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ABSTRACT

Foundation models for zero-shot time series forecasting face challenges in ef-
ficient long-horizon prediction and reproducibility, with existing synthetic-only
approaches underperforming on challenging benchmarks. This paper presents
TempoPFN, a univariate time series foundation model based on linear Recurrent
Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model
uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable
training across sequence lengths, eliminating the need for windowing or summa-
rization techniques while maintaining robust temporal state-tracking. Our com-
prehensive synthetic data pipeline unifies diverse generators—including stochas-
tic differential equations, Gaussian processes, and audio synthesis—with novel
augmentations. In zero-shot evaluations on the Gift-Eval benchmark, TempoPFN
achieves top-tier competitive performance, outperforming all existing synthetic-
only approaches and surpassing the majority of models trained on real-world data,
while being more efficient than existing baselines by leveraging fully paralleliz-
able training and inference. We open-source our complete data generation pipeline
and training code.

1 INTRODUCTION

Recent advances in large language models have inspired foundation models for time series forecast-
ing that enable zero-shot predictions across diverse datasets without fine-tuning (Ansari et al., 2024;
Das et al., 2024} Woo et al., [2024; |Auer et al., |2025). By treating historical observations as input
context, these models democratize forecasting for non-experts and excel in data-scarce domains.

However, current approaches face critical limitations. Transformer-based models struggle with long-
horizon forecasting due to quadratic complexity and error accumulation (Zeng et al.| [2023). While
non-linear RNNs maintain temporal state, they require sequential processing that limits scalability.
Although some recent models attempt synthetic-only pre-training including ForecastPFN (Dooley
et al., 2023)), CauKer (Xie et al., 2024}, and Mamba4Cast (Bhethanabhotla & Swelam, [2024)) none
reported state-of-the-art performance on the Gift-Eval benchmark. TabPFN-TS (Hoo et al., [2024),
which adapts a tabular foundation model to time series, achieves strong Gift-Eval performance but
does not release its synthetic pre-training data, limiting reproducibility and extensibility.

We introduce TempoPFN (see Table[T|and Figure[I)), a time series forecasting foundation model us-
ing linear RNNs with GatedDeltaProduct recurrence (Siems et al.| |2025) for parallelizable training
and inference across the sequence length. We adopt the Prior-Data Fitted Network (PFN) frame-
work (Miiller et al.| [2022), treating zero-shot forecasting as Bayesian inference approximated via

Table 1: Contributions of TempoPFN: the first fully open-source time series forecasting foundation
model with competitive performance; with fully synthetic pretraining and fast training and inference.

Criterion Tirex ~TabPFN-TS Mamba4Cast Chronos TempoPFN
Fully open-source data pipeline X X X

Open-source training code X X

Competitive with SOTA performance X

Fast training and inference X ) )

Purely synthetic pretraining X ) X
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Figure 1: (Left) Synthetic Data Generation pipeline containing a mix of novel and existing time-
series generators are augmented with a diverse set of augmentations to produce the time-series used
for training. (Middle) The TempoPFN architecture produces coherent quantile predictions for all
future time-stamps in parallel. (Right) TempoPFN obtains competitive performance on Gift-Eval
despite being trained only on synthetic time-series.

in-context learning on a diverse synthetic prior (see Appendix [A-T]for a detailed background). Un-
like TiRex (Auer et al.l 2025) which argued that non-linear RNNs like SLSTM are necessary for
time-series forecasting due to their state-tracking capabilities we find that linear RNN's based on the
GatedDeltaProduct recurrence are sufficient, in line with recent research demonstrating how linear
RNNs can perform state-tracking (Grazzi et al.l 2025). As detailed in Appendix DeltaProd-
uct applies orthogonal rotations via multiple online gradient steps, enabling superior state-tracking
compared to diagonal SSMs. Our synthetic data pipeline unifies diverse generators with novel
augmentations, ensuring exclusive synthetic pre-training to prevent benchmark leakage. Unlike
TabPFN-TS, we open-source our complete data generation pipeline and training code as a ba-
sis for future research (available at https: //anonymous. 4open.science/r/TempoPFN_
ICLR2026-E216/README . md). In summary, our contributions are:

* The TempoPFN architecture, to our knowledge, the first univariate time series foundation model
based on linear RNNs with GatedDeltaProduct recurrence. Our architecture and input representa-
tion allows the prediction of all future time-stamps in parallel, producing coherent quantile fore-
casts, without patching or windowing heuristics. We further propose a state-weaving mechanism
for linear RNNS that facilitates bidirectional information flow across horizons without overhead.

* We design a synthetic data pipeline combining existing and novel synthetic generators with a
cascade of augmentations, ensuring diverse temporal structures without relying on real-world data,
thereby eliminating benchmark leakage and mitigating privacy concerns associated with training
on real-world data. We release a fully open-source synthetic data generation pipeline for time
series forecasting that achieves competitive competitive performance on Gift-Eval.

¢ Compared to nonlinear RNNs and transformer time series foundation models, TempoPFN achieves
top-tier competitive zero-shot performance on Gift-Eval, surpassing all other synthetic-only
approaches and the vast majority of models trained on real-world data. This result is achieved
without any non-linearity in the recurrence, demonstrating that linear RNNs as a scalable and
powerful alternative to non-linear RNNs and transformers for time series foundation models.

2 BACKGROUND AND RELATED WORK

Time Series Forecasting. Time series forecasting aims to predict future values yr1.74+ 5 from
historical observations y;.7. Traditional methods such as ARIMA (Box & Jenkins| [1968) and ex-
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ponential smoothing (Hyndman et al.| 2008)) typically produce point estimates, while probabilistic
forecasting captures uncertainty by modeling the predictive distribution p(yr41.7+r | y1.7). The
advent of deep learning has significantly expanded this toolkit, introducing transformers (Vaswani
et al.| [2017) and modern recurrent architectures (Beck et al., 2024} |Gu & Daol [2023).

A major recent development is zero-shot forecasting, where models pre-trained on diverse corpora
can directly predict unseen time series without requiring fine-tuning. This paradigm mirrors the
transformative shift seen in natural language processing and computer vision, where foundation
models enable efficient cross-domain adaptation without costly per-task training.

Most successful zero-shot approaches leverage transformer architectures. Chronos (Ansari et al.,
2024), TimesFM (Das et al., [2024), and MOIRAI (Woo et al., [2024) use techniques such as patch-
ing, frequency-specific projections, and masked modeling to handle heterogeneous time series data.
Building on this foundation, MOIRAI-MOE (Liu et al., |2025b)) incorporates a sparse mixture-of-
experts architecture to achieve token-level specialization and improved robustness. Among true
zero-shot models, MOIRAI currently demonstrates state-of-the-art performance on Gift-Eval while
carefully avoiding overlap with evaluation benchmarks.

An alternative approach focuses on synthetic data pretraining. ForecastPFN (Dooley et al., [2023))
trains exclusively on synthetic distributions featuring multi-scale trends, seasonality, and Weibull
noise, enabling Bayesian zero-shot inference through single forward passes. TimePFN (Taga et al.,
2025) extends this framework to multivariate scenarios using Gaussian process kernels and linear
coregionalization. Similarly, TabPFN-TS (Hoo et al., 2024) represents time series in tabular format
and leverages TabPFNv2 (Hollmann et al.l |2025), achieving competitive performance despite the
limited availability of its underlying synthetic data.

Recent work has also revisited recurrent architectures for long-horizon forecasting. TiRex (Auer
et al} |2025), currently the top performer on Gift-Eval, uses XLSTM (Beck et al.| 2024])) pre-trained
on synthetic Gaussian processes, Chronos datasets, and carefully selected Gift-Eval subsets, en-
hanced with data augmentation techniques including amplitude modulation, censoring, and spike
injection. In contrast, TempoPFN takes a different approach by exploiting linear RNNs with Gated-
DeltaProduct mechanisms and negative eigenvalues, enabling fully parallelizable training without
requiring patching or summarization while relying exclusively on synthetic pretraining data to elim-
inate real-world leakage concerns.

Linear RNNs. Recurrent neural networks have seen a resurgence in interest with the emergence
of linear RNNs also known as state-space models. While non-linear RNNs are non-trivially par-
allelizable (Gonzalez et al., |2024), linear RNNs can be parallelized using a chunk-wise parallel
form (Yang et al., 2024a)) or an associative scan (Gu & Dao, 2023 Martin & Cundy} 2018)). For-
mally, linear RNN layers transform input sequences 1., € R’ into outputs ¢;.; € RP through the
recurrence

H; = A(xz;)H,;_1 + B(x;) with output §; = dec(H,;, x;) fori € {1,...,t} (1)

where A : R — R™ " parameterizes the state-transition matrix, B : R — R"*? governs state
inputs, and dec : R"*? x R! — RP produces the layer output. Variants such as Mamba (Dao &
Gul [2024), GLA (Yang et al} [2024a), and mLSTM (Beck et al., 2024) adopt diagonal transitions,
while others explore richer parameterizations. More expressive formulations relax diagonal state-
transition constraints, as seen in DeltaNet (Schlag et al., [2021} |Irie et al.l 2023} |Yang et al., 2024b),
TTT-Linear (Sun et al., |2024), RWKV-7 (Peng et al.| [2025)), B'MOJO (Zancato et al.| [2024), and
Titans (Behrouz et al., [2024)).

Within this framework, we use DeltaProduct (Siems et al.,|2025)) as our token-mixing mechanism,
which generalizes DeltaNet’s non-diagonal transitions by expressing A (x;) as a product of n;, gen-
eralized Householder transformations, enabling a rank-n;, transformation of the matrix-valued hid-
den state A(x;) = H;Li 1 (I — Bijkij k: j). For each token x;, the model generates nj, normalized
keys k; ; = v(Wjx;)/||v(Wjx;)| 2, values v; ; = Vja,, and coefficients §; ; = ¢(Ujx;) using
learnable matrices W;, V;;, U;, SiLU activation 1) (Hendrycks & Gimpel, 2016), and a sigmoid-
based gating function ¢. Siems et al.[(2025) found that increasing n;, leads to significantly improved
length-extrapolation, language modeling, and state-tracking on permutation tasks, all capabilities
which are equally desirable for time-series forecasting.
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3 TEMPOPFN

3.1 ARCHITECTURE

The TempoPFN architecture is designed to forecast univariate time series across a full prediction
horizon in a single forward pass, as illustrated in Figure [2| It consists of four main stages: input
representation, backbone, non-causality through state weaving, and prediction.

Input representation. TempoPFN uses an input representation PREDICTION
in which history (timesteps + values) and future (timesteps) are
concatenated into one token sequence enabling communication be-
tween future time-steps for coherent predictions. In contrast to
TiReX, which presummarizes time-steps into windows of size 32,
TempoPFN directly operates on the individual time-steps. Each
time step t; is encoded using GluonTS (Alexandrov et al., [2020)
time features (e.g., seasonality indicators, day-of-week, or index-
based encodings) that are linearly projected into the embedding di-
mension of the model. For historical steps, observed values y; are
projected via a linear layer, while missing values are handled by
a learnable NaN embedding. The historical embedding is obtained
by additively combining the value and the time-feature embeddings.
For future time steps, only the time-feature embedding is used.
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Backbone. The core of TempoPFN is a stack of 10 en-
coder layers, each based on the Gated DeltaProduct block
from the flash-linear—-attention library (Yang & Zhang,
2024), originally derived from the LLaMA architecture (Tou-
vron et al., [2023). Each block consists of three components:

(1) token mixing through a Gated DeltaProduct recurrer?ce with
short one-dimensional convolutions (kernel size 16-32), (2) pre- HISTORY FUTURE
(zormalization applied before the recurrent unit to stabilize trgin— Figure 2: The TempoPFN
ing, and .(3) a gatqd MLP for chanpel-ywse feature transfo.rmatlon. architecture (3 blocks), us-
This design .combmes the pa.rallehze.ltlon a;lvantages of }mear e ine stacked GatedDeltaProd-
currences with the expressivity of lightweight convolutional and
feedforward operations. Non-causality via state weaving. Whereas
DeltaProduct was originally developed for autoregressive language
modeling, forecasting across a full horizon does not require causal masking. To exploit this prop-
erty, we introduce state weaving. Specifically, the final hidden state of each layer H} is added to
the learnable initial state of the next layer H"*. This mechanism enables bidirectional informa-
tion flow across the entire sequence length without additional parameters or computational overhead
through explicit bidirectionality (Hwang et al.| [2024; |Afzal et al.l [2025). This allows future time-
steps to attend to the entire history and future context, preventing the information bottleneck typical
of causal RNNs during the prediction phase.

uct blocks, learnable initial
states H{ and state-weaving.

Prediction. At the output stage, embeddings corresponding to the forecast horizon are extracted
from the final encoder block. These embeddings are passed through a linear projection head that
outputs multiple guantiles of the predictive distribution, enabling probabilistic forecasting. Overall,
this design allows to directly predict all future values given a history using a single forward pass.

3.2 SYNTHETIC DATA GENERATION

To train our time series foundation model, we generated a large and diverse dataset using 10 different
synthetic generators. This approach combines established data generation techniques with novel
methods to capture a wide spectrum of temporal patterns and behaviors. For a more comprehensive
description of each generator refer to Appendix [C]

Existing Generators. We adapted several established generators from prior work to ensure com-
prehensive coverage of common temporal patterns. The ForecastPFN generator (Dooley et al.,
2023)) composes multiplicative trend and seasonality components, combining linear and exponen-
tial growth terms with sinusoidal harmonics. The generator includes Weibull-distributed noise and
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augmentations such as time warping, magnitude scaling, and spike injection, with filtering mecha-
nisms to avoid extreme values. KernelSynth, following /Ansari et al.|(2024), samples univariate time
series from Gaussian process priors with composite kernels. Base kernels include periodic (ExpSi-
neSquared), stationary (RBF, RationalQuadratic), and noise (WhiteKernel) components, combined
through addition or multiplication to yield smooth yet varied trajectories. We extended this approach
with a broader Gaussian Process generator, as in Bhethanabhotla & Swelam|(2024) that randomly
combines kernels with greater functional diversity, producing wider ranges of stationary and non-
stationary patterns. The CauKer generator (Xie et al.l 2024) introduces causal dependencies by
sampling from structural causal models (SCMs). Each node represents a Gaussian process with
composite kernels and stochastic mean functions, while edges in a random DAG apply nonlinear
transformations. We generate 21-channel multivariate series, treating each channel as an indepen-
dent univariate signal to capture diverse, interdependent dynamics.

Novel Generators. We developed several new generators to fill gaps in existing approaches and
capture specific temporal behaviors. Sawtooth creates ramp-like patterns with upward or downward
slopes, enhanced with small linear trends and low-amplitude seasonal components to avoid overly
idealized signals. Step Function produces piecewise constant series with configurable change-
points, step sizes, and drift, using Gaussian smoothing at boundaries along with added noise, sea-
sonality, and anomalies. For anomaly-rich data, we created two specialized generators. Anomaly
produces baseline signals with periodic or clustered spikes, varying in magnitude regimes (constant,
trending, cyclical, or correlated random) and timing patterns. Spikes emphasizes event-driven be-
havior by placing sharp spikes on flat baselines, with configurable shapes (V, inverted V, or plateau
variants) arranged in bursty or evenly spread patterns. The Sine Wave generator provides clean oscil-
latory patterns with configurable period, amplitude, phase, and noise, offering fundamental periodic
signals for learning basic oscillatory structures. To capture highly complex, real-world dynamics, we
introduce Audio-Inspired Generators that use procedural audio synthesis techniques implemented
with Pyo (Belanger, 2016). These generators model phenomena such as Stochastic Rhythms for
event data, Financial Volatility with market shocks and clustering, Network Topology with traffic
bursts and congestion, and Multi-Scale Fractals for self-similar patterns. Our most sophisticated
contribution is the stochastic differential equation (SDE) generator, a flexible synthetic data gen-
erator based on a regime-switching, time-inhomogeneous Ornstein—Uhlenbeck (OU) process. The
OU process follows the SDE dy; = 6(t,r;) (u(t,r) — yi) dt + o (t,r) dW; where 0(t,r,) is the
mean reversion speed, (¢, r;) the time-varying mean, and o (¢, r;) the volatility. Each parameter de-
pends on both time ¢ and a latent regime r; € {0, 1} that evolves as a Markov chain. This framework
enables parameters to shift abruptly across regimes while drifting smoothly over time through poly-
nomial, sinusoidal, logistic, or piecewise-linear trends. Seasonal patterns are injected additively into
both mean and volatility components, with amplitudes subject to gradual growth or decay. For en-
hanced realism, we optionally replace standard Brownian motion with fractional Brownian motion,
introducing long-memory dynamics through the Hurst exponent H € (0, 1). Each simulated series
undergoes global rescaling and shifting before additive Gaussian measurement noise is applied. This
construction produces highly diverse temporal structures, capturing regime shifts, non-stationarity,
periodicity, and measurement noise within a principled stochastic framework.

3.3 DATA AUGMENTATIONS

In addition to diverse synthetic time-series generators, our pipeline (Figure[3) also contains a mix of
existing and novel augmentations to mix, transform, and distort the time-series for greater diversity.

Augmentation Pipeline. The offline pipeline applies transformations in a structured sequence. Base
series undergo optional normalization (80% probability) using random scalers (Robust, MinMax,
Median, or Mean). Early-stage TS-Mixup (Darlow et al.| 2023)) creates convex combinations of
multiple source series with probability p = 0.5. The core augmentation step samples 2-5 distinct
transformation categories with weighted probabilities: Invariances (0.6), Structure (0.6), Seasonality
(0.5), Signal Processing (0.4), Discrete Effects (0.6), and Measurement Artifacts (0.3). From each
selected category, one specific transformation is randomly chosen and applied in fixed global order.
Optional stochastic convolution filtering (probability p = 0.3) applies 1-3 random 1D convolutions
with randomized parameters. Late-stage TS-Mixup provides additional combination opportunities,
followed by finishing transformations, including minor global scaling and low-magnitude Gaussian
noise injection In the following, we provide details on the augmentations we implemented.
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Figure 3: Synthetic data augmentation pipeline. Synthetic time-series undergo probabilistic trans-
formations across six categorical groups (Invariances, Structure, Seasonality, Analytic, Discrete,
Artifacts), with optional TS-Mixup combinations and stochastic convolution filtering. Competitive
selection based on change scores ensures meaningful augmentations. Example outputs demonstrate
the diversity of generated temporal patterns.

Transformation Categories. Invariance transformations promote robustness through temporal
reversal (x — xp.1) and sign inversion (x — —Xx), preserving temporal dependencies while test-
ing directional conventions. Structural modifications inject non-stationarity via regime changes
with piecewise affine transforms across random change-points, and shock-recovery dynamics using
exponential decay impulses I(t) = Ae~(#=10)/7 with randomized parameters.

Seasonal effects simulate real-world periodicities through calendar injections that apply multi-
plicative factors for weekend dips, month-end spikes, and holiday-like impulses using timestamp
metadata. Amplitude modulation applies localized scaling to random segments, simulating time-
varying volatility. Signal processing transformations include Gaussian smoothing followed by
finite-difference operators (Sobel, Laplacian, higher-order derivatives up to 4th order) and numeri-
cal integration, with outputs rescaled to preserve original value ranges. Random convolution layers
with highly randomized parameters (Dempster et al.,[2020) provide additional signal transformation
capabilities.

Measurement artifacts introduce realistic data collection imperfections: censoring clips values at
random quantiles (similarly used by TiRex (Auer et al. [2025)), non-uniform quantization maps
values to discrete levels using quasi-random Sobol sequences, and resampling artifacts downsample
and upsample series with various interpolation methods.

Combination strategies We implement TS-Mixup (Ansari et al., |2024) to generate novel series
through convex combinations of 2-10 source series, with mixing weights sampled from Dirichlet
distributions and extend it with time-dependent mixing using smooth simplex path interpolation.

4 EXPERIMENTS

Pre-training Setup. TempoPFN’s pre-training is conducted exclusively on synthetic data, en-
suring no exposure to real-world benchmarks prior to evaluation. The training corpus consists of
approximately 10 million time series from our generators, each with a maximum length of 2048.
We train our main model (34.69M parameters) using a for a total of 4 million iterations with a batch
size of 40. We use the AdamW optimizer (Loshchilov & Hutter| [2019) and quantile loss. We se-
lected a 35M model (10 layers, 4 heads, 512 embedding dimension) for its strong performance and
comparability to TiRex (Auer et al [2025). To ensure robustness across sequence lengths, we ran-
domly sample both the context length and historical window size during training. Complete training
details are in Appendix [D]
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Figure 4: Comparison of TempoPFN performance (4M iterations), against other models on GiftEval
benchmark. We compute both normalized and average ranks for CRPS and MASE. Colors represent
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Quantitative Results. We evaluate TempoPFN on the Gift-
Eval benchmark, a comprehensive zero-shot forecasting suite
covering diverse real-world datasets across domains and hori- .
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Qualitative Results. Figure [3] shows forecasting results on representative Gift-Eval series with
varying temporal patterns (see Figure [21] for additional results). All models capture key trends and
seasonality, but TempoPFN produces coherent predictive distributions without artifacts. Compared
to TabPFN-TS, TempoPFN generates smoother uncertainty bounds while maintaining competitive
point forecasts. This is likely a result of TabPFN-TS predicting all future time-steps in isolation
while our architecture allows future time-steps to communicate. In many longer predictions made
by TiRex (e.g. bizitops service), we find high frequency artifacts in the prediction of the quantiles
which we hypothesize to be a result of the windowing done by TiRex which compresses the time-
series into chunks of size 32 before applying the model and later upprojects them back to the original
resolution. Since TempoPFN requires no windowing, we did not notice similar artifacts.

Robustness to NaNs. We now compare the robustness of TempoPFN and TiRex towards missing
values (NaN) in the data. Figure [6] shows that both models exhibit a degradation in performance
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Figure 5: Qualitative comparison between TempoPFN, TiRex and TabPFN-TS on three series from
the GIFT-Eval Benchmark. (Left) Total context with prediction window in dashed grey box. (Right)
Predictions between TempoPFN, TiRex, and TabPFN-TS.

as the percentage of NaNs increases, however, TempoPFN is significantly more robust. While the
normalized CRPS score (relative to TempoPFN’s CRPS at 0% NaNs) for both models rises with
more NaNs, TiRex’s performance deteriorates more rapidly, with its median CRPS increasing by
over 11% when 90% of the data is missing. In contrast, TempoPFN’s median error increases by
only about 4% under the same conditions, showcasing its superior stability and resilience when
faced with incomplete time series data.

4.1 THE IMPORTANCE OF TEMPOPFN’S COMPONENTS

Ablation Study Setup. To manage the significant computational cost of pre-training, not all ablation
experiments were conducted for a full 4M-iteration training schedule. Therefore, these studies are
designed to provide strong directional evidence on the relative importance of each component, rather
than to measure their full, converged performance impact.

Ablating the synthetic time series generators. To assess the individual contribution of each syn-
thetic data source, we conducted an ablation study by retraining our model while excluding one
synthetic time series generator at a time. As detailed in Table [3] the results reveal a clear hierar-
chy of importance, consistently observed across short, medium, and long-term forecasting horizons,
with every generator proving beneficial for high performance. The highest impact data generator is
our proposed SDE generator; its removal caused the most severe performance degradation, increas-
ing the overall CRPS by 26% from 0.578 to 0.729. This highlights the importance of exposing the
model to time series with mean-reverting and noisy, continuous-time dynamics. Significant, albeit
smaller, performance losses were also observed upon removing generators responsible for complex
seasonality (Cauker), abrupt changes (Step), and transient events (Spike), underscoring the necessity
of a diverse pre-training corpus that captures a wide array of structural and stochastic patterns. In
Table[7]in the appendix, we also compare our base model trained using all generators with models
trained using a single generator at a time.

Ablating the augmentation pipeline. To quantify the impact of augmentations, we trained models
with and without the full suite augmentation suite (see Table [2). Results on the GIFT-Eval bench-
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Table 3: Ablation study of synthetic data priors using a leave-one-out methodology (500k itera-
tions). The *Ablation’ column indicates the single prior excluded from the training mixture. Perfor-
mance is measured by CRPS and MASE (lower is better). Rows are colored to indicate the perfor-

mance impact on the overall CRPS when a prior is removed: High Impact (> 25% increase) and

Medium Impact (> 10% increase). N = Novel prior (our contribution), A = Adapted from open-source.

Gift-ZS Overall Gift-ZS Short  Gift-ZS Medium  Gift-ZS Long
Ablation Source CRPS MASE CRPS MASE CRPS MASE CRPS MASE

Base Model - 0.577 0.842 0.563 0.763 0.566  0.900 0.631 1.019
- GP A 0.591 0.830 0.576 0.749 0.605 0.924 0.618 0.981
- Kernel A 0.611 0.885 0.589 0.796 0.637 0.981 0.648 1.056
- ForecastPFN A 0.617 0.885 0.588 0.791 0.643 0981 0.674 1.075
- Sawtooth N 0.628 0.900 0.597 0.800 0.661 1.012  0.684 1.091
- Sinewave N 0.628 0.899 0.594 0.799 0.677 1.032 0.676 1.070
- Anomaly N 0.630 0.897 0.592 0.794 0.684 1.024 0.683 1.079
- Step N 0.640 0.927 0.605 0.819 0.686 1.063 0.689 1.120
- Stochastic Rhythm N 0.642 0.911 0.601 0.802 0.701 1.043  0.699 1.111
- Spike N 0.645 0.936 0.619 0.836 0.678 1.059 0.684 1.115
- Cauker A 0.656 0.928 0.605 0.810 0.728 1.084 0.729 1.132
- SDE (OU Process) N 0.729 1.031 0.684 0.916 0.799 1.184 0.789 1.225

seasonal_naive 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mark reveal consistent gains from our augmentation pipeline yielding a 5.4% relative improvement
in overall CRPS and a 3.8% improvement in overall MASE. These gains are present across all
forecasting horizons, underscoring the benefit of our complex data augmentation pipeline for ex-
trapolation to real-world data.

Ablating architectural components. Results Table 2: The impact of data augmentation on
on architectural ablations are provided in Ta- model performance, shown by normalized perfor-
ble 0 in the Appendix. These results high- mance values (500k iterations). Individual aug-
light the importance of our proposed weav- mentation effects and probability tuning were not
ing’ mechanism. Specifically, Table [0 shows —exhaustively explored due to resource constraints.
that disabling ’weaving’ in our main model

Gift-ZS Overall  Gift-ZS Short  Gift-ZS Medium  Gift-ZS Long

(d=512, L=10) leads to a performance degra-  mode CRPS MASE CRPS MASE CRPS MASE CRPS MASE
dation, increasing the overall CRPS from — waAuw 0577 0842 0563 0763 0566 0900 0.631 1019
wio Aug 0610 0875 0582 0783 0617 0963 0643 1059

0.533 to 0.537. This result supports the hy-
pothesis that enabling bidirectional informa-
tion flow across layers is beneficial.

seasonal_naive 1.000 1.000  1.000 1.000 1.000  1.000  1.000 1.000

5 CONCLUSION AND FUTURE WORK

We introduce TempoPFN, a novel time series foundation model demonstrating that linear RNNGs,
specifically the GatedDeltaProduct architecture, provide a highly efficient and scalable solution
for zero-shot forecasting. By enabling parallelizable training, our model processes long sequences
without patching or summarization heuristics. TempoPFN is trained exclusively on our open-source
synthetic data generation pipeline, which integrates diverse generators and a complex augmentation
framework. This synthetic-only approach ensures full reproducibility and eliminates data leakage
concerns. On the Gift-Eval benchmark, TempoPFN achieves top-tier competitive performance, sur-
passing other synthetic-only approaches and the vast majority of models trained on real-world data,
establishing linear RNNs as a powerful and scalable alternative to prevailing architectures.

A key limitation of our current work is its focus on univariate time series. Extending our synthetic
generation pipeline and state-weaving architecture to the more complex multivariate case represents
a primary direction for future work. Additionally, incorporating pre-training on diverse real-world
time series datasets could further enhance forecasting accuracy and generalization. Finally, investi-
gating the performance of Linear RNN architectures against Transformer-based models for zero-shot
forecasting represents a potential direction for further research.



Under review as a conference paper at ICLR 2026

REFERENCES

Arshia Afzal, Elias Abad Rocamora, Leyla Naz Candogan, Pol Puigdemont, Francesco Tonin, Yong-
tao Wu, Mahsa Shoaran, and Volkan Cevher. Linear attention for efficient bidirectional sequence
modeling. arXiv preprint arXiv:2502.16249, 2025.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner TAYrkmen, and Yuyang Wang. Gluonts: Probabilistic and
neural time series modeling in python. Journal of Machine Learning Research, 21(116):1-6,
2020.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, An-
drew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the
language of time series. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Andreas Auer, Patrick Podest, Daniel Klotz, Sebastian Bock, Giinter Klambauer, and Sepp Hochre-
iter. Tirex: Zero-shot forecasting across long and short horizons with enhanced in-context learn-
ing. arXiv preprint arXiv:2505.23719, 2025.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. In Thirty-eighth Conference on Neural Information Processing Systems,
2024.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Olivier Belanger. Pyo, the python dsp toolbox. In Proceedings of the 24th ACM international
conference on Multimedia, pp. 1214-1217, 2016.

Sathya Kamesh Bhethanabhotla and Omar Swelam. Mamba4cast: Efficient zero-shot time series
forecasting with state space models. arXiv preprint arXiv:2410.09385, 2024.

George E. P. Box and Gwilym M. Jenkins. Some recent advances in forecasting and control. Journal
of the Royal Statistical Society Series C (Applied Statistics), 17(2):91-109, 1968.

Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. Time series feature
extraction on basis of scalable hypothesis tests (tsfresh — a python package). Neurocomputing,
307:72-77, 2018. doi: 10.1016/j.neucom.2018.03.067.

Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
structured state space duality. In Proceedings of the 41st International Conference on Machine
Learning, ICML’ 24, 2024.

Luke Nicholas Darlow, Artjom Joosen, Martin Asenov, Qiwen Deng, Jianfeng Wang, and Adam
Barker. Tsmix: Time series data augmentation by mixing sources. In Proceedings of the 3rd
Workshop on Machine Learning and Systems, EuroMLSys *23, pp. 109—-114, New York, NY,
USA, 2023. Association for Computing Machinery.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. Proceedings of the 41st International Conference on Machine Learning,
2024.

Angus Dempster, Francois Petitjean, and Geoffrey I Webb. Rocket: Exceptionally fast and accu-
rate time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34:1454-1495, 2020. doi: 10.1007/s10618-020-00701-z.

Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha V Naidu, and Colin White.
Forecastpfn: Synthetically-trained zero-shot forecasting. In Advances in Neural Information Pro-
cessing Systems, 2023.

10



Under review as a conference paper at ICLR 2026

Xavier Gonzalez, Andrew Warrington, Jimmy T.H. Smith, and Scott W. Linderman. Towards scal-
able and stable parallelization of nonlinear rnns. In Advances in Neural Information Processing
Systems, volume 37, pp. 5817-5849. Curran Associates, Inc., 2024.

Lars Graf, Thomas Ortner, Stanistaw WozZniak, and Angeliki Pantazi. Flowstate: Sampling rate
invariant time series forecasting. arXiv preprint arXiv:2508.05287, 2025.

Riccardo Grazzi, Julien Siems, Jorg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano Pon-
til. Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues. In The Thirteenth
International Conference on Learning Representations, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. TabPFN: A Trans-
former That Solves Small Tabular Classification Problems in a Second. In International Confer-
ence on Learning Representations, 2023.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Korfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319-326, 2025.

Shi Bin Hoo, Samuel Miiller, David Salinas, and Frank Hutter. The Tabular Foundation Model
TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features. In
NeurlPS 2024 Third Table Representation Learning Workshop, 2024.

Sukjun Hwang, Aakash Lahoti, Ratish Puduppully, Tri Dao, and Albert Gu. Hydra: Bidirectional
state space models through generalized matrix mixers. In Advances in Neural Information Pro-
cessing Systems, volume 37, pp. 110876—110908. Curran Associates, Inc., 2024.

Rob J. Hyndman, Anne B. Koehler, J. Keith Ord, and Ralph D. Snyder. Forecasting with Exponential
Smoothing: The State Space Approach. Springer, 2008.

Kazuki Irie, Robert Csordds, and Jiirgen Schmidhuber. Practical computational power of linear
transformers and their recurrent and self-referential extensions. In The 2023 Conference on Em-
pirical Methods in Natural Language Processing, 2023.

Xu Liu, Taha Aksu, Juncheng Liu, Qingsong Wen, Yuxuan Liang, Caiming Xiong, Silvio Savarese,
Doyen Sahoo, Junnan Li, and Chenghao Liu. Empowering time series analysis with synthetic
data: A survey and outlook in the era of foundation models. arXiv preprint arXiv:2503.11411,
2025a.

Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao
Liu, Junnan Li, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. Moirai-MoE: Empowering
Time Series Foundation Models with Sparse Mixture of Experts. In Forty-second International
Conference on Machine Learning, 2025b.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In
International Conference on Learning Representations, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, 2019.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
International Conference on Learning Representations, 2018.

Leland MclInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Samuel Miiller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. In International Conference on Learning Representations,
2022.

11



Under review as a conference paper at ICLR 2026

Liran Nochumsohn, Michal Moshkovitz, Orly Avner, Dotan Di Castro, and Omri Azencot. Be-
yond data scarcity: A frequency-driven framework for zero-shot forecasting. arXiv preprint
arXiv:2411.15743, 2024.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Bi-
derman, Huangi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. RWKV:
Reinventing RNNSs for the Transformer Era. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
Jiaxing Liu, Janna Lu, William Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan
Wilce, Johan S. Wind, Tianyi Wu, Daniel Wuttke, and Christian Zhou-Zheng. RWKV-7 "Goose”
with Expressive Dynamic State Evolution. In Second Conference on Language Modeling, 2025.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear Transformers Are Secretly Fast Weight
Programmers. In International Conference on Machine Learning, 2021.

Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
Grazzi. DeltaProduct: Increasing the Expressivity of DeltaNet Through Products of Household-
ers. In Advances in Neural Information Processing Systems, volume 38. Curran Associates, Inc.,
2025.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): RNNs with expressive hidden states. arXiv:2407.04620 [cs.LG], 2024.

Ege Onur Taga, Muhammed Emrullah Ildiz, and Samet Oymak. TimePFN: effective multivariate
time series forecasting with synthetic data. In Proceedings of the Thirty-Ninth AAAI Conference
on Artificial Intelligence, AAAT'25/IAAT'25/EAAT’25. AAAI Press, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. Proceedings of the Forty-First
International Conference on Machine Learning, 2024.

Shifeng Xie, Vasilii Feofanov, Marius Alonso, Ambroise Odonnat, Jianfeng Zhang, and Ievgen
Redko. Cauker: Classification time series foundation models can be pretrained on synthetic data
only. arXiv preprint arXiv:2508.02879, 2024.

Songlin Yang and Yu Zhang. FLA: A Triton-Based Library for Hardware-Efficient Imple-
mentations of Linear Attention Mechanism, January 2024. URL https://github.com/
sustcsonglin/flash-linear—attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Atten-
tion Transformers with Hardware-Efficient Training. In International Conference on Machine
Learning, 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing Linear Trans-
formers with the Delta Rule over Sequence Length. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024b.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-

ers with the delta rule over sequence length. Advances in neural information processing systems,
37:115491-115522, 2024c.

12


https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention

Under review as a conference paper at ICLR 2026

Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya Golatkar, Yantao Shen, Benjamin Bowman,
Matthew Trager, Alessandro Achille, and Stefano Soatto. B’MOJO: Hybrid State Space Real-
izations of Foundation Models with Eidetic and Fading Memory. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence,
2023.

13



Under review as a conference paper at ICLR 2026

A THEORETICAL FRAMEWORK AND DESIGN PRINCIPLES

A.1 BACKGROUND: PRIOR DATA FITTED NETWORKS (PFNS)

Prior Data Fitted Networks (PFNs) (Miiller et all 2022) represent a paradigm shift in machine
learning, moving from learning a single fixed task to learning a universal inference algorithm. In
this section, we provide a brief overview of the PFN framework to contextualize the methodology
used in TempoPFN.

Definition and Objective. A PFN is a neural network ¢, with parameters 6, trained to approxi-
mate the posterior predictive distribution (PPD) induced by a prior distribution P(D) over datasets.
Formally, let a dataset D = {(x;,;)}_, be drawn from a prior P. The goal of a PFN is to minimize
the Kullback-Leibler divergence (or equivalently, the cross-entropy loss) between its output and the
true posterior predictive distribution of the prior:

N
meinEDwP Zl —logpe(yi | ©i, D1:i—1) 2
i—
where D;.; 1 represents the context (history) observed so far.

In-Context Learning as Bayesian Inference. Unlike traditional supervised learning, where the
model’s weights 6 encode the solution to a specific task (e.g., “predict sales for Company X”), a
PFN’s weights encode the algorithm for solving a class of tasks defined by the prior. At inference
time, the PFN performs In-Context Learning (ICL): it takes a small dataset of context observations
(the history of a time series) and produces predictions for new query points (the future) in a single
forward pass. Crucially, this forward pass acts as a fast approximation of Bayesian Inference without

the computational cost of MCMC or variational methods (Miller et al.} 2022} [Hollmann et al.}[2023).

The Role of Synthetic Data. The performance of a PEN is fundamentally bounded by the qual-
ity and diversity of its prior P. Since real-world data is often limited, biased, or private, PFNs are
typically trained on vast repositories of synthetic data generated from procedural priors. For ex-
ample, TabPFN (Hollmann et al'} 2023)) uses Structural Causal Models (SCMs) to generate tabular
data, while ForecastPFN (Dooley et al.| 2023)) uses a mix of trends and seasonalities. Similarly, in
methodname the "Prior” is the novel synthetic data pipeline detailed in Appendix [C] which gener-
ates diverse temporal dynamics using SDEs, GPs, and asymmetric waveforms. Our "Network™ is a
Linear RNN, namely GatedDeltaProduct (Siems et all, 2025])), chosen for its efficiency in handling
long sequential contexts compared to the Transformers used in previous PENs. By training the se-
quence model on this synthetic prior, TempoPFN learns to infer the underlying generative process
of any unseen time series given its history, enabling zero-shot probabilistic forecasting.

A.2 DESIGN PRINCIPLES FOR SYNTHETIC DATA GENERATION

Our selection of synthetic data generators is grounded in the principle of structural decomposition.
We posit that the manifold of real-world time series can be spanned by four fundamental dynamical
properties: Smoothness, Stochastic Volatility (Roughness), Temporal Asymmetry, and Discontinu-
ities. Bxisting synthetic pipelines often over-index on the first (trends/seasonality)
while neglecting the latter three. We designed a principled portfolio of generators to act as
orthogonal “’basis functions” for these properties, ensuring our prior distribution covers the complex
dynamics found in downstream tasks.

Smooth Dynamics (Gaussian Processes). To capture non-parametric trends and local correlations,
we employ Gaussian Processes (GPs). Real-world data is dominated by latent trends that evolve
smoothly but unpredictably, such as demographic shifts or climate warming, which cannot be cap-
tured by rigid linear or polynomial functions. GPs with RBF or Matérn kernels serve as the standard
for modeling such smooth, differentiable manifolds, providing the model with a robust prior for
interpolation and extrapolation of continuous trends.

Stochastic Volatility and Roughness (SDEs). A critical deficiency in standard synthetic pipelines
is the reliance on additive Gaussian noise (¢ ~ AN(0, 1)), which implies homoscedasticity (con-
stant variance). However, financial and physical systems are inherently heteroscedastic, exhibiting
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state-dependent volatility and mean-reverting dynamics. To fill this gap, we integrate Stochastic Dif-
ferential Equations (SDEs), specifically Regime-Switching Ornstein-Uhlenbeck (OU) processes. By
explicitly modeling the diffusion term o (¢, y;), we force the model to learn to distinguish between
deterministic signal drift and stochastic volatility clustering, a capability essential for accurate un-
certainty quantification.

Asymmetric Periodicity (Sawtooth Waveforms). Standard sinusoidal generators rely on an as-
sumption of time-reversal symmetry (equal rise and fall times). Yet, many physical and economic
processes are inherently asymmetric and irreversible: inventory levels deplete gradually and restock
instantaneously; capacitors discharge rapidly. We selected the Sawtooth wave as the fundamental
primitive for asymmetry. Unlike Triangle waves (symmetric) or Square waves (step functions), the
Sawtooth explicitly models the gradual-rise/sharp-drop dynamic.

Discontinuities and Structural Breaks (Spikes/Steps). Finally, real-world data is rife with instan-
taneous regime changes: policy shifts, sensor failures, or sudden shocks. All of these violate the
smoothness assumptions of GPs and SDEs. To model these structural breaks, we include explicit
Step and Spike generators. Including these non-differentiable primitives ensures the model remains
robust to covariate shifts and prevents the “smearing” of distinct regimes into a single average.

By composing these four distinct dynamical behaviors, TempoPFN has access to a complex prior,
allowing it to generalize zero-shot to unseen time series by identifying the governing combination
of dynamics (related to the state-tracking capabilities of GatedDeltaProduct too), rather than mem-
orizing dataset-specific statistics.

A.3 COMPARISON WITH EXISTING SYNTHETIC STRATEGIES

Freq-Synth (Nochumsohn et al} [2024)) and TabPEN-TS [2024) are two recent methods
that employ only synthetic data training as well. However, their methodologies represent fundamen-

tally different paradigms in synthetic data generation and usage compared to TempoPFN. Freq-Synth
adopts a task-specific generation strategy, hence requiring prior knowledge of the target dataset’s
sampling rate to generate a custom training corpus of harmonic signals (sums of sinusoids) tailored
to mitigate data scarcity for that specific task. In contrast, in TempoPFN, we pretrain a single model
on a fixed, comprehensive corpus designed to marginalize over diverse temporal dynamics with-
out requiring task-specific data generation. This distinction places TempoPFN in a unique position
within the broader landscape of synthetic time series data [2025a). While most existing
synthetic pre-training methods (e.g., Chronos, TimesFM) rely on standard statistical components
like GPs or ARMA processes, TempoPFN explicitly expands this design space by introducing novel
generators for stochastic volatility (via SDEs) and temporal asymmetry (via sawtooth waves). Inter-
estingly, TabPEN-TS relies on cross-domain adaptation, leveraging a model pre-trained on synthetic
tabular data (via structural causal models) to effectively “feature-engineer” time series problems into
tabular regression tasks, rather than learning temporal dynamics directly.

Parallel to this work, (2023)) introduced FlowState, a time series foundation model that
also leverages State Space Models (SSMs) for subquadratic computational efficiency. FlowState
features an SSM-based encoder combined with a functional basis decoder to enable sampling-rate
invariance and continuous-time modeling. While both FlowState and TempoPFN move away from
Transformer-based architectures in favor of linear recurrences, our approaches differ fundamen-
tally in their pre-training data paradigms. FlowState is pre-trained on a combination of real-world
datasets (subsets of GIFT-Eval and Chronos corpora), whereas TempoPFN establishes the viabil-
ity of a purely synthetic pre-training pipeline. Furthermore, while FlowState focuses on resolution
adaptation, TempoPFN focuses on maximizing zero-shot generalization through a diverse synthetic
prior designed and utilizing the GatedDeltaProduct for state tracking.

B ARCHITECTURAL MECHANISMS

B.1 GATEDDELTAPRODUCT ARCHITECTURE AND STATE TRACKING

To overcome the expressivity limitations of diagonal linear RNNs while retaining linear-time parallel
scan computation, TempoPFN uses the GatedDeltaProduct recurrence (Siems et al.} [2025). Unlike
diagonal SSMs such as Mamba (Gu & Dao 2023) or RWKV (Peng et al.| [2023), whose state-
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transition matrices are restricted to diagonal structure, GatedDeltaProduct employs a structured non-
diagonal transition matrix constructed as a product of generalized Householder matrix updates. This
yields a more expressive class of linear operators while keeping both training and inference efficient.

Recurrence Mechanism. Each layer maintains a matrix-valued hidden state H; € RY*", updated
via a linear recurrence:
H, = AH,; 1+ By, yr = Hyxy. (3)

Here, z; € R” represents the input vector at the current time step ¢, where D is the input dimension
(e.g., number of features). H; € RY is the hidden state vector, representing the compressed mem-
ory, where N is the state dimension. A; € RN %N s the state-transition matrix, which defines how
the information from the previous hidden state evolves and is stored in the new state. DeltaProd-
uct utilizes a dense, parameterized matrix A;, which is explicitly constrained to be near orthogonal
through its initialization and parameterization scheme (a product of n; rank-1 Householder-like
updates):

U2

A =gt H (I - Bt,jkmkzj) ) @

j=1

where g, € [0, 1] is a forget gate, k, ; are normalized key vectors, and /3 ; are step sizes predicted
from the input. The orthogonality constraint ensures that the transformation applied to the hidden
state, H;_1, preserves its magnitude. Consequently, the hidden state H; can effectively maintain its
stability and information content over extended time steps, enabling robust state tracking of long-
term trends and cyclical patterns in time series forecasting. Because each factor I —Skk " is a rank-1
update, the full matrix-vector product remains O(dny,) and is fully parallelizable via a parallel prefix
scan (Yang et al}[2024c). Finally, B, € RV*P is the input weight matrix. This matrix transforms
the current input z; and integrates it into the hidden state Hj.

Gating. The gating in GatedDeltaProduct was introduced to embed essential non-linearity in the
basic linear recurrence above, therefore enhancing the model’s overall expressiveness and selective
memory. After the main linear recurrence is performed, its output is processed along two parallel
streams: 1) Main Stream: The result of the linear recurrence, intended for the final output; 2) Gate
Stream: The same recurrent output is passed through a non-linear activation function (e.g., the SiLU
or Swish function). These two streams are combined via element-wise multiplication (the gate).
This operation selectively controls which parts of the recurrent output are emphasized or suppressed,
mirroring the functionality of sophisticated recurrent units like the Gated Recurrent Unit (GRU) or
the selectivity found in Mamba’s architecture.

State Weaving. This mechanism was specifically designed for the overall multi-layer structure of
the TempoPFN framework where multiple GatedDeltaProduct layers are stacked. Instead of simply
discarding the final hidden state, the mechanism weaves temporal information across the depth of
the model. Specifically, the final hidden state (H 1) outputted by the first GatedDeltaProduct layer
in the stack is passed forward to serve as the initial hidden state (H) for the subsequent Gated-
DeltaProduct layer. This ensures that deeper layers do not start their recurrence from a blank slate
but instead build upon the aggregated temporal state representations learned by the shallower layers.
This process creates a dense flow of information across both the time dimension (via the recurrence)
and the model depth (via the weaving).

State Tracking and Its Relevance in Time-Series Forecasting. A central advantage of
DeltaProduct is its ability to perform state tracking, i.e., maintaining and updating information over
long sequences. Diagonal linear RNNs and SSMs (e.g., Mamba, RWKYV, GLA) update each hid-
den dimension independently, which is efficient but severely limits expressivity: they cannot mix
coordinates, cannot implement basic tracking functions such as parity or counting
2025)), and their states inevitably drift toward zero due to exponential decay. DeltaProduct avoids
this failure mode through negative eigenvalues present in the structured non-diagonal transitions,
where each factor (I — 3kk ") acts as a reflection or low-rank rotation that preserves geometry and
prevents collapse. This capability is crucial for time-series forecasting, where tracking corresponds
to maintaining frend and level information across long contexts. As a result, GatedDeltaProduct
layers maintain trend information without attenuation, enabling stable and coherent extrapolation
over extended horizons.

16



Under review as a conference paper at ICLR 2026

C SYNTHETIC DATA IMPLEMENTATION DETAILS

C.1 GENERATOR SPECIFICATIONS

CauKer. To increase the diversity and structural complexity of our training data, we used the CauKer
generator from (Xie et al.l|2024). This method produces multivariate time series by sampling from
a structural causal model (SCM) where each variable is a Gaussian process. A random Directed
Acyclic Graph (DAG) defines the dependencies between nodes, with each node having a maximum
number of parents. Root nodes in the DAG are sampled from a GP prior y; ~ GP(m(t), k(t,t")),
using complex composite kernels x (combined via + or *) and stochastic mean functions m(t) (e.g.,
linear at + b, exponential a exp(bt), or functions with anomalous impulses). Child nodes then apply
nonlinear activation functions (e.g., ReLU, sigmoid, sin) to affine combinations of their parents’
values, introducing intricate, non-Gaussian dependencies.

We generated multivariate series with 21 channels and treated each channel as an independent uni-
variate time series. This approach allows us to efficiently create a vast corpus of realistic, interdepen-
dent patterns from a single generative process, providing the model with a rich and varied learning
signal that encompasses trends, periodicities, and complex nonlinear interactions.

CauKer
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Figure 7: Example time series generated by CauKer

KernelSynth. The KernelSynth generator, based on Chronos (Ansari et al., [2024), samples in-
dependent univariate time series from Gaussian process priors y ~ GP(0, k(¢,t')). It constructs
composite kernels x by randomly combining base kernels (using addition or multiplication) from
a large bank. This bank includes periodic kernels (ExpSineSquared(p) with periods p normalized
by series length), stationary kernels (RBF, RationalQuadratic), and noise kernels (WhiteKernel).
This method efficiently produces a vast array of smooth and structured series, ideal for learning
fundamental temporal representations.

Kernel Synth
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Figure 8: Example time series generated by KernelSynth

Gaussian Process. The Gaussian Process generator, inspired by Mamba4Cast (Bhethanabhotla &
Swelam, [2024), extends the GP sampling approach with greater complexity and realism. It con-
structs a composite kernel by combining up to six base kernels from a weighted bank that includes
Matern, linear, periodic, and polynomial kernels. The combination logic (addition or multiplication)
is also chosen randomly. To generate realistic periodicities, the periods of any periodic kernels are
sampled from distributions tailored to the time series’ specified frequency (e.g., daily, weekly). Cru-
cially, with a certain probability, we inject periodic peak spikes that are aligned with the dominant
periodicity of the sampled kernel. This process creates sharp, recurring events on top of the smooth
GP trajectory, yielding a wide range of both stationary and non-stationary series with complex co-
variance structures that mix smooth and abrupt dynamics.
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Gaussian Process (GP)
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Figure 9: Example time series generated by GP

ForecastPFN. The ForecastPFN generator, adapted from [Dooley et al.|(2023), creates time series
with configurable trends, seasonality, and noise patterns. The trend component combines linear and
exponential elements multiplicatively for improved stability:

T(t) = [b+ si(t +0p)] x {0, (5)

where the exponential base s, is carefully scaled based on series length and frequency to prevent
unbounded growth. The seasonality component is also multiplicative:

st)=1] (1 + 55 ; [cf,h sin (%h(tﬂf)> +djp, cos <2”h(t+0f)>D . (6)

I by by

The final series values are given by 7(t) - s(t) - (1 + n(t)), where n(t) is Weibull-distributed noise.
We enhanced this foundation with a noise injection strategy inspired by [Bhethanabhotla & Swe-
lam| (2024), incorporating univariate augmentations like time warping, magnitude scaling, damping,
and spike injection. A built-in filtering mechanism with retry logic ensures generated series avoid
unrealistic spreads or extreme values, guaranteeing robust training data.

ForecastPFN
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Figure 10: Example time series generated by ForecastPFN

Sawtooth. The Sawtooth generator creates univariate series with linear ramping patterns. The
core waveform is a sawtooth function: y; = A - frac((t/P) + ¢) for upward ramps, or y; =
A - (1 —frac((t/P)+ ¢)) for downward ramps (direction chosen randomly). To prevent overly ide-
alised signals, minimal linear trends (s;t) and low-amplitude seasonal components (a sin(27t/Q))
are added. This encourages the model to learn robust representations of trend-dominated series.

Sawtooth
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Figure 11: Example time series generated by Sawtooth Generator

Step Function. Our Step Function generator constructs complex piecewise constant series by con-
catenating multiple subseries. Each subseries is generated from a configurable distribution of pat-
terns (stable, gradual trends, spikes, oscillations, random walks) with specific lengths, number of
changepoints, step sizes, and drift. The combined series undergoes optional Gaussian smoothing at
transitions. Finally, global components like noise, seasonality, a linear trend, and point anomalies
are added, creating rich and non-stationary step-like data.

Step Function
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Figure 12: Example time series generated by Step Function
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Anomaly. The Anomaly generator focuses on outlier detection by producing otherwise constant
baseline signals contaminated with periodic spike anomalies. For a given series, all spikes are ex-
clusively positive or negative. Their timing follows patterns (single, clustered, or mixed) with period
variance and jitter, while their magnitudes follow defined regimes (constant, trending, cyclical, or
correlated random). This provides a controlled environment for learning anomaly detection seman-
tics.

Anomaly
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Figure 13: Example time series generated by Anomaly Generator

Spikes. The Spikes generator creates series where the primary feature is the spike itself, defined
on a flat baseline. Spikes have consistent per-series direction and shape (V-shaped, inverted-V, or
chopped variants with plateaus). They are generated in either ’burst” (clustered) or ”spread” (evenly
spaced with defined edge margins) modes. Colored (brown/pink) noise is added probabilistically.
This generator is designed to simulate event-driven signals common in domains like healthcare or
intrusion detection.

Spikes
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Figure 14: Example time series generated by Spike Generator

Sine Wave. Our Sine Wave generator produces complex and non-stationary oscillatory patterns,
moving beyond simple periodic signals. It generates a time series by summing 1 to 3 sinusoidal
components, each subject to modulation, and then adds a global trend and noise. The underlying

model is:
N

ye= > Ai(t)sin (¢i(t)) + (at +0) + e,

=1

Here, A;(t) represents a time-varying amplitude and ¢; (¢) is a time-varying phase. This is achieved
through slow amplitude and frequency modulation, where the amplitude and instantaneous fre-
quency of each sine wave are themselves modulated by another low-frequency sinusoid. This tech-
nique introduces realistic drifts and warping in the periodic patterns, preventing the signal from
being perfectly predictable. A final linear trend (at + b) and Gaussian noise ¢, are added to com-
plete the series.

Sine Wave
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Figure 15: Example time series generated by Sine Wave Generator

Audio-Inspired Generators. To generate exceptionally complex and realistic time series, we in-
troduce a family of four novel generators based on procedural audio synthesis techniques, using the
pyo digital signal processing library. An audio synthesis graph is constructed with various oscil-
lators and modulators, rendered offline, and then resampled to the target time series length. This
paradigm allows us to model intricate, dynamic systems.

19



Under review as a conference paper at ICLR 2026

» Stochastic Rhythm: This generator creates multi-layered, event-driven patterns. A base
tempo is set, and 3 to 5 rhythmic layers are created on top, each triggering at a random
subdivision of the tempo (e.g., twice, three times, etc.). Each trigger fires a percussive
envelope controlling a sine wave oscillator, resulting in a complex, polyrhythmic signal
ideal for modeling data with recurring, patterned events.

* Financial Volatility: This generator mimics financial market dynamics. It combines three
components: a slow-moving LFO that acts as the market trend, a Brownian noise source
whose amplitude is modulated to create volatility clustering, and a triggered, sharp enve-
lope that creates sudden positive or negative jumps or shocks.

* Network Topology: This generator simulates network traffic data. The signal is a mixture
of five components: a base traffic flow (slow LFO), high-frequency noise bursts repre-
senting packet traffic, periodic dips from triggered envelopes to model congestion, a high-
frequency sine wave for protocol overhead, and large, sharp spikes from filtered noise to
simulate DDoS-like attacks.

* Multi-Scale Fractal: This generator produces self-similar, fractal-like patterns. A Brown-
ian noise source is passed through a bank of 3 to 6 parallel band-pass filters. The center fre-
quencies of these filters are logarithmically spaced, and each successive filter has a higher
attenuation. Summing the outputs creates a signal with structure at multiple time scales.

Audio: Stochastic Rhythm
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Figure 16: Example time series generated by Audio Stochastic Rhythm

Stochastic Differential Equations (SDEs). SDEs provide a principled framework for modeling
continuous-time random processes. An SDE specifies the infinitesimal dynamics of a state variable
yi as

dyt = a(yt7 t)dt + b(yt7 t>th> (7)
where a(-, -) is the drift function governing deterministic trends, b(-, -) is the diffusion function con-
trolling random fluctuations, and W, is a standard Brownian motion. Unlike deterministic differen-
tial equations, solutions are random trajectories whose distribution is determined by (a, ) and the
distribution of initial conditions.

We adopt the 1td convention of stochastic calculus. This choice is standard in financial mathe-
matics and machine learning because Itd integrals enjoy martingale properties. For simulation, we
discretize the SDE on a time grid {0, A¢, 2At, ..., T} using the Euler-Maruyama scheme:

Yerar = Yo + alye, ) At + by, )VALZ,,  Zy ~ N(0,1). ®)
More advanced schemes such as the Milstein method can reduce bias when the diffusion term de-
pends on y;, but Euler—Maruyama suffices for our purposes.

Ornstein-Uhlenbeck Process
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Figure 17: Example time series generated by Ornstein—Uhlenbeck process

Equation dy, = 6(t, ;) (u(t, re) —yt) dt+o(t,r) dWy, where 6(t, r;) is the mean reversion speed,
u(t, ;) the time-varying mean, and o (¢, ;) the volatility, defines the process. In regime r; € {0, 1},
the drift and diffusion coefficients are parameterized as

0(t,m) =0 - (14 6o(1)), ©)
M(tﬂ"t) _ M(m) + utrend(t) + ’useasnn(ﬁ), (10)
(T(t,?“t) — O-(T't) . (1 + Utrend(t) + Useason(t))7 (1n
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where Jg(t), p™"(t), o™"(¢) are smooth trend functions (e.g., linear, logistic, polynomial), and
LSO (1), oSN () are sinusoidal seasonal components with possible amplitude evolution. Regime
switching occurs with probabilities pgg,p11 € [0.85,0.999]. The initial state is drawn from
Xo ~ N (M(TU), o(m0)2) with ry chosen uniformly. Each path is subsequently transformed via a
global scaling factor s ~ U[0.1,50.0], global level shift £ ~ U[—100, 100], and additive Gaussian
measurement noise €, ~ N(0, 02) with o € [0,0.1]. When long memory is enabled, W, is replaced
with fractional Brownian motion B with Hurst exponent H € [0.3,0.8]. Table E| summarizes the
sampling ranges for all parameters used in the generator.

Table 4: Parameter ranges for the Regime-Switching OU generator.

Parameter Range / Distribution
Integration step size dt 0.01

Initial value yo N(0,2%)

Regime 0 mean reversion §(® [1.0,5.0]

Regime 0 mean ;%) N(-2.0,1.0%)

Regime 0 volatility o(®) log A (log 0.3, 0.3)

Regime 0 vol. process (kv,0y,&0)  [2.0,5.0],[0.2,0.4],[0.1,0.3]
Regime 1 mean reversion (! [0.05,0.5]

Regime 1 mean z(") N(2.0,1.0%)

Regime 1 volatility o*) log M (log 1.5,0.5)

Regime 1 vol. process (kv, 0v,&v)  [0.5,2.0],[0.8,1.2],]0.3,0.5]

Regime transition probs poo, p11 [0.85,0.999]

Global level shift ¢ [—100.0, 100.0]

Global scale factor s [0.1,50.0]
Measurement noise std o [0.0,0.1]

Hurst exponent H [0.3,0.8]

Seasonal components 1-3 harmonics
Seasonal periods {7.0,30.0,90.0,182.6, 365.25}
Seasonal amplitude [0.5, 3.0]

Seasonal phase shift [0, 27]

Seasonal period jitter +5%

Seasonal amplitude evolution [—0.001, 0.001]

Trend application probs ©w:07,0:0.2 0:0.3
Seasonality application probs p:0.6, 0:03

C.2 SYNTHETIC DATA GENERATION THROUGHPUT

In this section, we present the computational efficiency and resource flexibility of our pipeline. Un-
like kernel-based methods such as KernelSynth, which can be computationally intensive due to the
cubic O(T?) complexity of Gaussian Processes, our approach enables high-throughput generation
as shown in Table 3]

The benchmarking was conducted on a high-performance system featuring dual AMD EPYC 9334
32-Core Processors (128 threads total) and an NVIDIA L40S GPU. Crucially, the majority of our
synthetic generators run exclusively on the CPU. The GPU is leveraged primarily for the few neural
network-based prior models (e.g. Cauker).

D TRAINING DETAILS AND HYPERPARAMETERS

Data Composition and Sampling. The training corpus consists of approximately 10 million syn-
thetic time series (500k—2M per generator), with batches composed of mixed samples from our
generators. We apply higher weights to Cauker and augmented data to promote diversity in the
training distribution.

Dynamic Structure Construction. Our training uses dynamic, per-sample construction of time
series structures. For each training instance, we first randomly sample a total sequence length from
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Table 5: Profiling results for synthetic data generation throughput. N = Novel prior, A = Adapted from
open-source.

Generator Source Length Series / Sec
Cauker A 2048 0.66
GP A 2048 7.04
Kernel A 2048 0.32
ForecastPFN A 2048 35.49
Sawtooth N 2048 242.95
Sinewave N 2048 144.93
Anomaly N 2048 174.51
Step N 2048 106.58
Stochastic Rhythm N 2048 33.46
Spike N 2048 201.13
SDE (OU Process) N 2048 13.17
Offline augmentations N 2048 18.30

a weighted distribution that favors longer contexts: {128: 0.05, 256: 0.10, 512: 0.10, 1024: 0.10,
1536: 0.15, 2048: 0.50}. When length shortening is applied, we use either cutting or subsampling
with equal probability (50/50 split). Next, we perform a random history-future split, with forecast
horizon lengths sampled from the range specified by the GIFT benchmark. This two-stage sampling
creates highly variable training examples that simulate diverse forecasting tasks.

Data Augmentation. We apply several augmentation techniques during training: (1) Scaler aug-
mentation with 0.5 probability, randomly selecting among minmax, median, or mean scalers (ex-
cluding the main robust scaler); (2) NaN augmentation that injects realistic missing data patterns
into the history based on GIFT-Eval statistics.

Training Infrastructure. Pretraining uses PyTorch with distributed data parallelism (DDP)
across 8-16 NVIDIA A100 or HIO0O GPUs and mixed precision (bfloatl6), a require-
ment for the DeltaProduct implementation (in FLA: https://github.com/fla-org/
flash—-linear—attention).

Training Protocol. For pretraining, we employ the AdamW optimizer (Loshchilov & Hutter|[2019)
with a weight decay of 0.01 and an effective batch size of approximately 200. No additional reg-
ularization techniques—such as dropout or early stopping—are applied. Pretraining is conducted
for 4 million iterations using a cosine annealing learning-rate schedule (Loshchilov & Hutter| [2017)
with a peak learning rate of 2 x 10~%, a warmup ratio of 0.003, and a minimum learning-rate ratio
of 0.01. The model is trained using the quantile regression loss, computed independently for each
output token across the set of quantile levels @ = {q1,¢2,...,¢n}. In our experiments, we set
Q = {0.1,0.2,...,0.9} similarly as in Tirex and TabPFN-TS. The resulting losses are then aver-

aged over all h output tokens in a training sample. Given the true value y; at time ¢ and its predicted

quantile value g}fq) for quantile level ¢ € Q, the loss is defined as:

q(ye — 917, if 617 <y,

T e [(1-9) (3 —w),  otherwise,

Architecture Selection. We ablated deeper models (8—16 layers) and found no consistent architec-
tural winner. We selected the 10 layer model with embedding dimension of 512.
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Table 6: Hyperparameters for main TempoPFN model.

Category | Parameter | Value
Total Parameters 34.69
Embedding size (embed_size) | 512
Encoder layers 10
Model Number of heads (num_heads) | 4
Encoder attention mode chunk
Short convolution kernel size 32
State weaving True
Quantiles for loss [0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8, 0.9]
Total training series ~ 10,000,000
Max series length 2048
Total training iterations 4,000,000
Batch size (per GPU) 40
Gradient accumulation steps 5
Training Effective batch size 200
Peak learning rate 2x 1074
LR scheduler Cosine annealing
Min learning rate ratio 0.01
Warmup ratio 0.003
Optimizer AdamW
51 0.9
S Ba 0.98
Optimization Weight decay 0.01
Adam € 1x 1076
Gradient clipping 100.0
Length shortening True (cut/subsample: 50/50)
Augmentations NaN augmentatiqn True .
Scaler augmentation prob. 0.5 (minmax/median/mean)
Batch composition Mixed (proportions favoring augmented/Cauker)
Hardware GPUS_ 8-16 x A100/H100
Precision bfloatlé6

D.1 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

The results presented in this section are based on ablation studies conducted with our main model
architecture.

Table 7: Ablation study of single synthetic priors (trained for 500k iterations). *Base Model’ uses
all priors and augmentations. Lower values are better. Bold: best, underline: second-best. Novel
priors are our contributions; Adapted are modified open-source versions.

| | Gift-ZS Overall | Gift-ZS Short | Gift-ZS Medium | Gift-ZS Long

Ablation | Source | CRPS MASE | CRPS MASE | CRPS MASE | CRPS MASE
Base Model - 0.578 0.842 | 0.563 0.763 | 0.566 0.900 0.631 1.019
+ Cauker Adapted | 0.600 0.875 | 0.583 0.789 | 0.615 0.964 | 0.631 1.043
+GP Adapted | 0.632  0.897 | 0.607 0.812 | 0.666  0.993 | 0.666 1.053
+ Kernel Adapted | 0.638 0.926 | 0.622 0.835 | 0.656 1.042 | 0.661 1.082
+ ForecastPFN Adapted | 0.715  1.027 | 0.695 0918 | 0.760  1.172 | 0.726 1.206
+ SDE (OU Process) | Novel | 0.815 1.148 | 0.763 1.017 | 0.897 1.334 | 0.879 1.354
+ Sinewave Novel | 0.868 1.223 | 0.854 1.113 | 0.901 1.375 | 0.872 1.397
+ Stochastic Rhythm | Novel | 0.953  1.337 | 0.940 1.252 | 1.004 1.472 | 0.938 1.440
+ Sawtooth Novel | 1.187 1.534 1.162 1362 | 1.294 1.802 1.152  1.781
+ Spike Novel | 1.215 1.318 | 1.019 1.250 | 1.565 1411 1.498 1416
+ Anomaly Novel | 1.310 1.522 | 1.487 1.610 | 1.145 1430 | 1.075 1.399
+ Step Novel | 2.199 1.702 | 1.272 1.280 | 4.325  2.398 | 4.693 2.549
seasonal_naive | - | 1.000 1.000 |1.000 1.000 | 1.000  1.000 | 1.000 1.000
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Table 8: Core architectural ablations (trained for 2M iterations). Base config: d = 512, L = 10,
conv size 16, H = 4, weaving enabled, negative eigenvalues allowed. Sorted by overall CRPS.
Bold: best, underline: second-best.

| Gift-ZS Overall | Gift-ZS Short | Gift-ZS Medium | Gift-ZS Long

Configuration | CRPS MASE | CRPS MASE | CRPS MASE | CRPS MASE
Ablating Positional Encoding:

Base Model (Sin. Pos. Enc. Off) 0.561 0.820 | 0.553 0.751 | 0.556 0.880 | 0.590 0.962
Sinusoidal Positional Encoding 0.648 0.937 | 0.596 0.809 | 0.731 1.120 | 0.715 1.152
Ablating Number of Householder Matrices (H):

H=6 0.556 0.823 | 0.545 0.750 | 0.552 0.886 | 0.590 0.972
Base Model (H=4) 0.561 0820 | 0.553 0.751 | 0.556  0.880 | 0.590 0.962
H=2 0.562  0.822 | 0.549 0.750 | 0.560  0.892 | 0.598 0.964
H=1 (DeltaNet equivalent) 0.573  0.845 | 0.556 0.761 | 0.579 0918 | 0.613 1.020
Ablating Negative Eigenvalues and Weaving:

Neg. Eig. Off, Weaving On 0.559 0.821 | 0.553 0.753 | 0.550  0.881 0.584 0.957
Neg. Eig. Off, Weaving Off 0.560 0.818 | 0.554 0.750 | 0.548  0.879 | 0.590 0.955

Base Model (Neg. Eig. On, Weaving On) | 0.561  0.820 | 0.553 0.751 | 0.556  0.880 | 0.590 0.962

Ablating Convolution Size:

Conv. size 32 0.559 0816 | 0.543 0.737 | 0.566  0.897 | 0.594 0.968
Base Model (Conv. size 16) 0.561  0.820 | 0.553 0.751 | 0.556  0.880 | 0.590 0.962
seasonal_naive | 1.000  1.000 | 1.000 1.000 | 1.000  1.000 | 1.000 1.000

Table 9: Ablation of model scale and depth (trained for 4M iterations). Base Model: d = 512, L =
10, H = 4, conv size 32, weaving/neg eigenvalues on. Compares width vs. depth at constant
parameter count. Sorted by overall CRPS. Bold: best, underline: second-best.

| Gift-ZS Overall | Gift-ZS Short | Gift-ZS Medium | Gift-ZS Long

Configuration | CRPS MASE | CRPS MASE | CRPS MASE | CRPS MASE
Base Model (d=512, L=10) 0.533 0.788 | 0.532 0.727 | 0.523  0.840 | 0.544 0.912
d=512, L=10, Weaving Off 0.537  0.790 | 0.532 0.723 | 0.533  0.862 | 0.553 0.914

d=384, L=16 (Narrower, Deeper) | 0.539  0.792 | 0.532 0.727 | 0.533  0.850 | 0.563 0.921
d=576, L=8 (Wider, Shallower) | 0.540 0.794 | 0.536 0.732 | 0.529  0.849 | 0.561 0.921

seasonal_naive | 1.000  1.000 | 1.000 1.000 | 1.000 1.000 | 1.000  1.000

E COMPREHENSIVE QUANTITATIVE ANALYSIS

E.1 COMPUTATIONAL COMPLEXITY AND EFFICIENCY

Table[TT]summarizes the computational characteristics of TempoPFN relative to leading time-series
foundation models, given sequence length 7', horizon H, embedding dimension d, and layers L.

Training Complexity. Transformer-based models (Chronos, TimesFM, MOIRAI, TabPFN-TS) re-
quire O(T?d) compute and memory due to self-attention, which becomes prohibitive for long con-
text windows. TiRex reduces quadratic memory growth but remains sequential along 7'. In con-
trast, TempoPFN employs an associative GatedDeltaProduct recurrence, allowing parallel prefix-
scan evaluation. This yields linear total work O(T'Ld?) and logarithmic parallel depth O(Llog T),
enabling full sequence-length parallelism.

Inference Latency. Autoregressive models such as TiRex and Chronos must unroll H steps to
predict a horizon H, yielding O(H) latency. Transformer encoder models also scale their infer-
ence cost with 72 even when used non-autoregressively. TempoPFN performs direct forecasting:
concatenated query tokens allow the entire horizon to be produced in a single forward pass, giving
constant O(1) latency with respect to H.

Memory Usage. Transformer-based models require caching Key-Value pairs with O(7'd) memory
and, in some implementations, up to O(T?) activations. TiRex maintains a hidden state of size
O(T'd) during training. TempoPFN, being a Linear RNN, compresses the entire past into a single
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Table 10: LR scheduler ablation (trained for 2M iterations). Base architecture: d = 512, L = 10,
H = 4, conv size 32, weaving enabled. WarmupStableDecay: warmup (0.3%), plateau (90%),
cosine decay (9.7%). CosineWithRestarts: 4 resets. Sorted by overall CRPS. Bold: best, underline:
second-best.

| Gift-ZS Overall | Gift-ZS Short | Gift-ZS Medium | Gift-ZS Long
LR Scheduler | CRPS MASE | CRPS MASE | CRPS MASE | CRPS MASE

WarmupStableDecay | 0.554  0.812 | 0.544 0.740 | 0.550 0.877 | 0.584 0.956
CosineWithWarmup | 0.559  0.817 | 0.552 0.751 | 0.550  0.873 | 0.588 0.955
CosineWithRestarts | 0.559  0.820 | 0.552 0.755 | 0.552  0.874 | 0.585 0.953
Cosine (no warmup) | 0.561  0.820 | 0.553 0.751 | 0.556  0.880 | 0.590 0.962

seasonal_naive | 1.000  1.000 | 1.000 1.000 | 1.000  1.000 | 1.000 1.000

hidden state and supports streaming inference with constant O(d) memory, while still allowing
optional O(T'd) state storage if needed for analysis or hybrid decoding.

Parallelization. Transformer-based models benefit from substantial batch-level parallelism but can-
not eliminate the quadratic attention bottleneck. TiRex provides limited scan-style parallelism. Tem-
poPFEN achieves full sequence-level parallelization: the entire recurrence is computed via parallel
scans, providing both high throughput and sublinear parallel depth.

Overall, TempoPFN combines linear training cost, logarithmic parallel depth, constant-latency fore-
casting, and streaming memory usage, therefore, providing a zero-shot foundation model tailored
for long-context forecasting settings.

Table 11: Comparison of time-series foundation models. Complexities are reported with respect to
sequence length 7', horizon H, embedding dimension d, and layers L. We distinguish total work
from parallel depth. TempoPFN benefits from scan-accelerated linear recurrences enabling sublinear
depth.

Model Params (M) Training Time Inference Time Memory Parallelization
Work: O(T Ld?) AR: O(HLd?)
Depth: O(LlogT) Depth: O(LlogT)
11 O(T?d) O(T?d) O(Td) Moderate (attention)
Direct: O(T?d) o(Td High (transformer)

O(d) (streaming) Moderate (scan)

(T%d) (Td)
9-205 O(T?d) AR: O(H) O(Td) High (transformer)
14-935 O(T?d) O(T?d) O(Td) High (MoE + transformer)
Work: O(T Ld?)

Work: O(T Ld?) - . O(d) (streaming)
TempoPFN (ours) 35 Depth: O(L log T') D?}[Jg:ﬁ?n@(’l;ﬁ)ﬂ or O(Td) (cachebd) Full (sequence-parallel)

E.2 CHRONOS-ZS BENCHMARK RESULTS

We evaluate TempoPFN on the Chronos Zero-Shot benchmark (Ansari et al 2024). This bench-
mark comprises 27 diverse datasets from the GluonTS and Monash repositories, spanning multiple
domains (e.g., energy, transport, healthcare) and frequencies. Figure[I8]shows the aggregated perfor-
mance in terms of Normalized and Average Rank for both probabilistic (CRPS) and point (MASE)
forecasting.

E.3 FEV-BENCH RESULTS

To demonstrate generalizability beyond Gift-Eval, we evaluate on the fev-bench framework, which
standardizes evaluation across 100 diverse forecasting tasks. This benchmark is critical for validat-
ing zero-shot performance as it rigorously tracks data leakage and failure rates.

Metrics. We report results based on two metrics: MASE and Scaled Quantile Loss (SQL). SQL
captures calibration quality by evaluating the quality of the entire predictive distribution at each
time step. Following the fev-bench protocol, model performance is summarized using two aggregate
scores derived from the pairwise error matrices: Win Rate (%), representing the fraction of model
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Chronos Zero-Shot: Average Rank for CRPS vs. MASE

Chronos Zero-Shot: Normalized CRPS vs. MASE
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Figure 18: Comparison of TempoPFN performance (4M iterations), against other models on
Chronos-Zeroshot benchmark. We compute both normalized and average ranks for CRPS and
MASE. Colors represent the class of time series model.

pairs and tasks where the model achieves a lower error than the competitor, and Skill Score (%), a
robust measure of relative error reduction compared to the Seasonal Naive baseline.

Leaderboard Results. Table[T2] presents the leaderboard for MASE, where TempoPFN achieves
Rank 6. Table [I3] presents the leaderboard for SQL, where TempoPEN also achieves Rank 6. In
both metrics, our model outperforms the other leading synthetic-only baseline, TabPFN-TS (Rank 8
in both). To also visualize relative strengths in probabilistic forecasting, we show in Figure [I9] the
head-to-head Win Rates and Skill Scores based on SQL.

Table 12: FEV-Bench Leaderboard based on MASE. Models are ranked by Win Rate and Skill
Score. The TempoPFN row is highlighted.

Rank  Model Avg. Win Rate (%)  Skill Score (%) Median Runtime (s) Leakage (%) Failed Tasks (%) Organization Zero-shot
1 Chronos-2 88.0 355 3.57 0 0 AWS v
2 TiRex 76.7 30.0 14 1 0 NX-AI v
3 TimesFM 2.5 74.9 30.2 10.89 10 0 Google v
4 Toto 1.0 66.5 28.2 77.51 8 0 Datadog v
5 Moirai 2.0 60.5 273 1.9 28 0 Salesforce v
6 TempoPFN 60.5 25.1 8.57 0 0 Anonymous v
7 Chronos-Bolt 60.1 26.5 1.0 0 0 AWS 4
8 TabPEN-TS 58.2 27.6 300.57 0 2 Prior Labs v
9 Sundial-Base 524 24.7 33.99 1 0 Tsinghua University v
10 Stat. Ensemble 47.1 15.7 624.45 0 11 — X
11 AutoARIMA 35.6 11.2 120.16 0 10 — X
12 AutoTheta 33.6 11.0 9.27 0 0 — X
13 AutoETS 326 23 16.24 0 3 — X
14 Seasonal Naive 20.0 0.0 2.32 0 0 — X
15 Naive 18.4 -16.7 2.24 0 0 — X
16 Drift 14.9 -18.1 2.19 0 0 — X
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Table 13: FEV-Bench Leaderboard based on Scaled Quantile Loss (SQL). Models are ranked by
Win Rate and Skill Score. The TempoPFN row is highlighted.

Rank  Model Avg. Win Rate (%)  Skill Score (%) Median Runtime (s) Leakage (%) Failed Tasks (%) Organization Zero-shot
1 Chronos-2 91.3 473 3.57 0 0 AWS v
2 TiRex 824 42.6 1.4 1 0 NX-AI v
3 TimesFM 2.5 773 42.2 10.89 10 0 Google v
4 Toto 1.0 69.9 40.7 77.51 8 0 Datadog v
5 Moirai 2.0 63.6 393 1.9 28 0 Salesforce v
6 TempoPFN 63.4 37.8 8.57 0 0 Anonymous 4
7 Chronos-Bolt 63.2 389 1.0 0 0 AWS v
8 TabPEN-TS 62.0 39.6 300.57 0 2 Prior Labs v
9 Sundial-Base 44.4 334 33.99 1 0 Tsinghua University v
10 Stat. Ensemble 43.8 20.2 624.45 0 11 — X
11 AutoARIMA 39.0 20.6 120.16 0 10 — X
12 AutoETS 32.6 -26.8 16.24 0 3 — X
13 AutoTheta 259 55 9.27 0 0 — X
14 Seasonal Naive 19.0 0.0 232 0 0 — X
15 Naive 132 -45.4 224 0 0 — X
16 Drift 9.0 -45.8 2.19 0 0 — X

S0 | w7 s a4 a3 w2 aw aT

- -nnnn““n -

S0 | w0 |0 | a6z | 25 | s 69| w2 ss wa e

3| 4 w4 62 w0 s

A ...'--.-nn B " ~3
-.--.--nﬂ B |

(a) Pairwise Win Rate (SQL) with 95% Cls (b) Pairwise Skill Score (SQL) with 95% Cls

Figure 19: Head-to-head comparisons on FEV-Bench using Scaled Quantile Loss (SQL). (a) Win
Rate: Percentage of tasks where the row model achieves lower error than the column model (ties
count as half-wins); values >50% indicate the row model is more accurate on average. (b) Skill
Score: Average relative error reduction of the row model with respect to the column model; posi-
tive values indicate error reduction. Brackets indicate 95% confidence intervals estimated via 1000
bootstrap samples.

E.4 FEATURE-SPACE ALIGNMENT OF REAL AND SYNTHETIC DATA MANIFOLD

To empirically validate that our synthetic pre-training corpus effectively spans the manifold of real-
world time series dynamics, we conducted a feature-space analysis comparing our synthetic data
against the real-world benchmarks used for evaluation (GIFT-Eval, FEV-Bench, and Chronos).

Methodology. We randomly sampled up to 100,000 time series from each of our synthetic genera-
tors and the real-world datasets. For each series, we extracted a comprehensive vector of statistical
time-series characteristics (including autocorrelation, approximate entropy, trend strength, spiki-
ness, and seasonality metrics) using the tsfresh library (Christ et al] 2018). To visualize the
relationship between these distributions, we standardized the feature vectors and projected them
into a latent space using Uniform Manifold Approximation and Projection (UMAP) (McInnes et al

2018).

Analysis. Figure[20]presents the resulting embeddings in both 2D and 3D projections. The fact that
real-world clusters are visible directly on top of the synthetic data confirms significant distributional
overlap. The synthetic generators do not collapse into a single mode, but instead cover a vast region
of the feature space, effectively “underpainting” the real-world benchmarks. This visual evidence
supports our hypothesis that a diverse mixture of structurally distinct generators and data augmenta-
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tions collectively covers the complex distribution of real-world temporal dynamics, enabling robust

zero-shot transfer.
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(a) 2D Projection (Npeigh = 5, dmin = 0.1, Silhouette Score: -0.054)
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Figure 20: Feature-Space Distribution of Real vs. Synthetic Data. UMAP projections of time-
series features extracted via t sfresh. Real-world benchmarks (GIFT-Eval, FEV-Bench, Chronos)
are shown in cold colors (Blue/Teal) in the foreground, while our synthetic generators are shown in

warm colors (Red/Orange/Yellow) in the background.
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E.5 QUALITATIVE COMPARISON ON THE GIFT-EVAL BENCHMARK

This section presents qualitative Gift-Eval forecasts in Figure 21 showing the full history (left)
alongside zoomed-in predictions for TempoPFN, TiRex, and TabPFN-TS. Note that evaluation
context lengths vary: TiRex uses the full history, TabPFN-TS uses 4096 steps, and TempoPFN

uses 3072.
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Figure 21: Qualitative comparison between TempoPFN, TiRex and TabPFN-TS on the GIFT-Eval
Benchmark. (Left) Total context with prediction window in dashed grey box. (Right) Predictions
between TempoPFN, TiRex, and TabPFN-TS.
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E.6 QUANTITATIVE COMPARISON ON THE GIFT-EVAL BENCHMARK

Table 14: Normalized CRPS (Continuous Ranked Probability Score) for various zero-shot models
on the GlftEyal .benchma?k. Scores are normalized against a seasonal naive baseline, with values less
than 1.0 signifying superior probabilistic forecasts. The top two performing models are highlighted.

9.M se1 0
Dataset ‘ Tempo?™ Rex powste T g0 Open-P TPFNTS  yipgtone O™ qpgnos BB ﬂM-Rl—F\“e‘““ed Moirai L ypgirai B 11
bitbrains fast_storage/5T/lon 0555 0.558
Pitbrains faststorage/sT/medium 0516 o681 0792 o oo oo o ooz
bitbrains fast_storage/ST/short - 537 0.631 0.690 0531 0.553
bitbrains_fast storage/H/short 0.340 0341
bitbrains_nd/5T/long 0.632 0.600
bitbrains_rnd/ST/medium oa0n
bitbrains_md/5T/short 0.508
bitbrains_rnd/H/short oats
bizitobs_application/10S/long 0.455
bizitobs application/108/medium 2,053
bizitobs_application/10S/short e
bizitobs_12c/5T/long 1099
bizitobs 12¢/5T/medium 0.783
bizitobs 12¢/5T/short oo
bizitobs 12c/H/long 0303
bizitobs 12¢/H/medium 0638
bizitobs_I2¢/H/short 0.685
bizitobs service/108/long 1073
bizitobs service/108/medium 1255
bizitobs service/10S/short 0
car_parts/M/short 0.788
covid_deaths/D/short o5e
electricity/15T/long 0362
electricity/1 5T/medium 03878
electricity/1 5T/short 0913
0.776
electricity/H/long 0.666
electricity/H/medium 0671
electricity/H/short 0.685
electricity/W/short 0732
ettl/15T/long 0.625
ettl/15T/medium 1.052
ettl/15T/short 1.064
ett1/Dfshort 0936
ettl/H/long 0.700
ettl/H/medium 0.628
ett1/Hshort 0.621
ettl/Wishort 0.786
et2/15T/long 0.834
et/15T/medium o5
ett2/15T/short 0.846
et2/Dishort 0833
ett2/H/long 0611
ett2/H/medium 0.601
et2/Hishort 0.634
ett2/Wishort 0775
hierarchical_sales/D/short o
hierarchical_sales/W/short 0334
hospital/M/short 0431
jena_weather/10T/long 0821
jena_weather/10T/medium 0325
jena_weather/10T/short o
jena_weather/Dishort 0331
jena_weather/H/long 0243
jena_weather/H/medium 0.145
jena_weather/H/short e
kdd_cup_2018/Dishort 0291
kdd_cup_2018/H/long 0.565
kdd_cup_2018/H/medium ol
kdd_cup_2018/H/short 0510
loop_seattle/5T/long 0,661
loop_seattle/5T/medium 0.387
loop_seattle/ST/short oin
loop_seattle/D/short 0.512
loop_seattle/H/long 0438
loop_seattle/H/medium 0.397
loop_seatle/Hjshort oo
md_daily/Dishort 0.634
md_hourly/H/short 1244
‘m4_monthly/M/short 0.527
mé_quarterly/Q/short 0.780
md_weekly/Wshort 0.749
md_yearly/A/short 0.764
m_dense/Dishort 0.758
m_dense/H/long 0420
m_dense/H/medium 0.272
m_dense/H/short 0.297
restaurant/D/short 0.466
saugeen/Dishort 0399
saugeen/M/short 0.694
saugeen/W/short 0728
solar/10T/long 0.586
solar/10T/medium 1144
solar/10T/short 1140
solar/Dishort 0.693
solar/H/long 0522
solar/H/medium 0322
solar/H/short 0366
solar/Wishort 0.563
sz_taxi/15T/long 1016
sz_taxi/1 ST/medium 0.498
sz_taxi/15T/short 0.567
sz-taxi/H/short 0.696
temperature_rain/D/short o5
us_births/Dishort 0.378
us.births/M/short 053
us_births/W/short 0.939
0922
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Table 15: Normalized MASE scores of different zero-shot models on the GiftEval benchmark.
Scores are relative to a seasonal naive baseline, where values below 1.0 indicate better performance.
The models achieving the best and second-best scores are highlighted. )
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& s 2 &
& s 55 & 2 &
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Dataset
bitbrains_fast_storage/5T/long 0.846  0.808 0913 0.827 1.014 0.834 0.886
bitbrain st_storage/5T/medium 0.896  0.815 1.033 0.876 1.072 0.871 0.889
bitbrains_fast_storage/5T/short 0.716  0.609 0.883 0.648 0.879 0.662 0.719
bitbrains_fast_storage/H/short 0910 0.825 0.851 0.927 0912 0.824 0.856
bitbrains_rnd/5T/long 1.005  0.954 1.007 1.001 1.107 0.970 1.002
bitbrains_rnd/5T/medium 1.001  0.967 1.009 0.997 1.064 0.979 1.004
bitbrains_rnd/5T/short 0.940 0.845 0.996 0.889 1.030 0.865 0.915
bitbrains_rnd/H/short 0.999 0971 0.982 1.004 1.106 0.977 0.972
bizitobs_application/10S/long 1.086  1.150 1.042 1.187 0.965 3.270 1.518
bizitobs_application/10S/medium 0.800 1.035 0.962 1.134 0.925 3.612 1516
bizitobs_application/10S/short 0.466 0.571 0.597 0.734 0.563 2.468 0.841
bizitobs_12¢/5T/long 0.840 0819 0.356 0.347 0.457 0.853 0.816
bizitobs_12¢/5T/medium 0.629  0.668 0.418 0.441 0.513 0.706 0.677
bizitobs_12¢/5T/short 0.278  0.299 0317 0.250 0311 0.282 0.292
bizitobs_12c/H/long 0478 0425 0.384 0.844 0.466 0.390 0.554
bizitobs_12¢/H/medium 0.403  0.358 0.312 0.753 0.324 0.328 0.512
bizitobs_12¢c/H/short 0.381  0.420 0.371 0.448 0.400 0.356 0.532
bizitobs_service/10S/long 1216 1.104 1.011 1.086 0.999 3.875 1715
bizitobs_service/10S/medium 1.076  0.946 0.866 0.953 0.928 3.768 1.605
bizitobs_service/10S/short 0.947  0.677 0.658 0.653 0.721 2.706 0.953
car_parts/M/short 0.700  0.698 0.744 0.698 0.706 0.712 1.057
covid_deaths/D/short 0.785  0.830 0.738 0.657 0.837 0.828 0.929
electricity/15T/long 1.170  0.759 0.778 0.747 0.812 0.801 0.863
electricity/15T/medium 1.027  0.726 0.744 0.714 0.773 0.749 0.825
electricity/15T/short 0.751  0.557 0.630 0.530 0.670 0.545 0.628
electricity/D/short 0.787  0.716 0.722 0.730 0.751 0.729 0.744
electricity/H/long 0.896  0.802 0.781 0.861 0.812 0.869
electricity/H/medium 0.871  0.780 0.782 0.838 0.774 0.831
electricity/H/short 0.794  0.641 0.689 0.663 0.763 0.643 0.807
electricity/W/short 0751 0.691 0.653 0.729 0.740 0.707 0.832
ettl/15T/long 1.050 0.871 0.850 0.870 0.939 0.954 0.869
ettl/15T/medium 0.995  0.868 0.833 0.902 0919 0.893 0.865
ettl/15T/short 0.830  0.745 0.737 0.751 0.794 0.728 0.769
ettl/D/short 0918 0.952 0.916 1.056 0.922 0.940 0.953
ettl/H/long 0.937  0.886 0.906 0.941 0.996 0916 0.909
ettl/H/medium 0.860  0.785 0.782 0.819 0.896 0.877 0.808
ettl/H/short 0.875  0.849 0.834 0.869 0.908 0.847 0.850
ett1/W/short 0.851  1.003 0.820 0.902 0.938 0.959 0.980
ett2/15T/long 1.014  0.907 0.855 0.918 0.965 0.928 0.908
ett2/15T/medium 0923 0.859 0.806 0.872 0.933 0.877 0.865
ett2/15T/short 0.731  0.695 0.707 0.681 0.788 0.718 0.724
ett2/D/short 1.648 0917 1.053 0.868 1.029 0.951 0.943
ett2/H/long 0.879  1.008 0.972 0.919 1.280 0918 0.940
ett2/H/medium 0.843  0.846 0.838 0.831 1.008 0.830 0.816
ett2/H/short 0.809  0.809 0.782 0.811 0.894 0.794 0.815
ett2/W/short 1.150  1.021 1.256 1.009 0.983 0.949 1.221
hierarchical_sales/D/short 0.662  0.653 0.660 0.666 0.669 0.655 0.677
hierarchical _sales/W/short 0.711  0.704 0.695 0.709 0.713 0.715 0.757
hospital/M/short 0.834  0.829 0.824 0.815 0.830 0.860 0.899
jena_weather/10T/long 0.851  0.836 0.868 1.008 0.876 0.862 0.843
jena_weather/10T/medium 0.867  0.842 0.873 1.001 0.874 0.852 0.888
jena_weather/10T/short 0401  0.402 0.373 0.431 0.418 0411 0.452
jena_weather/D/short 0.811  0.648 0.666 0.840 0.781 0.668 0.687
jena_weather/H/long 0.907 0.778 0.856 1.153 1.109 0.811 0.832
jena_weather/H/medium 0934 0.949 0.965 0.969 1.225 0.841 0.991
jena_weather/H/short 0.739  0.716 0.728 0.802 0.759 0.741 0.740
kdd_cup-2018/D/short 0.803  0.820 0.817 0.800 0.784 0.799 0.782
kdd_cup_2018/H/long 0.776  0.554 0.789 0.752 0.819 0.512 0.756
kdd_cup_2018/H/medium 0.753  0.561 0.759 0.721 0.790 0.490 0.721
kdd_cup_2018/H/short 0.727  0.490 0.712 0.709 0.784 0.448 0.697
loop_seattle/5T/long 0.952  0.783 0.660 0.697 0.805 0.990 0.882
loop_seattle/5T/medium 1.004  0.796 0.671 0.701 0.836 0.985 0.949
loop_seattle/5T/short 0.856  0.745 0.756 0.732 0.784 0.823 0.864
loop_seattle/D/short 0.518  0.505 0.505 0.519 0.524 0.521 0.541
loop_seattle/H/long 0.727  0.583 0.595 0.585 0.599 0.644 0.636
loop_seattle/H/medium 0.721  0.634 0.662 0.623 0.661 0.688 0.684
loop_seattle/H/short 0775 0.657 0.664 0.678 0.705 0.696 0.693
m4_daily/D/short 1.352 0.942 1.096 1.007 1.279 0.976 1.131
m4_hourly/H/short 0.695  0.589 0.613 0.862 0.619 0.701 0.808
md4_monthly/M/short 0.733  0.732 0.732 0.751 0.760 0.753 0.836
m4_quarterly/Q/short 0733 0.725 0.720 0.730 0.764 0.764 0.875
mé4_weekly/W/short 0.903  0.679 0.728 0.700 0.738 0.748 0.816
m4_yearly/A/short 0.863  0.864 0.746 0.819 0.834 0.884 1.098
m_dense/D/short 0413 0414 0.439 0.438 0.406 0.429 0.498
m_dense/H/long 0.751  0.491 0.504 0.497 0.692 0.635 0.666
m_dense/H/medium 0.660  0.464 0.441 0.452 0.633 0.561 0.567
m_dense/H/short 0.683  0.528 0.534 0.544 0.609 0.521 0.630
restaurant/D/short 0.684  0.674 0.678 0.695 0.694 0.696 0.713
saugeen/D/short 0917 0.933 0.802 0.878 0.922 0.832 0.888
saugeen/M/short 0.809  0.790 0.766 0.773 0.720 0.757 0.763
saugeen/W/short 0.678  0.588 0.586 0.690 0.662 0.611 0.623
solar/10T/long 1.481  0.928 0.977 1.144 1.000 1.229 1.564
solar/10T/medium 1.196  0.969 0.970 1.075 0.906 1.108 1.324
solar/10T/short 0.823  0.982 0.928 0.745 0.854 0.896 1.015
solar/D/short 0.846  0.841 0.858 0.851 0.854 0.849 0.856
solar/H/long 0.929  0.688 0.879 1311 1.011 0.964 0911
solar/H/medium 1.061  0.792 0.937 1.323 0.924 0.996 0.993
solar/H/short 0.962  0.759 0916 0.926 0.943 0.854 0.922
solar/W/short 0.804  0.830 0.570 0.678 0.539 0.666 1.415
sz_taxi/15T/long 0.787  0.736 0.766 0.851 0.810 0.789 0.754
sz_taxi/15T/medium 0.789  0.753 0.772 0.764 0.793 0.784 0.774
sz_taxi/15T/short 0733 0.712 0.721 0.733 0.730 0.717 0.721
sz_taxi/H/short 0.781  0.763 0.780 0.780 0.776 0.762 0.768
temperature_rain/D/short 0.689  0.666 0.671 0.702 0.685 0.648 0.725
us_births/D/short 0211 0219 0.245 0.208 0.170 0.260 0.324
us_births/M/short 0.875  0.941 0.920 0.673 0.941 1.215 0.799
us_births/W/short 0.583  0.687 0.651 0.729 0.572 0.696 0.789
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Table 16: CRPS performance summarized by average rank for zero-shot models on the GiftEval
benchmark. A lower rank signifies superior probabilistic forecasting performance. The models
achieving the first and second-best overall average ranks are highlighted.
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Dataset

bitbrains_fast_storage/5T/long 1.000 3.000 7.000 9.000 4.000 10.000 5.000
bitbrains_fast_storage/5T/medium 1.000 3.000 7.000 10.000 5.000 9.000 4.000
bitbrains_fast_storage/5T/short 2.000 1.000 7.000 10.000 6.000 9.000 4.000
bitbrains_fast_storage/H/short 4.000 2.000 9.000 6.000 3.000 11.000 5.000
bitbrains_rnd/5T/long 6.000 1.000 8.000 10.000 3.000 9.000 5.000
bitbrains_rnd/5T/medium 5.000 6.000 3.000 10.000 7.000 9.000 2.000
bitbrains_rnd/5T/short 9.000 1.000 5.000 10.000 4.000 8.000 3.000
bitbrains_rnd/H/short 6.000 3.000 4.000 9.000 8.000 10.000 1.000
bizitobs_application/10S/long 2.000 5.000 10.000 3.000 8.000 7.000 9.000
bizitobs_application/10S/medium 1.000 2.000 10.000 4.000 8.000 7.000 9.000
bizitobs_application/10S/short 1.000 2.000 11.000 5.000 6.000 7.000 10.000
bizitobs_12¢/5T/long 8.000 5.000 11.000 3.000 6.000 4.000
bizitobs_12¢/5T/medium 5.000 4.000 10.000 3.000 7.000 9.000
bizitobs_12¢/5T/short 3.000 2.000 4.000 9.000 6.000 8.000
bizitobs_12¢/H/long 5.000 6.000 2.000 4.000 7.000 9.000
bizitobs_12¢/H/medium 5.000 6.000 3.000 2.000 7.000 8.000
bizitobs_12¢/H/short 3.000 4.000 2.000 5.000 8.000 7.000 11.000
bizitobs_service/10S/long 6.000 1.000 10.000 2.000 8.000 7.000 9.000
bizitobs_service/10S/medium 1.000 3.000 11.000 5.000 7.000 6.000 9.000
bizitobs_service/10S/short 2.000 1.000 11.000 7.000 6.000 5.000 8.000
car_parts/M/short 7.000 1.000 4.000 2.000 10.000 8.000 9.000
covid_deaths/D/short 2.000 1.000 9.000 5.000 10.000 4.000 8.000
electricity/15T/long 10.000 7.000 6.000 4.000 5.000 3.000 8.000
electricity/15T/medium 8.000 7.000 5.000 4.000 6.000 3.000 9.000
electricity/15T/short 8.000 7.000 1.000 6.000 5.000 2.000 10.000
electricity/D/short 9.000 6.000 3.000 8.000 5.000 4.000 10.000
electricity/H/long 7.000 1.000 6.000 10.000 9.000 4.000 8.000
electricity/H/medium 9.000 1.000 5.000 10.000 7.000 3.000 8.000
electricity/H/short 8.000 5.000 2.000 6.000 10.000 4.000 9.000
electricity/W/short 6.000 9.000 3.000 4.000 8.000 5.000 7.000
ettl/15T/long 8.000 4.000 9.000 6.000 2.000 5.000 11.000
ettl/15T/medium 7.000 5.000 8.000 4.000 2.000 6.000 11.000
ettl/15T/short 8.000 3.000 1.000 5.000 6.000 7.000 10.000
ett1/D/short 1.000 5.000 7.000 8.000 2.000 10.000 6.000
ettl/H/long 6.000 3.000 10.000 8.000 1.000 5.000 9.000
ettl/H/medium 7.000 4.000 10.000 9.000 2.000 6.000 5.000
ett1/H/short 5.000 7.000 4.000 8.000 2.000 9.000 6.000
ettl/W/short 2.000 5.000 9.000 7.000 8.000 6.000 3.000
ett2/15T/long 7.000 1.000 8.000 6.000 3.000 4.000 9.000
ett2/15T/medium 6.000 4.000 10.000 7.000 2.000 5.000 8.000
ett2/15T/short 7.000 6.000 4.000 8.000 5.000 1.000 10.000
ett2/D/short 9.000 8.000 3.000 10.000 5.000 1.000 4.000
ett2/H/long 1.000 4.000 8.000 10.000 3.000 2.000 9.000
ett2/H/medium 6.000 2.000 8.000 10.000 3.000 5.000 9.000
ett2/H/short 5.000 3.000 2.000 10.000 4.000 6.000 8.000
ett2/W/short 4.000 8.000 3.000 6.000 10.000 5.000 9.000
hierarchical_sales/D/short 7.000 2.000 4.000 9.000 8.000 10.000 5.000
hierarchical_sales/W/short 2.000 6.000 5.000 3.000 10.000 9.000 8.000
hospital/M/short 6.000 5.000 9.000 8.000 10.000 7.000 3.000
jena_weather/10T/long 5.000 1.000 7.000 4.000 6.000 8.000 10.000
jena_weather/10T/medium 4.000 1.000 6.000 5.000 7.000 9.000 10.000
jena_weather/10T/short 4.000 1.000 5.000 6.000 7.000 8.000 9.000
jena_weather/D/short 7.000 8.000 1.000 3.000 5.000 10.000 9.000
jena_weather/H/long 5.000 2.000 6.000 9.000 4.000 10.000 3.000
jena_weather/H/medium 5.000 2.000 4.000 9.000 6.000 10.000 8.000
jena_weather/H/short 3.000 6.000 5.000 4.000 7.000 10.000 9.000
kdd_cup_2018/D/short 5.000 8.000 3.000 1.000 2.000 10.000 6.000
kdd_cup-2018/H/long 6.000 7.000 1.000 10.000 5.000 9.000 3.000
kdd_cup_2018/H/medium 5.000 8.000 1.000 9.000 4.000 10.000 3.000
kdd_cup_2018/H/short 6.000 8.000 1.000 10.000 4.000 9.000 3.000
loop_seattle/5T/long 9.000 4.000 11.000 7.000 8.000 5.000 1.000
loop_seattle/ST/medium 9.000 4.000 10.000 7.000 8.000 5.000 1.000
loop_seattle/5T/short 9.000 3.000 8.000 7.000 10.000 6.000 1.000
loop_seattle/D/short 3.000 8.000 5.000 4.000 6.000 10.000 9.000
loop_seattle/H/long 8.000 4.000 9.000 2.000 6.000 5.000 7.000
loop_seattle/H/medium 8.000 1.000 9.000 3.000 6.000 5.000 7.000
loop_seattle/H/short 9.000 5.000 6.000 3.000 4.000 8.000 7.000
m4_daily/D/short 9.000 3.000 2.000 4.000 6.000 5.000 10.000
m4_hourly/H/short 7.000 10.000 6.000 8.000 5.000 9.000 1.000
m4_monthly/M/short 1.000 8.000 6.000 4.000 10.000 9.000 7.000
m4_quarterly/Q/short 4.000 7.000 6.000 8.000 10.000 9.000 1.500
m4_weekly/W/short 6.000 10.000 4.000 3.000 5.000 7.000 8.000
m4_yearly/A/short 7.000 9.000 8.000 5.000 11.000 6.000 1.000
m_dense/D/short 2.000 7.000 4.000 1.000 8.000 6.000 9.000
m_dense/H/long 10.000 6.000 8.000 7.000 9.000 5.000 1.000
m_dense/H/medium 10.000 4.000 8.000 9.000 7.000 5.000 1.000
m_dense/H/short 10.000 7.000 1.000 8.000 9.000 6.000 2.000
restaurant/D/short 3.000 10.000 5.000 4.000 9.000 7.000 8.000
saugeen/D/short 7.000 3.000 2.000 6.000 5.000 10.000 9.000
saugeen/M/short 5.000 4.000 3.000 1.000 6.000 9.000 8.000
saugeen/W/short 7.000 5.000 3.000 6.000 4.000 10.000 9.000
solar/10T/long 7.000 4.000 5.000 2.000 8.000 6.000 10.000
solar/10T/medium 5.000 2.000 6.000 1.000 8.000 7.000 10.000
solar/10T/short 2.000 5.000 3.000 1.000 8.000 6.000 9.000
solar/D/short 3.000 7.000 5.000 1.000 6.000 10.000 8.000
solar/H/long 8.000 2.000 9.000 5.000 6.000 10.000 4.000
solar/H/medium 9.000 4.000 8.000 2.000 7.000 10.000 6.000
solar/H/short 8.000 3.000 6.000 9.000 10.000 4.000
solar/W/short 4.000 7.000 1.000 11.000 6.000 9.000
sz_taxi/15T/long 6.000 2.000 9.000 3.000 8.000 7.000
sz_taxi/15T/medium 6.000 2.000 9.000 4.000 7.000 8.000
sz_taxi/15T/short 6.000 4.000 7.000 5.000 8.000 10.000
sz_taxi/H/short 6.000 4.000 7.000 3.000 8.000 10.000
temperature_rain/D/short 8.000 6.000 7.000 9.000 10.000 1.000
us_births/D/short 2.000 7.000 1.000 10.000 3.000 9.000
us_births/M/short 4.000 2.000 8.000 3.000 1.000 9.000
us_births/W/short 2.000 8.000 1.000 7.000 6.000 10.000
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Table 17: MASE performance presented as average ranks for zero-shot models across the GiftEval
benchmark. A lower average rank indicates consistently higher accuracy across datasets. The two
models with the best overall average ranks are highlighted.
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Dataset
bitbrains_fast_storage/5T/long 6.000 2.000 9.000 1.000 4.000 3.000 11.000 8.000 5.000 7.000
bitbrai: st_storage/5T/medium 8.000 2.000 10.000 1.000 5.000 6.000 11.000 7.000 3.000 4.000
bitbrains_fast_storage/5T/short 6.000  2.000 10.000 1.000 4.000 3.000 9.000 7.000 8.000 5.000
bitbrains_fast_storage/H/short 8.000 3.000 5.000 1.000 2.000 10.000 9.000 6.000 4.000 7.000
bitbrains_rnd/5T/long 9.000 2.000 10.000 1.000 3.000 7.000 11.000 8.000 4.000 5.000
bitbrains_rnd/5T/medium 8.000  1.000 10.000 2.000 3.000 5.000 11.000 9.000 4.000 6.000
bitbrains_rnd/5T/short 8.000 2.000 9.000 1.000 3.000 5.000 11.000 6.000 4.000 7.000
bitbrains_rnd/H/short 7.000 2.000 5.000 1.000 4.000 9.000 11.000 3.000 6.000 10.000
bizitobs_application/10S/long 5.000 6.000 4.000 3.000 10.000 7.000 1.000 8.000 9.000 11.000
bizitobs_application/10S/medium 1.000 6.000 4.000 2.000 10.000 7.000 3.000 8.000 9.000 11.000
bizitobs_application/10S/short 1.000  4.000 5.000 2.000 11.000 6.000 3.000 7.000 9.000 10.000
bizitobs_12¢/5T/long 9.000 8.000 2.000 6.000 10.000 1.000 3.000 7.000 4.500 4.500
bizitobs_12¢/5T/medium 5.000 6.000 1.000 4.000 9.000 2.000 3.000 7.000 10.000 8.000
bizitobs_12¢/5T/short 3.000  8.000 10.000 2.000 4.000 1.000 9.000 6.000 5.000 7.000
bizitobs_12¢/H/long 5.000 3.000 1.000 7.000 2.000 9.000 4.000 6.000 10.000 8.000
bizitobs_12¢/H/medium 5.000 4.000 1.000 6.000 3.000 8.000 2.000 7.000 9.000 10.000
bizitobs_12c/H/short 3.000 6.000 2.000 4.000 1.000 7.000 5.000 8.000 10.000 9.000
bizitobs_service/10S/long 7.000 6.000 4.000 1.000 10.000 5.000 2.000 8.000 9.000 11.000
bizitobs_service/10S/medium 7.000  4.000 2.000 1.000 10.000 5.000 3.000 8.000 9.000 11.000
bizitobs_service/10S/short 6.000 4.000 3.000 1.000 10.000 2.000 5.000 7.000 9.000 11.000
car_parts/M/short 5.000 4.000 8.000 1.000 7.000 3.000 6.000 11.000 9.000 2.000
covid_deaths/D/short 6.000  8.000 4.000 2.000 7.000 1.000 9.000 10.000 5.000 3.000
electricity/15T/long 11.000 2.000 3.000 7.000 4.000 1.000 5.000 6.000 9.000 10.000
electricity/15T/medium 9.000 2.000 3.000 7.000 4.000 1.000 5.000 6.000 10.000 11.000
electricity/15T/short 8.000 3.000 5.000 6.000 2.000 1.000 7.000 4.000 10.000 9.000
electricity/D/short 10.000 1.000 2.000 6.000 3.000 4.000 7.000 5.000 9.000 8.000
electricity/H/long 10.000  3.000 2.000 4.000 5.000 1.000 7.000 8.000 9.000 6.000
electricity/H/medium 10.000 2.000 4.000 5.000 1.000 3.000 7.000 6.000 9.000 8.000
electricity/H/short 7.000 1.000 4.000 5.000 2.000 3.000 6.000 10.000 8.000 9.000
electricity/W/short 6.000  2.000 1.000 8.000 3.000 4.000 5.000 7.000 9.000 10.000
ettl/15T/long 10.000 4.000 1.000 5.000 8.000 3.000 6.000 2.000 11.000 7.000
ettl/15T/medium 8.000 3.000 1.000 6.000 4.000 5.000 7.000 2.000 11.000 10.000
ettl/15T/short 8.000 4.000 2.000 3.000 1.000 5.000 7.000 6.000 10.000 9.000
ett1/D/short 2.000 6.000 1.000 4.000 5.000 11.000 3.000 7.000 9.000 8.000
ett]/H/long 7.000  1.000 2.000 5.000 4.000 8.000 10.000 3.000 9.000 6.000
ettl/H/medium 7.000 2.000 1.000 4.000 9.000 5.000 10.000 3.000 6.000 8.000
ett1/H/short 6.000 3.000 1.000 8.000 2.000 5.000 10.000 4.000 7.000 9.000
ettl/W/short 2.000  11.000 1.000 5.000 8.000 6.000 7.000 9.000 3.000 4.000
ett2/15T/long 9.000 3.000 1.000 2.000 6.000 5.000 7.000 4.000 10.000 11.000
ett2/15T/medium 7.000 2.000 1.000 6.000 5.000 4.000 8.000 3.000 10.000 11.000
ett2/15T/short 6.000 2.000 3.000 7.000 4.000 1.000 8.000 5.000 10.000 9.000
ett2/D/short 11.000 2.000 9.000 10.000 5.000 1.000 7.000 4.000 8.000 3.000
ett2/H/long 1.000  9.000 6.000 5.000 2.000 3.000 11.000 4.000 10.000 7.000
ett2/H/medium 7.000 8.000 6.000 2.000 3.000 4.000 11.000 1.000 9.000 5.000
ett2/H/short 5.000 4.000 1.000 3.000 2.000 6.000 10.000 7.000 8.000 9.000
ett2/W/short 7.000  5.000 9.000 10.000 1.000 4.000 2.000 8.000 11.000 6.000
hierarchical_sales/D/short 7.000 2.000 6.000 1.000 3.000 8.000 9.000 10.000 4.000 5.000
hierarchical_sales/W/short 4.000 2.000 1.000 7.000 6.000 3.000 5.000 10.000 9.000 8.000
hospital/M/short 6.000 3.000 2.000 8.000 9.000 1.000 4.000 10.000 5.000 7.000
jena_weather/10T/long 4.000 2.000 6.000 1.000 5.000 10.000 7.000 3.000 11.000 9.000
jena_weather/10T/medium 4.000 2.000 5.000 1.000 3.000 11.000 6.000 7.000 8.000 9.000
jena_weather/10T/short 3.000 4.000 2.000 1.000 5.000 7.000 6.000 8.000 9.000 10.000
jena_weather/D/short 9.000 1.000 2.000 7.000 3.000 10.000 8.000 4.000 5.000 6.000
jena_weather/H/long 8.000  2.000 7.000 3.000 4.000 11.000 10.000 5.000 1.000 6.000
jena_weather/H/medium 4.000 5.000 6.000 2.000 1.000 7.000 11.000 8.000 10.000 3.000
jena_weather/H/short 3.000 1.000 2.000 6.000 5.000 9.000 7.000 4.000 10.000 8.000
kdd_cup_2018/D/short 7.000  10.000 9.000 8.000 3.000 4.000 2.000 1.000 5.500 5.500
kdd_cup_2018/H/long 7.000 2.000 9.000 8.000 1.000 5.000 10.000 6.000 3.000 4.000
kdd_cup_2018/H/medium 7.000 2.000 9.000 8.000 1.000 4.000 10.000 5.000 3.000 6.000
kdd_cup_2018/H/short 8.000 2.000 7.000 9.000 1.000 6.000 10.000 4.000 3.000 5.000
loop_seattle/5T/long 9.000 6.000 3.000 4.000 10.000 5.000 7.000 8.000 1.000 2.000
loop_seattle/5T/medium 11.000  6.000 3.000 4.000 9.000 5.000 7.000 8.000 1.000 2.000
loop_seattle/5T/short 9.000 5.000 6.000 4.000 8.000 3.000 7.000 10.000 1.000 2.000
loop_seattle/D/short 3.000 1.000 2.000 9.000 5.000 4.000 7.000 10.000 8.000 6.000
loop_scattle/H/long 9.000  1.000 3.000 5.000 7.000 2.000 4.000 6.000 8.000 10.000
loop_seattle/H/medium 9.000 3.000 5.000 2.000 8.000 1.000 4.000 7.000 6.000 10.000
loop_seattle/H/short 9.000 1.000 2.000 5.000 6.000 3.000 7.000 4.000 8.000 10.000
mé4_daily/D/short 10.000 1.000 6.000 5.000 2.000 4.000 9.000 7.000 8.000 11.000
m4 _hourly/H/short 4.000 1.000 2.000 6.000 5.000 10.000 3.000 8.000 7.000 9.000
m4_monthly/M/short 3.000  2.000 1.000 9.000 5.000 4.000 7.000 10.000 8.000 6.000
m4_quarterly/Q/short 6.000 4.000 3.000 9.000 7.000 5.000 8.000 10.000 1.500 1.500
m4_weekly/W/short 8.000 1.000 3.000 7.000 5.000 2.000 4.000 6.000 9.000 11.000
mé_yearly/A/short 7.000  8.000 1.000 6.000 9.000 4.000 5.000 11.000 2.000 3.000
m_dense/D/short 2.000 3.000 6.000 7.000 4.000 5.000 1.000 8.000 9.000 10.000
m_dense/H/long 10.000 2.000 5.000 6.000 7.000 4.000 9.000 8.000 1.000 3.000
m_dense/H/medium 10.000 4.000 2.000 5.000 7.000 3.000 9.000 8.000 1.000 6.000
m_dense/H/short 10.000 3.000 4.000 7.000 1.000 5.000 8.000 9.000 2.000 6.000
restaurant/D/short 3.000  1.000 2.000 10.000 6.000 5.000 4.000 9.000 8.000 7.000
saugeen/D/short 7.000 9.000 1.000 4.000 2.000 5.000 8.000 6.000 10.000 3.000
saugeen/M/short 9.000 8.000 4.000 7.000 2.000 5.000 1.000 3.000 6.000 10.000
saugeen/W/short 7.000  2.000 1.000 5.000 3.000 8.000 6.000 4.000 9.000 10.000
solar/10T/long 8.000 1.000 2.000 5.000 7.000 6.000 3.000 9.000 10.000 11.000
solar/10T/medium 8.000 3.000 4.000 2.000 7.000 6.000 1.000 9.000 10.000 11.000
solar/10T/short 2.000 7.000 5.000 6.000 4.000 1.000 3.000 11.000 10.000 8.000
solar/D/short 2.000 1.000 8.000 9.000 3.000 4.000 6.000 7.000 5.000 10.000
solar/H/long 5.000  1.000 2.000 3.000 7.000 11.000 10.000 4.000 6.000 8.000
solar/H/medium 10.000 1.000 4.000 3.000 8.000 11.000 2.000 7.000 6.000 5.000
solar/H/short 10.000 1.000 4.000 3.000 2.000 7.000 9.000 6.000 5.000 8.000
solar/W/short 5.000  6.000 2.000 7.000 3.000 4.000 1.000 11.000 9.000 10.000
sz_taxi/15T/long 6.000 1.000 4.000 2.000 7.000 10.000 9.000 3.000 8.000 5.000
sz_taxi/15T/medium 8.000 1.000 4.000 3.000 7.000 2.000 9.000 5.000 10.000 6.000
sz_taxi/15T/short 7.000 1.000 5.000 3.000 2.000 8.000 6.000 4.000 10.000 9.000
sz_taxi/H/short 8.000 2.000 6.000 4.000 1.000 7.000 5.000 3.000 10.000 9.000
temperature rain/D/short 8.000  4.000 5.000 6.000 2.000 9.000 7.000 10.000 1.000 3.000
us_births/D/short 3.000 4.000 5.000 7.000 6.000 2.000 1.000 10.000 8.000 9.000
us_births/M/short 4.000 7.000 5.000 2.000 11.000 1.000 6.000 3.000 10.000 8.000
us_births/W/short 2.000  4.000 3.000 8.000 5.000 6.000 1.000 7.000 10.000 9.000
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