Learning the boundary-to-domain mapping using Lifting Product Fourier
Neural Operators for partial differential equations

Anonymous Authors'

Abstract

Neural operators such as the Fourier Neu-
ral Operator (FNO) have been shown to pro-
vide resolution-independent deep learning mod-
els that can learn mappings between function
spaces. For example, an initial condition can
be mapped to the solution of a partial differen-
tial equation (PDE) at a future time-step using a
neural operator. Despite the popularity of neu-
ral operators, their use to predict solution func-
tions over a domain given only data over the
boundary (such as a spatially varying Dirichlet
boundary condition) remains unexplored. In this
paper, we refer to such problems as boundary-
to-domain problems; they have a wide range of
applications in areas such as fluid mechanics,
solid mechanics, heat transfer etc. We present
a novel FNO-based architecture, named Lifting
Product FNO (or LP-FNO) which can map ar-
bitrary boundary functions defined on the lower-
dimensional boundary to a solution in the entire
domain. Specifically, two FNOs defined on the
lower-dimensional boundary are lifted into the
higher dimensional domain using our proposed
lifting product layer. We demonstrate the efficacy
and resolution independence of the proposed LP-
FNO for the 2D Poisson equation.

1. Introduction

Computer simulations for real-world science and engineer-
ing problems can be complicated to set up, require knowl-
edge of numerical methods, and may take a large amount
of computational resources to compute a solution. Further-
more, there are some disciplines where the governing par-
tial differential equations (PDEs) are not known with ad-
equate certainty. In these scenarios, surrogate models are

! Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

attractive. These may be derived (simplified) from the gov-
erning equations by analysis or generated from data gath-
ered in a laboratory or in the real world. In this work,
we focus on data-driven surrogate models for phenom-
ena governed by PDEs, particularly neural network-based
methods. Neural networks that represent maps from the
spatio-temporal domain (the region of interest) to the solu-
tion for one instance of a PDE, or family of PDEs param-
eterized by a few parameters, have been developed over
the last several years. This has mainly been in the con-
text of physics-informed neural networks (PINNs) (Raissi
et al., 2019; Chen et al., 2020) for both forward and in-
verse problems. However, PINNSs typically do not general-
ize to an adequately large parameter range (Krishnapriyan
etal., 2021). Further the initial and boundary conditions are
baked into the model during training and cannot generalize
when these are changed.

A different approach is to use an operator approach to map
the entire input (a function over the spatial domain or its
boundary) to the solution of the PDE, another function
over the domain. For example, non-homogeneous mate-
rial properties a : 2 — R can be mapped to the solution
u : £ — R of the heat equation. If the domain is a rectangle
and the input function is discretized on a regular Cartesian
grid, this can be done by convolutional neural networks.
The ‘DeepONet’ architecture (Lu et al., 2021) is an oper-
ator learning method that uses fully connected or convolu-
tional neural networks to process the input function in the
‘branch’ sub-network of their architecture, which can then
be evaluated at different spatio-temporal coordinates using
a separate ‘trunk’ sub-network. These operator approaches
can have a much better payoff for the cost of training the
models because the same model can now accept different
spatially-varying parameter functions and initial conditions
as input and predict the corresponding solution, rather than
having them baked-in during training. However, an issue
with such models is that they are not fully ‘resolution-
agnostic’; that is, they are designed for a fixed discretiza-
tion of the input and output functions. Although the Deep-
ONets are considered to be resolution-agnostic with regard
to the output function that can be evaluated at any one point
at each inference, the input to the branch network is still
constrained to a particular discretization. Furthermore, al-

Boundary to Domain Mapping using LP-FNO for PDEs

though adjustments can be made to convolution-based ar-
chitectures to accept inputs of any size, they are typically
not ‘resolution-independent’, in that the accuracy suffers
significantly if tested on resolutions unseen during training
(Li et al., 2020).

Neural operators (Li et al., 2020; Kovachki et al., 2022)
are a class of resolution-independent neural network-based
operator models for PDE problems. One of these architec-
tures, the Fourier Neural Operator (FNO) (Li et al., 2021)
has gained popularity in such fields as weather modeling
(Kurth et al., 2023; Bonev et al., 2023). However, neu-
ral operators have been primarily explored for domain-to-
domain mappings where the input is a function over the en-
tire domain (typically an initial condition or material prop-
erties), and the output is over the entire domain as well (typ-
ically the solution at a later time). Despite the popularity
of neural operators, their use to predict solution functions
over a domain given only data over the boundary (such as
a spatially varying Dirichlet boundary condition) remains
unexplored.In this paper, we refer to such a problem as a
boundary-to-domain (B2D) problem. This type of prob-
lems has a wide spectrum of applications in areas such as
fluid mechanics, solid mechanics, heat transfer etc.

To address the challenge, we aim to develop a Fourier neu-
ral operator (FNO) based architecture for a boundary-to-
domain problem in PDE simulation. In other words, we
ask the question: how can we predict the solution over
the domain, given a function over the boundary (a bound-
ary condition) as input? To this end, we propose a novel
FNO-based architecture, named Lifting Product-FNO (or
LP-FNO) which can map arbitrary boundary functions de-
fined on lower-dimensional manifolds to the entire solution
domain. In particular, we extract hidden representations
from two different FNOs defined on the lower-dimensional
boundary domains, which are then lifted into the domain
using a novel lifting product layer. For a simple, 1D bound-
ary to a 2D domain problem, this lifting product operation
is simply an outer product. In this paper, we demonstrate
the B2D problem for the two-dimensional (2D) Poisson
equation with non-homogeneous spatially-varying Dirich-
let boundary conditions. We demonstrate the efficacy and
resolution-independence of our proposed LP-FNO on this
problem.

2. Boundary-to-Domain problem for PDEs

We define the boundary to domain problem for PDEs in
this section. Suppose 2 C R represents a region in d-
dimensional space (usually, d = 1,2, 3) with boundary 9f).
An arbitrary PDE can be represented as

R(u(xz,t)) =0, xzeQ, tel0,T], (1)

with boundary conditions

b(u(z,t)) =0 €N, tel0,T] (2)

where u € C([0,T], L*(Q))™, the state, is a set of func-
tions defined on the domain of interest (2 x [0, T']) in space-
time, R is a linear or nonlinear differential operator on the
space of states, and b is an operator on the space of traces
of the solution on the boundary 052 of the domain. Steady-
state scalar PDEs are those that do not depend on time and
have a single variable of interest v € L?({2). An example
is the Dirichlet problem for the Poisson equation:

7V2U($) = fa

u(z) =g

zcQ, 3)
x € 0N. 4)

In this paper, we define the boundary-to-domain problem
for PDEs as one of predicting the n-dimensional solution
functions that obeys the PDE, given (n — 1)-dimension
functions over the boundary that represent the boundary
conditions. Our aim is to learn the map

G: D C Ly(09) — Ly(Q).)

In the case of the Poisson problem, this would map the
boundary function g in equation (4) to the solution u.

3. Lifting Product Fourier Neural Operator

Let g : ' — R™ be the input boundary function for m
physical variables (where I' C 0f2). The schematic of our
proposed Lifting-Product FNO (LP-FNO) is illustrated in
figure 1, where we generate two separate feature represen-
tations of the input function. These are generated by two
FNO blocks, each of which takes the boundary function g
as the input.

FNO involves a hidden embedding space of dimension n,
(Li et al., 2021). Assuming g is discretized by N points,
initially, hidden representations h € R™V*"< are generated
by a learned point-wise lifting operator @ : R™ — R",
not to be confused with the lifting product described later
in this section:

An FNO block consists of several FNO layers. Each FNO

layer Fp, : RV*7e — RNX%e parameterized using 6; for
i € {1,2} is given by (Li et al., 2021)

Fy,(h) = o(F '(Ri(F(h)+Wh) (1)

or, ng = O’(‘/.'.ilRif + WZ) (8)

where F is the lower-dimensional real Fourier transform.
R is a learned linear operator that acts independently on
each mode of the Fourier transform but couples the dif-
ferent ‘channels’ of the n.-dimensional embedding space.

Boundary to Domain Mapping using LP-FNO for PDEs

1D FNO
V1=T"R1’FV

Lifting
Q

1D
boundary
function

Lifting
Q

1D FNO
=1
V,=F'R,FV

Lifting
product

w=v v,

Pointwise lifting and
projection
u=Pw

2D solution

Figure 1. A schematic representation of the LP-FNO architecture example for the 1D to 2D case

W . R" — R" is a point-wise linear neural network
layer and o applies a scalar nonlinear activation to each
hidden channel at each grid point. We observe that the op-
erations responsible for globally coupling all points in the
spatial grid are the forward and inverse Fourier transforms.

Let P be a point-wise linear projection down from the em-
bedding space to the state space of the PDE. Then LP-
FNO, with [layers of lower-dimensional FNO in each FNO
block, can be written as

l

j=1
u = P(v; ® vs), (10)

where [] denotes sequential composition of functions.
Note that the lifting product ® : L?(R%) x L?(R%) —
L?(R*1), to be defined below in the discrete sense, acts
separately on each embedding dimension. W, @) and P all
act separately at each point in physical space using feedfor-
ward neural networks. The projection operator P : R —
R™ projects back to the space of physical variables.

Lifting Product: Let a and b be two (discretized) func-
tions on the lower-dimensional boundary of a rectangular
domain. The tensor operation that lifts the input to a higher
dimensional function ¢ can be written as

Cij = aibj in 1D to 2D hftlng (l 1)

and

Crij = ai;0;, in 2D to 3D lifting (12)
(no summation implied). The 1D to 2D operation is equiv-
alent to an outer product ¢ = ab” separately on each chan-
nel. For the purpose of this paper, through some abuse of
notation, we will denote both lifting product operations by
c=a®b.

4. Experimental Setup
4.1. Baselines

Resolution-agnostic Tencoder: As a baseline, we use a
modification of Tencoder (Kashi, 2023), which is a con-
volutional neural network-based encoder-decoder architec-
ture with a tensor product layer in the decoder. While the
architecture was designed to train and test only on one
fixed resolution, we modify it to work with varying input
and output resolutions. Our modifications include using
an adaptive average pooling layer in the encoder to down-
sample to a fixed-size latent space independent of the in-
put size, as well as the use of bilinear interpolation in the
decoder which enables upsampling to the required target
output size. This enables the model trained on an arbitrary
resolution to predict solutions for boundary functions sam-
pled on uniform grids of different sizes, not just the one(s)
it was trained on.

FNO with zero padding: We use a FNO-2d architecture
(Li et al., 2021). However, that architecture was designed
for a domain-to-domain scenario and requires a function
over the entire domain as input. To address this, the input to
the FNO is the 1D-boundary function g padded with zeros
all over the 2D-domain (2.

4.2. Problem setup

We solve the boundary-to-domain problem for the Pois-
son equation (3) with Dirichlet conditions (equation (4)).
The problem setup is identical to the one used to evalu-
ate Tencoder (Kashi, 2023). In summary, three families of
boundary functions are specified on the left boundary of a
square domain and simulations run to obtain training and
test datasets. The boundary functions are parameterized by
a few parameters (this parameterization is never exposed to
the model), and there are separate test sets containing in-
distribution and out-of-distribution samples with respect to
the training set. The training set consists of 2048 samples

Boundary to Domain Mapping using LP-FNO for PDEs

In-Distribution Out-of-Distribution
Gaussian Sinusoidal Polynomial

Resolution | Model Rel. L1 | RelL2 | Rel. L1 | RelL2 | Rel. L1 | Rel L2 | Rel. L1 | Rel L2

Tencoder | 0.01257 | 0.00426 | 0.90621 | 0.40405 | 1.74984 | 0.94939 | 0.91356 | 0.44197
32 FNO2d 0.00254 | 0.00139 | 0.73337 | 0.39078 | 1.11024 | 0.73673 | 0.71 0.3975

TP-FNO | 0.0108 | 0.00463 | 0.30713 | 0.05389 | 0.52667 | 0.15851 | 0.3259 | 0.06815

Tencoder | 0.04765 | 0.0238 | 0.03826 | 0.02354 | 0.23802 | 0.15035 | 0.05085 | 0.02518
64 FNO2d 0.00541 | 0.0019 | 0.00347 | 0.00126 | 0.06382 | 0.0191 | 0.0142 | 0.00435

TP-FNO | 0.01937 | 0.0064 | 0.00542 | 0.0016 | 0.19085 | 0.0889 | 0.04098 | 0.01268

Tencoder | 0.15391 | 0.0682 | 1.14888 | 0.53499 | 2.21484 | 1.2091 1.15768 | 0.56814
128 FNO2d 0.01125 | 0.00271 | 2.07062 | 1.376 2.15543 | 1.6864 | 1.96741 | 1.3438

TP-FNO | 0.03501 | 0.0082 | 0.05156 | 0.01847 | 0.3278 | 0.13745 | 0.111 0.0374

Table 1. Relative L1 and L2 norm errors of predictions from four models trained on data at different resolutions. In the in-distribution
(I.D.) test data are at each model’s ‘native’ resolution (the one it was trained on) while the out-of-distribution (O.0.D.) test data are at a

64x64 resolution for all the models in this table.

Figure 2. Comparison of the predicted solutions on in-distribution
examples for models trained on 64x64 resolution.

(pairs of boundary condition and corresponding solution)
for two families of boundary functions - Gaussian and si-
nusoidal. We test on in-distribution and out-of-distribution
samples from those two families but also from a third fam-
ily of polynomial functions up to degree 4. We train the
models with data on some fixed resolution, and test it on
data on both the same resolution (‘“native resolution’) and
also other resolutions it has not seen during training (‘“non-
native resolutions”).

5. Results

In Table 1, we first show results from the three architec-
tures on in-distribution samples on the same resolution they
were trained on, and out-of-distribution (OOD) samples on
a 64x64 grid. All the models were trained for 200 epochs
over the training set comprising 2048 samples.

Absolute Error: Tencoder Absolute Error: FNO2d (padded) Absolute Error: TP-FNO

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025

0.175

0.150

0.125

0.100

0.075

0.050

0.025

Figure 3. Comparison of the absolute error on in-distribution ex-
amples for models trained on 64x64 resolution.

In-distribution performance of LP-FNO with baselines:
On the in-distribution test samples, we observe that the
FNO2d (padded with zeros) and our proposed LP-FNO
shows similar accuracy in around 103 relative L2 errors,
with FNO-2d having a slight edge in performance for res-
olutions 64 x 64 and 128 x 128. The Tencoder consis-
tently performs significantly worse that the other two mod-
els, with almost an order of magnitude difference in per-
formance. Three example predictions of the solutions from
the test set and their respective absolute errors are shown in
Figure 2 and Figure 3 respectively. Similar to our previous
observation, we see that both the PDE solutions and the ab-
solute errors for the FNO-2d and LP-FNO are comparable,

Boundary to Domain Mapping using LP-FNO for PDEs

Trainin, Testing Resolution
Resolut;gon Model -3 : 64 128
Tencoder | 0.00426 | 0.34346 | 0.3282
32 FNO2d 0.00139 | 0.29973 | 0.3535
TP-FNO | 0.00463 | 0.05119 | 0.09289
Tencoder | 0.41229 | 0.0238 | 0.32779
64 FNO2d 0.6804 | 0.0019 | 0.58979
TP-FNO | 0.05879 | 0.0064 | 0.04006
Tencoder | 0.46239 | 0.42954 | 0.0682
128 FNO2d 2.29772 | 1.17268 | 0.00271
TP-FNO | 0.09778 | 0.02646 | 0.0082

Table 2. Relative L2 norms of error on resolution-independence
on in-distribution test sets.

Ground Truth Tencoder FNO2d (padded) TP-FNO (ours)

Figure 4. Comparison of the predicted solutions on out-of-
distribution exponential examples for models trained on 32x32
resolution and evaluated on 64x64.

while the predictions of Tencoder demonstrate checker-
board artefacts which are also visible in the absolute error
plots. See more visualization of in-distribution examples in
the Appendix.

Out-of-Distribution Generalization of LP-FNO: How-
ever, on out-of-distribution test sets on non-native reso-
lution of 64x64 (the first and third row-blocks), padded
FNO2d performs poorly, with relative errors greater than
1. In comparison, LP-FNO still retains a fair accuracy, with
eg., 1.8% accuracy in relative L2 error with a model that is
trained on 128x128 data and inferenced on 64x64 Gaussian
samples. In that example, padded 2D FNO has a huge error
rate of 137%. While this result for the FNO2d needs to be
investigated further and corroborated, it points to a loss of
resolution-independence due to the zero-padding required
in input processing. As expected, the resolution-agnostic
Tencoder, while being able to operate seamlessly on inputs
of any resolution, does not perform well on non-native res-
olutions.

14
12
10
08
05
04
02

Absolute Error: TP-FNO

Figure 5. Comparison of the absolute error on out-of-distribution
exponential examples for models trained on 32x32 resolution and
evaluated on 64x64.

Absolute Error: Tencoder Absolute Error: FNO2d (padded)

16
14
12
10
08
0.6
0.4
0.2

Figure 4 and 5 present the out-of-distribution solution
fields and absolute errors of models trained on 32 x 32
and inferenced on out-of-distribution 64-dimensions in-
puts from the Gaussian family. We observe that the pre-
dictions for both the Tencoder and the FNO2d are ex-
tremely poor. While, the solutions obtained by of our
proposed LP-FNO has some artefacts, it was able to cap-
ture some of the high-level patterns present in the solu-
tion. These high-level similarities in the solution demon-
strate the resolution-independence capabilities of the LP-
FNO, on out-of-distribution sample, which is a challeng-
ing task. Further, we believe that these artefacts shown by
LP-FNO can be improved with better hyperparameter tun-
ing and modifications to the LP-FNO model architecture
as detailed in section 6. See more visualization of out-of-
distribution examples for sinusoidal and polynomial cases
in the appendix.

Resolution Independence of LP-FNO: Table 2 shows the
degree to which each of the architectures is resolution-
independent using test sets which are in-distribution in
terms of boundary function parameters. Here, again, we
see that on native resolutions (diagonal blocks in the ta-
ble), all of the three models are able to learn good solutions,
with FNO2d and TP-FNO being approximately an order of
magnitude better than Tencoder. However, when tested on
non-native resolution, the resolution independence fails to
hold for Tencoder and FNO2d and we observe very large
L2 errors. In contrast, LP-FNO demonstrates a reasonable
accuracy even on non-native resolutions. We also visualize

Boundary to Domain Mapping using LP-FNO for PDEs

Ground Truth Tencoder FNO2d (padded) TP-FNO (ours)

Figure 6. Comparison of the predicted solutions for models
trained on 32x32 resolution and evaluated on 128x128.

the zero-shot super-resolution capabilities of the three mod-
els in Figure 6, where the models are trained on 32 x 32 and
then evaluated on 128 x 128. As expected, we observe that
the Tencoder and FNO2d fails to perform zero-shot super-
resolution, while our proposed LP-FNO is able to capture
the high-level details of the solution functions. However, it
must be noted that LP-FNO still shows significant checker-
board artefacts in the solutions, and our future work would
focus on that.

6. Conclusion and Future Work

We have presented LP-FNO, a neural operator based on
FNO and a lifting product operation and demonstrated its
potential on a simple 2D model problem. While our archi-
tecture still demonstrates some artefacts in its solution for
out-of-domain and resolution independence tasks, it gener-
alizes well to other resolutions, which puts it on the right
track in terms of fulfilling the promise of neural operators
for boundary-to-domain problems in PDE surrogate mod-
els.

The architecture presented is still a preliminary work part
of ongoing developments. In the near future, several im-
provements are planned which are expected to significantly
improve accuracy and efficiency on both native and non-
native resolutions.

* QOur aim is to implement LP-FNO with tensor prod-
uct in modal (or frequency) space rather than physical
space. We expect this to make the architecture more
scalable while improving its accuracy.

* We will investigate the effect of adding 2D FNO layers
after the tensor product layer in addition to the simple
linear projection layer used in the current implemen-

tation.

e We will test the architecture on nonlinear PDEs and
experiment with different activation functions.

* We intend to prove theoretically that our architecture
has the universal approximation property in a relevant
function space and that it is resolution independent.

* 7. Impact statement

This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal con-
sequences of our work, none which we feel must be specif-
ically highlighted here. The eventual most direct impact
will be in achieving transformational acceleration of com-
puter simulations in science and engineering.

References

Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M.,
Kashinath, K., and Anandkumar, A. Spherical Fourier
neural operators: Learning stable dynamics on the
sphere. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 2806-2823. PMLR, 23—
29 Jul 2023. URL https://proceedings.mlr.
press/v202/bonev23a.html.

Chen, Y., Lu, L., Karniadakis, G. E., and Negro, L. D.
Physics-informed neural networks for inverse problems
in nano-optics and metamaterials. Optics Express, 28(8):
11618-11633, April 2020. ISSN 1094-4087. doi: 10.
1364/0OE.384875. Publisher: Optica Publishing Group.

Kashi, A. Tencoder: tensor-product encoder-decoder ar-
chitecture for predicting solutions of pdes with variable
boundary data. In Proceedings of the SC 23 Workshops
of The International Conference on High Performance
Computing, Network, Storage, and Analysis, SC-W ’23,
pp.- 102-108, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400707858. doi:
10.1145/3624062.3626088.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces, Oc-
tober 2022. arXiv:2108.08481 [cs, math].

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R.,
and Mahoney, M. W. Characterizing possible fail-
ure modes in physics-informed neural networks. In
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P, and Vaughan, J. W. (eds.), Advances in Neu-
ral Information Processing Systems, volume 34,

https://proceedings.mlr.press/v202/bonev23a.html
https://proceedings.mlr.press/v202/bonev23a.html

Boundary to Domain Mapping using LP-FNO for PDEs

pp. 26548-26560. Curran Associates, Inc., 2021.
URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
df438e5206£31600eb6aecd4af72f2725f1-Paper.
pdf.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J.,
Mardani, M., Hall, D., Miele, A., Kashinath, K., and
Anandkumar, A. Fourcastnet: Accelerating global high-
resolution weather forecasting using adaptive fourier
neural operators. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC ’23,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9798400701900. doi: 10.1145/
3592979.3593412.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations, March 2020. arXiv:2003.03485 [cs, math,
stat].

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier

neural operator for parametric partial differential equa-
tions, 2021.

Lu, L., Jin, P,, Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218-229, mar 2021. doi: 10.
1038/s42256-021-00302-5.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework
for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Compu-
tational Physics, 378:686-707, February 2019. ISSN
0021-9991. doi: 10.1016/j.jcp.2018.10.045.

https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf

Boundary to Domain Mapping using LP-FNO for PDEs

A. Additional results
A.1. Visualization of Other In-Distribution Results

Additional visualizations of the model performances on
32x32 can be seen in Figures 7 and 8.

Ground Truth

Tencoder FNO2d (padded)

TP-FNO (ours)

B
. .

Figure 7. Comparison of the predicted solutions on in-distribution
examples for models trained on 32x32 resolution.

ﬂ)) |

L‘

Absolute Error: Tencoder Absolute Error: FNO2d (padded) Absolute Error: TP-FNO

0.012
0.010
0.008
0.006
0.004

0.002

0.20
0.15
0.10
0.05

0.025
0.020
0.015
0.010

0.005

Figure 8. Comparison of the absolute error on in-distribution ex-
amples for models trained on 32x32 resolution.

Additional visualizations of the model performances on
128x128 can be seen in Figures 9 and 10.
A.2. Visualization of Other Out-of-Distribution Results

The out-of-distribution for the sinusoidal examples are
shown in 11 and 12.

The out-of-distribution for the polynomial examples are
shown in 13 and 14.

Ground Truth Tencoder

FNO2d (padded) TP-FNO (ours)

)
J

10
0s
05
04
02
00
02
04
06
10
08
05
04
02
00
14

Figure 9. Comparison of the predicted solutions on in-distribution
examples for models trained on 128x128 resolution.

ﬂ
.

[—

|

Absolute Error: Tencoder

Absolute Error: FNO2d (padded)

035
030
025
020
015
0.10
0.05
0.00

Absolute Error: TP-FNO

Figure 10. Comparison of the absolute error on in-distribution ex-
amples for models trained on 128x128 resolution.

A.3. Convergence of Different Models

Figure 15, 16, 17 shows the convergence of the mean
squared error (MSE) loss of the different models while
training on the 32x32, 64x64 and 128x128 datasets respec-
tively.

Boundary to Domain Mapping using LP-FNO for PDEs

Ground Truth Tencoder FNO2d (padded) TP-FNO (ours) Ground Truth Tencoder FNO2d (padded) TP-FNO (ours)

. 20 . 3
’ ‘ :Z ‘
’ ' w0
b 2 " " - !

2| |

’ ' o '
’ ¥ n .
Figure 11. Comparison of the predicted solutions on out-of- Figure 13. Comparison of the predicted solutions on out-of-
distribution sinusoidal examples for models trained on 32x32 res- distribution polynomial examples for models trained on 32x32
olution and evaluated on 64x64. resolution and evaluated on 64x64.

Absolute Error: Tencoder Absolute Error: FNO2d (padded) Absolute Error: TP-FNO Absolute Error: Tencoder Absolute Error: FNO2d (padded)

Figure 12. Comparison of the absolute error on out-of-distribution Figure 14. Comparison of the absolute error on out-of-distribution
sinusoidal examples for models trained on 32x32 resolution and polynomial examples for models trained on 32x32 resolution and
evaluated on 64x64. evaluated on 64x64.

Absolute Error: TP-FNO

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Boundary to Domain Mapping using LP-FNO for PDEs

Resolution 32x32

10° —— FNO2d (padded)
—— Tencoder
10-1 4 —— TP-FNO

Test MSE Loss

0 50 100 150 200
Epochs

Figure 15. Test MSE loss during training on data of resolution

32x32
Resolution 64x64
10° 5 —— FNO2d (
padded)
— Tencoder
n 10-1 - —— TP-FNO
3
-
% 10—2 i
=
i
#1073 5
10—4 4
0 50 100 150 200
Epochs

Figure 16. Test MSE loss on data of resolution 64x64

Resolution 128x128

0 J
10 —— FNO2d (padded)
—— Tencoder
@ 101 —— TP-FNO
S
0
s 10—2 4
g
|_
10—3 4
0 50 100 150 200
Epochs

Figure 17. Test MSE loss on data of resolution 128x128

10

