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Abstract

The development of ethical AI systems is currently geared toward setting objective func-
tions that align with human objectives. However, finding such functions remains a research
challenge, while in RL, setting rewards by hand is a fairly standard approach. We present
a methodology for dynamic value alignment, where the values that are to be aligned with
are dynamically changing, using a multiple-objective approach. We apply this approach to
extend Deep Q-Learning to accommodate multiple objectives and evaluate this method on
a simplified two-leg intersection controlled by a switching agent. Our approach dynamically
accommodates the preferences of drivers on the system and achieves better overall perfor-
mance across three metrics (speeds, stops, and waits) while integrating objectives that have
competing or conflicting actions.

1 Introduction

As artificial intelligence (AI) research reaches new peaks, more and more AI systems are being implemented,
applied, and deployed worldwide. Further integration of such systems with human societies demands a
thorough consideration of their consequences and effects. The inherent property of most, if not all, AI
systems is to act with an unprecedented level of autonomy, often in settings where its actions might directly
affect human beings. The growing field of Value Alignment (VA) aims to explicitly study the values pursued
and exhibited by AI agents and make sure that they correspond to human values.

Motivating examples of VA often consider the long-term and potentially existential threats posed by powerful,
super-intelligent AI agents with misaligned values (Russell, 2022a). Not less pertinent are the short-term
threats of more mundane, highly specialized AI systems, employed in particular in control settings, becoming
misaligned. A prominent case where a potential misalignment is particularly dangerous is given by systems
where humans voluntarily cede control of a system to algorithms. Examples of such systems abound: self-
driving cars, where the driver cedes control of their vehicle (Haboucha et al., 2017); recommender systems and
content algorithms (Carissimo et al., 2022), where the user cedes some control over their access to information;
traffic control systems, where drivers cede control of traffic flow coordination (Korecki & Helbing, 2022), are
all examples of systems where AI is a control method of choice or is in the process of becoming one1.

A paradoxical question that arises here is How do humans stay in control of systems which they voluntarily
cede control of to AI? The paradox can be partially addressed by delimiting the boundaries of what is being
controlled and the way in which it is controlled. According to VA, this way should conform to human values,
but here we encounter another problem: namely, the challenge of identifying and defining human values. In
many cases, it is clear that the values held by humans are varied to the extent of even being contradictory
(Awad et al., 2018). Moreover, these values can be situation and time dependent. For instance, road users
can value safety, sustainability, travel times, waiting times, and so on, depending on the current state of the
traffic and their own conditioning. Thus, AI systems that are truly able to align their values should also
be able to do so dynamically, responding to a variety of potentially shifting preference landscapes. This
requires a coupling between the AI and the users of the system — the AI must be made aware of the current

1A contrasting example of such a system, which has not yet been "taken over" by AI is the representative government, to
which citizens cede control over many areas of their social lives.
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Figure 1: Two-way intersection controlled by an RL agent. The agent controls which direction has a green
signal at any given time.

values pursued by the users and be able to incorporate them into its decisions. Among areas that have
produced methods and results conducive to such a design are social choice theory, which allows one to gauge
and aggregate group preferences, and multi-objective optimization, allowing for a simultaneous pursuit of
multiple values. Below, we present a motivational example for the direction of our work and explicitly state
our goals.

Motivating Example

Consider an intersection with two intersecting approaches as shown in Figure 1. A simple Reinforcement
Learning (RL) agent controls the access to the intersection. The agent can switch between two actions —
giving green to the North–South approach and red to the West–East approach or, conversely, green to the
West–East and red to the North–South. Assume now that the system’s designers have chosen to make it
control traffic in such a way that it becomes as environmentally sustainable as possible. This can be achieved
by setting the reward of the agent to e.g. negative of some measure of emissions or a proxy of it, such as the
negative of the number of stops (vehicles emit most emissions when accelerating from complete stops (Rakha
& Ding, 2003)). The agent is then trained with this reward and reaches a solution. Namely, it only ever
chooses one action, always keeping the red light for the North–South approach and green for the West–East.
Indeed, the system has successfully found a global optimum — the emissions, or the proxy of the number
of stops, have been minimized. The vehicles on the West–East approach never stop, while the vehicles on
the North–South approach stop once, and so the emissions are kept as low as possible (we assume it is
impossible to keep all vehicles moving, which is the case if their relative number on each approach is high
enough). We are then left with the effects of what could be referred to as "reward hacking" (Skalse et al.,
2022) by the RL agent. While the reward selected by the designers has been optimized, what emerges is a
probably unwanted and perfectly non-egalitarian solution2. This sort of result has been commonly reported
in the context of many social systems, where the maximization of social welfare leads to inequality (e.g. in
Roughgarden (2002)).

How would that situation develop if the RL agent could incorporate the preferences of users in the system
dynamically, rather than always follow a preset and, in this case, clearly misguided goal? Consider a starting
population of drivers, all preferring to optimize for sustainability. The system reaches the same state, but
now the drivers on the North–South approach are likely to change their preferences — they might no longer
value sustainability as highly and switch to preferring to minimize their waiting time. If the RL agent is able

2The result mentioned here has been replicated in our simulated intersection environment by a Deep Q-Learning RL agent
using the negative of the number of stops as its reward.
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to incorporate that shift in its decision process, the unfair situation might be escaped or avoided. In this
scenario, a certain notion of multi-objectivity can be an asset in avoiding "reward hacking" and the resultant
misalignment.

The aim of our work is to investigate a multi-objective and dynamic value alignment in systems where humans
cede some control over the system to an AI. We present a simulated intersection environment following the
ideas from our motivating example, which can be used to further study the problem. We use a simple
traffic environment to test our method and provide a proof-of-concept. A deployment to fully realistic traffic
conditions with multiple intersections and complex dynamics is the natural extension of this work. By
designing a simplified, but realistic simulation of a real-world system, we hope to provide a more concrete
example of the challenges of VA and push this field of study beyond simple, grid-world derived studies, and
provide a springboard for extending such systems to more complex problems in the real world. Lastly, we
propose a Deep RL agent that can dynamically adapt to different values held by the user of the system
under its control. We show how a multi-objective perspective can be leveraged to avoid reward hacking and,
at the same time, give more control to the users of the system rather than its designers. We believe that
our approach, which explicitly states the social context in which the proposed system exists and takes into
account the potential negative consequences of AI systems, is highly relevant with respect to the perceived
lack of such considerations in most recent publications (Birhane et al., 2022). Our work builds directly on
Multiple-Principal Assistant Games (Fickinger et al., 2020b), which consider the theoretical case of an agent
acting on behalf of N humans with differing payoffs. We ground the problem to a particular use case of
traffic signal control and extend the methodology to Deep Reinforcement Learning. In terms of arriving
at a reward function for the agent to pursue we build on Critch & Russell (2017) and provide a practical
implementation that allows for multiple objective to be pursued in real time.

2 Related Work

Value Alignment: The field has become formalized with respect to AI systems in recent years but followed
an established line of research into moral, social, and technical consequences of automation and technology
(Wiener, 1960). Presently, the field’s motivation often focuses on the risks posed by a hypothetical, powerful,
misaligned Artificial General Intelligence (AGI) (Russell, 2022b;a; Hadfield-Menell et al., 2017a). Since there
has also been significant criticism of this "singularity" argument (Walsh, 2017) we believe that it is valuable
to also consider the problems of VA using more mundane, already existing AI systems (e.g. recommender
systems (Stray et al., 2020)). Many researchers support this position, highlighting the lack of substantial work
on real-world examples of systems that might suffer from misalignment (Fickinger et al., 2020b; Hadfield-
Menell et al., 2017b).

The study of VA is inherently multidisciplinary, bringing insights from the study of ethics, sociology, eco-
nomics, and AI (Hadfield-Menell & Hadfield, 2019). The philosophical arguments and discussions are well
summarized by Gabriel (2020). The more technical side deals with concrete causes of misalignment, such as
reward hacking (Amodei et al., 2016). Useful impossibility and uncertainty theorems have also been worked
out based on work done by ethicists (Eckersley, 2019).

Inverse Reinforcement Learning (IRL): One of the primary methodologies employed for VA is IRL,
where the RL agent learns the reward function directly from demonstrations rather than being programmed
with it explicitly (Ng et al., 2000). The motivation behind this methodology is learning in situations where
explicitly defining the reward function might be challenging but there might exist experts who are able
to demonstrate optimal behavior (Abbeel & Ng, 2004). One particular application case has been learning
navigation and driving behavior (Abbeel & Ng, 2004; Ziebart et al., 2008). A variety of approaches to the
problem of reward learning have been proposed, such as a Bayesian one, where the prior information and
the evidence given by expert’s actions are used to derived a distribution over the possible reward functions
(Ramachandran & Amir, 2007).

Assistance games have been used as a model for the study of alignment problems in much of the IRL
literature (Fickinger et al., 2020b; Hadfield-Menell et al., 2016; 2017a;b; Gleave et al., 2022). The setting
often involves a robot learning from a single human demonstrator. Fickinger et al. (2020b) extend this setting
to multiple demonstrators, and a social choice method is employed to combine the different preferences of
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the demonstrators. Brown et al. (2021) proposed a method allowing one to verify and quantify the alignment
of a given agent. The issue of goal mis-generalization, where the agent retains its capabilities while pursuing
the wrong goal (similar to the motivational example of misspecification given in section 1) has been studied
by Langosco et al. (2022) in the context of Deep RL.

The main limitation of IRL with respect to the goal of our work is that it presupposes we can demonstrate
the right behavior. This is not possible in many cases, where the agent learns behavior that is not the
same as the behavior of the users: e.g. traffic light (agent) learning to control the flow of cars. A further
complication is that the values that need to be followed by AI systems are temporal in nature, which is a
challenge for this particular methodology. Arnold & Kasenberg (2017) give examples of instances where IRL
fails to infer the intended normative behavior.

Preference-Based Reinforcement Learning (PbRL): Another methodology, that addresses the diffi-
culty of selecting and engineering the reward function for RL, leverages the preferences (between states,
actions, or trajectories) of users or experts (Wirth et al., 2017). What is being learned is a policy consistent
with the revealed preferences. PbRL can be deployed in simulator-free (Akrour et al., 2011) as well as
model-free settings (Wirth et al., 2016). Some finite time guarantees are possible for tabular settings under
the assumption of stochastic preferences (Xu et al., 2020). A set of benchmarks for studying PbRL problems
have recently been proposed by Lee et al. (2021). Chen et al. (2022) have been able to extend the PbRL to
non-tabular settings for the first time.

While this avenue of research is relevant and informative it is also limited and at the current time infeasible
for application to our problem setting. The main issue in PbRL is that the preference landscape is fixed
during training (the model learns a given preference landscape), thus limiting the potential for adaptation
to novelty in the preference landscapes, which we consider to be a key interest for properly aligned systems.

Multi-Objective Reinforcement Learning (MORL): Our work deals with systems whose users might
exhibit a variety of potentially contradictory preferences. Thus, a multi-objective perspective is necessary
to design an RL agent to work in such an environment.

To study such agents with potentially competitive goals a framework of Markov games has been proposed
(Littman, 1994). Algorithms for arriving at a common Pareto optimal policy usually rely on forms of
communication between agents (Mariano & Morales, 2000a;b). Some methods aim to learn the entire Pareto
front of policies (Van Moffaert & Nowé, 2014). MORL has also been extended to the Deep Learning case
(Mossalam et al., 2016).

The main issue of MORL is defining how to combine diverse objectives based on their relative importance.
This can be done a priori, a posteriori or be learned during training (Hayes et al., 2022). In an a priori
case, the users’ preferences need to be specified and fixed, which does not work for our problem setting.
Similarly, if the preferences are learned, the model might not be able to accommodate a significant shift in
the preference landscape. Thus, in our work, we follow the a posteriori approach, where a set of models is
trained and the users are able to select between the different models’ actions in deployment.

Social Choice Theory: The study of aggregating multiple preferences has been consistently identified as a
key element relevant to value alignment. The modern history of this field can be traced back to the work of
von Neumann and Morgenstern (Von Neumann & Morgenstern, 1947) who applied game theory and other
tools to modeling human decision-making (though the origin of the field goes back to the mathematical
theory of elections of Borda (1781) and Condorcet (1785) as well as the utilitarianism of Bentham (1789)).
The main theories of the field have been summarized in Fishburn (1970) and key impossibility theorems
have been given in Arrow (1950).

Some of the works mentioned in the previous sections have explicitly investigated the VA problem through
the lens of social choice impossibility theorems (e.g. Gibbard’s theorem) (Fickinger et al., 2020a;b). These
works have employed insights from the field of mechanism design to circumvent or lessen the effects of
potential users misrepresenting their preferences. Methods such as approval voting have been identified as
norms that should guide group decision-making for AI systems (Prasad, 2018). Some implementations of
such AI voting-based systems have been proposed for ethical decision-making (Noothigattu et al., 2018)
based on a large data set of preferences in a trolley problem setting (Awad et al., 2018).
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Figure 2: Multi-objective action selection uses multiple Deep Q-Networks (DQN) each trained purely on
a single objective. For a given environment state s, each DQN outputs a vector of Q-values. A softmax
re-scales these values to reflect their relative importance for a given DQN. These are then passed to an
integration layer, where the q-values (normalized Q-values) corresponding to an action are weighted across
the different objectives, using the user votes as weighting coefficients. The resulting new q′ values are then
used to determine an action, using an argmax as in typical DQN methodology.

Our work follows this direction by employing a voting layer directly in the decision-making process of an
RL agent. Based on the insights discussed by Baum (2020), our design includes an up-front, explicit way of
identifying and aggregating potentially contrary preferences rather than off-loading that process to the RL
agent (to let it figure it out so to speak). In the following section, we give details of our approach and test
its efficiency under two voting schemes.

3 Methodology

Our proposed approach has three main components: the models of different objectives, a method of vote
aggregation, and an integration layer. Here, we describe in detail the employed design principles. We focus on
control settings where humans cede some control over the systems to the AI agent, which here is assumed to
be a Deep RL agent. Finally, we introduce a simulated environment (inspired by our motivational example)
in which we test our approach. In the following sections when we refer to the agent we always mean the
controller, in our case traffic signal controller. We refer to the users of the systems as users, drivers, or
vehicles. The users are not learning, while the controller takes its decision based on models learned through
Q-learning.

Multiple Objectives Models

As we are interested in the issues of dynamic value alignment to multiple values in the context of control,
we need a way to model the effects of different actions on the state of the system with respect to different
objectives. We propose to train a separate Deep Q-Network (DQN) for each of our objectives. The DQN
returns a Q-value for a given state–action pair, which can be interpreted as the measure of the expected
future discounted rewards if the given action is taken in the given state.

Consider a DQN for an objective A with two possible actions. At inference, in some state S the DQN will
output QA

1 and QA
2 , denoting the expected reward. Typically, the action corresponding to the larger of these

two Q-values will be preferred and selected. However, since these Q-values are interpretable, one could also
take into account their relative quantities. Namely, if QA

1 ≫ QA
2 or QA

1 ≪ QA
2 there is a clear preference for

one of the actions. On the other hand, if QA
1 ≈ QA

2 then it might not make much difference which action
is chosen even if one of the Q-values is technically greater than the other. We will develop this observation
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further when discussing the integration layer. Moreover, we note that the Q-values could also be compared
between DQNs trained with different objectives if the two DQNs share the same action space. Specifically,
QA

1 could be compared with QB
1 , where B represents another objective. This is limited in that if the scale

of the objectives is not the same, a fair comparison becomes more difficult. However, since here we will
care only for the relative importance of the Q-values of a given objective (QA

1 , QA
2 ) we can normalize them

(in this work we use a softmax normalizing function). These normalized values we refer to as qA
1 , qA

2 for
objective A. Since their scale will be in the range of 0 to 1, we are now able to compare qA

1 with qB
1 .

Vote Aggregation

We want to allow the users of our system to be able to reveal their preferences and affect the system according
to them. Therefore, we need to specify the type of preferences such that they are meaningful to the system.
Here, we set the possible preferences to correspond to the reward r of the DQNs described in the previous
section. Moreover, we say that when a user selects a given reward as the preferred one, they do so under
the assumption that this reward will be applied to the entire system and not preferentially to them alone.
If the preferred r corresponds to minimizing the waiting time, the user asks the controller of the system
that everybody’s waiting time be minimized and not just their own3. Thus, the users remain under the veil
of ignorance (Harsanyi, 1953) as the exact effects of their chosen objective being pursued by the controller
are not known to them. Given this setup, the users of the system are polled at decision time (each time
the traffic signal control agent is to take action, in our environment that happens in 5-second intervals)
and reveal their preferences. At the decision time, only users that are allowed to vote at the given moment
are polled—these are the users on the incoming lanes of the intersection. Thus, the voting population at
each step is not equal to the entire population of the system. Even though the preferences of each user are
fixed, the relative preferences of the voting population change as the population changes. These preferences
need to then be aggregated and weights w for each of the possible preferences are created. In this work, we
consider and compare two simple aggregation methods.

Majority voting: The option with more votes (vA being the number of votes for preference A) wins, and
only the winning option is considered.

wA, wB =
{

(1, 0), vA > vB

(0, 1), vA < vB

(1)

Thus, if preference A gets more votes, wA = 1 and wB = 0, for a case with two possible preferences A and
B.

Proportional voting: The weights are created directly from the votes according to Equation 2.

wA = vA

vA + vB

wB = vB

vA + vB

(2)

Integration Layer

The key element of our approach is the integration layer, which allows for the integration of the DQNs results
with the preferences of the users. The layer affects the integration according to Equation 3.

q′
1 =wAqA

1 + wBqB
1

q′
2 =wAqA

2 + wBqB
2

(3)

The q′
1 and q′

2 values encapsulate the expected rewards weighted by the weights w for the two possible
actions. In practice, in cases where there is a strong preference (e.g. wA ≫ wB) the action chosen under

3"Act only according to that maxim whereby you can at the same time will that it should become a universal law." –Kant
(1785)
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objective A (say qA
2 > qA

1 ) will be selected unless qB
1 ≫ qB

2 and qA
1 ≈ qA

2 . Thus, the system generally follows
the preferences unless the relative difference between the expected rewards within one objective is large and
within the other is small. Conversely, if the preference is weak (wA ≈ wB) the system will prioritize the
objective that stands to lose more from not being followed. This approach then allows accounting for user
preferences, but at the same time tends to avoid taking very bad actions on one of the objectives.

Here we have described a version of our method with two objectives, but our system allows for more objectives
to be included. One could imagine new objectives to be continuously added, as long as it is possible to train
new DQNs based on different objectives.

The approach we have described throughout this section is summarized symbolically in Figure 2.

Switching Traffic Lights

We modeled a simplified two-leg intersection that consists of two one-way roads intersecting at one point (see
Figure 1). The intersection has traffic signals controlled by a switching agent. The switching agent facilitates
the assignment of a green light to one of the roads and a red light to the other. Regularly, at intervals of tact,
the switching agent may choose to switch the active phase on the intersection. When choosing to switch or
not, the agent polls the vehicles on the upstream approach (in other words only vehicles that will be directly
affected by this action are allowed to vote, the vehicles on the downstream do not vote).

We train two Deep Q-Learning models on two different reward functions: stops and wait times. The state
of the traffic signal control agent (and so the state of the model Deep Q-Network) is the occupancy of the
vehicles (which is a function of the number and size of the vehicles) on the three segments of the incoming
approaches (an approach is divided into three segments of equal length).

rstops = − (number of stops in the past tact steps) (4)
rwait = − (duration of stops in the past tact steps) (5)

We also considered the case of using a single reward function to incorporate multiple objectives simul-
taneously. We train two additional Deep Q-Learning models on two different reward functions: a linear
combination of stops and wait times (Equation 6) and Cobb–Douglas production function of stops and wait
times (Equation 7).

rlinear =αnorm(rstops) + βnorm(rwait) (6)
rcobb-doug = − norm(−rstops)α ∗ norm(−rwait)β , (7)

where norm is the normalizing factor that scales the given value by its maximum for the stops and by half
of the maximum for the wait times, and α = β = 0.5.

Experiments: To test the performance of our approach, we run experiments in the simulated environment
described above. We run the system under six different demand distributions. The demands are defined in
terms of the number of cars on each of the two approaches (N, W), where N represents the number of cars
on the North–South link and W represents the number of cars on the West–East approach. The demand
can be: low unbalanced (11, 6); low balanced (11, 11); medium unbalanced (22, 11); medium balanced (22,
22); high unbalanced (32, 16); high balanced (32, 32).

For each demand, we set the preference of the participating vehicles to be half-half — 50% of them prefer
rstops and 50% prefer rwait. Depending on the random initialization and the system dynamics, the proportions
of the voting user’s preferences change throughout the simulation. We ran our method 100 times for each
demand setting with different random initialization and presented averaged results.

We conducted all experiments using the CityFlow simulator (Zhang et al., 2019) and we used periodic
boundaries for the two roads. Each scenario is run for 3600 steps, corresponding to an hour of real-time.
The code used for all the experiments and results (including all the hyperparameter settings) is available at
this repository.
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Underlying Assumptions

The expected performance of the proposed method rests on some assumptions, which we make explicit and
discuss in this section. The first assumption is that of a centralized controller. We have stated in section 1
that in this work, we are interested in systems where users voluntarily cede control. As such this control
needs to be ceded to some particular decision mechanism, which is assumed to be centralized. This stems
from our particular application to traffic signal control. The traffic system users are assumed to follow the
common (though perhaps implicit) agreement on traffic laws relying on the existence of traffic lights, which
are inherently a form of centralized control. From this assumption, another one follows: namely, that the
preference aggregation rule used by our method is socially trusted. This assumption is akin to the current
trust (or lack thereof) of road users in traffic signal control algorithms. Further assumption relating to the
preference aggregation method is that it is well evaluated from the utilitarian perspective. While our method
allows for any aggregation method to be employed, the analysis of the effects and trust in different ones is out
of the scope of this work (thus, we rely on the above assumptions). It is worth noting that the practical side
of implementing such a system would likely need to include consultation and educational efforts to inform
the users about how it works.

A further assumption that we take is that of selfish rationality and truthfulness of traffic users. We assume
that the voting users do indeed vote according to their real preferences. A common problem that could
affect the system is strategic voting, whereby users misrepresent their preferences to exploit the aggregation
method and increase the chances of their objective being chosen (Gibbard, 1973). This problem could occur
if cumulative voting, was used or any other system of voting where the user expresses their preferences as a
ranking. It is, however, avoided in this work by relying on binary input. Since one user only has one vote,
they are unable to overstate their preference; they can only vote on one or the other objective. In both
majority and proportional aggregation methods, the vote on the actually preferred objective is the only way
to increase the chance of it being selected. Thus if the users are assumed to be rational and selfish, they will
always vote accordingly to their true preference.

4 Results

4.1 Reward functions with single objectives

In Figure 3 we report the performance on three different metrics of the two single-objective DQNs (optimizing
for Equation 5) and the two multi-objective methods, one using majority voting and the other proportional
voting. We observe that the speeds do not vary much between the methods (while they do vary between
demands). It is also apparent that the single-objective DQNs suffer a trade-off between favorable stops or
wait times. The Stops DQN is able to achieve a very low number of stops (close to 0 for all scenarios) but at
the same time, its waiting times are prohibitively large. In fact, the Stops DQN learns to never switch, thus
reaching a global minimum of the number of stops in systems where free flow is impossible, but making one
lane of traffic wait forever. Conversely, the Wait Times DQN achieves very low wait times (close to 0 for all
demands) but a high number of stops (qualitatively this solution corresponds to the agent switching all the
time, alternating the green signals between two lanes cyclically). The multi-objective methods, on the other
hand, never achieve performance as high as the single model on each objective. However, they are able to
achieve good results on each of them — effectively, they are able to pursue and find a balance between them
both. The Proportional method outperforms the Majority method in all demands except Medium Balanced
(where they are the same) and High Balanced (where Proportional achieves fewer stops and higher wait
times than Majority).

4.2 Reward functions combining multiple objectives

In Figure 4 we report the performance on three different metrics of the two single-objective DQNs aggregating
two objectives into one and the proportional voting-based multi-objective method. We note that in the Low
conditions the method performs worse than the Cobb–Doug, which achieves both better wait times and
stops. In the Medium Unbalanced condition the Prop S+W performs on the same level as Cobb–Doug in all
metrics. In the Medium Balanced the Prop S+W performs in between the two methods in terms of stops
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Figure 3: Radar plots for the three evaluation metrics (stops (seconds), wait times (seconds), and speeds
(meters per second)) for six different demand distributions. Larger triangle areas can be associated with
a more desirable performance across all metrics. The scales are different for each radar plot. Prop S+W
represents our method using proportional aggregation, Major S+W represents our method using majority
aggregation.

and wait times. High Unbalanced and High Balanced conditions, arguably the most challenging ones, are
where the Prop S+W shines, achieving performance at the level of Linear comb. and Cobb–Doug in both
metrics at the same time while each of the two methods underperforms on one of the metrics.

4.3 Alignment of the multi-objective method

In Figure 5 we report the correlations between the actions chosen by different DQNs in a given state. We
observe that a DQN optimizing for rstops has a low correlation with a DQN optimizing for rwait. This means
that these DQNs tend to predict different actions as optimal given the same state. We see however that the
multi-objective actions can align with either Qstop or Qwait, for different demand conditions.

5 Discussion

Complex systems often have numerous objectives that designers may fail to account for during the design
stage. Our proposed method offers modularity in accounting for novel preferences, making it well-suited
to accommodate new objectives even after the system is deployed. By training a Deep Q-Network or any
other model that outputs Q-value estimates, we can optimize the system for new objectives as needed. That
is, once the system is deployed, users, designers, or controllers of the system can easily add new objectives
once they realize the need for adjustment. Thus, one could imagine a system where users can indicate the
objectives/preferences they care about that are currently unavailable. Models optimizing for these objectives
could then be trained in simulation or using historical data and deployed to the system. Users would then be
able to vote for these preferences, and they would be taken into consideration proportionally to the vote. The
central aspect allowing for this is that the system is able to work with any number of objectives. Nevertheless,
we believe a further study (which is beyond the scope of this paper, whose goal is to introduce this kind
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Figure 4: Radar plots for the three evaluation metrics (stops (seconds), wait times (seconds), and speeds
(meters per second)) for six different demand distributions. Larger triangle areas can be associated with a
more desirable performance across all metrics. Here, we compare the multi-objective approach (Prop S+W)
against two single-objective approaches that incorporate two metrics (Linear combination and a Cobb–
Douglas product function). The scales are different for each radar plot.

of voting-induced multi-objective methodology) into the feasibility of including more than two objectives is
needed.

In this traffic-inspired simulation environment, one could argue that designers can choose reasonable ob-
jectives so as to avoid the suboptimal/unfair policies learned through an inappropriate reward function.
However, in a broader sense, there could also be systems with many incommensurate rewards, and setting
them a priori can amount to a sort of algorithmic dictatorship. Moreover, in many cases it is impossible
currently to account for all the potential ways in which the reward can become hacked or misaligned and so
setting fixed objectives carries a significant risk of running into misalignment at some point.

Using multiple single-objective reward functions (our approach) comes with some tradeoffs compared to using
a single multiple-objective reward function. Our approach requires implementing separate Q-value estimate
models for each objective. While the number of potential objectives varies across different application
domains, we believe that in most cases, the number of objectives would not be too large, and implementing
a few Deep Q-Networks (DQNs) should not be a significant limitation. However, for problems where a
large number of objectives is desired, scaling issues may arise when using more traditional Pareto-front
based methods. Multi-objective optimization may have difficulty scaling to a large number of objectives.
Alternatively, attempting to optimize a linear or non-linear combination of multiple objectives using a single
model (e.g., a deep neural network) would require specifying the parameters such as the weights given to
each objective. We note that in our experiments optimizing the linear combination of the two objectives
actually leads the system into the undesired optimum of the close to zero number of stops but very high wait
times. This showcases the potential effects of misspecifing the weights. Moreover, if an additional objective
is added to the model, it would require retraining the model from scratch, and once again searching and
specifying the weights for the objectives. Our approach avoids these challenges, although it requires training
additional single-objective models. Overall, we believe that our approach is a more scalable alternative to
the method outlined above.
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Figure 5: Correlation of the actions that would have been chosen by the Stops (rstops), Wait Times (rwait),
and Multi-Objective (our method) DQNs in a given state for the different traffic volumes (low, medium,
high) and voting schemes (proportional and majority vote). Higher values mean the same action would have
been taken by both schemes.

5.1 Limitations

Our approach has a unique requirement for an environment: the environment must have multiple players
(with their own logic) that interact with a system that is controlled and optimized by a controller. To our
knowledge, additional environments would need to be made from scratch, which is why we have focused on
only one environment.

Another limitation of our work is that we focus only on a half-half split between the two possible preferences.
While due to the dynamics of the studied system and random initialization, we still get a variety of propor-
tions in the population voting in each action phase, it would be interesting to further study the performance
of our approach under different preference splits.

Furthermore, the approach we propose relies on optimization. As such it might suffer from limits of opti-
mization such as potential incomparability of alternatives (Carissimo & Korecki, 2023). In practice it would
make sense for the objectives that are available to be voted on were themselves selected in a democratic and
participative way. A limitation of our work is that we assume these objectives to be given and at least in
some sense commensurable (to the extent that they can be voted on).

Moreover, we test our system with two objectives; a clear extension would be to run experiments with three
or more objectives. However, we show that combining even two objectives can have a positive effect and
help avoid the negative effects of missepcified rewards. Lastly, a more formal quantification of the alignment
of our approach would be valuable.

6 Conclusions

Based on our results, we can confirm that our proposed method avoids the "reward hacked" solution exhibited
by the Stops DQN. Thus, our method is able to avoid misalignment in our setting, by following a more
nuanced, multi-objective perspective. Moreover, our method performs well on both objectives, aligning well
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with both preferences exhibited by the user population. Furthermore, the social effects of deploying such a
participatory system cannot be quantified in a simulation but are likely to be positive, promoting engagement
and trust, and giving more control over the system to its users. We also note that the proportional voting
system appears to work better in our setting than majority voting. This appears intuitive as the proportional
method mitigates issues such as "tyranny of the majority" and "wasted votes", which have been associated
with majority voting methods. An interesting direction for future work is modeling the users of the system
(vehicles) as learning agents, who can change their preferences depending on their experiences.
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