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ABSTRACT

This paper introduces the first formalization, implementation and quantitative
evaluation of Feint in Multi-Player Games. Our work first formalizes Feint from
the perspective of Multi-Player Games, in terms of the temporal, spatial and their
collective impacts. The formalization is built upon Non-transitive Active Markov
Game Model, where Feint can have a considerable amount of impacts. Then, our
work considers practical implementation details of Feint in Multi-Player Games,
under the state-of-the-art progress of multi-agent modeling to date (namely Multi-
Agent Reinforcement Learning). Finally, our work quantitatively examines the
effectiveness of our design, and the results show that our design of Feint can (1)
greatly improve the reward gains from the game; (2) significantly improve the di-
versity of Multi-Player Games; and (3) only incur negligible overheads in terms of
time consumption. We conclude that our design of Feint is effective and practical,
to make Multi-Player Games more interesting.

1 INTRODUCTION

Game simulations, which only use Markov Game Model (Filar (1976)) or its variants (Wampler
et al. (2010); Kim et al. (2022)), breed the needs for the diversity and the randomness to improve the
game experiences. The trends of evolving more details into simulated games demand: ➊ the need for
non-transitivity (i.e. there are no dominant gaming strategies), which allow players to dynamically
change game strategies. In this way, the newly-incorporated strategies can maintain a high level
of the diversity, which guarantee a high extent of unexploitability (Liu et al. (2021)); and ➋ the
strict requirements on temporal impacts (and its implications on spatial and collective impacts),
since modern game simulations are highly time-sensitive ( Nota & Thomas (2020)). Therefore, new
optimizations on these game models are expected to be elegant and easy-to-implement, to preserve
the original spirits of these games.

Our work first builds upon representative examples from the above two trends, by unifying two state-
of-the-art progress of Multi-Player Games: ➊ we use Unified Behavioral and Response Diversity
(described in Liu et al. (2021)), which exploits non-transitivity (i.e. no single dominant strategy
in many complex games), to highlight the importance of the diversity in game policies. Moreover,
we address the issue from their work, which fails to consider the intensity and future impacts from
complex interactions among agents; and ➋ we incorporate Long-Term Behavior Learning (described
in Kim et al. (2022)), which proposes Active Markov Game Model to emphasize the convoluted
future impacts from complex interactions among agents. Based on the above two results, we unify
them as a new model called Non-transitive Active Markov Game Model (NTAMGM), and use it
throughout this work. This unification satisfies the need for a game model where (A) agents have
intense and time-critical interactions; and (B) the design space of game policies is highly diverse.
The definition of NTAMGM is described below.

• Non-transitive Active Markov Game Model: We define a K-agent Non-transitive Active Markov
Game Model as a tuple ⟨K,S,A, P,R,Θ, U⟩: K = {1, ..., k} is the set of k agents; S is the state
space; A = {Ai}Ki=1 is the set of action space for each agent, where there are no dominant actions;
P performs state transitions of current state by agents’ actions: P : S×A1×A2×...×AK → P (S),
where P (S) denotes the set of probability distribution over state space S; R = {Ri}Ki=1 is the set
of reward functions for each agent; Θ = {Θi}Ki=1 is the set of policy parameters for each agent; and
U = {Ui}Ki=1 is the set of policy update functions for each agent.
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Based on the above assumption of Multi-Player Games, our goal is to incorporate Feint, a set of
actions to mislead opponents, for strategic advantages in Multi-Player Games. Prior works
simply incorporate Feint in the context of Two-Player Games (e.g. Wampler et al. (2010); Won et al.
(2021a)), and our works begins by addressing the limitations of the derived version (denoted as
the basic formalization of Feint) from these works. We find that: the basic formalization of Feint
overlooks the complexity of potential impacts in Multi-Player Games, and therefore can not be gen-
eralized for Multi-Player Games. To this end, we deliver the first comprehensive formalization of
Feint, by separating the complex impacts into ➊ the temporal dimension; ➋ the spatial dimension;
and ➌ the collective impacts from these two dimensions. We also show that how the above compo-
nents of our formalization can be synergistically put together. Based on the proposed formalization,
we clear the implementation roadmap, under both Inference Learning and Reinforcement Learning
models, to justify the applicability of our proposed formalization.

To properly examine the benefits of our method, we first extensively build two complex scenar-
ios, using Multi-Agent Deep Deterministic Policy Gradient (MADDPG Lowe et al. (2017)) and
Multi-Agent Actor-attention Critic (MAAC Iqbal & Sha (2019)), with six agents in total. Then,
we implement our formalization upon these two extensively-engineered scenarios. Our quantitative
evaluations show that our formalization and implementations have great potential in practice. We
first show that our work can make the game more interesting, via the following two metrics: for the
Diversity Gain, our method can increase the exploitation of the search space by 1.98X, measured by
the Exploitability metric; and for Gaming Reward Gain, our method can achieve 1.90X and 2.86X
gains, when using MADDPG and MAAC respectively. We then show that our method only incur
negligible overheads, by using per-episode execution time as the metric: our method only introduces
less than 5% more for the time consumption. We conclude that our design of Feint is effective and
practical, to make Multi-Player Games more interesting.

2 BACKGROUND AND MOTIVATION

2.1 EXISTING MARL MODELS

Multi-Agent Reinforcement Learning (MARL) aims to learn optimal policies for agents in a multi-
agent environment, which consists of various agent-agent and agent-environment interactions. Many
single-agent Reinforcement Learning methods (e.g. DDPG Lillicrap et al. (2016), SAC Haarnoja
et al. (2018), PPO Schulman et al. (2017) and TD3 Fujimoto et al. (2018)) can not be directly used in
multi-agent scenarios, since the rapidly-changing multi-agent environment can cause highly unsta-
ble learning results (evidenced by Lowe et al. (2017)). Thus, recent efforts on MARL model designs
aim to address such an issue. Foerster et al. (2018) proposes Counterfactual Multi-Agent (COMA)
policy gradients, which uses centralised critic to estimate the Q-function and decentralised actors
to optimize agents’ policies. Lowe et al. (2017) proposes Multi-Agent Deep Deterministic Policy
Gradient (MADDPG), which decreases the variance in policy gradient and instability of Q-function
of DDPG in multi-agent scenarios. Iqbal & Sha (2019) proposes Multi-Agent Actor-attention Critic
(MAAC), which applies attention entropy mechanism to enable effective and scalable policy learn-
ing. These models can have varied impacts within a diverse set of scenarios.

2.2 FEINT IN A NUTSHELL

Feint is common for human players, as a set of active actions to obtain strategic advantages in
real-world games. Examples can include sports games such as boxing, basketball and car racing
Güldenpenning et al. (2017; 2018); Hyman (1989), and electronic games such as King of Fighters
and Starcraft Team (2021); Critch & Churchill (2021). Though Feint is undoubtedly important in
game simulations, there still lacks a comprehensive formalization of Feint for Non-Player Characters
(NPCs) in Multi-Player Games. Only a limited amount of works tackle this issue. Wampler et al.
(2010) is an early example to incorporate Feint as a proof-of-concept, which focuses on constructing
animations for nuanced game strategies for more unpredictability from NPCs. More recently, Won
et al. (2021a) uses a set of pre-defined Feint actions for the animation, which further serves under
an optimized version of control strategy based on Online Reinforcement Learning (i.e. in animating
combat scenes). However, these prior works (1) solely focus on Two-Player Games, which can not
be effectively generalized to multi-player scenarios; and (2) lack an comprehensive exploration of
potential implications from Feint actions in game strategies.
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2.3 NOVELTY OF OUR WORK

The novelty of our work is three-folded. First, our work introduces the first formalization of Feint ,
which can be generalized to Multi-Player Games. Prior works solely focuses on Two-Player Games,
which have the flexibility and scalability issue from the basic formalization. Second, our work
provides effective implementations of Feint in Multi-Player Games, by exploiting our formalization
appropriately on common parts of MARL models (i.e. the reward function). Our formalization can
be applied to existing MARL models, and is expected to be applicable in future MARL models.
Third, our work identifies the unique characteristics of Feint , by differentiating Feint with other
regular actions. Hence, our work is expected to be applicable in different scenarios, with only a
limited amount of refinements.

3 FEINT FORMALIZATION

3.1 THE BASIC FORMALIZATION: DERIVATION AND LIMITATIONS

We summarize two major limitations of existing works to justify that they cannot deliver a sufficient
formalization of Feint in Multi-Player Games. Since there are no prior formalization, we discuss
relevant works and derive the key features to discuss them in detail.

➊ The basic formalization on temporal impacts is insufficient for Multi-Player Games. Multi-Player
Games require agents to account for future planning for decision-making, which is critical for de-
ceptive actions like Feint Mnih et al. (2013); Naik et al. (2019); Nota & Thomas (2020). Sev-
eral works simplify the temporal impacts of deceptive game strategies in different gaming scenar-
ios. Mnih et al. (2013) uses a discount factor γ to calculate the reward for following actions as∑∞

t=0 γ
tRi(st, a

i
t, a

−i
t ) for agent i. However, such a method suffers from the ”short-sight” issue

Naik et al. (2019), since the weights for future actions’ rewards shrink exponentially with time,
which are not suitable for all gaming situations (discussed in Nota & Thomas (2020)). More re-
cently, Kim et al. (2022) applies a long-term average reward, to equalize the rewards of all future
actions as 1

T

∑T
t=0 R

i(st, a
i
t, a

−i
t ) (i.e. for agent i). However, such a method is restricted by the

”far-sight” issue, since there are no differentiation between near-future and far-future planning. The
mismatch between abstraction granularity heavily saddles with the design of Feint , because they
use relatively static representations (e.g. static γ and T ). Therefore, they cannot be aware of any
potential changes of strategies in different phases of a game. Hence, the temporal dimension is
simplified for the basic Feint formalization.

➋ The basic formalization cannot be effectively generalized to Multi-Player Game scenarios. Prior
works, which attempt to fuse Feint into complete game scenarios, only consider two-player scenar-
ios Won et al. (2021a); So et al. (2022). However, in Multi-Player (more then two player) Games,
gaming strategies (especially deceptive strategies) yield spatial impacts on other agents. Such im-
pacts have been overlooked by all prior works. This is because an agent, who launches the Feint
actions, can impact not only the target agent but also other agents in the scenario. Therefore, the
influences of such an action needs to account for spatial impacts Liu et al. (2021). Moreover, with a
new dimension accounted, the interactions between these two dimensions also raise a potential issue
for their mutual collective impacts.

3.2 OUR FORMALIZATION: GENERALIZED FOR MULTI-PLAYER GAMES

Therefore, to deliver an effective formalization of Feint in Multi-Player Games, it’s essential to
consider the temporal, spatial and their collective impacts comprehensively. We first discuss the
Temporal Dimension, then elaborate our considerations on Spatial Dimension, and finally summa-
rize the design for the collective impacts from both temporal and spatial dimensions.

3.2.1 TEMPORAL DIMENSION: INFLUENCE TIME

Different from prior works, our work consider the temporal dimension of Feint impacts by emulating
them in a Dynamic Short-Long-Term manner. The rationale behind such a design choice is that:
the purpose of Feint is to obtain strategic advantages against the opponent in temporal dimension,
aiming to benefit following attacks. Hence, the Dynamic Short-Long-Term temporal impacts of
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Feint shall be (1) the actions that follow Feint actions (e.g. actual attacks) in a short-term period
of time should have strong correlation to Feint ; (2) the actions in the long-term periods explicitly
or implicitly depend on the effect of the Feint and its following actions; and (3) for different Feint
actions in different gaming scenarios, the threshold that divides short-term and long-term should be
dynamically adjusted to enable sufficient flexibility in strategy making.

For Dynamic Short-Long-Term, we first set up a short-term planning threshold st to select the follow-
up actions, which are decided by Feint policy π

′

i at t0. Note that actions {ait0+1, ..., a
i
t0+st} are

strongly related to the Feint action ait0 . For the actions bounded by the short-term threshold, a set of
large weights α = {αt0 , ..., αt0+st} are used to calculate the reward:

Rewshort−term(π
′

i, t0, st, α) = αt

t=t0+st∑
t=t0

Ri(st, a
i
t, a

−i
t ) (1)

since these actions are expected to deliver higher reward (i.e. the purpose of Feint is to obtain
strategic advantages) via the Feint action. We then consider long-term planning after the short-term
planning threshold st: we use a set of discount factor β = {βt0+st+1, ..., βT } on the long-term
average reward calculation (proposed by Kim et al. (2022)), to distinguish these reward from short-
term rewards:

Rewlong−term(π
′

i, t0, st, T, β) = βt
1

T

T∑
t=t0+st+1

Ri(st, a
i
t, a

−i
t ) (2)

where T denotes the end time of the game.

Finally, we put them together to formalize the Short-Long-Term reward calculation mechanism,
when an agent i plans to perform a Feint action at time t0 with a short-term planning threshold st
and the end time of game T as:

Rewtemporal(π
′

i, t0, st, T, α, β) = λshortRewshort term(t0, st, α)+λlongRewlong term(t0, st, T, β)
(3)

where λshort and λlong are weights for dynamically balancing the weight of short-term and long-
term rewards for different gaming scenarios. λshort and λlong are initially set as 0.67 and 0.33 and
are adjusted to achieve better performance with the iterations of training.

3.2.2 SPATIAL DIMENSION: INFLUENCE RANGE

In a Multi-Player Game (i.e. usually more than two players), the strict one-to-one relationship be-
tween two agents is not realistic, since an agent can impact both the target agent and other agents.
Therefore, the influences to all other agents shall maintain different levels Liu et al. (2021). There-
fore, our work includes the spatial dimension of Feint impacts by fusing spatial distributions. The
key idea of this design is to combine spatial distribution with the influence range during the game.
More specifically, we incorporate Behavioral Diversity from Liu et al. (2021), to mathematically
calculate and maximize the diversity gain of Feint actions in terms of the influence range.

We formalize the influence range of an action policy on K agent based on
S × Ai × ... × AK , which follows a distribution of multi-to-one relationships
T → (α1T(i,1), α2T(i,2), ..., αKT(i,K)). The influence distribution can have different
factors in different gaming scenarios. We demonstrate a set of commonly used factors
in boxing games Won et al. (2021b) where agent i plays against opponent −i : V =

(Ak
i , A

j
−i, positions(i,−1), orientations(i,−i), linear velocities(i,−i), angular velocities(i,−i)),

in which the factors represent the chosen action k of agent i, the chosen action j of opponent −i,
the relative positions, the relative moving orientations, the linear velocities and angular velocities
of agent i and opponent −i. When a Feint policy π′

i is added, we aim to maximize the effective
influence range under the influence distribution of Feint . Assuming the row agent i maintains
a policy pool Pi = {π1

i , π
M
i }, such influence distribution can be fused into Behavior Diversity

measurement of the effective influence range by maximizing the discrepancy between the old
influence effectiveness of policy occupancy measure ρπE

(T ) and the influence effectiveness when
adding Feint policy of new policy occupancy ρπ′

i ,πE−i
(V ′):
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maxπ′
i
Rewspatial(π

′

i, V
′) = Df (ρπ′

i,πE−i
(V ′) || ρπE

(V )) (4)

where the general f -divergence is use to measure the discrepancy of two distributions.

3.2.3 COLLECTIVE IMPACTS: INFLUENCE DEGREE

Solely relying on Temporal Dimension and Spatial Dimension overlooks the interactions between
them, and these two dimensions are expected to have mutual influences for a realistic modeling Liu
et al. (2021). Therefore, we consider the influence degree, so the collective impacts of these two
dimensions can be aggregated in a proper manner.

We formulate the collective impacts for a Feint policy π
′

i in a Multi-Player Game that starts at t0 and
end at T as:

Rewcollective(π
′

i) = µ1

k∑
i=1

Rewtemporal(i, π
′

i, t0, st, T, α, β)+µ2

st∑
t=t0

max
π
′
i

Rewspatial(π
′

i, V
′, t)

(5)
where temporal impacts Rewtemporal (Section 3.2.1) are aggregated on spatial domain and spa-
tial impacts Rewspatial (Section 3.2.2) are aggregated on temporal domain. µ1 and µ2 denote the
weights of aggregated temporal impacts and spatial impacts respectively, enabling flexible adap-
tion to different gaming scenarios. They are initially set as 0.5 and are adjusted to achieve better
performance with the iterations of training.

In addition to the collective impact of Feint itself in terms of temporal domain and spatial domain,
our formalized Feint impacts can also result in response diversity of opponents, since different re-
lated opponents (spatial domain) at different time steps (temporal domain) can have diverse re-
sponse. Such diversity can be used as a reward factor that make the final reward calculation more
comprehensive Nieves et al. (2021); Liu et al. (2021). Thus, to incorporate such diversity together
with our final reward calculation model, we refer to Liu et al. (2021) to characterize the diversity
gain incurred by our collective impact formalization. When the impact Rewcollective of Feint pol-
icy πM+1 in a M × N payoff matrix APi×Pi

at when opponents choose policy πj
−i is collectively

calculated, the derived diversity gain can be measured as follows:

Rewcollective−diversity(π
M+1
i ) = D(aM+1 || APi×Pi

) (6)

aTM+1 := (Rewcollective(π
M+1
i , πj

−i))
N
j=1. (7)

where D(aM+1 || APi×Pi) represents the diversity gain of the Feint action on current policy space.
We follow the method in Liu et al. (2021) for the quantification of diversity gain.

4 FEINT IMPLEMENTATIONS

4.1 IMPLEMENTING THE FORMALIZATION AS A COLLECTIVE REWARD CALCULATION

To provide a comprehensive reward calculation model for Feint in Multi-Player Games, we synthe-
size the above collective impacts and collective diversity gain into the overall Reward Calculation
Model. The robustness of similar design idea is proved in Liu et al. (2021) that the synthesised
direct impacts and diversity gain can provide a more comprehensive reward calculation model for
each player. Thus, we synthesize the collective impacts (Equation 5) and collective diversity gain
(Equation 6) for a Feint policy π

′

i into the overall Collective Reward Calculation Model by applying
weighted sum λ1 of collective impact and λ2 of collective diversity gain:

Rewi(π
′

i) = λ1Rewcollective(π
′

i) + λ2Rewcollective−diversity(π
′

i) (8)

4.2 FOR INFERENCE LEARNING MODELS

Inference Learning module is used to predict whether an observed action is Feint or not and policy
parameters of θ−i and policy dynamics U−i. Model-based approaches use an explicit model to

5



Under review as a conference paper at ICLR 2023

fit an agent with the learning strategies of other agents from the observation Kim et al. (2021) but
often suffer from the infinite recursion problem when an agent the model models the agent it self
Tesauro (2003). Blei et al. (2016) proposes a model-free approach using approximate variational
inference and Kim et al. (2022) optimizes a tractable evidence lower bound to infer accurate latent
strategies of others. We add a random weight onto the ELBO to fit the randomness and uncertainty
incurred by Feint actions. Specifically, the random-weighted ELBO is defined together with an
encoder p(ẑ−i

k+1 | τ i0:t;ϕ
i
enc; γ

i
enc) and a decoder p(a−i

t | st, ẑ
−i
t ;ϕi

dec; γ
i
dec) parameterized by a

set of encoder and corresponding random weighted decision parameters {ϕi
enc; γ

i
enc} and a set of

decoder and corresponding random weighted decision parameters {ϕi
dec; γ

i
dec}:

J i
elbo = Ep(τ i

0:t),p(ẑ
i
0:t|τ i

0:t;ϕ
i
enc;γ

i
enc)

[

t−1∑
k=0

log p(a−i
k | sk, ẑ−i

k ;ϕi
dec; γ

i
dec)

−DKL(p(ẑ
−i
k+1 | τ i0:k;ϕi

enc; γ
i
enc) || p(ẑ−i

k ))]

(9)

where ẑ−i
t are latent strategies that represent inferred policy parameters of other agents θ−i

t and
τ i0:t = {s0, ai0, a−i

0 , rio, ..., st} denotes i’s trajectories up to timestep t. The random weight param-
eters γi

enc and γi
dec enable agents to randomly guess the probability of whether an action is a Feint

action or not from the observations, since no inferred policy can properly select a Feint action.

4.3 FOR REINFORCEMENT LEARNING MODELS

Reinforcement Learning module updates the policy using various gradient ascending mechanisms
Lowe et al. (2017); Iqbal & Sha (2019); Yu et al. (2021). Although these designs are different, one of
the key components in policy updating is the reward function Q, which directly evaluates the reward
of the policy and guides the policy updating process. Our proposed reward calculation mechanism
(Section 3) can thus be fused into the MARL model by replacing the Q functions. Such replacement
can directly provide temporal, spatial and their collective considerations in policy making and keep
the main structures of current MARL models. Thus, Feint actions can be effectively fused into
policy learning process in current MARL models based on our reward calculation mechanism. We
demonstrate the feasibility of fusion using two state-of-the-art MARL models, MADDPG Lowe
et al. (2017) and MAAC Iqbal & Sha (2019) below.

In a K-agent game, agents {a1, ..., ak} maintain policies π = {π1, ..., πk} parameterized by θ =
{θ1, ..., θk}, where the policies for other agents are inferred from the Inference Learning module 4.2.
Each agent i evaluates the expected reward Qπ

i (s, a1, ..., an) at state s using reward term Rewi(s)
in Equation 8.

In MADDPG Lowe et al. (2017) model, centralized critic Qπ
i (s, a1, ..., an) is used on decentralized

execution to provide global information that can stabilize training. The centralized critic can be
replaced by our reward calculation mechanism and the gradient descent of the policy learning is:

∇θiJ(θi) = Es pu,ai πi
[∇θi ] log πi(ai | oi)Rewi(s)] (10)

where Rewi(s) is naturally fused into the gradient update function and provide influence range,
influence degree and influence time length for adjusting learning outcomes.

In MAAC model Iqbal & Sha (2019), although the policy update mechanisms vary, the key part
of policy updates is still the Qπ

i (s, a1, ..., an) function, which can also be replaced by our reward
calculation term. The slight difference is that MAAC uses a temperature parameter α to balance
between the entropy and rewards. Therefore, the gradient ascent for updating policy is:

∇θiJ(θi) = Es pu,ai πi
[∇θi ] log πi(ai | oi)(−α log πi(ai | oi) +Rewi(s))] (11)

where Rewi(s) replace the original Qπ
i (s, a1, ..., an) function and the multi-agent advantage func-

tion b(o, aı), since the expected return of multi-action interactions are already comprehensively cal-
culated in Rewi(s). Thus, our proposed reward calculation can be seamlessly fused into state-of-
the-art MARL models with simple replacement of the original Q-function while guaranteeing the
feasibility.
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5 EXPERIMENTAL METHODOLOGY

Testbed Implementations. We implement two complex Multi-player Games to examine the ef-
fectivenss of our design. We first re-implement and extend a strategic real-world game, AlphaS-
tar Arulkumaran et al. (2019), which is widely used as the experimental testbed in recent studies
of Reinforcement Learning studies Risi & Preuss (2020); Liu et al. (2021). We make extra ef-
forts to emulate a six-player game, where players are free to have convoluted interactions with each
other. And we implement Feint as dynamically generated policies, based on the 888 regular gaming
policies. Then, we create a complex multi-player tagging game, based on Multi-Agent Particle En-
vironment Mordatch & Abbeel (2017), an open-source environment from OpenAI. We handcraft a
tagging game scenario, where six agents can freely fight with each other with 30 nuanced and flexi-
ble actions. Such an implementation requires an extensive amount of efforts since current available
codebases only have a limited set of actions, which are insufficient to demonstrate the impacts of
Feint . We follow the methodology from Wampler et al. (2010); Won et al. (2021a) to form Feint
actions, based on 30 hand-crafted actions. Our tagging game resembles intense free fight scenar-
ios in ancient Roman free fight scenarios Matz (2019), where interactions are intense and Feint is
expected to be effective.

Experiment Procedure. We choose MADDPG Lowe et al. (2017) and MAAC Iqbal & Sha (2019)
model in our experiments. We first train all six agents without Feint from our formalization on the
state-of-the-art MARL models. Then we randomly select 3 agents (always labeled as Agent 1, 2, and
3), who incorporate our formalization of Feint , and keep the other 3 agents regular. All experiments
are done with 4,000 training iterations on each model and 150 gaming iterations.

Evaluation Metrics. We examine the effects of Feint using ➊ gaming rewards of training, ➋ di-
versity gain of policy space and ➌ overhead of computation load. We first examine the learning
outcomes (i.e. rewards) trained using both MADDPG and MAAC MARL model, by comparing the
rewards of agents across all scenarios. We then examine the effects of Feint actions on how Feint
can improve the diversity of gaming policies (Section 3). Finally, we perform overhead analysis,
incurred by fusing Feint formalization in strategy learning.

6 EXPERIMENTAL RESULTS

6.1 GAMING REWARD GAIN

Figure 1 shows the rewards for each agent in two scenarios using MADDPG model. We make three
observations. First, in ➊ in Figure 1, when no Feint is enabled, all agents’ rewards tend to progress to
a similar level when after enough training iterations. However, in ➊ in Figure 1, when Feint actions
are enabled on agent 1, 2, and 3, these agents gain significantly higher rewards than the agents who
are not enabled to perform Feint actions (agent 4, 5, and 6). Second, when comparing ➊ with ➋, the
average rewards for agents who perform Feint actions (agent 1, 2, and 3 in ➋) is around 9.5, which
is higher than the average rewards (around 5.0) for agents who do not perform Feint actions (all
agents in ➊). These two observations demonstrate that our formalized Feint can provide effective
improvement for agents’ rewards. Third, the training results before 1000 iterations are not stable for
both scenarios. This is mainly because the natural characteristics of MADDPG training process in
which the training stables generally after 2000 iterations Lowe et al. (2017).

Figure 2 shows the rewards for each agent in two scenarios using MAAC model. When comparing
to the results trained with MADDPG model, though the rewards differ in specific numbers, similar
trends and observations are shown. First, when no Feint are enabled, all agents’ rewards tend to
progress to a similar level when after enough training training iterations (➊ in Figure 2), while when
Feint actions are enabled on agent 1, 2, and 3, these agents gain significantly higher rewards than
the agents who are not enabled to perform Feint actions (agent 4, 5, and 6) (➋ in Figure 2). Second,
when comparing ➊ with ➋, the average rewards for agents who perform Feint actions (agent 1, 2,
and 3 in ➋) is around 10.0, which is higher than the average rewards (around 3.5) for agents who
do not perform Feint actions (all agents in ➊). And third, training in MAAC also suffers unstable
results before the first 1000 iterations. With the comparison of the results for MADDPG and MAAC
model, we have an addition observation that our formalized reward calculation for Feint actions and
the MARL fusion can be effectively adapted on current state-of-the-art MARL models, providing
promising feasibility and scalability for extension studies.
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Figure 1: Reward for each agent in two scenarios trained by MADDPG. ➊ shows rewards for the
first scenario where agents are not enabled Feint actions. ➋ shows rewards for the second scenario
where agent 1, 2, and 3 are enabled Feint actions while agent 4, 5, and 6 are not enabled Feint
actions.

Figure 2: Reward for each agent in two scenarios trained by MAAC. ➊ shows rewards for the first
scenario where agents are not enabled Feint actions. ➋ shows rewards for the second scenario where
agent 1, 2, and 3 are enabled Feint actions while agent 4, 5, and 6 are not enabled Feint actions.

6.2 DIVERSITY GAIN

To examine the impacts on the policy diversity in games, we perform a comparative study between
MARL training with and without Feint . Specifically, We use Exploitability and Population Efficacy
(PE) to measure the diversity gain in the policy space. Exploitability Lanctot et al. (2017) measures
the distance of a joint policy chosen by the multiple agents to the Nash equilibrium, indicating the
gains of players compared to their best response. The mathematical expression of Exploitability is
expressed as:

Expl(π) =

N∑
i=1

(maxπ′
i
Rewi(π

′
i, π−i)−Rewi(π

′
i, π−i)) (12)

where πi stands for the policy of agent i and π−i stands for the joint policy of other agents. Rewi

denotes our formalized Reward Calculation Model (Section 4.1). Thus, small Exploitability values
show that the joint policy is close to Nash Equilibrium, showing higher diversity. In addition, we also
use Population Efficacy (PE) Liu et al. (2021) to measure the diversity of the whole policy space.
PE is a generalized opponent-free concept of Exploitability by looking for the optimal aggregation
in the worst cases, which is expressed as:

PE({πk
i }Nk=1) = minπ−imax1⊤α=1 ai>=0

N∑
k=1

αkRewi(π
k
i , π−i) (13)

where πi stands for the policy of agent i and π−i stands for the joint policy of other agents. α denotes
an optimal aggregation where agents owning the population optimizes towards. Rewi denotes our
formalized Reward Calculation Model (Section 4.1) and opponents can search over the entire policy
space. PE gives a more generalized measurement of diversity gain from the whole policy space.

8
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Figure 3 shows the experimental results for evaluating diversity gains. From the figure, we obtain
two observations. First, agents that can dynamically perform Feint actions (Agent 1, 2, and 3)
achieve lower Exploitability (around 4.9 × 10−2) compared to agents who perform regular actions
(around 9.7 × 10−2) and have higher PE (lower negative PE - around 5.3 × 10−2) than those who
only perform regular actions (around 1.2 × 10−2). This result shows that our formalized Feint
can effectively increase the the diversity and effectiveness of policy space. Second, agents with
Feint have slightly higher variations in both metrics. This is because Feint naturally incurs more
randomness (e.g. succeed or not) in games, resulting in higher variations in metrics.

Figure 3: The difference for each agent, in terms of ➊ the exploitablity; and ➋ the negative popula-
tion efficacy.

6.3 OVERHEAD ANALYSIS

Figure 4 shows the results of our overhead analysis. We make two observations. First, fusing Feint
in MARL training do incur some overhead increment in terms of running time. This is because
the formalization and fusion of Feint in MARL incur additional calculation load. Secondly, in
both MADDPG models and MAAC models, the increased overhead is generally lower than 5%,
which still indicates that our proposed formalization of Feint actions can have enough feasibility
and scalability on fusing with MARL models.

Figure 4: Overhead of Feint in ➊ MADDPG; and ➋ MAAC models.

7 CONCLUSION

We present the first formalization, implementation and quantitative evaluations of Feint in Multi-
Player Games. Our work formalizes, implements and quantitatively examines Feint in Multi-Player
Games, on the temporal, spatial and their collective impacts. The results show that our design of
Feint can (1) greatly improve the reward gains from the game; (2) significantly improve the diversity
of Multi-Player Games; and (3) only incur negligible overheads in terms of the time consumption.
We conclude that our design of Feint is effective and practical, to make Multi-Player Games more
interesting. Our design is also expected to be applicable for future models of Multi-Player Games.
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