarios. For instance, if the development scenarios consistently requires us to move a cup
from the top of a book to the table, and our Answering LLM constantly thinks that the cup is not

Uhttps://openrouter.ai/qwen/qwen3-235b-a22b-thinking-2507/providers
Zhttps://openrouter.ai/openai/gpt-5-chat/providers

on the book (which is an error), then our optimized prompt would safeguard against such common
errors.

Table 4: Overview of results (%) on the evaluation phase. V: VirtualHome, B: BEHAVIOR.

Goal Inter i Action i Subgoal Decomposition Transition Modeling Average Perf.
F TaskSR ExzecSR TaskSR EzecSR F PlannerSR ModuleSR Overall Perf.
Model 14 B v B 14 B v B v B 14 B 14 B v B
Qwen 3 4B 239 39.7 584 39.0 67.0 56.0 549 43.0 79.1 54.0 30.3 359 435 46.0 43.53 40.66 42.09
(+ Optimized Prompt) 38.6 30.6 63.7 41.0 74.6 51.0 55.7 55.0 79.8 70.0 68.8 52.0 47.0 70.0 53.98 46.90 50.44
(t14.7) wo.n (53 (1200 (176 (50 (108 (11200 (107) (1160) (1385 (T16.1) 135 (1240) (1104 (162 (+84)
Qwen 3 8B 234 69.7 58.4 44.0 69.5 58.0 58.9 40.0 81.3 50.0 383 53.7 80.2 73.0 49.99 54.26 52.13
(+ Optimized Prompt) 39.5 733 67.9 56.0 80.7 65.0 61.1 56.0 82.7 70.0 81.0 63.7 925 91.0 6381 65.66 64.74
(16.1) (136 T95) (11200 (T112) (1700 (122 (1160 (T14) (1200) (1427) (1100) (F123) (1180) (T138) (T 114) (112.6)
Qwen 3 14B 248 71.0 66.0 46.0 82.1 58.0 62.5 45.0 82.1 53.0 43.0 59.6 63.5 44.0 51.64 5345 52.54
(+ Optimized Prompt) ~ 41.5 73.0 65.5 570 80.9 65.0 66.3 66.0 86.6 78.0 799 64.6 82.4 83.0 63.61 67.45 65.53
167 (+2.0) @05 (10 (L12) (170 (138) (121.0) (145) 250) (1369) (1500 (1189) (1390) (1120) (1140) (+13.0)
Qwen 3 32B 28.0 65.5 63.2 59.0 773 71.0 659 47.0 86.3 550 454 62.5 76.2 78.0 5448 60.44 57.46
(+ Optimized Prompt) 39.4 68.5 67.4 63.0 81.1 72.0 66.3 66.0 85.7 79.0 78.2 68.3 84.4 89.0 63.60 69.04 66.32
(t11.4) (+3.0) (t42) (140) (138) (T1.0) (104 (1190 (06 (1240 (1328 (158 (182 (T1.0) (19 (186 (18.9)
Qwen 3 30B A3B 26.80 79.10 69.30 53.00 81.50 68.00 61.10 56.00 83.90 66.00 36.70 49.70 82.10 69.00 54.15 61.86 58.01
(+ Optimized Prompt) ~ 42.80 69.70 70.00 5400 83.60 65.00 6430 73.00 86.10 88.00 75.60 61.50 92.60 88.00 6530 67.86 66.58

(116.00) (19.40) (H070) (11.00) (12.10) (13.00) (1320) (117000 (1220) (122000 (13890) (T1180) (11050) (119000 (T1L15) (1600 (18.6)

Next, we applied our method to the evaluation scenarios for the leader board submission. It is
important to note that because the evaluation scenarios for the lead board submission cannot be run
locally, we cannot generate error logs for them and consequentially, cannot specifically optimize
our prompts towards these evaluation scenarios. Instead, we use the optimized prompts from the
development scenarios and use it on the evaluation scenarios.

5.2 Critic BoN Experiments

Table 5: Overview of results (%) on BEHAVIOR for Critic BoN.

Goal Interpretation Action Seq in Subgoal Decomposition Transition Modeling
Average Perf.
Model Refinement F TaskSR FExecSR TaskSR EzecSR F PlannerSR
0 73.47 56.00 64.00 65.00 75.00 62.91 86.00 67.23
1 74.93 51.00 61.00 48.00 57.00 62.67 82.00 61.57
Qwen3-8B 2 75.07 54.00 61.00 46.00 62.00 62.85 81.00 61.75
3 74.98 50.00 59.00 45.00 58.00 62.82 86.00 61.10
4 75.08 52.00 58.00 45.00 56.00 62.78 85.00 61.49
0 76.67 60.00 75.00 64.00 75.00 65.50 86.00 69.10
1 70.48 58.00 66.00 57.00 67.00 65.79 80.00 64.60
Qwen3-14B 2 72.72 61.00 71.00 55.00 64.00 66.03 80.00 65.43
3 72.44 61.00 69.00 58.00 68.00 65.96 82.00 66.35
4 72.61 62.00 72.00 55.00 64.00 65.91 81.00 65.77

Experimental Setup. We evaluated the Critic BoN framework on the BEHAVIOR benchmark using
two base models: Qwen3-8B and Qwen3-14B. The experiments were conducted with a candidate pool
size of N = 4 and a maximum limit of 4 refinement loops per query. We assessed performance across
all four tasks in BEHAVIOR: Goal Interpretation (F), Action Sequencing, Subgoal Decomposition,
and Transition Modeling, reporting both Task and Execution Success Rates (SR) where applicable.

Results. Table 5 summarizes the results. In this configuration, the iterative refinement process did
not yield consistent improvements over the baseline. For both model sizes, the initial generation
(Refinement 0) generally achieved the highest average performance, with Qwen3-8B peaking at
67.23% and Qwen3-14B at 69.10%.

Subsequent refinement iterations resulted in a regression in metrics, particularly within Subgoal
Decomposition, where Qwen3-8B dropped from 65.00% (Refinement 0) to 45.00% (Refinement 4).
While Goal Interpretation remained relatively stable for the 8B model, the 14B model exhibited a
decline from 76.67% to 72.61%. These results suggest that while the Critic mechanism identifies
issues, the iterative loop with N = 4 may introduce instability or over-correction in this specific
domain, preventing the generator from surpassing its zero-shot baseline.

In our final submission, we provided the results of the iterative prompt induction framework.
Although it produced promising results, the BoN approach proved too expensive and time-intensive
to run with our limited budget. Despite this, we believe it can be further integrated to further improve
the performance of the overall framework.

6 Discussion

The safeguards produced by the Safeguard Generation LLM tend to capture high-level rea-
soning patterns rather than scenario-specific heuristics. This contributes to their ability to generalize
to unseen evaluation tasks, even when the underlying error types arise in new forms. In effect, our
approach teaches the LLM how to avoid classes of mistakes, not just how to correct specific instances.
This contrasts with conventional fine-tuning or reward-based methods, which often overfit to the
development data or require costly repeated training cycles.

Another important observation is that integrating safeguards directly into prompts leverages
the LLM’s inherent strengths: rule-following, adherence to explicit constraints, and improved self-
consistency when guidance is clearly specified. By elevating common pitfalls to “emphasis rules,” the
system reduces syntactic, semantic, and state-consistency errors without modifying model weights or
requiring computationally intensive retraining.

Overall, our findings suggest that error-log—guided prompt optimization is a lightweight yet
powerful strategy for enhancing reliability. It provides a scalable path for improving LLM perfor-
mance in structured decision-making tasks where correctness hinges on avoiding subtle logical or
environmental inconsistencies. As LLMs continue to be deployed in increasingly complex domains,
methods that transform error signals into generalizable procedural safeguards may offer an efficient
alternative to model-level optimization.

7 Conclusion

Our method demonstrates that structured error-driven prompt refinement can substantially improve
the robustness of LLM-based planners in embodied or procedural reasoning tasks. A key insight is
that error logs—often treated as terminal outputs of an evaluation pipeline—can instead be repurposed
as a valuable source of supervision. By systematically aggregating these logs and distilling them into
explicit safeguard rules, we create an iterative feedback loop that strengthens the LL.M’s ability to
avoid common failure modes.

Reproducibility Statement

Our experiments made use of open and closed sourced LLMs (Qwen3-235B-Thinking and
GPT-5 respectively). As described in section B, we used greedy sampling with a temperature of 0.0
for more deterministic experiments. Code and prompts used in the experiments will be published on
our GitHub page. Only the development set was used in the development loop of the experiment,
along with information provided by the verifier logs extracted from the provided source code.

References

[1] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2025.

[2] Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem
Gokmen, Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking
Ilms for embodied decision making. Advances in Neural Information Processing Systems,
37:100428-100534, 2024.

[3] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

[4] Yongchao Zhou, Andrei loan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. In The eleventh
international conference on learning representations, 2022.

A Biography of all team members

We are SingaX, a team of PhD students and their advisors from Singapore. Xinyuan Niu and ZhiLiang
Chen are PhD students from National Univeristy of Singapore. Vernon Yan Han Toh and Yanchao Li
are PhD students from Nanyang Technological University of Singapore. Our supervisors, Zhengyuan
Liu, Nancy F. Chen are from Agency for Science, Technology and Research (A*STAR), Singapore.

B Openrouter payload

Below is the payload used to query Openrouter. We used temperature of 0.0, greedy sampling, to
minimize randomness in the experiments.

payload = {

"model": "gwen/gwen3-235b-a22b-thinking-2507",
"temperature": 0.0,
"provider": {
"require_parameters": True,
"quantizations": ["bfle"],
"allow_fallbacks": False,
"sort": "price"

C Prompts to the Safeguard Generation LLM

To query the GPT-5 GitHub Copilot agent, we used the following prompts.
First, we asked the LLM to examine the log file. We attached the system prompt (Python file) and
the log file (JSON file) with this prompt.

Look through the whole JSON file, and summarize the key
mistakes made by the LLM generation for the tasks.

We then asked the LLM to update and improve the prompt based on the points collated from the
above query. We attached the system prompt (Python file) with this prompt for the Copilot to modify.

Improve the prompts to address the issues

Example outputs of these prompts are provided in fig. 2.

D Sample output from the Safequard Generation LLM

Look through the whole file, and summarize the key mist

interpretation_detailed_a

I'll plan the an by tracking tasks, then read the full JSON to identify recurring error patterns and compile a concise summary with representative examples
and sugge

key mistake patterns
ng tool preparation and req

> Cleaning tasks that say “use X" often require explicit prep/pl

Examples:

I'll tighten the prompt template to directly target the failure modes you saw (missed tool prep, incomplete “all” coverage, over- ‘d negatives, missing explicit
onfloor, state-vs-relation mixups) ling must-have rule: ecklist, and a few clear examples to anchor behavior.

actions taken

* Updated = behavior goal interpretatio

> Make tool-prep and placement relations mandatory when “use/usi /containers are mentioned.
> Require explicit mapping from instruction clauses to node vs edge goals
> Enforce minimal excl jatives (only what separation implies).

cross both node and relation goals.

> Prevent over-cleaning or adding extra negatives/states bes
> Add a quality che 7i the model mu: isfy before emitting
> Include three concise concrete examples (car with soa| : jars g eakers next to/under table plus onfloor).

what changed

* Stronger, “shall*-style guidance on:
> Tool prepa
Choosing
> Minimal ex ity : id redundant negatives and containers not implied).
> Exhaustive enumerati I/each.”
> Explicit position edges like onfloor even if under/nextto is present.

Figure 2: Sample outputs from the Safeguard Generation LLM for task behavior task
goal_interpretation. We used Visual Studio’s GitHub Copilot extension with GPT-5 in agent model.
Our method can be easily integrated into the coding workflow as the approach is easily implemented directly in
the code editor with minimal effort.

10

	Introduction
	Related Work
	Method
	Iterative Prompt Induction Framework
	Multi-Model Best-of-N at Test Time
	Critic Best-of-N
	Output processing

	Insights and Discussion
	Experiments
	Iterative Prompt Induction Framework
	Cost analysis of prompt induction optimization
	Performance gains from optimized prompts

	Critic BoN Experiments

	Discussion
	Conclusion
	Biography of all team members
	Openrouter payload
	Prompts to the Safeguard Generation LLM
	Sample output from the Safeguard Generation LLM

