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Abstract

Human trafficking (HT) remains a critical is-001
sue, with traffickers increasingly leveraging002
online escort advertisements to advertise vic-003
tims anonymously. Existing detection methods,004
including text-based Authorship Attribution005
(AA), overlook the multimodal nature of these006
ads, which combine text and images. To bridge007
this gap, we introduce MATCHED, a multi-008
modal dataset comprising 27,619 unique text009
descriptions and 55,115 unique images sourced010
from Backpage across seven U.S. cities in four011
geographic regions. This study extensively012
benchmarks text-only, vision-only, and mul-013
timodal baselines for vendor identification and014
verification tasks, employing multitask (joint)015
training objectives that achieve superior classi-016
fication and retrieval performance on in-sample017
and out-of-data distribution datasets. The re-018
sults demonstrate that while text remains the019
dominant modality, integrating visual features020
adds stylistic cues that enrich model perfor-021
mance. Moreover, text-image alignment strate-022
gies like CLIP and BLIP2 struggle due to low023
semantic overlap and vague connections be-024
tween the modalities of escort ads, with end-to-025
end multimodal training proving more robust.026
Our findings emphasize the potential of multi-027
modal AA to combat HT, providing Law En-028
forcement Agencies with robust tools to link ad-029
vertisements and disrupt trafficking networks.030

1 Introduction031

Human trafficking (HT) is a pervasive crime ex-032

ploiting individuals of all ages and genders, with033

sex trafficking being particularly prevalent. Traf-034

fickers coerce victims into commercial sex through035

violence, threats, deception, and debt bondage,036

mostly affecting women and girls (EUROPOL,037

2020; UNDOC, 2020; ILO, 2012). Furthermore,038

the rise of digital platforms has enabled traf-039

fickers to exploit online advertisements (ads) for040

anonymity, overwhelming manual tracking efforts041

and leaving many cases undetected (POLARIS, 042

2020, 2018). 043

While end-to-end classification methods 044

show promise in detecting HT (Alvari et al., 2016; 045

Tong et al., 2017; Alvari et al., 2017), reliance on 046

expert-generated labels risks overfitting and poor 047

generalization. Therefore, Law Enforcement Agen- 048

cies (LEAs) and researchers have developed HT 049

indicators for identifying suspicious ads (Ibanez 050

and Suthers, 2014; Ibanez and Gazan, 2016; Lugo- 051

Graulich and Meyer, 2021). However, these indica- 052

tors require grouping ads linked to individuals or 053

networks. Traditional methods rely on phone num- 054

bers and email addresses (Chambers et al., 2019), 055

yet research reports that only 37% of ads contain 056

such identifiers (Saxena et al., 2023a). Supervised 057

(Nagpal et al., 2015; Li et al., 2022a; Liu et al., 058

2023) and unsupervised techniques (Rabbany et al., 059

2018; Nair et al., 2022; Vajiac et al., 2023) of- 060

ten depend on explicit similarities (e.g., names, 061

phrases, or near-duplicates), limiting effectiveness 062

when vendors alter details to evade detection. 063

Authorship Attribution (AA) offers a more 064

holistic approach by identifying unique language 065

patterns and stylistic features across ads from the 066

same vendor or group. NLP-based AA methods 067

have successfully linked ads by analyzing subtle 068

written expressions, even when explicit markers 069

differ (Ardakani, 2020; Saxena et al., 2023a). How- 070

ever, existing AA research largely overlooks the 071

multimodal nature of escort ads, which typically 072

include text (title, description) and images. Integrat- 073

ing visual cues can enhance AA by capturing stylis- 074

tic consistencies, locations, or poses that uniquely 075

characterize a vendor’s profile. For instance, ven- 076

dors in larger networks may reuse images with vary- 077

ing text or pair similar text with different images. 078

While current AA methods require at least five ads 079

per vendor (Saxena et al., 2023a), leveraging mul- 080

timodal AA (MAA) can improve performance for 081

vendors with fewer ads by utilizing the multiple im- 082
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ages typically present in each ad. This work aims083

to support LEAs in building AA-driven knowledge084

graphs and enabling targeted investigations across085

extensive collections of escort ads by making the086

following contributions:087

(i). MATCHED Dataset and Comprehensive088

Benchmarking: We introduce MATCHED, a089

novel multimodal dataset for MAA, comprising090

27,619 unique text descriptions and 55,115 images091

collected from Backpage escort ads across 7 U.S.092

cities between December 2015–April 2016. We093

establish benchmarks for text, vision, and multi-094

modal domains, evaluating performance on both in-095

sample and out-of-data (OOD) distribution datasets.096

MATCHED provides a robust foundation for future097

MAA research. Due to sensitivity, anonymized098

metadata is shared via Dataverse, with the full099

dataset restricted and only accessible through re-100

quests. Our code is available at MATCHED.101

(ii). Enhanced Performance through Multitask102

Training: We propose a joint multitask framework103

that simultaneously optimizes vendor identification104

and verification, outperforming traditional single-105

task models by 1.61% (text) and 1.52% (vision) on106

macro-F1 score for classification and 1.68% (text)107

and 6.75% (vision) on R-Precision for retrieval task.108

Although these gains may seem subtle, this dual-109

focus approach empowers LEAs to identify known110

vendors and discover emerging ones in OOD ads,111

enhancing their investigative capabilities.112

(iii). Advancements in Model Performance113

through Multimodal Training: Traditional AA114

methods rely heavily on textual data, often ignoring115

valuable stylistic cues from images and excluding116

vendors with fewer ads. Our multimodal approach117

integrates text and image data, improving perfor-118

mance even for vendors with limited postings. Pair-119

ing a single text description with multiple images120

(e.g., one text with five images produces five sam-121

ples) expands the training set and enriches feature122

representation. While text remains the dominant123

modality, incorporating images with text enhances124

text-only results by 5.43% on retrieval R-Precision,125

marginally improves vision-only results by 0.75%126

on retrieval R-Precision, and increases classifica-127

tion macro-F1 by 32.62%—ultimately providing a128

more comprehensive and robust AA framework.129

2 Related Research130

AA in NLP has advanced from basic stylometric131

analysis (Bhargava et al., 2013; Ramnial et al.,132

2016) to sophisticated models detecting distinct lin- 133

guistic patterns across text segments (Fabien et al., 134

2020; Ai et al., 2022; Wegmann et al., 2022). AA 135

applications span forensic linguistics, aiding at- 136

tributing authorship in legal contexts (Iqbal et al., 137

2008; Nirkhi and Dharaskar, 2013; Fobbe, 2021), 138

to cybersecurity, where it tracks malicious actors 139

and criminal activity across platforms (Zhang et al., 140

2019; Saxena et al., 2023b). However, applying 141

AA to online criminal markets presents unique chal- 142

lenges: conventional models struggle to capture 143

the specialized jargon, coded language, and noise 144

prevalent in illicit environments like illegal crimi- 145

nal marketplaces (Choshen et al., 2019; Manolache 146

et al., 2022). This gap highlights the need for fine- 147

tuned models that adapt to the nuanced linguistic 148

and stylistic shifts in these contexts. 149

Therefore, Ardakani (2020) proposed super- 150

vised neural networks for AA on Backpage escort 151

ads, uncovering stylistic consistencies even when 152

explicit identifiers are altered. Similarly, Saxena 153

et al. (2023a) leverage transformer-based models 154

for vendor identification and verification, effec- 155

tively linking ads across 41 cities. In addition to 156

text, images in criminal markets can also reveal 157

recurring stylistic patterns, such as backgrounds, 158

lighting, or object placement, complementing lin- 159

guistic cues when text data is sparse or inconsistent 160

(Cotogni et al., 2024; Wang et al., 2018). Multi- 161

modal AA (MAA) approaches leverage these text 162

and images, enhancing accuracy by merging stylis- 163

tic patterns across media and creating comprehen- 164

sive vendor profiles (Zhang et al., 2019). 165

This research introduces a novel multimodal 166

dataset, MATCHED, of escort ads collected from 167

seven U.S. cities across four geographical re- 168

gions. Using a multitask training approach on the 169

MATCHED dataset, we establish benchmarks for 170

text, vision, and multimodal domains in escort mar- 171

ket ads, laying a foundation for future MAA re- 172

search. Our models optimize vendor identification 173

(classifying ads to specific vendors) and verifica- 174

tion (assessing if two ads are from the same ven- 175

dor) through this unified training objective. This 176

enables LEAs to identify known vendors in closed- 177

set environments and link emerging vendors across 178

out-of-data distribution ads in open-set scenarios. 179

Finally, our multimodal approach leverages textual 180

and visual cues, enabling LEAs to track HT net- 181

works more precisely across various online markets 182

and platforms, laying the groundwork for advanced 183

AA research. Integrating this multimodal data, es- 184
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pecially for vendors with limited text ads, further185

enhances model performance by creating multiple186

samples per ad.187

3 Dataset188

Regions Ads Text Images % Faces Vendors
South 14088 13661 27423 0.4928 1450

Midwest 8564 8259 14883 0.5542 1008
West 3262 3153 5049 0.6052 507

Northeast 2599 2546 7760 0.6183 584
All 28513 27619 55115 0.5676 3549

Table 1: Number of advertisements, unique text descrip-
tions, images, % of Faces in the image datasets, and
vendors per region in the MATCHED dataset.

Lugo-Graulich and Meyer (2021) provides com-189

pelling evidence linking Backpage escort advertise-190

ments to HT, motivating our focus on Backpage191

ads. We curate a dataset of 28,513 ads, comprising192

27,619 unique text descriptions and 55,115 unique193

images associated with 3,549 vendors. Approxi-194

mately 56% of the images feature an escort’s face,195

while the remaining 44% display partial body im-196

ages (without faces). To establish ground truth for197

AA tasks, we follow Saxena et al. (2023a), extract-198

ing phone numbers using Chambers et al. (2019)199

and leveraging NetworkX (Hagberg et al., 2008)200

to form vendor communities. Each community is201

assigned a unique vendor label, enabling robust AA202

analysis. Since the vendor label generation process203

is based on existing literature, detailed steps for204

phone number extraction and vendor label creation205

are provided in Appendices A.2–A.3.206

The dataset spans seven major U.S.207

cities—Chicago, Houston, Detroit, Dallas, San208

Francisco, New York, and Atlanta—representing209

four geographic regions: South, Midwest, West,210

and Northeast. These regions group ads by city,211

with average text sequence lengths of 125, 118,212

113, and 132 tokens, respectively. Detailed statis-213

tics, including vendor overlap between regions, text214

and image ad similarity, sentence and character215

lengths, and the frequency of text, image, and mul-216

timodal ads per vendor, are provided in Appendix217

A.2 (Figure 2b). The South region dataset, contain-218

ing the largest number of text and image ads, is the219

primary dataset for training and in-distribution eval-220

uation. The Midwest, West, and Northeast datasets221

are used as OOD datasets to evaluate model gen-222

eralization. Notably, many vendors appear across223

multiple regions, meaning the OOD datasets in-224

clude ads from vendors present in the South dataset225

as well as additional region-specific vendors. 226

4 Experimental Setup 227

Our experiments address 2 AA tasks critical for dis- 228

rupting HT networks: vendor identification (closed- 229

set classification) and vendor verification (open-set 230

metric learning). Vendor identification determines 231

whether an ad originates from a known vendor in a 232

predefined candidate set. In contrast, vendor verifi- 233

cation assesses whether two ads belong to the same 234

vendor, including vendors unseen during training. 235

We evaluate these tasks using text-only, vision- 236

only, and multimodal baselines on the South region 237

dataset and test OOD generalization on Midwest, 238

West, and Northeast datasets. Complete implemen- 239

tation details are provided in Appendix A.4. 240

(i). Vendor Identification Task: For vendor identi- 241

fication, we perform multi-class classification using 242

pre-trained backbones with a classification head on 243

the South region dataset. We optimize models with 244

cross-entropy (CE) loss (Juola and Baayen, 2005) 245

and a multitask joint objective combining CE with 246

supervised contrastive (SupCon) (Ye et al., 2023) 247

and triplet losses (Hu et al., 2020). These multitask 248

joint training objectives, referred to as CE+SupCon 249

and CE+Triplet, enhance feature discrimination by 250

aligning representations of ads from the same ven- 251

dor while separating those from different vendors. 252

(ii). Vendor Verification Task: Since the vendor 253

verification task aims to compare vendor ads based 254

on content similarity, we employ contrastive learn- 255

ing with triplet and SupCon losses (Kaya and Bilge, 256

2019; Wegmann et al., 2022) to learn discrimina- 257

tive ad embeddings. These embeddings cluster 258

ads from the same vendor while separating those 259

from different vendors, enabling retrieval of all ads 260

linked to a vendor—including those outside the 261

training set—via FAISS-based similarity search 262

(Johnson et al., 2019). 263

(iii). Baselines: Following (Saxena et al., 2023a), 264

text-only baselines utilizes Style-Embedding (Weg- 265

mann et al., 2022) and DeCLUTR-small (Giorgi 266

et al., 2021) backbones, whereas vision-only base- 267

lines utilizes VGG-16 (Simonyan and Zisserman, 268

2015), ResNet-50 (He et al., 2015), DenseNet-121 269

(Huang et al., 2018), InceptionNetV3 (Szegedy 270

et al., 2015), EfficientNetV2 (Tan and Le, 2021), 271

ConvNext-small (Woo et al., 2023), and ViT-base- 272

patch16-244 (Dosovitskiy et al., 2021) backbones. 273

The text-only and vision-only baselines are fine- 274

tuned with CE, CE+Triplet, and CE+SupCon ob- 275
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jectives for vendor identification tasks and Triplet276

or SupCon objectives for vendor verification tasks.277

The multimodal baselines utilize VisualBERT278

(Li et al., 2019), ViLT (Kim et al., 2021), and279

a custom DeCLUTR-ViT backbone (combining280

DeCLUTR for text and ViT for images) with281

four fusion strategies—concatenation (Gallo et al.,282

2018; Li et al., 2024b), mean pooling (Sleeman283

et al., 2022), self-attention (Kiela et al., 2020;284

Gan et al., 2024), and adaptive auto fusion via285

a neural network (Sahu and Vechtomova, 2021),286

enabling nuanced cross-modal interactions by com-287

bining complementary signals. Finally, we em-288

ploy the DeCLUTR-ViT backbone to also perform289

image-text alignment pre-training task on the com-290

bined dataset from all regions, applying three align-291

ment strategies: Image-Text Contrastive (ITC, aka292

CLIP) (Radford et al., 2021), ITC+ITM (Image-293

Text Contrastive and Image-Text Matching) (Vil-294

legas et al., 2024), and BLIP2 (Li et al., 2023).295

These alignment techniques ensure that text and296

images from the same ad are represented closely297

in the latent space, particularly when a single text298

ad is associated with multiple images. Once the299

pre-training is completed, these backbones are fine-300

tuned similarly to other baselines with CE and301

CE+SupCon for vendor identification on the South-302

region dataset.303

(iv). Evaluation: All the baselines in our research304

are evaluated for classification and retrieval tasks.305

Due to the class imbalance in our datasets (Fig-306

ure 2b), we evaluate our classifiers on the Macro-307

F1 metric. Additionally, we evaluate all our mod-308

els on a retrieval task focused on assessing the309

model’s ability to find stylometric similarities be-310

tween writing and photometric styles in our escort311

ads. To perform retrieval, the dataset is split into312

training ("documents") and test ("queries") sets,313

with text, image, and multimodal embeddings gen-314

erated by trained models to compute cosine simi-315

larity via FAISS-based similarity-search operation.316

Text-only and vision-only baselines extract embed-317

dings directly from their respective encoders, while318

multimodal baselines, including the CLIP baseline319

with ITC objective, combine text and vision em-320

beddings from the DeCLUTR-ViT backbone using321

a mean pooling strategy. For ITC+ITM and BLIP2-322

based baselines, we take these image embeddings323

from the QFormer encoder. The retrieval tasks324

are categorized as text-to-text, image-to-image, or325

multimodal based on whether query and document326

embeddings are derived from text, vision, or pooled327

multimodal representations. 328

All the retrieval tasks are evaluated using R- 329

Precision@X, which measures precision when the 330

number of retrieved items equals the number of rel- 331

evant ads per vendor, with higher scores reflecting 332

more accurate representations of vendor activity 333

(Saxena et al., 2023a). Additionally, Mean Recip- 334

rocal Rank (MRR@10) evaluates the average rank- 335

ing position of the first ten correctly retrieved ads 336

for each query, with scores closer to 1 indicating 337

higher relevance ranking, thereby reducing man- 338

ual search efforts for LEAs (Striebel et al., 2024). 339

Lastly, Macro-F1@X independently calculates and 340

averages F1 scores for each vendor class, ensuring 341

equal weight for all vendors regardless of sample 342

size. In Macro-F1@X and R-Precision@X, X rep- 343

resents the cutoff, defined as the number of relevant 344

items per vendor. 345

5 Results 346

This section evaluates text-only, vision-only, and 347

multimodal baselines for vendor identification 348

(classification) and verification (retrieval) tasks. 349

Given the space constraints, we only compare the 350

best-performing baselines in our manuscript. How- 351

ever, an extensive analysis of results from all the 352

baselines is provided in Appendix Tables 4-11. 353

Model Loss Macro-F1
Text-Baseline

CE 0.6379
CE+Triplet 0.5503DeCLUTR-small

CE+SupCon 0.6540
Vision-Baseline

CE 0.6142
CE+Triplet 0.6378ViT-base-patch16

CE+SupCon 0.6294
Multimodal-Baselines

CE 0.9670End2End
DeCLUTR-ViT CE+SupCon 0.9802
DeCLUTR-ViT BLIP2+CE+SupCon 0.9420

Table 2: Macro-F1 performance of the text, vision, and
multimodal classifiers on the south region dataset. The
benchmarks are highlighted by color.

(i). Classification task: As illustrated in Table 2 354

and confirming prior findings (Saxena et al., 2023a), 355

DeCLUTR (0.6379) outperforms Style-Embedding 356

(0.5210) backbone with CE loss and achieves 357

the highest macro-F1 (0.6540) with CE+SupCon 358

amongst the text baselines. Amongst vision base- 359

lines, ResNet-50 with CE achieves the highest 360

macro-F1 (0.6394), followed by EfficientNetV2 361
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(0.6285), DenseNet-121 (0.6262), ConvNext-small362

(0.6215), and ViT-base-patch16 (0.6141). Despite363

its slight underperformance in classification tasks,364

insights from Appendix Table 6 reveal that ViT out-365

performs all other models in retrieval tasks for both366

in-sample and OOD distribution datasets. This find-367

ing aligns with prior research (Gkelios et al., 2021;368

El-Nouby et al., 2021), which highlights ViT’s abil-369

ity to produce rich, contextualized representations370

that capture global relationships and stylistic pat-371

terns, even across diverse visual data (e.g., images372

with or without faces), making ViT the most suit-373

able backbone for our task. Finally, the ViT base-374

line trained with the CE+Triplet objective achieves375

the best macro-F1 of 0.6378, with CE+SupCon376

closely following at 0.6294.377

Amongst the multimodal baselines, the end-to-378

end DeCLUTR-ViT backbone with mean pooling379

fusion achieves the highest macro-F1 (0.9670), sur-380

passing VisualBERT (0.9355) and ViLT (0.7369).381

When fine-tuned, alignment baselines (CLIP,382

ITC+ITM, BLIP2) underperform compared to383

the end-to-end baseline, though BLIP2-pretrained384

DeCLUTR-ViT backbone comes closest to match-385

ing this performance (0.9420). When trained with386

the joint CE+SupCon objective, the DeCLUTR-387

ViT backbone performs exceptionally (0.9802) in388

capturing multimodal relationships. This perfor-389

mance is attributed to the dataset’s structure, where390

each text ad is paired with multiple images and391

vice versa, ensuring the model encounters diverse392

combinations during training.393

(ii). Retrieval Task: The retrieval task evaluates394

the effectiveness of metric learning (Triplet and395

SupCon losses) and joint-objective classifiers in396

clustering ad representations by vendor-specific397

stylometric patterns. The Zero-Shot (ZS) average398

reflects retrieval performance across datasets with-399

out task-specific training, and the OOD average400

measures the generalization of South-trained mod-401

els to unseen regions.402

Figure 1(A) compares the text-to-text re-403

trieval performance of text-only pre-trained (●),404

fine-tuned, and multimodal baselines. Fine-tuning405

on the South region dataset significantly improves406

performance across all metrics. Among text-only407

baselines, the DeCLUTR backbone trained with408

the joint CE+SupCon objective (■) outperforms409

the CE-only baseline (■) and performs on-par with410

the SupCon-only baseline (■) on OOD avg score,411

while surpassing it on the training dataset. Given412

the consistent performance of the DeCLUTR back-413

bone with CE+SupCon objective on the classifi- 414

cation and retrieval task, we establish it as the 415

benchmark for text-only modality. This bench- 416

mark is further compared against the text repre- 417

sentations from the multimodal DeCLUTR-ViT 418

backbone trained end-to-end with CE+SupCon ( ) 419

and the fine-tuned DeCLUTR-ViT backbone, pre- 420

trained for text-image alignment task using BLIP2 421

objective ( ). The multimodal backbone trained 422

end-to-end with CE+SupCon consistently outper- 423

forms all baselines on training and OOD datasets. 424

Figure 1(B) highlights image-to-image re- 425

trieval performance, comparing vision-only pre- 426

trained (●), fine-tuned, and multimodal baselines. 427

Fine-tuning on image ads also improves retrieval 428

performance. Amongst vision-only baselines, the 429

ViT backbone trained with the CE+SupCon objec- 430

tive (■) achieves superior performance over other 431

baselines on both training and OOD datasets, estab- 432

lishing itself as the benchmark for the vision-only 433

modality. Despite the better performance of the ViT 434

backbone with CE+Triplet objective (■) on clas- 435

sification, it underperforms on the retrieval task. 436

We further compare this vision benchmark against 437

the vision representations from the multimodal 438

DeCLUTR-ViT backbone trained end-to-end with 439

CE+SupCon ( ) and the fine-tuned DeCLUTR- 440

ViT backbone, pre-trained for text-image alignment 441

task using BLIP2 objective ( ). The end-to-end 442

multimodal backbone with CE+SupCon objective 443

consistently outperforms other baselines on OOD 444

datasets. However, it underperforms the fine-tuned 445

BLIP2 baseline on R-Precision and Macro-F1 met- 446

rics for the training dataset. 447

Figure 1(C) compares retrieval performance 448

among multimodal baselines, evaluating the mul- 449

timodal representation from the end-to-end mul- 450

timodal DeCLUTR-ViT backbone trained end- 451

to-end with CE+SupCon ( ) and the fine-tuned 452

DeCLUTR-ViT backbone, pre-trained for text- 453

image alignment task using BLIP2 objective 454

( ). The end-to-end multimodal backbone with 455

CE+SupCon objective consistently outperforms the 456

other baseline across the training and OOD datasets. 457

Our analysis (Appendix Table 8) indicates that the 458

low performance of the text-image alignment strate- 459

gies can be attributed to the lack of semantic simi- 460

larity between images and text, as images in escort 461

ads often do not directly reflect the context of the 462

accompanying text. 463
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Figure 1: Comparison of retrieval performance across multiple baselines for text-to-text, image-to-image, and
multimodal ads retrieval tasks on South, Midwest, West, and Northeast datasets. The text-to-text retrieval baselines
include the pre-trained DeCLUTR checkpoint (●), DeCLUTR classifiers trained on CE (■) and CE+SupCon losses
(■), and the DeCLUTR backbone trained with SupCon loss (■). Image-to-image retrieval baselines include the
pre-trained ViT checkpoint (●), ViT classifiers trained on CE (■), CE+Triplet (■), and CE+SupCon losses (■),

and ViT backbones trained with SupCon (■) and Triplet (■) losses. Multimodal baselines include End2End
DeCLUTR-ViT classifiers trained with CE ( ), CE+SupCon ( ), and BLIP2-aligned DeCLUTR-ViT classifiers

trained with CE+SupCon ( ) objectives.
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6 Key Takeaways, Result Analysis, &464

Further Insights465

(i). The experiments above demonstrate that fine-466

tuning on the MATCHED dataset significantly467

enhances retrieval performance, underscoring its468

value and exposing the limitations of existing pre-469

trained checkpoints in adapting to the unique lin-470

guistic and stylistic patterns of escort ads.471

(ii). Given the dual objective of achieving in-472

sample and OOD distribution performance, the473

CE+SupCon joint objective consistently outper-474

forms or matches other training objectives, demon-475

strating robustness and generalization. This dual fo-476

cus enables models to effectively address closed-set477

vendor identification (linking ads to known vendors478

in LEA databases) and open-set vendor verification479

(connecting ads from emerging vendors on new480

platforms). While some baselines excel at one task,481

our benchmarks are established based on their abil-482

ity to perform well across both objectives, ensuring483

practical utility for LEAs in tracking known and484

emerging HT networks.485

(iii). Multimodal integration significantly enhances486

AA performance by leveraging complementary tex-487

tual and visual features to capture richer authorship488

patterns. Beyond the quantitative improvements489

shown in Table 2 and Figure 1, our qualitative anal-490

ysis in Appendix A.6 (Figure 3) reveals that multi-491

modal training improves classification performance492

across all vendors, including those with lower class493

frequency. It also better connects images without494

faces, performs more effectively for vendors adver-495

tising multiple escorts, and increases true positive496

rates while reducing false positives. Similarly, ob-497

servations in Appendix Figures 4-7 also confirm498

this pattern across retrieval tasks.499

(iv). While integrating text and vision features en-500

hances vision retrieval performance compared to501

vision-only baselines, vision remains less reliable502

(Figure 1(B)). Conversely, integrating vision fea-503

tures into text representations significantly boosts504

text retrieval performance, with text consistently505

outperforming vision and multimodal representa-506

tions (Figure 1(A) and (C)). This highlights the507

superiority of the text representations from the508

DeCLUTR-ViT backbone, making it the most ef-509

fective option for retrieval tasks on our dataset.510

(v). While the multimodal DeCLUTR-ViT clas-511

sifier achieves a strong macro-F1 score (0.9802),512

this performance reflects its ability to learn dis-513

criminative in-sample distribution patterns from514

paired text-image samples during training. How- 515

ever, retrieval results—particularly on OOD distri- 516

bution—reveal the inherent challenges of general- 517

ization. As shown in Figure 1 and Appendix Ta- 518

bles 9–11, the model achieves average R-Precision 519

scores of 0.7418 (text-to-text), 0.1518 (image-to- 520

image), and 0.7202 (multimodal) for OOD retrieval, 521

highlighting a notable performance gap. This dis- 522

crepancy stems from the challenge of linking novel 523

text-image combinations unseen during training. 524

The model is trained by associating individual text 525

descriptions with multiple images, learning stylis- 526

tic and visual patterns across modalities. In OOD 527

scenarios, the model encounters entirely new pairs, 528

requiring it to infer authorship from subtle cross- 529

modal cues rather than relying on memorized asso- 530

ciations. For instance, a vendor might reuse a new 531

image with text that shares stylistic similarities to 532

prior ads. The model’s retrieval performance under 533

such conditions demonstrates its ability to leverage 534

these complementary signals. This distinction be- 535

tween classification (closed-set identification) and 536

retrieval (open-set verification) is critical for real- 537

world applications. In practice, LEAs frequently 538

encounter OOD cases where vendors alter content 539

across platforms or regions to evade detection. The 540

model’s design—emphasizing OOD generalization 541

and cross-modal linking—addresses a crucial gap 542

in AA and HT investigations, where robustness to 543

evolving evasion tactics is crucial. 544

(vi). Figure 2(a)(A) highlights significant vendor 545

overlap across the four geographic regions, rais- 546

ing concerns about model generalization on OOD 547

distribution. However, similarity analysis of the 548

datasets (Figures 2(a)(B)-(C)) and retrieval perfor- 549

mance on shared versus unique vendors (Appendix 550

Table 12) demonstrate that the end-to-end multi- 551

modal DeCLUTR-ViT backbone performs equally 552

on both shared and unique vendors. This indicates 553

strong generalization capabilities in scenarios with 554

overlapping or region-specific vendor activity. 555

(vii). To improve alignment between text descrip- 556

tions and escort images, we experimented with 557

three text-alignment strategies—CLIP, CLIP with 558

an Image-Text Matching objective, and BLIP2. 559

While these models show improved retrieval perfor- 560

mance over pre-trained checkpoints (Appendix Ta- 561

bles 9–7), they consistently underperformed com- 562

pared to our end-to-end DeCLUTR-ViT baseline, 563

even after fine-tuning for vendor identification task. 564

This underperformance is attributed to the low se- 565

mantic overlap between the noisy text (vague de- 566
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scriptions) and images (e.g., partial or absent faces)567

in escort ads (Appendix Table 8), making the align-568

ment difficult. Given these findings, using SoTA569

multimodal models like LLaVA-OV 7B (Li et al.,570

2024a), Gemini Flash 8B (Team, 2024), Pixtral571

12B (Agrawal et al., 2024), etc. presents discour-572

agements. These models have significantly larger573

parameter sizes, making them impractical within574

our computational constraints and unfair compared575

to our 169M-parameter DeCLUTR-ViT backbone.576

Additionally, they are optimized for unrelated tasks577

like knowledge reasoning and Q&A, which do not578

align with our AA objectives. Lastly, our BLIP2579

results show that projecting visual features into580

language space, as used by models like LLaVA,581

does not resolve the alignment challenges caused582

by low semantic overlap. Therefore, we decide not583

to pursue these larger general-purpose multimodal584

models for our AA tasks.585

7 Discussion586

This research introduces a novel multimodal587

dataset and conducts extensive benchmarking to588

demonstrate that multitask joint objectives and mul-589

timodal data integration enhance AA performance590

on both in-sample and OOD distribution datasets.591

By linking escort ads through these techniques, we592

aim to assist researchers, investigators, and LEAs593

study HT indicators. Due to space constraints, the594

main manuscript focuses on critical claims and ex-595

perimental results, while additional insights and596

detailed analyses are provided in the Appendix.597

Specifically, Appendix sections A.2 and A.3598

provide detailed information on data-specific statis-599

tics, preprocessing steps, label creation, and a600

datasheet following (Gebru et al., 2021). Due to the601

sensitive nature of our research, we cannot display602

data samples, publicly release our models, or pro-603

vide model cards. Given the explicit sexual content604

in images and associated privacy concerns, qual-605

itative examples cannot be provided in the paper.606

However, we conduct extensive qualitative and sta-607

tistical analyses into model insights and learning608

in Appendix A.6. Further details on architectural609

design, training setup, and computational consider-610

ations are presented in Appendix A.4, while com-611

prehensive performance metrics for all baselines612

are available in Appendix A.5. Lastly, Appendix613

A.7 explores the practical application of AA tasks614

in building knowledge graphs to support investiga-615

tive efforts.616

By structuring our paper this way, we balance clar- 617

ity and depth. The main manuscript provides a 618

concise overview, while the supplementary mate- 619

rial ensures transparency, rigor, and accessibility, 620

enabling domain experts and practitioners to derive 621

actionable insights from our work. 622

8 Conclusion 623

Through this research, we demonstrate the poten- 624

tial of MAA in addressing the complexities of ven- 625

dor identification and verification within online es- 626

cort markets. Using our novel MATCHED dataset, 627

we extensively benchmark text-only, vision-only, 628

and multimodal approaches, showcasing the ad- 629

vantages of CE+SupCon multitask training objec- 630

tives. Our analysis reveals that this dual-objective 631

consistently outperforms single-task approaches 632

across in-distribution and OOD datasets, enabling 633

LEAs to identify known vendors while linking 634

emerging ones in new markets. Additionally, mul- 635

timodal integration significantly enhances model 636

performance by capturing complementary patterns 637

across text and images. While text remains the 638

dominant modality, integrating image data along 639

text descriptions adds stylistic cues that enrich the 640

model’s capabilities. Among text, vision, and mul- 641

timodal representations, text representations from 642

the DeCLUTR-ViT backbone emerge as the most 643

effective for retrieval tasks, achieving the best re- 644

sults across all modalities. While pre-trained text- 645

image alignment strategies like CLIP and BLIP2 646

fail to establish meaningful cross-modal connec- 647

tions due to low semantic overlap and ineffec- 648

tive use of stylistic features, end-to-end multitask 649

training is a more robust approach for leveraging 650

multimodal data in AA tasks. Finally, the perfor- 651

mance gap between pre-trained checkpoints and 652

fine-tuned baselines highlights the importance of 653

domain-specific adaptations and task-specific train- 654

ing, providing a strong foundation for future re- 655

search. By addressing real-world challenges and 656

emphasizing scalability, we aim to equip LEAs 657

with actionable tools to uncover and disrupt traf- 658

ficking networks effectively. 659

9 Limitations 660

Assumption: Similar to existing research, our 661

research assumes that each class label corresponds 662

to a distinct vendor during the classification task, 663

enabling the model to leverage domain knowledge 664

effectively. However, our qualitative analysis iden- 665
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tifies cases where the trained classifier misclassifies666

ads, likely due to similarities in writing style and667

content, suggesting the possibility that multiple668

vendors might belong to the same entity. While we669

lack definitive ground truth to confirm this hypoth-670

esis, it represents a notable challenge in ensuring671

label accuracy. We recognize that improving the672

quality of vendor labels would likely lead to en-673

hanced benchmark performance and more robust674

model evaluations.675

Dataset Limitations and Generalization Chal-676

lenges: Our research utilizes escort ads collected677

from the Backpage platform between December678

2015 and April 2016, spanning seven U.S. cities in679

four geographical regions. While this dataset pro-680

vides valuable insights into AA for sex trafficking681

investigations, it also presents several limitations.682

Notably, there is significant vendor overlap across683

regions (Appendix Figure 2a), and the presence684

of near-duplicate ads—challenging to identify and685

remove due to noise and variability—complicates686

the evaluation of the model’s generalization capa-687

bilities. Although this study evaluates OOD gener-688

alization, more comprehensive assessments would689

benefit from data collected from multiple escort690

platforms and diverse geographical regions to bet-691

ter simulate cross-platform generalization.692

While the Global Organized Crime Index high-693

lights regions worldwide for HT activities, HT man-694

ifests in various forms, such as labor, organ, and695

sex trafficking, as well as forced servitude. Our696

research is focused specifically on addressing sex697

trafficking within escort advertisements. While ex-698

panding data collection beyond US-based ads to699

encompass a wider range of geographical regions700

and demographics is crucial, identifying escort plat-701

forms directly linked to HT operations is a signifi-702

cant challenge, as such connections often require703

verification through law enforcement investigations704

or court rulings. To date, beyond Backpage and705

Craigslist, not many escort platforms have been706

explicitly linked to HT activities.707

Finally, data collection for this study was con-708

ducted under strict ethical oversight. Approval709

from the ethics committee was obtained, largely710

due to the relatively dated nature of the dataset,711

which reduces privacy risks. It is suspected that712

many victims and perpetrators have since moved713

from these platforms or changed their personal in-714

formation to avoid identification. Furthermore, our715

research is not an active investigation but rather an716

effort to develop tools that may assist LEAs in iden- 717

tifying and linking escort ads to disrupt trafficking 718

networks. In future work, we aim to explore meth- 719

ods for ethically collecting data from additional 720

escort platforms—particularly those with verifiable 721

connections to HT operations—to enhance general- 722

izability across diverse demographics and regions. 723

This expansion will be crucial for developing more 724

robust, globally representative AA models for HT 725

investigations. That said, our current dataset re- 726

mains a valuable benchmark for future research, 727

offering critical insights into how traffickers facil- 728

itated HT on Backpage escort platforms during 729

2015-2016. It will serve as a reference point for an- 730

alyzing how criminal behavior and evasion tactics 731

have evolved over time and across platforms, help- 732

ing researchers and LEAs track shifts in trafficking 733

strategies and adapt investigative approaches ac- 734

cordingly. 735

Selective Feature Extraction and Fine-Tuning: 736

In this work, we extract text and vision representa- 737

tions exclusively from the final layers of our mod- 738

els, which may not fully capture nuanced features 739

learned at earlier layers. Representations extracted 740

from intermediate layers could yield different or 741

potentially better outcomes. Additionally, while 742

fine-tuning pre-trained text-image alignment mod- 743

els, we fine-tune all layers uniformly, which may 744

not be optimal. Techniques like Centered Kernel 745

Alignment (CKA) (Kornblith et al., 2019) can pro- 746

vide insights into which layers learn the most rel- 747

evant features, enabling more informed decisions 748

about representation extraction and selective layer 749

freezing during fine-tuning. Addressing these con- 750

cerns is currently beyond the scope of this research, 751

but we plan to explore these aspects in future work. 752

Computational Constraints: While our re- 753

search employs relatively large model architectures 754

and advanced training strategies, it is limited by 755

the computing resources available to us. Larger 756

model architectures could potentially enhance per- 757

formance across classification and retrieval tasks. 758

However, when applied to text-image alignment 759

tasks, the computational demands of scaling these 760

models exceeded our resource capacity. As a re- 761

sult, we opted for smaller, more efficient architec- 762

tures that fit within our computational constraints, 763

ensuring a fair and balanced comparison across 764

baselines. Similarly, our research relies heavily on 765

contrastive learning objectives, and prior studies 766

(Gao et al., 2021; Vaessen and van Leeuwen, 2024) 767

9

https://ocindex.net/rankings/human_trafficking


highlight the benefits of larger batch sizes for such768

tasks. However, to maintain consistency and fair-769

ness among baselines, we limited our batch size770

to 32, as larger sizes led to memory errors, par-771

ticularly with text-image alignment models. This772

computational limitation also influenced our de-773

cision to forego fine-tuning pre-trained CLIP and774

BLIP2 checkpoints, as the memory requirements775

for fine-tuning BLIP2 architecture caused GPU776

crashes. These decisions reflect deliberate trade-777

offs made to ensure the reproducibility and fairness778

of our experimental comparisons while working779

within resource limitations.780

Explainability: Although this research does not781

explicitly address the explainability or interpretabil-782

ity of our models, we recognize their critical role783

in fostering trust among researchers, investigators,784

and law enforcement agencies. Previous studies785

(Saxena et al., 2023a) have explored explainability786

in AA through local feature attribution techniques787

applied to text ads. However, while numerous788

frameworks exist for explainability in unimodal789

data (Ribeiro et al., 2016; Lundberg and Lee, 2017;790

Kokhlikyan et al., 2020), these methods cannot be791

directly extended to the multimodal AA context.792

Additionally, research highlights the limitations of793

existing explainability techniques, including their794

susceptibility to adversarial attacks, network spar-795

sity, and inconsistencies in results (Das and Rad,796

2020; Krishna et al., 2022; Saxena et al., 2023b).797

We aim to address these challenges in future work798

by developing a robust explainability framework799

tailored specifically for multimodal AA scenarios.800

Such a framework will help uncover the contri-801

butions of textual and visual features in decision-802

making processes, ensuring transparency and relia-803

bility in the application of multimodal AA models.804

Generative Models: Vendors could potentially805

exploit advancements in generative technologies,806

such as Large Language Models (LLMs) like Chat-807

GPT and vision-based generative models, to craft808

text ads with varying linguistic styles or manipu-809

late images to inject obscuring identifiable stylis-810

tic cues, making AA more challenging. While811

such scenarios remain speculative—there is cur-812

rently no concrete evidence that HT vendors are ac-813

tively using LLMs or generative models to produce814

ads—the possibility poses significant challenges815

to AA systems. Detecting artificially generated816

content would require access to ground-truth infor-817

mation, which is difficult to obtain. Even if future818

datasets include ads suspected of being generated 819

by LLMs, proving their artificial origins would re- 820

main a major challenge. 821

Although publicly available LLMs often re- 822

strict content generation for illegal purposes, open- 823

source models could be fine-tuned or customized 824

by vendors to evade detection by mimicking diverse 825

stylistic patterns. These evolving capabilities could 826

undermine the effectiveness of text- and vision- 827

based AA systems, which depend on identifying 828

unique stylometric and visual features. To address 829

these potential threats, our future work plans to 830

adapt our AA systems by recollecting and analyz- 831

ing updated datasets, enabling them to differentiate 832

between human-generated and machine-generated 833

content. This will help ensure our models remain 834

robust against emerging tactics that leverage gener- 835

ative technologies. 836

10 Ethical Considerations 837

10.1 Data Protocols 838

We collect our dataset from the Backpage Escort 839

Markets spanning seven U.S. cities, posted between 840

December 2015 and April 2016. Following ethical 841

guidelines outlined by Krotov et al. (2020), which 842

presents a framework of seven principles for re- 843

sponsible web scraping, we ensured our approach 844

complied with these standards. The Backpage web- 845

site’s use policy does not explicitly prohibit data 846

scraping. 847

10.2 Privacy Considerations and Potential 848

Risks 849

In undertaking this research, we recognize the sig- 850

nificant privacy concerns associated with using data 851

from escort advertisements, particularly given that 852

individuals within these ads may be at risk. How- 853

ever, the prevalence of human trafficking, a grave 854

societal issue that affects countless lives, drives 855

our commitment to contribute positively to anti- 856

trafficking efforts. We believe our intentions align 857

with the broader ethical imperative to support the 858

fight against exploitation and to aid LEA in identi- 859

fying and disrupting trafficking networks. 860

To address privacy concerns, we have ex- 861

tensively tried to mask personal identifiers within 862

the dataset. Following methods from Saxena et al. 863

(2023a), we mask phone numbers, email addresses, 864

post IDs, dates, and links in text data, transforming 865

them into generalized formats such as "<EMAILID- 866

23>" or "<LINK>," which minimizes the risk of 867
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reverse engineering and personal identification868

(please refer appendix section A.2 for more de-869

tails). At the same time, we explored various entity870

recognition tools to mask names (Li et al., 2022a;871

Liu et al., 2023) and locations, the inherent noise in872

the data led to inaccuracies, with some false posi-873

tives in entity predictions. Since research indicates874

that individuals in these ads often use pseudonyms875

(Carter et al., 2021; Lugo-Graulich) and Backpage876

ads are no longer publicly accessible after the 2016877

seizure, we find it unlikely that masked text data878

could be misused for individual identification.879

Privacy risks are more challenging to mitigate for880

the image data, as AA relies on preserving stylis-881

tic cues. Although we initially considered blur-882

ring faces to protect identities, we ultimately de-883

cided against it to avoid introducing biases that884

could compromise the authenticity of stylometric885

patterns. This decision was made after careful886

consideration of the potential impact on the ac-887

curacy and integrity of the AA task. Many ads888

already feature images with blurred or cropped889

faces, which suggests an attempt by individuals890

to maintain anonymity. For similar reasons, we891

also opted not to use other image augmentations,892

such as flipping or rotating, as these transforma-893

tions could alter stylistic features tied to individual894

vendors, thus potentially impacting the accuracy895

and integrity of the AA task.896

Our efforts to balance privacy with societal897

benefit align with the principles outlined in Ar-898

ticle 6 of the General Data Protection Regulation899

(GDPR), the lawfulness of processing. By minimiz-900

ing identifiable information and rigorously manag-901

ing data access, we strive to uphold this balance.902

To further safeguard against misuse, we903

have established strict access controls for the904

MATCHED dataset. Access will be limited to905

vetted researchers and organizations with legiti-906

mate research goals, particularly those focused on907

anti-trafficking and public welfare. Each access re-908

quest will undergo a thorough review by an ethics909

review board, assessing the legitimacy of the re-910

search goals and the adequacy of the applicant’s911

security measures. This process ensures that only912

those committed to ethical and secure usage stan-913

dards gain access. Applicants must also sign non-914

disclosure and data protection agreements legally915

binding them to these standards. Any violation of916

these guidelines will result in legal consequences.917

Only metadata on the Dataverse platform will of-918

fer a high-level overview without compromising919

sensitive information. 920

Note: Our research has undergone ethical scrutiny 921

within our institution, and we have received in- 922

ternal approval to proceed with the project. The 923

ethical review details and additional documenta- 924

tion will be provided in the camera-ready version 925

of this paper, demonstrating our commitment to 926

transparency and responsibility in our efforts. We 927

are guided by the principle that our work should 928

ultimately serve to protect and support vulnerable 929

individuals, advancing a cause deeply rooted in 930

societal benefit. 931

10.3 Legal Impact 932

We acknowledge that the specific impact of our 933

research on law enforcement processes is difficult 934

to predict. Our primary goal is to support LEAs in 935

better understanding vendor connections within on- 936

line escort markets, offering a tool to assist in their 937

investigative efforts. We strongly recommend that 938

LEAs and researchers treat our analysis as an inves- 939

tigative aid rather than direct evidence for criminal 940

prosecution. Our findings should be supplementary 941

tools to guide investigations, not standalone proof 942

of criminal activity. 943

10.4 Environmental Impact 944

Our experiments are conducted on a private infras- 945

tructure equipped with an NVIDIA H100 80GB 946

GPU (TDP of 350W) and a carbon efficiency of 947

0.475 kgCO2eq/kWh. Establishing all baselines 948

required a cumulative training time of 45.79 hours. 949

Using the Machine Learning Impact calculator 950

from Lacoste et al. (2019), we estimate the to- 951

tal emissions for these experiments to be approxi- 952

mately 16.625 kgCO2eq. 953
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Did you discuss any potential risks of your1408

work? Yes, the potential privacy risks associated1409

with our work are described in Section 10.2.1410

A.1.2 Did you use or create scientific1411

artifacts?1412

Did you discuss the license or terms for use and1413

/ or distribution of any artifacts? The dataset1414

will be released under Custom License Terms with1415

restrictive access. Extensive details about the terms1416

of use and/or distribution are mentioned in Ap-1417

pendix Section A.2. These terms will also be made1418

available on the Dataverse portal once the dataset’s1419

meta-data is released publicly.1420

Did you discuss if your use of existing artifact(s)1421

was consistent with their intended use, provided1422

that it was specified? For the artifacts you cre-1423

ate, do you specify the intended use and whether1424

that is compatible with the original access condi-1425

tions (in particular, derivatives of data accessed1426

for research purposes should not be used outside1427

of research contexts)? Given the sensitivity of1428

our dataset, access will be provided under restricted1429

conditions to ensure ethical use. Interested parties1430

must sign a Non-Disclosure Agreement (NDA) and1431

Data Transfer Agreement (DTA) with our institu-1432

tion and the ethics committee. To minimize risks1433

to individuals represented in the dataset, we have1434

implemented strong anonymization techniques to1435

remove private and personally identifiable infor-1436

mation. We strictly prohibit using this dataset for1437

any commercial or unethical purposes beyond the1438

intended scope of our research. Violations of these1439

guidelines will be subject to legal repercussions as1440

outlined by the institution’s policies and the ethics1441

committee.1442

Did you discuss the steps taken to check whether1443

the data that was collected / used contains any1444

information that names or uniquely identifies1445

individual people or offensive content, and the1446

steps taken to protect / anonymize it? Yes, we1447

thoroughly detail the data collection and prepro-1448

cessing steps, including the measures taken to iden-1449

tify and remove any private or personally identifi-1450

able information. Specifically, we anonymize sensi-1451

tive content such as names, phone numbers, email1452

addresses, advertisement IDs, dates, and ages of1453

individuals to ensure privacy. These efforts and ad-1454

ditional discussions are comprehensively reported1455

in Appendix Section A.2-A.3.1456

Did you provide documentation of the artifacts, 1457

e.g., coverage of domains, languages, and lin- 1458

guistic phenomena, demographic groups repre- 1459

sented, etc.? Yes, the details about the coverage 1460

of domains, languages, and geographical groups 1461

are presented in Section 3 and Appendix Sections 1462

A.2 - A.3. 1463

Did you report relevant statistics like the num- 1464

ber of examples, details of train / test / dev splits, 1465

etc. for the data that you used / created? Yes, 1466

these details are mentioned in Section 3 and Ap- 1467

pendix Section A.4. 1468

A.1.3 Did you run computational 1469

experiments? 1470

Did you report the number of parameters in 1471

the models used, the total computational budget 1472

(e.g., GPU hours), and computing infrastructure 1473

used? Yes, these details are attached in Appendix 1474

Table 4. 1475

Did you discuss the experimental setup, includ- 1476

ing hyperparameter search and best-found hy- 1477

perparameter values? Yes, these details are 1478

attached in Appendix Section A.4. 1479

Did you report descriptive statistics about your 1480

results (e.g., error bars around results, sum- 1481

mary statistics from sets of experiments), and 1482

is it transparent whether you are reporting the 1483

max, mean, etc. or just a single run? Details 1484

about the effects of random initialization for our 1485

best-performing model, the end-to-end multimodal 1486

DeCLUTR-ViT baseline, are attached in Appendix 1487

Section A.4. 1488

If you used existing packages (e.g., for prepro- 1489

cessing, for normalization, or for evaluation, 1490

such as NLTK, Spacy, ROUGE, etc.), did you re- 1491

port the implementation, model, and parameter 1492

settings used? All relevant details are described 1493

in Appendix Section A.4. 1494

A.1.4 Did you use human annotators (e.g., 1495

crowdworkers) or research with human 1496

participants? 1497

Do you use any human annotators? No. 1498

Did you discuss whether and how consent was 1499

obtained from people whose data you’re us- 1500

ing/curating? Getting consent for our data is 1501

challenging due to the nature and timeline of our 1502

dataset. We have extensively described this prob- 1503

lem in our Appendix Section A.3. 1504
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Was the data collection protocol approved (or1505

determined exempt) by an ethics review board?1506

Yes, the approval was granted by our institutional’s1507

ethics board. We plan to attach the approval in our1508

camera-ready version.1509

A.1.5 Did you use AI assistants (e.g.,1510

ChatGPT, Copilot) in your research,1511

coding, or writing?1512

While our research methodology, experiments, and1513

results were developed independently without AI1514

assistants, we utilized ChatGPT and Grammarly to1515

improve our paper’s readability, clarity, and flow.1516

Importantly, we wrote the initial drafts, including1517

all content. ChatGPT was used only to paraphrase1518

sections for clarity and improve grammar. Addi-1519

tionally, for coding purposes, we employed Chat-1520

GPT solely to generate in-line comments for bet-1521

ter code readability. Specifically, we passed hand-1522

written functions and classes to ChatGPT and re-1523

quested it to generate comments without altering1524

any logic or structure in the code.1525

This information is transparently described here1526

and is not included in the main manuscript because1527

the AI assistance was limited to minor paraphras-1528

ing, grammar improvement, and in-line code com-1529

ments, with no role in generating methodology,1530

experiments, or results.1531

A.2 Dataset1532

(i) Data Analysis: Figure 2a(A) illustrates the %1533

of shared vendors across different datasets. As1534

can be observed, many vendors post ads across1535

multiple geographical regions, which aligns with1536

existing findings that the Backpage escort market-1537

place was often flagged for HT activities, with ven-1538

dors frequently advertising their services across1539

various regions (Lugo-Graulich and Meyer, 2021).1540

This cross-regional vendor activity also highlights a1541

limitation in our OOD generalization experiments,1542

which are designed to test the ability of our models1543

to make predictions on data distribution that is dif-1544

ferent from the data it was trained on. These exper-1545

iments may not fully capture real-world conditions.1546

To properly assess true OOD generalization, future1547

work would need to collect ads from an entirely1548

separate escort platform to evaluate our models’1549

adaptability to a new distribution of ads—an ap-1550

proach that lies outside the scope of this research.1551

Figure 2a(B) examines the average text-to-1552

text similarity between ads from different datasets.1553

Using a pre-trained DeCLUTR-small model, we1554

compute the similarity by generating sentence em- 1555

beddings for each ad and calculating the cosine sim- 1556

ilarity between pairs from different datasets. Given 1557

the high level of vendor overlap across regions, 1558

the text content is expected to exhibit considerable 1559

similarity. Similarly, figure 2a(C) shows the aver- 1560

age image-to-image cosine similarity across ads 1561

from different datasets, calculated using represen- 1562

tations from a pre-trained ViT-base-patch16 model. 1563

Compared to the relatively high text similarity, the 1564

image similarity is lower. This suggests that, while 1565

vendors often maintain consistent writing styles 1566

across regions, they tend to vary the images posted, 1567

potentially to depict different escorts. 1568

Figure 2b(A) and (B) illustrate the sentence 1569

and character length distributions of text ads 1570

within our datasets. Sentence length is measured 1571

by counting the total number of tokens generated 1572

by the pre-trained DeCLUTR-small checkpoint 1573

after tokenization, while character length is the 1574

count of characters in each text ad. As shown, 1575

most text ads have a sentence length of fewer 1576

than 512 tokens. Therefore, we truncate all text 1577

ads to a maximum length of 512 tokens, also 1578

the maximum sequence length allowed by most 1579

transformers-based models. Figure 2b(C) depicts 1580

the text-ad frequency, i.e., the number of text ads 1581

posted per vendor. As evident, most vendors post 1582

between 1 and 20 text ads. Unlike other authorship 1583

attribution (AA) approaches applied to criminal 1584

markets, which require a minimum of 5 (Saxena 1585

et al., 2023a) or 20 (Saxena et al., 2023b) ads 1586

for effective AA implementation, our research 1587

explores the applicability of AA techniques for 1588

vendors with as few as two ads. This distribution 1589

of ad frequency highlights a class imbalance in 1590

our dataset, prompting us to prioritize Macro-F1 1591

performance to ensure equal weighting across all 1592

classes in our classification tasks. Similarly, 2b(D) 1593

depicts the image-ad frequency or the number of 1594

image ads posted per vendor. As evident, most 1595

vendors post between 5 and 24 image ads. A 1596

detailed analysis of the frequency of text, image, 1597

and multimodal ads per vendor is attached in 1598

Figure 2c 1. Finally, our language analysis using 1599

the LangDetect model (Tamás et al., 2022) reveals 1600

that the vast majority of text ads are in English: 1601

99.65% in the South dataset, 99.98% in the 1602

Midwest dataset, 99.88% in the West dataset, and 1603

1Note that these line plots are plotted with a smoothing
applied to window size of 30 for better readability.
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(A) (B) (C)

(a) Figure (A) shows the % of vendors shared between different datasets. Figures (B) and (C) show the average text-text and
image-image cosine similarity between datasets computed on the ad representations from the pre-trained available checkpoints
of DeCLUTR-small and ViT-base-patch16 backbones, respectively.

(A) (B) (C) (D)

(b) Figures (A) and (B) showcase distributions of sentence and character length for text advertisements in the datasets. Figures
(C) and (D) show a distribution of text-ad and image-ad frequency for each dataset, i.e., the number of text and image ads per
vendor.

(c) Frequency of text, image, and multimodal ads in South, Northeast, West, and Midwest region datasets.

Figure 2

99.85% in the Northeast dataset.1604

1605

(ii) Data Pre-Processing: As described in Section1606

3, our dataset is sourced from Backpage escort ads1607

posted across seven US cities between December1608

2015 and April 2016. We scrape titles, descriptions, 1609

and images for each ad. The text sequence for 1610

each entry is created by combining the title and 1611

description separated with a "[SEP]" token. Since 1612

ads may contain multiple images, we duplicate the 1613
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text sequence for each associated image to prepare1614

the dataset for multimodal training.1615

To establish ground truth, we follow Saxena1616

et al. (2023a) and utilize tools from Nagpal et al.1617

(2017); Chambers et al. (2019) and Hagberg et al.1618

(2008) to extract phone numbers and form vendor1619

communities, aka vendor labels. Consistent with1620

Saxena et al. (2023a), we mask most personal in-1621

formation, including phone numbers, escort ages,1622

measurements, ad IDs, and posting dates. Despite1623

attempts to mask all identifiable information, ex-1624

isting Named Entity Recognizers (NER) (Li et al.,1625

2022a; Liu et al., 2023) struggle to extract escort1626

names from the ads reliably. However, since es-1627

corts generally use pseudonyms in these ads (Carter1628

et al., 2021; Lugo-Graulich), the potential for mis-1629

use of personal data is already minimal.1630

For image anonymization, we initially1631

considered blurring faces to protect escort identi-1632

ties. However, manual inspection revealed that1633

many images with blurred or cropped faces are1634

anonymously posted. To preserve these stylistic1635

elements, we opted not to add artificial blurring,1636

which could introduce visual biases. Similarly, we1637

avoided other image augmentation techniques, as1638

transformations such as flipping or rotating could1639

alter stylistic cues linked to specific vendors. Some1640

ads naturally feature mirrored or rotated images,1641

which are retained to prevent misattribution. To1642

further analyze model behavior, we categorized1643

the image dataset into "Face" and "No Face"1644

subsets for each of the four regions—South, West,1645

Midwest, and Northeast—using a pre-trained1646

FaceNet model (Firmansyah et al., 2023). FaceNet1647

detects and generates bounding boxes around faces1648

in images, which are then assigned to that region’s1649

"Face" dataset.1650

1651

(iii) Language Distribution: Our analysis reveals1652

that approximately 99.84% of our dataset’s vocab-1653

ulary is English. Given that only a small fraction1654

of our dataset’s vocabulary lies outside English,1655

we anticipate that employing multilingual mod-1656

els would have a negligible effect on model per-1657

formance. These statistics are obtained using the1658

LangDetect (Tamás et al., 2022) python model.1659

A.3 Datasheet1660

Following Gebru et al. (2021), we provide the1661

datasheet for our MATCHED dataset below:1662

A.3.1 Motivation 1663

For what purpose was the dataset created? Was 1664

there a specific task in mind? Was there a spe- 1665

cific gap that needed to be filled? Please pro- 1666

vide a description. The MATCHED dataset was 1667

created to support LEAs, investigators, and re- 1668

searchers in identifying vendor connections within 1669

online escort ads. Traditional methods often rely on 1670

explicit personal identifiers such as phone numbers 1671

and email addresses. However, existing research 1672

shows that only a small fraction of ads include 1673

this information, limiting the effectiveness of these 1674

approaches. In response, Saxena et al. (2023a) in- 1675

troduced AA methods to connect escort vendors 1676

through stylistic similarity in text, providing an al- 1677

ternative way to link ads without direct identifiers. 1678

Our dataset fills a critical gap by incorporating tex- 1679

tual descriptions and images associated with escort 1680

ads, enabling researchers to move beyond text-only 1681

analysis. This multimodal dataset allows for the 1682

exploration of multimodal training strategies that 1683

integrate both text and images, aimed at improving 1684

the robustness and generalizability of AA in the 1685

context of HT detection. 1686

A.3.2 Composition 1687

What do the instances that comprise the dataset 1688

represent (e.g., documents, photos, people, coun- 1689

tries)? Are there multiple types of instances 1690

(e.g., movies, users, and ratings; people and 1691

interactions between them; nodes and edges)? 1692

Please provide a description. The instances in 1693

the MATCHED dataset represent individual ads 1694

from online escort services. Each ad instance com- 1695

prises two main components: (1) a raw text se- 1696

quence created by merging the title and description 1697

of the escort ad with a [SEP] token separating them, 1698

and (2) one or more images associated with the 1699

ad, typically depicting the escort being advertised. 1700

Each ad instance is then connected to a vendor ID, 1701

a unique identifier representing the individual or 1702

organization responsible for posting the ad. This 1703

vendor ID enables the grouping of ads by their 1704

source, supporting the AA task and facilitating the 1705

connection of ads linked to the same vendor. 1706

How many instances are there in total (of each 1707

type, if appropriate)? What data does each 1708

instance consist of? “Raw” data (e.g., unpro- 1709

cessed text or images)or features? Is there a 1710

label or target associated with each instance? 1711

The MATCHED dataset consists of 28,513 ad in- 1712

19

https://huggingface.co/ERCDiDip/langdetect


stances, including 27,619 unique text descriptions1713

and 55,115 escort images linked to 3549 unique1714

vendors. Each instance in the dataset comprises1715

"raw" data from unprocessed text and images. The1716

dataset is provided as a pandas DataFrame in a .csv1717

format, with three main columns: "TEXT," "IM-1718

AGES," and "VENDOR." The "TEXT" column1719

contains the input text sequence in string format,1720

created by merging the title and description of the1721

ad. The "IMAGES" column holds the local file1722

path for each image associated with the ad. The1723

"VENDOR" column includes the class labels, rep-1724

resented as integer IDs corresponding to specific1725

vendors. Further details on dataset composition1726

and split are outlined in Table 1.1727

Does the dataset contain all possible instances1728

or is it a sample (not necessarily random) of1729

instances from a larger set? If the dataset is1730

a sample, then what is the larger set? Is the1731

sample representative of the larger set (e.g., ge-1732

ographic coverage)? If so, please describe how1733

this representativeness was validated/verified. If1734

it is not representative of the larger set, please1735

describe why not (e.g., to cover a more diverse1736

range of instances, because instances were with-1737

held or unavailable). The MATCHED dataset1738

represents a sample of the broader Backpage escort1739

market data, with ads collected from seven cities1740

across five U.S. states. To ensure a reliable ground1741

truth for AA tasks, we filtered the ads to include1742

only those with phone numbers (used to establish1743

vendor labels) and at least one image. This filtering1744

process resulted in a final set of 28,513 ads. Conse-1745

quently, while the dataset does not fully represent1746

the entire Backpage escort market, it focuses on1747

instances where both text and image modalities are1748

available, which is essential for exploring MAA.1749

Is any information missing from individual in-1750

stances? If so, please provide a description, ex-1751

plaining why this information is missing (e.g.,1752

because it was unavailable). This does not in-1753

clude intentionally removed information, but1754

might include, e.g., redacted text. No1755

Are relationships between individual instances1756

made explicit (e.g., users’ movie ratings, social1757

network links)? If so, please describe how these1758

relationships are made explicit. Relationships1759

between instances in our dataset are established1760

by extracting and grouping phone numbers found1761

within ads. Using the TJBatchExtractor (Nag-1762

pal et al., 2017) and CNN-LSTM-CRF classifier 1763

(Chambers et al., 2019), we identify phone num- 1764

bers that act as identifiers for vendors. These identi- 1765

fiers are then used to construct vendor communities 1766

via NetworkX (Hagberg et al., 2008), where each 1767

community corresponds to a unique vendor label. 1768

This approach links ads to individual or organiza- 1769

tional entities (vendors) by grouping ads associated 1770

with the same phone number, creating a structured 1771

relationship among instances in the dataset. 1772

Are there recommended data splits (e.g., train- 1773

ing, development/validation, testing)? If so, 1774

please describe these splits, explaining the ratio- 1775

nale behind them. We split our dataset into train- 1776

ing, validation, and test sets using a 0.75:0.05:0.20 1777

split ratio. This allocation is intended to provide a 1778

substantial training set (75%) for effective model 1779

learning, a validation set (5%) for tuning model 1780

hyperparameters and avoiding overfitting, and a 1781

test set (20%) to assess model generalization and 1782

in-distribution performance. 1783

Are there any errors, sources of noise, or redun- 1784

dancies in the dataset? If so, please provide a de- 1785

scription. As indicated by Saxena et al. (2023a), 1786

a considerable amount of noise is present in the 1787

Backpage escort ads. In the text data, vendors of- 1788

ten add extra punctuation, emojis, irregular white 1789

spaces, and random characters, likely as a tactic 1790

to circumvent automated detection systems. These 1791

irregularities can impact text processing and add 1792

complexity to data-cleaning efforts. Our manual 1793

inspection of the image data also reveals visual 1794

noise, including intentionally blurred areas and 1795

white noise, which further complicates the anal- 1796

ysis. However, quantifying the extent of this noise 1797

in images remains challenging. Despite these is- 1798

sues, the noise and irregularities reflect the original 1799

conditions in which the data was originally posted, 1800

providing a realistic foundation for developing ro- 1801

bust AA models that can handle similar situations 1802

in real-world applications. 1803

Is the dataset self-contained, or does it link to or 1804

otherwise rely on external resources (e.g., web- 1805

sites, tweets, other datasets)? If it links to or 1806

relies on external resources, a) are there guar- 1807

antees that they will exist, and remain constant, 1808

over time; b) are there official archival versions 1809

of the complete dataset (i.e., including the ex- 1810

ternal resources as they existed at the time the 1811

dataset was created); c) are there any restric- 1812
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tions (e.g., licenses, fees) associated with any1813

of the external resources that might apply to a1814

dataset consumer? Please provide descriptions1815

of all external resources and any restrictions1816

associated with them, as well as links or other1817

access points, as appropriate No. The dataset1818

is self-contained.1819

Does the dataset contain data that might be con-1820

sidered confidential (e.g., data that is protected1821

by legal privilege or by doctor–patient confiden-1822

tiality, data that includes the content of individ-1823

uals’ nonpublic communications)? If so, please1824

provide a description. Building on the guide-1825

lines by Saxena et al. (2023a), we also include1826

measures to minimize privacy risks and mitigate1827

data misuse. We anonymize sensitive details in1828

text by replacing digits with the letter "N" and sub-1829

stituting email addresses with < EMAILID >,1830

post IDs with POSTID : NNNNN , dates with1831

< DATES >, and links with < LINK >. At-1832

tempts were made to mask escort names and loca-1833

tions using NER models (Li et al., 2022a; Liu et al.,1834

2023), but noise in the data led to inaccurate pre-1835

dictions. Nevertheless, as previous studies suggest1836

that escorts often use pseudonyms (Carter et al.,1837

2021; Lugo-Graulich), the potential for misuse of1838

personal details in text ads is low.1839

That said, we recognize that identities could still1840

be inferred from images. Initially, we considered1841

blurring faces to enhance anonymity. However,1842

manual inspection showed that many images al-1843

ready had faces blurred or cropped by the posters.1844

To retain these natural stylistic cues, we decided1845

against additional blurring, as it could interfere1846

with AA tasks and introduce unintended biases in1847

the visual data. Additionally, a sanity check us-1848

ing the FairFace (Karkkainen and Joo, 2021) and1849

DeepFace (Serengil and Ozpinar, 2023) models1850

demonstrated that these tools, when applied to our1851

noisy dataset, were unable to extract any ethnic-1852

ity or age-related information from the dataset’s1853

images.1854

Does the dataset contain data that, if viewed1855

directly, might be offensive, insulting, threaten-1856

ing, or might otherwise cause anxiety? If so,1857

please describe why. Yes, the dataset comprises1858

text and (semi-nude) images from escort advertise-1859

ments that contain sexual descriptions.1860

Does the dataset identify any subpopulations1861

(e.g., by age, gender)? If so, please describe how1862

these subpopulations are identified and provide 1863

a description of their respective distributions 1864

within the dataset. Our dataset does not explic- 1865

itly identify subpopulations by age, as all age infor- 1866

mation has been masked in the text ads. However, 1867

some ads include descriptions of the escorts’ eth- 1868

nicities, which remain unmasked to preserve the 1869

original stylometric features for AA tasks. Ad- 1870

ditionally, most ads in our dataset correspond to 1871

women-based escort services. It is important to 1872

note that while we have not provided age or ethnic- 1873

ity labels, malicious users could potentially infer 1874

such details by applying automated systems to the 1875

images. This potential for inference underscores 1876

the importance of responsible dataset usage and 1877

adherence to ethical guidelines to prevent misuse. 1878

Is it possible to identify individuals (i.e., one or 1879

more natural persons), either directly or indi- 1880

rectly (i.e., in combination with other data) from 1881

the dataset? If so, please describe how. While 1882

we cannot entirely rule out the possibility of iden- 1883

tifying individuals through our dataset, we have 1884

followed extensive privacy measures pointed out 1885

by (Saxena et al., 2023a) to minimize this risk. In 1886

the text ads, we have masked private identifiers, 1887

such as phone numbers, email addresses, and other 1888

personal information, to protect the identities of 1889

individuals. The dataset comprises ads from the 1890

Backpage escort market collected between Decem- 1891

ber 2015 and April 2016, a period for which there 1892

are no longer public records since the website was 1893

seized. However, there remains a risk associated 1894

with the images in our dataset, as they may still 1895

allow for indirect identification of individuals. 1896

To mitigate this risk, we will restrict access to 1897

the MATCHED dataset, allowing only approved 1898

researchers or agencies with legitimate research 1899

objectives—specifically those focused on combat- 1900

ing HT or conducting academic (non-commercial) 1901

research related to AA. Access will be granted 1902

through a data portal, Dataverse, subject to ap- 1903

proval from our ethics review board, which ensures 1904

that the dataset is used solely for its intended pur- 1905

poses. Unauthorized use of the dataset, particularly 1906

for purposes beyond AA or HT research, is strictly 1907

prohibited under our ethical guidelines and will 1908

have legal repercussions. 1909

Does the dataset contain data that might be con- 1910

sidered sensitive in any way (e.g., data that re- 1911

veals race or ethnic origins, sexual orientations, 1912

religious beliefs, political opinions or union 1913

21

https://dataverse.org/


memberships, or locations; financial or health1914

data; biometric or genetic data; forms of govern-1915

ment identification, such as social security num-1916

bers; criminal history)? If so, please provide1917

a description. Despite our masking efforts, our1918

dataset still contains sensitive information. While1919

we have successfully masked certain private identi-1920

fiers, such as phone numbers and email addresses,1921

challenges remain in masking other potentially sen-1922

sitive details, including escort names, ad locations,1923

ethnicities, and sexual orientations. These details1924

are present in the ads’ text descriptions and could1925

be extracted from the images using automated sys-1926

tems. The inherent noise in the data further com-1927

plicates the accurate masking of these elements.1928

As a result, while we have taken significant pre-1929

cautions, there remains a possibility that sensitive1930

information could be inferred from the dataset.1931

A.3.3 Collection Process1932

How was the data associated with each instance1933

acquired? Was the data directly observable1934

(e.g., raw text, movie ratings), reported by sub-1935

jects (e.g., survey responses), or indirectly in-1936

ferred/derived from other data (e.g., part-of-1937

speech tags, model-based guesses for age or lan-1938

guage)? If the data was reported by subjects1939

or indirectly inferred/derived from other data,1940

was the data validated/verified? If so, please1941

describe how. The data for each instance was1942

acquired from raw text and images associated with1943

escort ads posted on the Backpage market. Fol-1944

lowing Saxena et al. (2023a), we utilized the TJ-1945

BatchExtractor (Nagpal et al., 2017) and a CNN-1946

LSTM-CRF classifier (Chambers et al., 2019) to1947

extract phone numbers from these ads, which serve1948

as identifiers to group ads into vendor communi-1949

ties. NetworkX (Hagberg et al., 2008) was subse-1950

quently used to build these communities, assigning1951

a unique label ID to each vendor.1952

What mechanisms or procedures were used to1953

collect the data (e.g., hardware apparatuses or1954

sensors, manual human curation, software pro-1955

grams, software APIs)? How were these mech-1956

anisms or procedures validated? The raw data1957

is provided to us from Bashpole Software, Inc..1958

Did you collect the data from the individuals in1959

question directly, or obtain it via third parties or1960

other sources (e.g., websites)? Over what time-1961

frame was the data collected? Does this time-1962

frame match the creation timeframe of the data1963

associated with the instances (e.g., recent crawl 1964

of old news articles)? If not, please describe the 1965

timeframe in which the data associated with the 1966

instances was created. The MATCHED dataset 1967

contains ads from seven US cities and is scraped 1968

from online posted ads between December 2015 1969

and April 2016 on the Backpage Escort Markets. 1970

The raw data is provided to us from Bashpole Soft- 1971

ware, Inc.. 1972

Were the individuals in question notified about 1973

the data collection? If so, please describe (or 1974

show with screenshots or other information) 1975

how notice was provided, and provide a link 1976

or other access point to, or otherwise repro- 1977

duce, the exact language of the notification itself. 1978

The individuals in our ads were not notified about 1979

the data collection. Given that the ads were posted 1980

on Backpage between December 2015 and April 1981

2016, obtaining consent from these individuals is 1982

infeasible. Since the Backpage escort market was 1983

seized and shut down, reconnecting with these in- 1984

dividuals—many of whom used pseudonyms and 1985

transient contact information like phone numbers 1986

or email addresses—is impractical after such a long 1987

period. Additionally, as Backpage no longer exists 1988

as a platform, contacting the original poster would 1989

be challenging and unlikely to yield responses. 1990

Did the individuals in question consent to the 1991

collection and use of their data? If so, please 1992

describe (or show with screenshots or other in- 1993

formation) how consent was requested and pro- 1994

vided, and provide a link or other access point 1995

to, or otherwise reproduce, the exact language 1996

to which the individuals consented. No. 1997

If consent was obtained, were the consenting in- 1998

dividuals provided with a mechanism to revoke 1999

their consent in the future or for certain uses? 2000

If so, please provide a description, as well as a 2001

link or other access point to the mechanism (if 2002

appropriate). NA 2003

A.3.4 Preprocessing/cleaning/labeling 2004

Was any preprocessing/cleaning/labeling of the 2005

data done (e.g., discretization or bucketing, tok- 2006

enization, part-of-speech tagging, SIFT feature 2007

extraction, removal of instances, processing of 2008

missing values)? If so, please provide a descrip- 2009

tion. If not, you may skip the remaining ques- 2010

tions in this section. To prioritize privacy and re- 2011

duce the risk of misuse, we implemented extensive 2012
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preprocessing and cleaning procedures to protect2013

sensitive information within the text descriptions in2014

our dataset. This involved masking identifiable ele-2015

ments, including phone numbers, email addresses,2016

age details, post IDs, dates, and links mentioned in2017

the ads. The images are not processed or cleaned2018

to maintain their original stylometric cues. Finally,2019

since the goal of our research is MAA, we removed2020

all instances that did not contain phone numbers or2021

images.2022

Was the “raw” data saved in addition to the pre-2023

processed/cleaned/labeled data (e.g., to support2024

unanticipated future uses)? If so, please provide2025

a link or other access point to the “raw” data.2026

No.2027

Is the software that was used to prepro-2028

cess/clean/label the data available? If so, please2029

provide a link or other access point. No.2030

A.3.5 Uses2031

Has the dataset been used for any tasks already?2032

If so, please provide a description. This re-2033

search introduces MATCHED, a novel dataset com-2034

prising text descriptions and images from Back-2035

page escort markets, specifically developed for2036

MAA. While MATCHED has not been utilized in2037

any previous studies, several works have reportedly2038

used text descriptions or images from Backpage es-2039

cort marketplaces for similar analyses (Alvari et al.,2040

2016; Portnoff et al., 2017; Alvari et al., 2017;2041

Saxena et al., 2023a), etc. However, due to the2042

unavailability of these datasets, we could not verify2043

whether any ads overlap with those in MATCHED.2044

What (other) tasks could the dataset be used2045

for? The MATCHED dataset is strictly intended2046

for use in AA tasks related to combating human2047

trafficking or conducting academic research within2048

ethical boundaries. Our ethics review board has2049

implemented strict guidelines prohibiting using this2050

dataset beyond these purposes. Consequently, we2051

discourage any other applications, as they could2052

risk potential misuse or ethical concerns that are2053

not aligned with the dataset’s purpose and ethical2054

considerations.2055

Is there anything about the composition of the2056

dataset or the way it was collected and prepro-2057

cessed/cleaned/labeled that might impact future2058

uses? For example, is there anything that a2059

dataset consumer might need to know to avoid2060

uses that could result in unfair treatment of in- 2061

dividuals or groups (e.g., stereotyping, quality 2062

of service issues) or other risks or harms (e.g., 2063

legal risks, financial harms)? If so, please pro- 2064

vide a description. Is there anything a dataset 2065

consumer could do to mitigate these risks or 2066

harms? Although we have taken extensive pre- 2067

cautions to mask sensitive information, our dataset 2068

still includes details like escort pseudonyms, posted 2069

locations, ethnicity, and sexual preferences, which 2070

could be potentially sensitive. While these details 2071

are unlikely to be used to harm individuals directly, 2072

we strongly caution against any unethical appli- 2073

cations, particularly those that could lead to re- 2074

identifying individuals or otherwise compromising 2075

their privacy. This includes any research or com- 2076

mercial use aimed at profiling, targeting, or stereo- 2077

typing. To mitigate these risks, we advise dataset 2078

consumers to strictly adhere to ethical guidelines, 2079

focusing solely on the dataset’s intended purpose 2080

of combating human trafficking through academic 2081

research. Additionally, we encourage the users to 2082

implement further anonymization techniques, es- 2083

pecially if using images, and avoid practices that 2084

could unintentionally expose or unfairly represent 2085

individuals or groups in the dataset. 2086

A.3.6 Distribution 2087

Will the dataset be distributed to third parties 2088

outside of the entity (e.g., company, institution, 2089

organization) on behalf of which the dataset 2090

was created? If so, please provide a descrip- 2091

tion. Yes, we plan to make our dataset accessible 2092

to third parties via the Dataverse data repository. 2093

To mitigate risks of illegal or unethical use, access 2094

will be granted under specific conditions, including 2095

mandatory signing of a non-disclosure agreement 2096

(NDA) and data protection agreements. Each ap- 2097

plication for access will be evaluated by our ethics 2098

committee to ensure alignment with the dataset’s 2099

intended purpose. These agreements will prohibit 2100

data redistribution and restrict its use exclusively 2101

to ethical, non-commercial research, especially in 2102

contexts that support combating HT. 2103

How will the dataset will be distributed (e.g., tar- 2104

ball on website, API, GitHub)? Does the dataset 2105

have a digital object identifier (DOI)? Yes 2106

When will the dataset be distributed? The 2107

MATCHED dataset will be released after the fi- 2108

nal decision from the ACL committee, along with 2109

the camera-ready version. 2110
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Have any third parties imposed IP-based or2111

other restrictions on the data associated with2112

the instances? If so, please describe these re-2113

strictions, and provide a link or other access2114

point to, or otherwise reproduce, any relevant2115

licensing terms, as well as any fees associated2116

with these restrictions. No2117

A.3.7 Maintenance2118

Will the dataset be updated (e.g., to correct label-2119

ing errors, add new instances, delete instances)?2120

If so, please describe how often, by whom, and2121

how updates will be communicated to dataset2122

consumers (e.g., mailing list, GitHub)? We are2123

committed to enhancing the dataset by exploring2124

advanced NLP-based entity extraction techniques2125

to protect individual privacy further. Specifically,2126

we aim to implement more effective methods for2127

masking escort pseudonyms, posted locations, and2128

ethnicities. Additionally, we plan to expand the2129

dataset by including ads from multiple escort plat-2130

forms, enabling us to evaluate our models’ gen-2131

eralization on real-to-close-world OOD datasets.2132

These updates aim to improve the dataset’s privacy2133

measures and its utility for robust, cross-platform2134

AA tasks. Progress and updates will be communi-2135

cated through research publications, and detailed2136

updates will be made to the dataset’s description2137

on the Dataverse portal.2138

If others want to extend/augment/build2139

on/contribute to the dataset, is there a mecha-2140

nism for them to do so? If so, please provide2141

a description. Will these contributions be2142

validated/verified? If so, please describe2143

how. If not, why not? Is there a process for2144

communicating/distributing these contributions2145

to dataset consumers? If so, please provide2146

a description. We encourage researchers to2147

collaborate with us to extend and improve the2148

dataset through extensions, augmentations, or2149

related enhancements. To safeguard the privacy2150

and well-being of individuals in the dataset, we2151

have restricted sharing rights, meaning contributors2152

cannot freely distribute the dataset. However,2153

we invite researchers to work with us directly,2154

and we are open to reviewing and integrating2155

validated contributions to improve the dataset’s2156

utility responsibly. We ensure that all validated2157

contributions and updates will be acknowledged2158

and communicated to the research community.2159

A.4 Infrastructure & Schedule 2160

Split Ratio: We split the dataset into training, 2161

validation, and test sets using a standard ratio of 2162

0.75:0.05:0.20 for our experiments. During this 2163

process, we set the seed parameter to 1111 for 2164

reproducibility. 2165

Training: We conduct model training and eval- 2166

uation on an NVIDIA H100 GPU with 80 GB of 2167

memory. For optimization, we use the Adam opti- 2168

mizer configured with β1 and β2 values of 0.9 and 2169

0.999, respectively, along with an L2 weight decay 2170

of 0.01. We experiment with learning rates of 0.01, 2171

0.001, and 0.0001, ultimately finding the best per- 2172

formance at a learning rate of 0.001. Additionally, 2173

we apply a warm-up strategy for the first 100 steps, 2174

followed by a linear decay schedule. 2175

Architectures & Hyperparameters: Consider- 2176

ing our computational constraints, we initialize 2177

text baselines using pre-trained model checkpoints 2178

from DeCLUTR-small and Style-Embedding ar- 2179

chitectures. Similarly, vision baselines are ini- 2180

tialized using pre-trained checkpoints from VGG- 2181

16, ResNet-50, DenseNet-121, InceptionNetV3, 2182

EfficientNetV2, ConvNext-small, and ViT-base- 2183

patch16-244 architectures. We also explore face 2184

recognition models such as VGG-Face2 (Cao et al., 2185

2018), ArcFace, FaceNet512 (Firmansyah et al., 2186

2023), and GhostFaceNet (Alansari et al., 2023) 2187

from DeepFace (Serengil and Ozpinar, 2023) for 2188

the vision baselines. However, these models strug- 2189

gle with vendor identification and verification tasks, 2190

likely because they focus solely on facial features, 2191

making it challenging to connect multiple faces 2192

to a single vendor. We further experimented by 2193

training these face recognition models on the face 2194

(images with faces) and no face (images without 2195

faces) subsets of our dataset. However, the results 2196

remained consistent, confirming their unsuitability 2197

for these tasks. Finally, the multimodal baselines 2198

are initialized by combining the DeCLUTR-small 2199

and ViT-base-patch-244 baselines to process text 2200

and vision modalities. Each model is equipped 2201

with a sequence classification head to perform clas- 2202

sification tasks. Due to resource limitations, all 2203

models are trained with a batch size of 32, the max- 2204

imum feasible size, and training continues until 2205

convergence. 2206

During model training, we use five in-batch nega- 2207

tives for contrastive objectives such as Triplet, Sup- 2208

Con, CE+Triplet, and CE+SupCon. Increasing the 2209
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number of in-batch negatives did not improve per-2210

formance, likely constrained by the fixed batch size2211

of 32 for the classification task. For the text-image2212

alignment pre-training task, we employ the Nor-2213

malized Temperature-Scaled Cross-Entropy (NT-2214

XENT) loss (Chen et al., 2020) for the Image-Text2215

Contrastive (ITC) objective, sampling negatives2216

from regions outside the training dataset. In all2217

multimodal experiments, negatives are strictly non-2218

associated, ensuring text-image pairs are unrelated2219

ads. We also experiment with temperature coeffi-2220

cient values of 0.01, 0.1, and 0.3 for the NT-XENT2221

loss, finding the best performance at 0.1.2222

The experiments are implemented in Python2223

3.10 using frameworks such as scikit-learn (Pe-2224

dregosa et al., 2011), PyTorch (Paszke et al., 2019),2225

Hugging Face, timm, and Lightning 2.0 (Falcon2226

and The PyTorch Lightning team, 2019). The2227

plots in the research are developed using Matplotlib2228

(Hunter, 2007) and Plotly (Inc., 2015).2229

Computational Details: Table 4 provides an2230

overview of the number of trainable parameters,2231

training time, and convergence epochs for all the2232

classifiers evaluated in our experiments. Addi-2233

tionally, we dedicated 8 hours 21 minutes and2234

51 seconds, 1 hour 51 minutes and 6 seconds,2235

and 3 hours 52 minutes and 12 seconds to pre-2236

train our text-image alignment models using ITC2237

(CLIP), ITC+ITM (Image Text Matching loss), and2238

ITC+ITM+Text Generation Loss (BLIP2) training2239

strategies, respectively.2240

Seed Acc. Weighted-F1 Micro-F1 Macro-F1
100 0.9670 0.9862 0.9878 0.9630
500 0.9761 0.9914 0.9921 0.9755
1111 0.9823 0.9911 0.9916 0.9802
Mean 0.9751 0.9896 0.9905 0.9729
Std. 0.0077 0.0029 0.0024 0.0089

Table 3: Influence of random initialization on
DeCLUTR-ViT classifier’s performance

Random Initialization: Due to limited re-2241

sources, we only examine the effects of different2242

initializations on our model’s performance for the2243

established DeCLUTR-ViT benchmark with the2244

CE+SupCon objective. Table 3 displays the mean2245

and standard deviation in the model’s performance2246

against balanced accuracy, Micro-F1, Weighted-F1,2247

and Macro-F1 scores. The results indicate mini-2248

mal to no effects on these scores across different2249

initializations.2250

A.5 Model Performance 2251

This section provides detailed insights into our 2252

experiments’ training and evaluation results, as 2253

summarized in the appendix tables. Table 4 out- 2254

lines the performance of text-only, vision-only, and 2255

multimodal classifiers on the vendor identification 2256

task. These classifiers were trained on the South 2257

region dataset and evaluated using Balanced Accu- 2258

racy, Weighted-F1, Micro-F1, and Macro-F1 met- 2259

rics. Given the class imbalance in our datasets, 2260

we emphasize Macro-F1 as the primary metric to 2261

assess model performance effectively. The mod- 2262

els were trained with various objectives, including 2263

CE, Triplet, SupCon, CE+Triplet, and CE+SupCon, 2264

allowing a comprehensive comparison of their ca- 2265

pabilities. 2266

For retrieval tasks, results are detailed in Ta- 2267

bles 5, 6, 7, 9, 10, and 11, covering text-to- 2268

text, image-to-image, and multimodal retrieval 2269

scenarios. While we analyze all three retrieval 2270

metrics—MRR@10, R-Precision, and Macro- 2271

F1@X—our emphasis is on R-Precision. This 2272

metric reflects the model’s ability to retrieve all 2273

relevant ads linked to a query ad from the same 2274

vendor, offering a direct measure of retrieval effec- 2275

tiveness. 2276

As explained in the main manuscript, the Zero- 2277

Shot (ZS) performance refers to the capability of 2278

pre-trained models to perform retrieval tasks with- 2279

out prior AA training. Pre-trained text-only model 2280

is represented in Table 5, vision-only models in Ta- 2281

ble 7, and text-image alignment models, as Aligned 2282

DeCLUTR-ViT, in Tables 9, 10, and 11. These 2283

models are evaluated on the South, Midwest, West, 2284

and Northeast region datasets without specific AA 2285

task training, making them ideal for understand- 2286

ing baseline performance in unseen contexts. Con- 2287

versely, the Out-of-Data (OOD) average perfor- 2288

mance measures how well AA models trained for 2289

vendor identification or verification tasks gener- 2290

alize to unseen datasets from the Midwest, West, 2291

and Northeast regions. This evaluation highlights 2292

the models’ robustness in handling diverse, pre- 2293

viously unseen ads and vendors, offering critical 2294

insights into their cross-region generalization capa- 2295

bilities. By contrasting ZS and OOD performance, 2296

we assess both the initial adaptability of pre-trained 2297

models and the impact of AA-specific training. All 2298

the vendor verification metrics are represented in 2299

x ± y format, where x and y represent the mean 2300

and standard deviation of performance across all 2301

25
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vendor classes.2302

A.5.1 Text-only Modality2303

The text-baseline results presented in Table 42304

demonstrate that the DeCLUTR-small architec-2305

ture significantly outperforms the Style-Embedding2306

model in terms of Macro-F1 score for the vendor2307

identification task. As a result, the DeCLUTR-2308

small architecture is exclusively used for further2309

experiments involving joint objectives. Among2310

all text-only baselines, the DeCLUTR backbone2311

trained with the CE+SupCon objective achieves2312

the highest performance across all vendor identifi-2313

cation metrics, showcasing its effectiveness. For2314

the vendor verification task, retrieval results in Ta-2315

ble 5 reveal that the DeCLUTR backbone trained2316

with the CE+SupCon objective consistently outper-2317

forms the CE objective and performs comparably2318

to the SupCon-only objective. Additionally, the2319

smaller standard deviation in performance between2320

the CE+SupCon and CE objectives highlights the2321

model’s enhanced consistency across all vendor2322

classes, further underscoring the robustness of the2323

CE+SupCon objective for text-only baselines.2324

A.5.2 Vision-only Modality2325

The vision baselines in Table 4 highlight that2326

ResNet-50 with CE loss achieves the highest per-2327

formance among classifiers for the vendor identi-2328

fication task. However, retrieval results in Table2329

6 show that, despite slightly lower classification2330

performance, the ViT-base-patch16 backbone con-2331

sistently outperforms other models on both training2332

and OOD datasets for the image-to-image retrieval2333

task. Given our research’s dual objectives of ven-2334

dor identification and verification, we establish the2335

ViT-base-patch16 backbone as the most suitable2336

choice for further experiments. Consistent with the2337

text-only modality findings, Table 7 indicates that2338

using a joint objective with CE+SupCon loss deliv-2339

ers the best results across all vision-only baselines,2340

reinforcing its effectiveness in both classification2341

and retrieval tasks.2342

A.5.3 Multimodal Modality2343

The multimodal baselines in Table 4 consistently2344

outperform their text-only and vision-only coun-2345

terparts on the classification task. Among the fu-2346

sion techniques explored, mean pooling proves to2347

be the most effective for merging text and vision2348

representations. However, despite pre-training on2349

text-image alignment tasks, the fine-tuned multi-2350

modal baselines show limited vendor identification2351

and verification performance. Table 8 highlights 2352

the text-to-image retrieval performance of these 2353

pre-trained baselines, where, given a query text ad, 2354

the goal is to retrieve its associated images from 2355

the original ad. The underperformance of these 2356

models stems from the lack of semantic alignment 2357

in escort ads, as the visual content often fails to 2358

correspond meaningfully to the accompanying text. 2359

In contrast, as demonstrated in Tables 4, 9, 10, and 2360

11, the DeCLUTR-ViT backbone trained end-to- 2361

end with the CE+SupCon objective (without pre- 2362

training) achieves superior performance across all 2363

tasks, reinforcing the effectiveness of end-to-end 2364

training for multimodal AA in this domain. 2365
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Model Param Loss Fusion Epochs Accuracy Weighted
F1

Micro
F1

Macro
F1

Time
(hrs.)

Text-Baselines
Style-Embedding 128M CE 28 0.6582 0.6883 0.6897 0.5210 01:07:12

CE 21 0.7647 0.7772 0.7777 0.6379 0:12:19
CE+Triplet 10 0.6905 0.7068 0.7074 0.5503 0:07:32DeCLUTR-small 86M

CE+SupCon

-

15 0.7786 0.7891 0.7898 0.6540 0:06:33
Vision-Baselines

VGG-16 138M 9 0.6823 0.6873 0.6884 0.5262 0:15:33
ResNet-50 25M 19 0.7741 0.7777 0.7789 0.6394 0:23:14

DenseNet-121 7M 13 0.7624 0.7656 0.7673 0.6262 0:27:01
InceptionNetV3 23M 12 0.7471 0.7510 0.7524 0.6047 0:20:26
EfficientNetV2 23M 12 0.7652 0.7690 0.7703 0.6285 0:29:29

ConvNeXT-small 50M

CE

7 0.7593 0.7625 0.7646 0.6215 0:16:52
CE 8 0.7559 0.7593 0.7606 0.6142 0:13:16

CE+Triplet 13 0.7729 0.7765 0.7771 0.6378 0:30:35ViT-base-patch16 86M
CE+SupCon

-

13 0.7711 0.7709 0.7716 0.6294 0:31:41
Multimodal-Baselines

ViLT 112M 12 0.8454 0.8327 0.8291 0.7369 01:18:00
VisualBERT 197M

CE -
11 0.9652 0.9637 0.9641 0.9355 01:10:17

auto 11 0.9344 0.9578 0.9565 0.9121 03:41:44
171M

attention 14 0.8774 0.9184 0.9217 0.8451 03:45:15
concat 15 0.9422 0.9762 0.9781 0.9411 03:52:36

CE

mean 16 0.9713 0.9857 0.9861 0.9670 01:02:16
CE+SupCon 17 0.9823 0.9911 0.9916 0.9802 01:15:56169M

ITC+CE 18 0.9463 0.9744 0.9760 0.9466 01:17:20
ITC+ITM+CE 10 0.8456 0.9010 0.8995 0.8443 01:07:17

BLIP2+CE 11 0.9101 0.9620 0.9644 0.9128 01:14:19

DeCLUTR-ViT

307M
BLIP2+CE+SupCon

mean

13 0.9450 0.9702 0.9722 0.9420 01:30:57

Table 4: Performance metrics (Balanced Accuracy, Weighted-F1, Micro-F1, and Macro-F1) and computational
details for text, vision, and multimodal classifier baselines trained on the South region dataset. Pre-training
strategies—ITC, ITC+ITM, and BLIP2—are applied to DeCLUTR-small and ViT-base-patch16 models to align
text and images from the same advertisement. Fine-tuning is then conducted for the vendor identification task on
the South region dataset, with classifiers optimized using CE, CE+Triplet, and CE+SupCon loss objectives.

Loss South Midwest West Northeast OOD Avg. ZS Avg.
MRR@10

Pre-trained 0.2248 ± 0.30 0.2866 ± 0.36 0.3479 ± 0.41 0.3385 ± 0.38 - 0.2995 ± 0.36
CE 0.7445 ± 0.39 0.5703 ± 0.46 0.6394 ± 0.45 0.5862 ± 0.48 0.5986 ± 0.46 -

Triplet 0.4282 ± 0.45 0.3200 ± 0.43 0.4074 ± 0.46 0.3503 ± 0.45 0.3592 ± 0.45 -
SupCon 0.8829 ± 0.29 0.7636 ± 0.39 0.8331 ± 0.35 0.7520 ± 0.42 0.7829 ± 0.39 -

CE+Triplet 0.8891 ± 0.28 0.6410 ± 0.45 0.6969 ± 0.43 0.6561 ± 0.45 0.6647 ± 0.44 -
CE+SupCon 0.9290 ± 0.23 0.7716 ± 0.38 0.8145 ± 0.36 0.7449 ± 0.42 0.7770 ± 0.39 -

R-Precision@X
Pre-trained 0.3265 ± 0.47 0.3943 ± 0.49 0.3139 ± 0.46 0.4037 ± 0.49 - 0.3596 ± 0.48

CE 0.5557 ± 0.36 0.4596 ± 0.40 0.5842 ± 0.41 0.4944 ± 0.43 0.5127 ± 0.41 -
Triplet 0.3200 ± 0.34 0.2443 ± 0.33 0.3365 ± 0.38 0.3032 ± 0.38 0.2947 ± 0.36 -

SupCon 0.7673 ± 0.29 0.6346 ± 0.37 0.7612 ± 0.35 0.6707 ± 0.41 0.6888 ± 0.38 -
CE+Triplet 0.8055 ± 0.30 0.5000 ± 0.40 0.5890 ± 0.4 0.5410 ± 0.42 0.5433 ± 0.41 -

CE+SupCon 0.8706 ± 0.24 0.6264 ± 0.38 0.7339 ± 0.37 0.6699 ± 0.41 0.6767 ± 0.39 -
Macro-F1@X

Pre-trained 0.2224 ± 0.30 0.2804 ± 0.36 0.2731 ± 0.36 0.3801 ± 0.39 - 0.2890 ± 0.37
CE 0.6098 ± 0.35 0.4760 ± 0.38 0.6123 ± 0.35 0.5042 ± 0.42 0.5308 ± 0.38 -

Triplet 0.4135 ± 0.37 0.2892 ± 0.35 0.4337 ± 0.35 0.3121 ± 0.39 0.3450 ± 0.36 -
SupCon 0.8157 ± 0.27 0.6333 ± 0.36 0.7408 ± 0.31 0.6950 ± 0.39 0.6897 ± 0.35 -

CE+Triplet 0.8680 ± 0.26 0.5198 ± 0.39 0.5789 ± 0.35 0.5612 ± 0.41 0.5533 ± 0.38 -
CE+SupCon 0.9102 ± 0.21 0.6162 ± 0.37 0.7169 ± 0.33 0.6879 ± 0.40 0.6737 ± 0.37 -

Table 5: Comparison of text-to-text retrieval performance for the text-only benchmark, DeCLUTR-small backbone,
with different objectives (losses), evaluated across MRR@10, R-Precision@X, and Macro-F1@X metrics.
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Loss South Midwest West Northeast OOD Avg.
MRR@10

VGG16 0.0069 ± 0.05 0.0098 ± 0.07 0.0491 ± 0.19 0.0172 ± 0.1 0.0254 ± 0.12
ResNet50 0.1026 ± 0.22 0.1569 ± 0.29 0.221 ± 0.35 0.125 ± 0.26 0.1676 ± 0.30

Densenet121 0.218 ± 0.32 0.2465 ± 0.35 0.2669 ± 0.37 0.1889 ± 0.32 0.2341 ± 0.35
InceptionNetV3 0.0477 ± 0.15 0.0583 ± 0.19 0.0684 ± 0.2 0.0625 ± 0.19 0.0631 ± 0.19

EfficientNetV2 0.2305 ± 0.32 0.2468 ± 0.35 0.2523 ± 0.36 0.2276 ± 0.35 0.2422 ± 0.35
ConvNext-small 0.0588 ± 0.17 0.0851 ± 0.22 0.0854 ± 0.23 0.0917 ± 0.24 0.0874 ± 0.23
ViT-base-patch16 0.2587 ± 0.33 0.2854 ± 0.37 0.3019 ± 0.39 0.2597 ± 0.36 0.2823 ± 0.37

R-Precision@X
VGG16 0.0063 ± 0.03 0.0074 ± 0.03 0.0165 ± 0.05 0.0139 ± 0.06 0.0126 ± 0.05

ResNet50 0.0267 ± 0.05 0.0415 ± 0.09 0.0599 ± 0.1 0.0452 ± 0.09 0.0489 ± 0.09
Densenet121 0.0413 ± 0.08 0.0618 ± 0.11 0.0849 ± 0.11 0.0671 ± 0.11 0.0713 ± 0.11

InceptionNetV3 0.0084 ± 0.02 0.0176 ± 0.07 0.0224 ± 0.06 0.0143 ± 0.04 0.0181 ± 0.06
EfficientNetV2 0.0417 ± 0.07 0.0609 ± 0.1 0.0752 ± 0.11 0.0692 ± 0.11 0.0684 ± 0.11
ConvNext-small 0.0157 ± 0.04 0.026 ± 0.06 0.0299 ± 0.07 0.0291 ± 0.06 0.0283 ± 0.06
ViT-base-patch16 0.0459 ± 0.07 0.0645 ± 0.11 0.0781 ± 0.11 0.078 ± 0.13 0.0735 ± 0.12

Macro-F1@X
VGG16 0.0091 ± 0.03 0.0151 ± 0.04 0.0171 ± 0.06 0.0158 ± 0.05 0.0160 ± 0.05

ResNet50 0.0276 ± 0.06 0.0407 ± 0.08 0.0565 ± 0.1 0.0468 ± 0.09 0.0479 ± 0.09
Densenet121 0.04 ± 0.07 0.0535 ± 0.09 0.0823 ± 0.12 0.0641 ± 0.11 0.0666 ± 0.11

InceptionNetV3 0.0083 ± 0.02 0.0154 ± 0.05 0.0215 ± 0.06 0.0147 ± 0.04 0.0172 ± 0.05
EfficientNetV2 0.042 ± 0.07 0.0546 ± 0.09 0.0764 ± 0.12 0.0648 ± 0.1 0.0653 ± 0.10
ConvNext-small 0.0159 ± 0.04 0.028 ± 0.06 0.0312 ± 0.07 0.0301 ± 0.06 0.0298 ± 0.06
ViT-base-patch16 0.0436 ± 0.07 0.0574 ± 0.09 0.077 ± 0.12 0.0727 ± 0.11 0.0690 ± 0.11

Table 6: Comparison of image-to-image retrieval performance for the vision-baselines trained on south region image
ads with CE loss, evaluated on MRR@10, R-Precision@X, and Macro-F1@X metrics

Loss South Midwest West Northeast OOD Avg. ZS Avg.
MRR@10

Pre-trained 0.2286 ± 0.32 0.2432 ± 0.35 0.2517 ± 0.36 0.2242 ± 0.35 - 0.2369 ± 0.35
CE 0.2587 ± 0.33 0.2854 ± 0.37 0.3019 ± 0.39 0.2597 ± 0.36 0.2823 ± 0.37 -

SupCon 0.0010 ± 0.03 0.0013 ± 0.03 0.0031 ± 0.03 0.0079 ± 0.08 0.0041 ± 0.05 -
Triplet 0.0010 ± 0.03 0.0016 ± 0.04 0.0035 ± 0.06 0.0054 ± 0.07 0.0035 ± 0.06 -

CE+Triplet 0.2760 ± 0.35 0.3242 ± 0.39 0.366 ± 0.41 0.3322 ± 0.39 0.3408 ± 0.40 -
CE+SupCon 0.3464 ± 0.37 0.3749 ± 0.40 0.4049 ± 0.42 0.4330 ± 0.42 0.4041 ± 0.41 -

R-Precision@X
Pre-trained 0.0420 ± 0.07 0.0593 ± 0.10 0.0754 ± 0.11 0.0691 ± 0.11 - 0.0615 ± 0.10

CE 0.0459 ± 0.07 0.0645 ± 0.11 0.0781 ± 0.11 0.078 ± 0.13 0.0735 ± 0.12 -
SupCon 0.0010 ± 0.01 0.0018 ± 0.01 0.0028 ± 0.01 0.0028 ± 0.02 0.0025 ± 0.01 -
Triplet 0.0009 ± 0.01 0.0007 ± 0.01 0.0017 ± 0.02 0.003 ± 0.02 0.0018 ± 0.02 -

CE+Triplet 0.0824 ± 0.14 0.0963 ± 0.15 0.139 ± 0.19 0.1281 ± 0.17 0.1211 ± 0.17 -
CE+SupCon 0.1064 ± 0.16 0.1095 ± 0.16 0.1519 ± 0.20 0.1685 ± 0.21 0.1433 ± 0.19 -

Macro-F1@X
Pre-trained 0.0421 ± 0.07 0.0539 ± 0.09 0.0767 ± 0.12 0.0647 ± 0.1 - 0.0594 ± 0.10

CE 0.0436 ± 0.07 0.0574 ± 0.09 0.077 ± 0.12 0.0727 ± 0.11 0.0690 ± 0.11 -
SupCon 0.0015 ± 0.01 0.0041 ± 0.01 0.0043 ± 0.02 0.0034 ± 0.02 0.0039 ± 0.02 -
Triplet 0.0011 ± 0.01 0.0031 ± 0.01 0.0028 ± 0.01 0.0026 ± 0.01 0.0028 ± 0.01 -

CE+Triplet 0.1091 ± 0.20 0.0842 ± 0.14 0.1413 ± 0.2 0.1143 ± 0.17 0.1133 ± 0.17 -
CE+SupCon 0.1296 ± 0.21 0.0948 ± 0.14 0.1460 ± 0.20 0.1497 ± 0.20 0.1302 ± 0.18 -

Table 7: Comparison of image-to-image retrieval performance for the vision-only benchmark, ViT-base-patch16
backbone, with different objectives (losses), evaluated on MRR@10, R-Precision@X, and Macro-F1@X metrics.
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Loss South Midwest West Northeast Avg.
Alignment MRR@10

ITC 0.0001 ± 0.01 0.0001 ± 0.01 0.0003 ± 0.02 0.0004 ± 0.02 0.0002 ± 0.01
ITC+ITM 0.0001 ± 0.01 0.0001 ± 0.01 0.0003 ± 0.02 0.0008 ± 0.03 0.0003 ± 0.02

BLIP2 0.001 ± 0.03 0.0027 ± 0.05 0.0063 ± 0.08 0.0098 ± 0.10 0.0050 ± 0.07
Alignment R-Precision@X

ITC 0.0001 ± 0.01 0.0002 ± 0.01 0.0013 ± 0.03 0.0005 ± 0.01 0.0005 ± 0.01
ITC+ITM 0.0002 ± 0.01 0.0002 ± 0.01 0.0006 ± 0.01 0.0007 ± 0.01 0.0004 ± 0.01

BLIP2 0.0017 ± 0.02 0.0049 ± 0.04 0.0103 ± 0.06 0.0104 ± 0.06 0.0068 ± 0.05
Alignment Macro-F1@X

ITC 0.0001 ± 0.01 0.0002 ± 0.01 0.0013 ± 0.03 0.0005 ± 0.01 0.0005 ± 0.02
ITC+ITM 0.0002 ± 0.01 0.0002 ± 0.01 0.0006 ± 0.01 0.0007 ± 0.01 0.0004 ± 0.01

BLIP2 0.0017 ± 0.02 0.0049 ± 0.04 0.0103 ± 0.06 0.0104 ± 0.06 0.0068 ± 0.05

Table 8: Text-to-Image retrieval results from the multimodal DeCLUTR-ViT backbone pre-trained on the text-image
alignment task using CLIP (ITC), ITC+ITM (Image text matching loss), BLIP2 (ITC+ITM+Text generation loss).

Backbone Loss South Midwest West Northeast OOD Avg. ZS Avg.
Text MRR@10

DeCLUTR CE+SupCon 0.9290 ± 0.23 0.7716 ± 0.38 0.8145 ± 0.36 0.7449 ± 042 0.7770 ± 0.39
CE 0.9850 ± 0.10 0.9693 ± 0.14 0.9900 ± 0.07 0.9778 ± 0.12 0.9790 ± 0.11 -End2End

DeCLUTR-ViT CE+SupCon 0.9866 ± 0.09 0.9704 ± 0.14 0.9932 ± 0.07 0.9821 ± 0.12 0.9819 ± 0.11 -
ITC 0.4097 ± 0.43 0.4289 ± 0.45 0.5404 ± 0.47 0.5034 ± 0.47 - 0.4909 ± 0.46

ITC+ITM 0.8192 ± 0.37 0.7990 ± 0.39 0.8600 ± 0.35 0.5914 ± 0.48 - 0.7674 ± 0.40
BLIP2 0.7551 ± 0.41 0.7226 ± 0.44 0.8400 ± 0.37 0.5376 ± 0.49 - 0.7140 ± 0.43

Aligned
DeCLUTR-ViT

BLIP2-Cond 0.7672 ± 0.41 0.7203 ± 0.44 0.8400 ± 0.37 0.4946 ± 0.49 - 0.7055 ± 0.43
ITC+CE 0.8613 ± 0.34 0.6623 ± 0.46 0.8600 ± 0.35 0.6263 ± 0.48 0.7162 ± 0.43 -

ITC+ITM+CE 0.4239 ± 0.39 0.2851 ± 0.37 0.3417 ± 0.42 0.3600 ± 0.41 0.3289 ± 0.40 -
BLIP2+CE 0.8866 ± 0.30 0.7226 ± 0.44 0.8400 ± 0.37 0.7292 ± 0.44 0.7639 ± 0.42 -

Fine-tuned
DeCLUTR-ViT

BLIP2+CE+SupCon 0.8886 ± 0.31 0.7397 ± 0.43 0.8600 ± 0.35 0.7604 ± 0.42 0.7867 ± 0.40 -
Text R-Precision@X

DeCLUTR CE+SupCon 0.8706 ± 0.24 0.6264 ± 0.38 0.7339 ± 0.37 0.6699 ± 0.41 0.6767 ± 0.39
CE 0.8687 ± 0.19 0.6500 ± 0.30 0.7934 ± 0.24 0.7300 ± 0.28 0.7245 ± 0.27 -End2End

DeCLUTR-ViT CE+SupCon 0.9193 ± 0.16 0.6612 ± 0.31 0.8008 ± 0.25 0.7365 ± 0.28 0.7418 ± 0.28 -
ITC 0.2337 ± 0.28 0.2936 ± 0.34 0.4035 ± 0.37 0.3779 ± 0.38 - 0.3583 ± 0.36

ITC+ITM 0.4964 ± 0.34 0.5679 ± 0.38 0.7093 ± 0.33 0.4818 ± 0.45 - 0.5639 ± 0.38
BLIP2 0.4230 ± 0.34 0.5094 ± 0.39 0.6354 ± 0.37 0.3913 ± 0.41 - 0.4898 ± 0.38

Aligned
DeCLUTR-ViT

BLIP2-Cond 0.4341 ± 0.35 0.5142 ± 0.39 0.6644 ± 0.36 0.3729 ± 0.42 - 0.4964 ± 0.38
ITC+CE 0.6378 ± 0.33 0.4885 ± 0.37 0.6825 ± 0.35 0.3770 ± 0.35 0.5160 ± 0.36 -

ITC+ITM+CE 0.1462 ± 0.19 0.0818 ± 0.14 0.1292 ± 0.18 0.1359 ± 0.19 0.1156 ± 0.17 -
BLIP2+CE 0.7131 ± 0.32 0.5569 ± 0.39 0.7280 ± 0.36 0.5627 ± 0.41 0.6159 ± 0.39 -

Fine-tuned
DeCLUTR-ViT

BLIP2+CE+SupCon 0.7632 ± 0.32 0.5666 ± 0.40 0.7652 ± 0.31 0.5869 ± 0.40 0.6362 ± 0.37 -
Text Macro-F1@X

DeCLUTR CE+SupCon 0.9102 ± 0.21 0.6162 ± 0.37 0.7169 ± 0.33 0.6879 ± 0.40 0.6737 ± 0.37
CE 0.8726 ± 0.20 0.5653 ± 0.33 0.7374 ± 0.26 0.7261 ± 0.31 0.6763 ± 0.30 -End2End

DeCLUTR-ViT CE+SupCon 0.9433 ± 0.16 0.5819 ± 0.34 0.7466 ± 0.26 0.7242 ± 0.31 0.6841 ± 0.30 -
ITC 0.3039 ± 0.31 0.3756 ± 0.35 0.4887 ± 0.33 0.4173 ± 0.39 - 0.4272 ± 0.36

ITC+ITM 0.5079 ± 0.32 0.5659 ± 0.36 0.7281 ± 0.29 0.5136 ± 0.44 - 0.5946 ± 0.35
BLIP2 0.4283 ± 0.33 0.5279 ± 0.38 0.6552 ± 0.34 0.4216 ± 0.39 - 0.5605 ± 0.38

Aligned
DeCLUTR-ViT

BLIP2-Cond 0.4356 ± 0.34 0.5251 ± 0.38 0.6720 ± 0.34 0.4249 ± 0.42 - 0.5125 ± 0.38
ITC+CE 0.6805 ± 0.32 0.5054 ± 0.37 0.6877 ± 0.32 0.3790 ± 0.34 0.5240 ± 0.34 -

ITC+ITM+CE 0.1438 ± 0.20 0.0748 ± 0.12 0.1218 ± 0.18 0.1214 ± 0.17 0.1060 ± 0.16 -
BLIP2+CE 0.7215 ± 0.31 0.5774 ± 0.38 0.7391 ± 0.32 0.5499 ± 0.39 0.6221 ± 0.36 -

Fine-tuned
DeCLUTR-ViT

BLIP2+CE+SupCon 0.7879 ± 0.29 0.5762 ± 0.39 0.7482 ± 0.29 0.5912 ± 0.38 0.6385 ± 0.35 -

Table 9: Comparison of text-to-text retrieval performance for the multimodal, DeCLUTR-ViT backbone, evaluated
on the text-only modality using MRR@10, R-Precision@X, and Macro-F1@X metrics. The DeCLUTR-small
model serves as the text-only baseline. End2End baselines denote DeCLUTR-ViT models trained directly for
vendor identification tasks, while Aligned baselines represent DeCLUTR-ViT backbone pre-trained for text-image
alignment tasks using ITC, ITC+ITM, and BLIP2 objectives. Fine-tuned baselines build upon pre-trained aligned
models by fine-tuning them for vendor identification tasks on the South region ads.
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Backbone Loss South Midwest West Northeast OOD Avg. ZS Avg.
Vision MRR@10

ViT CE+SupCon 0.3464 ± 0.37 0.3749 ± 0.40 0.4049 ± 0.42 0.4330 ± 0.42 0.4041 ± 0.41 -
CE 0.2257 ± 0.33 0.1716 ± 0.32 0.2142 ± 0.35 0.1866 ± 0.32 0.2575 ± 0.33 -End2End

DeCLUTR-ViT CE+SupCon 0.4045 ± 0.38 0.3905 ± 0.40 0.4603 ± 0.45 0.4521 ± 0.42 0.4343 ± 0.42 -
ITC 0.2329 ± 0.30 0.2336 ± 0.33 0.2984 ± 0.39 0.2964 ± 0.37 - 0.2761 ± 0.36

ITC+ITM 0.3281 ± 0.37 0.3434 ± 0.39 0.3683 ± 0.43 0.3442 ± 0.40 - 0.3324 ± 0.38
BLIP2 0.2119 ± 0.32 0.2055 ± 0.33 0.2674 ± 0.40 0.2858 ± 0.39 - 0.2425 ± 0.36

Aligned
DeCLUTR-ViT

BLIP2-Cond 0.2049 ± 0.32 0.1855 ± 0.31 0.2488 ± 0.39 0.2450 ± 0.36 - 0.2211 ± 0.35
ITC 0.4157 ± 0.38 0.3512 ± 0.39 0.3818 ± 0.43 0.3792 ± 0.41 0.3707 ± 0.41 -

ITC+ITM 0.4239 ± 0.39 0.2851 ± 0.37 0.3417 ± 0.42 0.3600 ± 0.41 0.3289 ± 0.40 -
BLIP2 0.3677 ± 0.38 0.2629 ± 0.36 0.3229 ± 0.41 0.3128 ± 0.39 0.2995 ± 0.39 -

Fine-tuned
DeCLUTR-ViT

BLIP2-CE+SupCon 0.3470 ± 0.38 0.2542 ± 0.35 0.3026 ± 0.41 0.3312 ± 0.39 0.2960 ± 0.39 -
Vision R-Precision@X

ViT CE+SupCon 0.1064 ± 0.16 0.1095 ± 0.16 0.1519 ± 0.20 0.1685 ± 0.21 0.1433 ± 0.19 -
CE 0.0862 ± 0.16 0.0567 ± 0.12 0.0915 ± 0.14 0.0676 ± 0.11 0.0719 ± 0.12 -End2End

DeCLUTR-ViT CE+SupCon 0.1115 ± 0.15 0.1141 ± 0.16 0.1768 ± 0.21 0.1646 ± 0.19 0.1518 ± 0.19 -
ITC 0.0537 ± 0.09 0.0752 ± 0.13 0.1275 ± 0.17 0.1143 ± 0.16 - 0.1057 ± 0.16

ITC+ITM 0.0650 ± 0.10 0.0826 ± 0.14 0.1218 ± 0.17 0.1003 ± 0.14 - 0.0924 ± 0.14
BLIP2 0.0645 ± 0.15 0.0641 ± 0.13 0.1197 ± 0.20 0.1492 ± 0.24 - 0.0994 ± 0.18

Aligned
DeCLUTR-ViT

BLIP2-Cond 0.0563 ± 0.13 0.0569 ± 0.13 0.1001 ± 0.18 0.1115 ± 0.20 - 0.0812 ± 0.16
ITC 0.1247 ± 0.17 0.0957 ± 0.15 0.1461 ± 0.18 0.1383 ± 0.17 0.1267 ± 0.17 -

ITC+ITM 0.1462 ± 0.19 0.0818 ± 0.14 0.1292 ± 0.18 0.1359 ± 0.19 0.1156 ± 0.17 -
BLIP2 0.1370 ± 0.19 0.0775 ± 0.14 0.1217 ± 0.18 0.1393 ± 0.21 0.1128 ± 0.18 -

Fine-tuned
DeCLUTR-ViT

BLIP2-CE+SupCon 0.1256 ± 0.19 0.0777 ± 0.14 0.1228 ± 0.17 0.1414 ± 0.20 0.1140 ± 0.17 -
Vision Macro-F1@X

ViT CE+SupCon 0.1296 ± 0.21 0.0948 ± 0.14 0.1460 ± 0.20 0.1497 ± 0.20 0.1302 ± 0.18 -
CE 0.1028 ± 0.21 0.0600 ± 0.11 0.0960 ± 0.15 0.0657 ± 0.11 0.0859 ± 0.14 -End2End

DeCLUTR-ViT CE+SupCon 0.1152 ± 0.17 0.1049 ± 0.14 0.1739 ± 0.21 0.1493 ± 0.18 0.1427 ± 0.19 -
ITC 0.0689 ± 0.11 0.0892 ± 0.14 0.1415 ± 0.19 0.1072 ± 0.15 - 0.1118 ± 0.18

ITC+ITM 0.0614 ± 0.10 0.0675 ± 0.11 0.1070 ± 0.15 0.0933 ± 0.13 - 0.0837 ± 0.13
BLIP2 0.0938 ± 0.20 0.0908 ± 0.17 0.1281 ± 0.22 0.1458 ± 0.24 - 0.1146 ± 0.21

Aligned
DeCLUTR-ViT

BLIP2-Cond 0.0805 ± 0.18 0.0776 ± 0.16 0.1074 ± 0.20 0.1088 ± 0.19 - 0.0936 ± 0.18
ITC 0.1319 ± 0.18 0.0914 ± 0.14 0.1485 ± 0.20 0.1333 ± 0.17 0.1244 ± 0.17 -

ITC+ITM 0.1438 ± 0.20 0.0748 ± 0.12 0.1218 ± 0.18 0.1214 ± 0.17 0.1060 ± 0.16 -
BLIP2 0.1517 ± 0.23 0.0837 ± 0.14 0.1277 ± 0.19 0.1367 ± 0.20 0.1160 ± 0.18 -

Fine-tuned
DeCLUTR-ViT

BLIP2-CE+SupCon 0.1526 ± 0.24 0.0799 ± 0.14 0.1276 ± 0.19 0.1335 ± 0.20 0.1137 ± 0.18 -

Table 10: Comparison of image-to-image retrieval performance for the multimodal, DeCLUTR-ViT backbone,
evaluated on the vision-only modality using MRR@10, R-Precision@X, and Macro-F1@X metrics. The ViT-base-
patch16-244 model serves as the vision-only baseline. End2End baselines denote DeCLUTR-ViT models trained
directly for vendor identification tasks, while Aligned baselines represent DeCLUTR-ViT backbone pre-trained for
text-image alignment tasks using ITC, ITC+ITM, and BLIP2 objectives. Fine-tuned baselines build upon pre-trained
aligned models by fine-tuning them for vendor identification tasks on the South region ads.
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Backbone Loss South Midwest West Northeast OOD Avg. ZS Avg.
Multimodal MRR@10

CE 0.9669 ± 0.13 0.9297 ± 0.20 0.9592 ± 0.17 0.9650 ± 0.14 0.9513 ± 0.17 -End2End
DeCLUTR-ViT CE+SupCon 0.9859 ± 0.10 0.9658 ± 0.15 0.9834 ± 0.11 0.9735 ± 0.13 0.9742 ± 0.13 -

ITC 0.6574 ± 0.35 0.6822 ± 0.36 0.7396 ± 0.36 0.6750 ± 0.38 - 0.6886 ± 0.36
ITC+ITM 0.9375 ± 0.18 0.9389 ± 0.19 0.9601 ± 0.16 0.9715 ± 0.14 - 0.9520 ± 0.17

BLIP2 0.6142 ± 0.36 0.6136 ± 0.39 0.6108 ± 0.41 0.5921 ± 0.42 - 0.6077 ± 0.40
Aligned

DeCLUTR-ViT
BLIP2-Cond 0.6052 ± 0.36 0.6006 ± 0.39 0.5975 ± 0.41 0.5657 ± 0.42 - 0.5923 ± 0.40

ITC 0.9650 ± 0.13 0.8331 ± 0.29 0.7313 ± 0.36 0.7641 ± 0.34 0.7762 ± 0.33 -
ITC+ITM 0.9739 ± 0.12 0.9285 ± 0.20 0.9498 ± 0.19 0.9655 ± 0.15 0.9480 ± 0.23 -

BLIP2 0.9774 ± 0.11 0.9378 ± 0.20 0.9559 ± 0.18 0.9690 ± 0.14 0.9542 ± 0.17 -
Fine-tuned

DeCLUTR-ViT
BLIP2-CE+SupCon 0.9814 ± 0.10 0.9426 ± 0.19 0.9648 ± 0.15 0.9759 ± 0.12 0.9602 ± 0.19

Multimodal R-Precision@X
CE 0.8040 ± 0.20 0.6217 ± 0.26 0.7429 ± 0.24 0.6980 ± 0.27 0.6875 ± 0.26 -End2End

DeCLUTR-ViT CE+SupCon 0.9248 ± 0.14 0.6567 ± 0.30 0.7861 ± 0.25 0.7178 ± 0.30 0.7202 ± 0.28 -
ITC 0.1797 ± 0.16 0.2373 ± 0.20 0.3330 ± 0.23 0.3076 ± 0.24 - 0.2644 ± 0.21

ITC+ITM 0.4939 ± 0.24 0.5705 ± 0.26 0.7046 ± 0.23 0.6747 ± 0.26 - 0.6109 ± 0.25
BLIP2 0.1708 ± 0.22 0.1847 ± 0.22 0.2182 ± 0.24 0.2841 ± 0.32 - 0.2145 ± 0.25

Aligned
DeCLUTR-ViT

BLIP2-Cond 0.1455 ± 0.20 0.1602 ± 0.20 0.1830 ± 0.21 0.2324 ± 0.29 - 0.1803 ± 0.23
ITC 0.7377 ± 0.21 0.3716 ± 0.22 0.2844 ± 0.22 0.3700 ± 0.26 0.3420 ± 0.23 -

ITC+ITM 0.7282 ± 0.22 0.4968 ± 0.23 0.6109 ± 0.23 0.6419 ± 0.27 0.5832 ± 0.24 -
BLIP2 0.7723 ± 0.2 0.5524 ± 0.25 0.6759 ± 0.23 0.6691 ± 0.27 0.6325 ± 0.25 -

Fine-tuned
DeCLUTR-ViT

BLIP2-CE+SupCon 0.7950 ± 0.19 0.5564 ± 0.25 0.6943 ± 0.23 0.6809 ± 0.26 0.6524 ± 0.25
Multimodal Macro-F1@X

CE 0.8294 ± 0.21 0.5618 ± 0.29 0.7408 ± 0.24 0.7053 ± 0.29 0.6693 ± 0.27 -End2End
DeCLUTR-ViT CE+SupCon 0.9595 ± 0.12 0.5671 ± 0.33 0.7560 ± 0.26 0.7333 ± 0.30 0.6855 ± 0.29 -

ITC 0.2519 ± 0.23 0.3254 ± 0.26 0.4687 ± 0.27 0.3493 ± 0.26 - 0.3488 ± 0.26
ITC+ITM 0.4809 ± 0.27 0.5239 ± 0.28 0.7023 ± 0.23 0.6934 ± 0.27 - 0.6001 ± 0.26

BLIP2 0.3263 ± 0.35 0.3408 ± 0.35 0.4612 ± 0.37 0.4190 ± 0.38 - 0.3868 ± 0.37
Aligned

DeCLUTR-ViT
BLIP2-Cond 0.2724 ± 0.32 0.2850 ± 0.32 0.3649 ± 0.33 0.3353 ± 0.35 - 0.3144 ± 0.33

ITC 0.7698 ± 0.23 0.4008 ± 0.25 0.4003 ± 0.27 0.3881 ± 0.28 0.3964 ± 0.27 -
ITC+ITM 0.7313 ± 0.25 0.4538 ± 0.26 0.6275 ± 0.24 0.6591 ± 0.28 0.5801 ± 0.27 -

BLIP2 0.7973 ± 0.22 0.5325 ± 0.28 0.7050 ± 0.24 0.6944 ± 0.29 0.6440 ± 0.27 -
Fine-tuned

DeCLUTR-ViT
BLIP2-CE+SupCon 0.8487 ± 0.20 0.5446 ± 0.29 0.7250 ± 0.24 0.7077 ± 0.29 0.6591 ± 0.27

Table 11: Comparison of multimodal retrieval performance for the DeCLUTR-ViT backbone evaluated on the
multimodal (text and image) ads using MRR@10, R-Precision@X, and Macro-F1@X metrics. The End2End
baselines represent the DeCLUTR-ViT backbone trained directly on the vendor identification task, while the
Pre-trained baselines involve an image-text alignment task aligning text and images from the same advertisements.
The Fine-tuned baselines build upon the Pre-trained models by performing vendor identification on the South region
multimodal ads.
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A.6 Further Insights2366

This section evaluates the multimodal DeCLUTR-2367

ViT backbone trained with the CE+SupCon objec-2368

tive, generating comprehensive insights into model2369

learning and retrieval performance. All line plots2370

have been smoothed for clarity and readability by2371

setting the window size to 30.2372

A.6.1 Insights from the Multimodal Classifier2373

on the South Region Dataset2374

Figure 3(i) compares the average F1 perfor-2375

mance of the DeCLUTR-small text-only, ViT-2376

base-patch16-244 vision-only, and multimodal2377

DeCLUTR-ViT classifiers for vendors in the South2378

region dataset. The results show that the multi-2379

modal classifier consistently outperforms text- and2380

vision-only baselines across all vendors. Further2381

analysis, supported by the vendor frequency distri-2382

bution in Table 2c and 3(ii), indicates that many2383

vendors in the text-only and vision-only datasets2384

have very few ads, likely contributing to the lower2385

model performance. In contrast, the multimodal2386

classifier benefits from more training examples per2387

vendor (at least five examples when combining text2388

and vision data). This expanded training set allows2389

the model to capture a broader range of stylistic2390

and visual patterns, resulting in better performance.2391

The findings underscore the importance of multi-2392

modal integration in enhancing model effectiveness2393

to capture richer and more complementary stylo-2394

metric cues, particularly for vendors with sparse2395

data in individual modalities.2396

Figure 3(iii) compares the average number of2397

true positives and false positives achieved by the2398

text-only, vision-only, and multimodal DeCLUTR-2399

ViT baselines across all vendors in the South region2400

dataset. The results reveal a clear advantage for2401

the multimodal baseline, which yields significantly2402

more true positives while maintaining fewer false2403

positives than the other baselines. The results em-2404

phasize the superiority of multimodal approaches2405

in minimizing errors and improving the reliability2406

of predictions.2407

Figure 3(iv) illustrates the average F1 per-2408

formance of the text-only, vision-only, and mul-2409

timodal baselines as a function of the number of2410

names per vendor present in the text ads. Since2411

multiple escort names likely represent different in-2412

dividuals, this analysis assesses the models’ ability2413

to link varying text descriptions and facial features2414

to a single vendor. To extract escort names from the2415

text ads, we utilized (Li et al., 2022b), though man-2416

ual inspection revealed that it often failed to extract 2417

names accurately. However, the extracted entities 2418

remained consistent, allowing us to use them as 2419

unique identifiers representing escort names. The 2420

results indicate that the multimodal baseline con- 2421

sistently outperforms the text-only and vision-only 2422

baselines, demonstrating resilience and robust per- 2423

formance even as the number of escort names per 2424

vendor increases. 2425

Finally, Figure 3(v) and (vi) compare the av- 2426

erage F1 performance of the vision-only and multi- 2427

modal baselines as a function of the number of im- 2428

ages with and without faces per vendor. In Figure 2429

(v), as the number of images with faces increases, 2430

the multimodal baseline performs worse than the 2431

vision-only baseline up to approximately 120 im- 2432

ages. Beyond this threshold, the multimodal base- 2433

line either outperforms or performs on par with 2434

the vision-only baseline, indicating its ability to 2435

adapt as the data volume increases. In contrast, 2436

Figure (vi) shows that for images without faces, 2437

the multimodal baseline consistently outperforms 2438

the vision-only baseline, demonstrating its supe- 2439

rior capacity to effectively leverage text and image 2440

features, even when facial features are absent. 2441

A.6.2 Insights from the Multimodal Retriever 2442

on the OOD Datasets 2443

In this section, we analyze retrieval performance by 2444

comparing our multimodal DeCLUTR-ViT base- 2445

line against the text-only (DeCLUTR-small) and 2446

vision-only (ViT-base-patch16-244) baselines, all 2447

trained with the CE+SupCon objective on the South 2448

(Figure 4), Midwest (Figure 5), West (Figure 6), 2449

and Northeast (Figure 7) region datasets. To fur- 2450

ther contextualize our findings, we also evaluate 2451

the text-only (M-Text) and vision-only (M-Vision) 2452

representations extracted from the multimodal base- 2453

line, comparing their performance against the stan- 2454

dalone text-only and vision-only baselines. Addi- 2455

tionally, we assess the Vision-Face and Multimodal- 2456

Face baselines, which analyze the performance of 2457

vision-only and multimodal models, specifically on 2458

images with and without faces. Below, we present 2459

the consolidated insights across all regions, struc- 2460

tured according to the key factors influencing per- 2461

formance: vendors, ad frequency, number of names, 2462

and the presence or absence of faces in images. 2463

Performance per Vendor: Across all regions, 2464

the multimodal baseline consistently outperforms 2465

text-only and vision-only baselines for both 2466
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(i) (iii)

(ii) (iv)

(v)

(vi)

Figure 3: Comparison of model performance among text-only, vision-only, and multimodal classifiers trained
on the South region test dataset: (i) F1 score across different vendor IDs, (ii) Average F1 score for vendors with
varying ad frequencies, (iii) Analysis of true and false positives, (iv) Average F1 score relative to the number of
escort names (potentially representing different individuals) in vendor ads, and (v, vi) Average F1 score based on
the number of vendor images with and without faces.

MRR@10 and R-Precision@X. This performance2467

advantage underscores the power of integrating tex-2468

tual and visual cues, which capture complementary2469

information. The M-Text and M-Vision representa-2470

tions, extracted from the multimodal model, also2471

outperform their respective standalone baselines.2472

Notably, the text-only baseline performs better than2473

the vision-only baseline, emphasizing the dominant2474

role of text in vendor identification and retrieval2475

tasks. However, the multimodal baseline demon-2476

strates lower performance variability than unimodal2477

approaches, indicating its robustness across diverse2478

vendors. This consistency is critical for address-2479

ing real-world applications where vendor behaviors2480

vary significantly.2481

Performance by Ad Frequency: The relation-2482

ship between retrieval performance and the fre-2483

quency of ads per vendor remains consistent across2484

regions. The multimodal baseline achieves high2485

performance across all ad frequencies, particularly2486

excelling for vendors with lower ad frequencies.2487

This suggests that multimodal integration effec-2488

tively compensates for data sparsity by leveraging2489

both textual and visual features. The M-Text repre-2490

sentation follows closely, showing a significant im-2491

provement over the standalone text-only baseline,2492

particularly as ad frequency increases. While the 2493

vision-only baseline struggles with sparse data, the 2494

M-Vision representation extracted from the multi- 2495

modal model provides a noticeable improvement, 2496

albeit still trailing behind M-Text. These results 2497

reinforce the strength of multimodal baselines in 2498

handling scenarios with limited vendor representa- 2499

tion. 2500

Performance by Number of Names: As men- 2501

tioned earlier, analyzing retrieval performance by 2502

the number of names associated with each ven- 2503

dor reveals the robustness of the multimodal base- 2504

line in linking ads with varied linguistic and visual 2505

patterns. Across all regions, the multimodal base- 2506

line maintains superior performance as the num- 2507

ber of names increases, outperforming text-only 2508

and vision-only baselines. The M-Text represen- 2509

tation consistently surpasses the standalone text- 2510

only baseline, demonstrating that multimodal train- 2511

ing enhances the textual representation’s robust- 2512

ness. While the vision-only baseline experiences 2513

noticeable drops in performance with increasing 2514

names, the M-Vision representation extracted from 2515

the multimodal model maintains steadier perfor- 2516

mance. These findings highlight the ability of mul- 2517

timodal baselines to capture stylistic and semantic 2518
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Retrieval Metric Midwest West Northeast

MRR@10 Shared: 0.7164 ± 0.41
Unique: 0.7910 ± 0.37

Shared: 0.8581 ± 0.33
Unique: 0.8498 ± 0.33

Shared: 0.7859 ± 0.38
Unique: 0.7013 ± 0.42

Text-to-Text R-Precision@X Shared: 0.5027 ± 0.38
Unique: 0.6251 ± 0.37

Shared: 0.7128 ± 0.36
Unique: 0.7234 ± 0.36

Shared: 0.6553 ± 0.40
Unique: 0.5817 ± 0.44

MRR@10 Shared: 0.3462 ± 0.36
Unique: 0.3583 ± 0.38

Shared: 0.3506 ± 0.37
Unique: 0.3728 ± 0.37

Shared: 0.3031 ± 0.38
Unique: 0.2432 ± 0.32

Image-to-Image R-Precision@X Shared: 0.0673 ± 0.09
Unique: 0.0914 ± 0.14

Shared: 0.0896 ± 0.12
Unique: 0.1168 ± 0.16

Shared: 0.0816 ± 0.13
Unique: 0.0807 ± 0.14

MRR@10 Shared: 0.7862 ± 0.36
Unique: 0.8355 ± 0.31

Shared: 0.8909 ± 0.28
Unique: 0.8693 ± 0.29

Shared: 0.8138 ± 0.35
Unique: 0.7920 ± 0.29

Multimodal R-Precision@X Shared: 0.5026 ± 0.35
Unique: 0.6196 ± 0.34

Shared: 0.7103 ± 0.33
Unique: 0.7266 ± 0.33

Shared: 0.6436 ± 0.37
Unique: 0.5550 ± 0.41

Table 12: Text-to-Text, Image-to-Image, and multimodal retrieval performance for shared and unique vendors
between South and Midwest, West, and Northeast region dataset. All the representations are extracted from the
multimodal DeCLUTR-ViT backbone trained with CE+SupCon objective on the South region dataset.

variations better than unimodal baselines, which is2519

crucial for identifying vendors with diverse aliases.2520

Performance by Images with and without Faces:2521

The analysis of retrieval performance based on the2522

presence or absence of faces in images provides2523

critical insights into the multimodal baseline’s abil-2524

ity to leverage facial features. Across all regions,2525

the Multimodal-Face baseline consistently outper-2526

forms the Vision-Face baseline for both MRR@102527

and R-Precision@X, demonstrating its effective-2528

ness in combining facial and textual cues. For2529

images with faces, the multimodal baseline ini-2530

tially struggles as faces increase but eventually out-2531

performs the vision-only baseline when more vi-2532

sual data becomes available. This trend reflects2533

the model’s ability to adapt and utilize visual in-2534

formation effectively when sufficient samples are2535

present. For images without faces, the Multimodal-2536

Face baseline consistently surpasses the Vision-2537

Face baseline, leveraging non-facial visual patterns2538

and textual information to improve retrieval perfor-2539

mance.2540

A.6.3 Multimodal Retrieval Performance on2541

Shared and Unseen Vendors in OOD2542

Datasets2543

Here, the evaluation focuses on a retrieval task, dis-2544

tinguishing between shared vendors—those present2545

in the South and OOD datasets—and unknown ven-2546

dors exclusive to the OOD datasets. While Figure2547

2a highlights an overlap of vendors between the2548

South and OOD datasets, it is important to note that2549

the OOD datasets were never exposed to the model2550

during training. Table 12 presents a detailed analy-2551

sis of the model’s MRR@10 and R-Precision@X2552

performance across text-to-text, image-to-image, 2553

and multimodal retrieval tasks for both shared and 2554

unseen vendors. Representations for these evalua- 2555

tions are derived from the multimodal DeCLUTR- 2556

ViT classifier trained on the South dataset. The 2557

results confirm the model’s robust performance on 2558

shared and unseen vendors, showcasing its ability 2559

to generalize effectively to unseen scenarios. This 2560

demonstrates the model’s capability to link ads to 2561

vendors, further underscoring its practical utility 2562

in real-world HT applications regardless of prior 2563

exposure to vendors and ads. 2564
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Figure 4: Comparison of retrieval performance on the South region test datasets. Text, vision, and multimodal
baselines (DeCLUTR-small, ViT-base-patch16-224, and DeCLUTR-ViT, respectively) are trained end-to-end for
vendor identification using the joint CE+SupCon objective on the South region dataset. M-Text and M-Vision
represent text-only and image-only embeddings from the multimodal system. Vision-Face and Multimodal-Face
denote evaluations of escort images with and without faces.
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Figure 5: Comparison of retrieval performance on the Midwest region test datasets. Text, vision, and multimodal
baselines (DeCLUTR-small, ViT-base-patch16-224, and DeCLUTR-ViT, respectively) are trained end-to-end for
vendor identification using the joint CE+SupCon objective on the South region dataset. M-Text and M-Vision
represent text-only and image-only embeddings from the multimodal system. Vision-Face and Multimodal-Face
denote evaluations of escort images with and without faces.
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Figure 6: Comparison of retrieval performance on the West region test datasets. Text, vision, and multimodal
baselines (DeCLUTR-small, ViT-base-patch16-224, and DeCLUTR-ViT, respectively) are trained end-to-end for
vendor identification using the joint CE+SupCon objective on the South region dataset. M-Text and M-Vision
represent text-only and image-only embeddings from the multimodal system. Vision-Face and Multimodal-Face
denote evaluations of escort images with and without faces.
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Figure 7: Comparison of retrieval performance on the Northeast region test datasets. Text, vision, and multimodal
baselines (DeCLUTR-small, ViT-base-patch16-224, and DeCLUTR-ViT, respectively) are trained end-to-end for
vendor identification using the joint CE+SupCon objective on the South region dataset. M-Text and M-Vision
represent text-only and image-only embeddings from the multimodal system. Vision-Face and Multimodal-Face
denote evaluations of escort images with and without faces.
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A.7 Practical Utility2565

To demonstrate the practical utility of our research,2566

we employ the multimodal DeCLUTR-ViT model,2567

trained with the CE+SupCon objective on the South2568

region dataset, to create knowledge graphs using2569

retrieval-based methods. The choice of representa-2570

tions for constructing these graphs is informed by2571

the retrieval performance of text, vision, and multi-2572

modal embeddings on R-Precision and MRR@102573

metrics. Since text-only representations from the2574

multimodal baseline exhibit superior retrieval per-2575

formance across both metrics for our dataset, we2576

utilize them to perform our retrieval analysis.2577

Figures 8a and 8b illustrate knowledge graphs2578

generated for vendor labels 784 and 1101 from the2579

South region datasets, respectively. To construct2580

these graphs, we begin with a query advertisement2581

(highlighted in red) and retrieve all relevant ads2582

from the training dataset based on R-Precision per-2583

formance. Each advertisement is represented as2584

a node in the graph and labeled with its unique2585

ID. Notably, these IDs serve as anonymous identi-2586

fiers, as all personally identifiable information in2587

the dataset has been removed using comprehensive2588

masking techniques. Edges in the graph encode the2589

similarity scores between connected nodes and the2590

query advertisement, providing a quantifiable mea-2591

sure of relatedness. The graphs on the left of the2592

figures depict all retrieved ads for a given query, vi-2593

sualizing the comprehensive network of connected2594

advertisements for a specific vendor. To provide2595

flexibility for researchers, investigators, and law2596

enforcement agencies (LEAs), we propose an al-2597

ternative approach using MRR@K. This allows2598

stakeholders to retrieve the top-K most relevant2599

ads based on similarity, enabling focused analysis2600

depending on investigative confidence or manual2601

verification thresholds. The resulting knowledge2602

graphs, visualized on the right side of the figures,2603

present a filtered view, facilitating efficient exami-2604

nation of high-confidence matches.2605

By leveraging these knowledge graphs, stake-2606

holders can visualize vendor activity across adver-2607

tisements, identify patterns, and establish connec-2608

tions, using it to initiate investigations into identi-2609

fying HT identifiers.2610
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(a) Vendor 784

(b) Vendor 1101

Figure 8: Knowledge graph representation generated using AA retrieval for Vendor labels 784 and 1101 from the
South region dataset. The left graph utilizes R-Precision metrics to link all relevant ads for a query ad (highlighted
in red), while the right graph applies (a) MRR@10 and (b) MRR@5 to identify the top-10 most likely relevant ads.
Nodes represent advertisement IDs, and edges denote the similarity between ads, both in relation to each other and
the query ad, showcasing the effectiveness of AA retrieval in constructing relational insights.
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