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ABSTRACT

Open-set semi-supervised learning (OSSL) has attracted growing interest, which
investigates a more practical scenario where out-of-distribution (OOD) samples are
only contained in unlabeled data. Existing OSSL methods like OpenMatch learn
an OOD detector to identify outliers, which often update all modal parameters (i.e.,
full fine-tuning) to propagate class information from labeled data to unlabeled ones.
In this work, we suggest using a visual prompt-driven mechanism to obtain higher
computational efficiency in the OSSL task. To this end, we propose a prompt-
driven efficient OSSL framework, called OpenPrompt, which can propagate class
information from labeled to unlabeled data with only a small number of trainable
parameters. We propose a prompt-driven joint space learning mechanism to detect
OOD data by maximizing the distribution gap between ID and OOD samples in
unlabeled data, thereby our method enables the outliers to be detected in a new
way. The experimental results on three public datasets show that OpenPrompt
outperforms state-of-the-art methods with less than 1% of trainable parameters.
More importantly, OpenPrompt achieves a 4% improvement in terms of AUROC
on outlier detection over a fully supervised model on CIFAR10.

1 INTRODUCTION

The goal of semi-supervised learning (SSL) is to improve a model’s performance by leveraging
unlabeled data Sohn et al. (2020). It can significantly improve recognition accuracy by propagating
the class information from a small set of labeled data to a large set of unlabeled data without additional
annotation cost Li et al. (2021); Wang et al. (2021). Existing SSL methods are built on the assumption
that labeled and unlabeled data share the same distribution space. However, due to how it was
collected, unlabeled data may contain new categories, such as outliers, that are never seen in the
labeled data Saito et al. (2021), resulting in lower SSL performance. To address this issue, Open Set
SSL (OSSL) is proposed, the task of which is to classify in-distribution (ID) samples into the correct
class while identifying out-of-distribution (OOD) samples as outliers Yu et al. (2020).

Typical OSSL methods like MTC Yu et al. (2020) use a joint optimization framework to update the
network parameters and the OOD score alternately. OpenMatch Saito et al. (2021) uses an OVA
network that can learn a threshold to distinguish OOD samples from ID samples. Both of them follow
the training strategy of current SSL methods, which 1) propagate class information from a small set
of labeled data to a large set of unlabeled data by fine-tuning all model parameters. Then use 2) an
additional structured OOD detector to identify outliers unseen in the labeled data that the unlabeled
data may contain. However, such a mechanism leads to expensive computational costs.

As a new paradigm, prompting has shown outstanding effects in NLP Radford et al. (2021); Shin et al.
(2020); Jiang et al. (2020), which can make the model directly applicable to downstream tasks without
introducing new parameters. Recently, prompting has been applied to computer vision tasks Jia et al.
(2022); Bahng et al. (2022); Sung et al. (2022), which can greatly reduce the number of trainable
parameters by modifying a small number of pixels to guide frozen vision models to solve new tasks.
However, when the new task has OOD samples that have never appeared in the labeled data without
supervision, the effectiveness of the prompt remains to be verified.

To this end, our study starts with the visual prompt-based OSSL task, where we hope to achieve
1) class information propagation and 2) OOD detection only by modifying a few pixels. First, we
propose a prompt-driven efficient OSSL framework (OpenPrompt), which can find the outliers from
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Figure 1: Comparison of (a) traditional OSSL approaches and (b) our prompt-driven efficient
OSSL, where E represents visual-encoder and OD denotes outlier detector. (b) achieves class
information propagation and OOD detection through only a small number of learnable parameters
with a joint space learning mechanism, while (a) needs to fully fine-tune the whole model and an
additional OOD detector. Different from (a) which discards OOD samples after detection, (b) reuses
them to train an OOD-specific prompt to push the OOD samples away from the ID ones.

unlabeled data with a small number of trainable parameters. Then, to find outliers without supervision,
we project the representations of all samples into a prompt-driven joint space, which enlarges the
distribution gap between ID and OOD samples (see Fig. 1). Instead of directly discarding the detected
OOD samples (see Fig. 1 (a)), we make use of the detected OOD samples and feed them into the
network to construct OOD-specific prompts. With prompts trained through ID data serving as positive
samples, the OOD-specific prompts are regarded as negative samples to push OOD data away from
ID samples (see Fig. 1 (b)). Such a prompt-wise contrastive representation can further shape the joint
space by exploring the structural information of labeled ID and OOD samples.

Overall, our contributions can be summarized as follows: • We propose a novel and efficient prompt-
driven OSSL framework (termed OpenPrompt), which can only update a small number of learnable
parameters to match the performance of full fine-tuning methods. • We develop a prompt-driven
joint space learning strategy to enlarge the distribution gap between ID and OOD data by visual
prompts without supervision. • We utilize a prompt-wise contrastive representation, i.e., ID-specific
and OOD-specific prompt, to further shape the joint space instead of discarding OOD samples after
detection. • Experimental results show that OpenPrompt performs better than other SOTA methods
with no more than 1% trainable parameters. Besides, OpenPrompt achieves the best performance in
detecting outliers compared with other methods.

2 RELATED WORK

Semi-supervised learning (SSL). The SSL methods assume the labeled and unlabeled data are from
the same classes and propagate class information from labeled to unlabeled data to improve a model’s
performance Rasmus et al. (2015); Berthelot et al. (2019); Verma et al. (2022); Zheng et al. (2022);
French et al. (2019). Existing pseudo-labeling Lee et al. (2013) and consistency regularization Laine
& Aila (2017) based SSL approaches show great performance on many benchmark datasets. They
usually set a selection threshold to make sure all pseudo-labels used are reliable. Different from
previous methods, U2PL Wang et al. (2022) treats unreliable pseudo-labels as negative samples for
contrastive learning. Several methods DeVries & Taylor (2017); Yang et al. (2022); Yun et al. (2019);
Yuan et al. (2021) utilize different data augmentations with self-training to maintain the consistency
of the model. All these existing works often propagate class information from labeled to unlabeled
data using a full fine-tuning adaption, however, it will require large computing resources by adapting
the whole model to the unlabeled data.

Open-set Semi-supervised learning (OSSL). OSSL relaxes the SSL assumption by presuming
that unlabeled data contains instances from novel classes, which will lower the performance of SSL
approaches. Existing OSSL approaches use outlier detectors to recognize and filter those instances to
improve the model’s robustness. MTC introduces a joint optimization framework, which updates the
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network and the discriminating score of unlabeled data alternately Yu et al. (2020). UASD generates
soft targets as regularisers to empower the robustness of the proposed SSL network Chen et al. (2020).
OpenMatch applies a soft consistency loss to the outlier detector by outputting the confidence score
of a sample to detect outliers Saito et al. (2021). By contrast, our OpenPrompt uses visual prompts to
distinguish the representation gaps between ID and OOD samples and applies prompt-driven joint
space learning to enlarge these gaps for outlier detection. Experimental results demonstrate that our
approach achieves great performance through this prompt-driven joint space learning mechanism.

Prompting. Prompting is a modus operandi method, which aims to adapt pre-trained models to
downstream tasks by modifying the data space Radford et al. (2021). With manually chosen prompt
candidates, GPT-3 performs well on downstream transfer learning tasks Brown et al. (2020). Recent
studies in computer vision treat prompt as task-specific vectors and by tuning prompts instead of
the models’ parameters, the pre-trained models could also be adapted to downstream tasks with
the same performance. VPT injects learnable prompt tokens to the vision transformer and keeps
the backbone frozen during the downstream fine-tuning stage, which achieves great performance
with only a small amount of learnable parameters Jia et al. (2022). Bahng et al. applies learnable
paddings to the data space as a visual prompt which uses fewer parameters to realize large-scale
model adaption Bahng et al. (2022). Inspired by those recent studies on vision prompts, we proposed
an effective prompt-based OSSL framework. Different from existing approaches, we apply a prompt
for a robust adaption by rejecting noisy samples during the downstream fine-tuning stage.

3 METHODS

Problem setting. Our task is to train an effective classification network via OSSL. In OSSL, we
divide the used dataset into two parts: the labeled data Xl = {(xi, yi)}ni=1 and unlabeled data
Xu = {(xi}mi=1, and the class spaces of labeled and unlabeled data are denoted as Ol and Ou,
respectively. In this study, we assume that Ol ⊂ Ou and Ol ̸= Ou. Besides, the unlabeled data that
belong to the class space Ol are called in-distribution (ID) samples, while the unlabeled data only
belonging to the label space Ou are called out-of-distribution (OOD) samples. Therefore, the goal
of OSSL is to train a robust model to classify ID samples into the correct classes while learning to
effectively detect OOD samples.

3.1 OVERVIEW OF OpenPrompt

The main challenge of this task is to find an efficient way to train a robust network when the labels
and categories of the used dataset are both imbalanced. Inspired by recent studies Jia et al. (2022);
Bahng et al. (2022) on visual prompts, we propose a prompt-driven efficient OSSL framework
(termed OpenPrompt), to improve the efficiency of OSSL task. In detail, the proposed framework
includes two stages, i.e., conducting pre-training on labeled data and fine-tuning on unlabeled data.
In this way, a visual prompt is inserted into the data space Bahng et al. (2022), which can propagate
class information from labeled to unlabeled data with only a small amount of trainable parameters
while keeping the model frozen. Moreover, instead of introducing additional structures as the outlier
detector, we propose a prompt-driven joint space learning mechanism to detect OOD samples.

To make full use of the detected OOD samples, we propose a prompt-wise contrastive representation
strategy, which can further enlarge the distribution gap between ID and OOD samples. Instead of
discarding the OOD samples as other OSSL approaches Saito et al. (2021); Yu et al. (2020), we feed
them into the network and train an OOD-specific visual prompt as negative samples for a prompt-wise
contrastive representation.

As shown in Fig. 2, our framework utilizes a Teacher-Student structure, including a teacher model
and a student model. Each model has four components: (1) a visual-encoder E(·), (2) a learnable
visual prompt vϕ parameterized by ϕ in the form of pixels, (3) a prompt-driven joint space S(·), and
(4) a closed-set classifier C(·).
In the pre-training stage, Xl = {(xi, yi)}ni=1 are feed into the E(·) with the prompt vϕ to obtain the
feature representations Fl = {fi ∈ RD}ni=1, which are then feed into the classifier C(·) to obtain the
prediction results Ŷ = {ŷi}ni=1. The labeled objective function Ll is used to infer the loss with the
ground-truth Y = {yi}ni=1. Noted that, all parameters are set to be learned in this stage for training a
reliable classification model and a visual prompt. Since there are no OOD samples contained during
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Figure 2: Overview of our proposed framework. In unlabeled flow, two different augmented inputs
are fed into the network to obtain classification results. The joint space learning mechanism is used
to enlarge the distribution difference distinguished by the shared ID-prompt for OOD detection. The
pseudo-label supervision only uses confident pseudo-labels, i.e., a threshold is set for selection.

this stage, it can not find an appropriate binary classifier in the joint space to distinguish ID and
OOD data. Therefore, we set multiple binary-classifier candidates in this stage, which are used to be
selected in the fine-tuning stage. See details of the candidate selection in §3.2.

In the fine-tuning stage, we feed Xu = {xi}mi=1 into both the teacher and student networks with
different augmentations, to obtain the feature representations Fu = {fi ∈ RD}mi=1 for unlabeled
data. The joint space takes Fu as inputs and determines whether they belong to ID or OOD samples.
Features of ID samples will be sent to the classifier and the final class prediction is calculated by
Ŷ = {ŷi}mi=1 = C(Fu). Features of OOD samples will not be used for classification and all OOD
samples will be resent to the network with an initialized OOD-specific visual prompt vϕ to train an
OOD-specific prompt as negative samples for contrastive learning. The supervision signals used
for the unlabeled objective function Lu are pseudo labels received from the student network, and
the classification results are from the teacher network. Noted that in this stage, only prompt vϕ and
OOD-specific prompt vϕ are updated through the objective function while the remaining network
remains frozen. Following Tarvainen & Valpola (2017), the student network is updated via optimizing
Ll and Lu, while the teacher network is updated via exponential moving average (EMA).

The labeled objective function Ll only contains a supervised loss, while the unlabeled objective
function contains three components, i.e., (i) supervised objective, (ii) consistency objective, and (iii)
contrastive learning objective, which can be formulated by

Lu = LS + LC + LCL, (1)

where LS denotes supervised loss, LC denotes consistent loss, and LCL denotes contrastive learning
loss which is calculated through the prompt vϕ and OOD-specific prompt vϕ.

3.2 PROMPT-DRIVEN JOINT SPACE LEARNING

3.2.1 PROMPT DESIGN

We introduce a parameterized visual prompt vϕ in the form of pixels to the input image x and form a
prompted input x+ vϕ. Following Bahng et al. (2022), vϕ is designed using the padding template to
achieve the best performance. Therefore, given the prompt size p, the actual number of parameters is
2Cp× (H +W − 2p), where C, H , and W are the image channels, height, and width respectively.

3.2.2 JOINT SPACE LEARNING

Pre-training stage. Different from Jia et al. (2022); Bahng et al. (2022), we learn a visual prompt in
the pre-training stage, which is used to propagate the class information of labeled data to unlabeled
ones in the fine-tuning stage. Specifically, the prompted input x+vϕ is fed into the visual-encoder E(·)
to obtain the output feature representations. Then, the feature representations Fl = {fi ∈ RD}ni=1
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are fed into the joint space S(·) to enlarge the distribution gap for OOD detection. We assume that all
ID samples form a cluster K in the joint space, which can be defined by

K = {fi, kic}ni=1, (2)

where kic denotes the cluster center of the ID samples. It is critical to initialize a binary classifier
for OOD detection. We build a circle through the ID cluster K and use its tangent lines as the initial
binary classifiers. Given the cluster center kic, we define the radius r of the circle as follows:

r = max
i∈n

d(fi, kic), (3)

where d(·, ·) denotes an Euclidean distance. To ensure all ID samples are correctly detected, we
choose the furthest sample and use the distance between it and the cluster center as the radius. As
mentioned in §3.1, multiple binary classifier candidates are set for selection in the fine-tuning stage.
To achieve this, we choose the top N furthest samples from the cluster center and build tangent lines
on each of them. Due to the furthest sample is used to form the circle, therefore we have N − 1
samples which are not on the boundary of the circle. As the tangent line of a circle must pass through
a point on the boundary of the circle, we push these N − 1 points outward some distance to ensure
that they lie on the boundary of the circle. Finally, the initial classifier candidates can be defined by

Dj(fi) =

{
F (fi), j = 1

F (fi) + (r − d(fi, kic)), 1 < j ≤ N
(4)

where F (·) denotes the tangent function Thurston (1964). It is worth noting that we can obtain
promising performance when N = 5 as discussed in §4.3.

Fine-tuning stage. The parameterized visual prompt is also added to the unlabeled input image in this
stage. It is worth noting that unlike others Jia et al. (2022) which learn a prompt from an initialized
one in this stage, our method here inherits the visual prompt vϕ learned from the pre-training stage.
Given feature representations Fu = {fi ∈ RD}mi=1 obtained through the prompted unlabeled images,
we then feed Fu into the joint space S(·) for OOD detection. Since the labeled and unlabeled ID
samples share similar classes, the outputs of Dj(Fl) should be close to those of Dj(Fu) from ID
data. Therefore, we can detect OOD data by:{

xi is ID sample xid, if | Dj(fi)−Dj(Fl) |≤ 0.1

xi is OOD sample xood, otherwise
(5)
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!!
!"
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Figure 3: Apollonius circle Kim (2009) built on
two centers. Definition of Apollonius circle is
given in Appendix A.1.

where Dj(Fl) denotes the average of the outputs
of Dj(Fl).

Then we can get the rate rj of OOD samples in
unlabeled data using the j-th binary classifier
candidate:

rj =
nj

m
, (6)

where nj denotes the number of detected OOD
samples. The candidate with the largest rate will
be selected as the initial binary classifier D(·)
for both the student and teacher networks.

Then we resend Fu = {fi ∈ RD}mi=1 back to
the joint space S(·) in both two networks to
conduct OOD detection and update the binary
classifier. Due to the binary classifier being built on ID samples from labeled data, which will cause
it biased toward them, therefore we need to modify the binary classifier. The linear classifier can be
justified through a calibrated stacking method Chao et al. (2016), which directly shifts the decision
boundary through a fixed value. However, this will degrade the performance in detecting ID samples.
Inspired by Baek et al. (2021), instead of shifting, we modulate the decision boundary with the
Apollonius circle. Specifically, we first use the initial D(·) to detect OOD samples from unlabeled
data and calculate the initial cluster center koc of these samples. Then, given a feature fi from Fu,
we can compute two distances from kic and koc to fi by

d1 = d(fi, kic) and d2 = d(fi, koc), (7)
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where d1 ≤ d2. Therefore, the Apollonius circle used as the binary-classifier can be formulated with
an adjustable parameter λ as follows:

A(λ) = {fi | d1 : d2 = λ}, (8)

where A(λ) denotes the boundary of the Apollonius circle (see Fig 3). Therefore, the decision rule of
the binary classifier is modulated as follows:

Dac(fi) = cid1

[
d1
d2

≤ λ

]
+ cood1

[
d1
d2

> λ

]
, (9)

where cid or cood denotes an identification that is ID or OOD sample, and 1 denotes an indicator
function that returns 1 if the argument is true, and 0 otherwise. Noted that two cluster centers kic
and koc are updated through the new detected ID and OOD samples after each detection process.
After that, we then send all ID samples to the classifier C(·) for prediction and use the detected OOD
samples for prompt-wise contrastive representation learning (as mentioned in §3.2).

Prompt-wise contrastive representation. Existing approaches often filter out the OOD samples
once detect them. We notice that those unused data could be used to train an OOD-specific prompt as
negative samples to further improve the model performance. Therefore, at the end of each training
epoch, we collect all the detected OOD samples and resend them to the network with a new initial
visual prompt. We call this prompt an OOD-specific prompt vϕ and treat them as negative samples to
apply contrastive learning.

3.3 OBJECTIVE FUNCTION

As discussed in §3.1, our overall objective function includes supervised loss LS, consistent loss LC,
and contrastive learning loss LCL.

Supervised loss. Following existing classification works, we use cross-entropy (CE) loss LCE as
the supervised loss. Noted that for the pre-training stage, we directly computer the LCE through
ground-truth LCE(Y, Ŷ ). However, for the fine-tuning stage, there are no ground-truth labels used as
supervision signals. Therefore, we set the prediction results from student network as pseudo-labels
Y̌ = {y̌i}ni=1 for supervision signals and use a threshold Sohn et al. (2020) η = 0.7 to make sure all
used pseudo-labels are reliable.

Consistent loss. For consistent loss, different from existing works which calculate the per pixel-
level consistency of each feature map, we calculate the consistency through prompting and joint
space learning. As mentioned in §3.1, we conduct different augmentation strategies on the input
samples. Since two different augmented inputs use the same prompt, they should share similar feature
representations. Therefore, we use the Euclidean distance in the joint space as the consistency loss:

LC = d(kic, fs) + d(koc, fs)− d(kic, ft)− d(koc, ft), (10)

where fs and ft denote features obtained from student and teacher networks, respectively.

Contrastive learning loss. We resend OOD samples with a random initialized visual prompt vϕ to
both the student and teacher networks, and then use LC for optimization to get the OOD-specific
prompt. Since this prompt is only trained using OOD samples, we treat this one as a negative sample.
Our goal is to enlarge the distribution gap between vϕ and vϕ. Therefore, the contrastive learning
loss can be defined by

LCL = 1− LCOS(vϕ, vϕ), (11)

where LCOS denotes the cosine similarity loss.

4 EXPERIMENTS

Implementation Details. Following Saito et al. (2021), we implemented our network based on Wide
ResNet-28-2 Zagoruyko & Komodakis (2016) (for CIFAR10 and CIFAR100) and ResNet-18 (for
ImageNet-30). The models are trained on one NVIDIA Titan X with a 12-GB GPU. We use the
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Table 1: Average (with standard deviation) AUROC results. Paras. denotes the total learnable
parameters of the model based on Wide ResNet-28-2 for CIFAR 10 and CIFAR100, and based on
ResNet-18 for ImageNet-30. The number of classes for ID and OOD and the number of labeled
samples for each class are shown in each column.

Dataset Paras.(M
)

CIFAR10 CIFAR100 CIFAR100 ImageNet-30

No. of ID / OOD 6 / 4 55 / 45 80 / 20 20 / 10

No. of Labeled 50 100 400 50 100 50 100 10 %samples

Labeled Only - / - 63.9±0.5 64.7±0.5 76.8±0.4 76.6±0.9 79.9±0.9 70.3±0.5 73.9±0.9 80.3±1.0
FixMatch 23.83/33.22 56.1±0.6 60.4±0.4 71.8±0.4 72.0±1.3 75.8±1.2 64.3±1.0 66.1±0.5 88.6±0.5
MTC 23.36/32.66 96.6±0.6 98.2±0.3 98.9±0.1 81.2±3.4 80.7±4.6 79.4±2.5 73.2±3.5 93.8±0.8
OpenMatch 23.44/32.73 99.3±0.3 99.7±0.2 99.3±0.2 87.0±1.1 86.5±2.1 86.2±0.6 86.8±1.4 96.4±0.7

Ours w/o CL 0.08/0.08 98.7±0.3 99.5±0.7 98.8±0.1 86.7±1.2 86.4±0.2 86.0±0.5 86.4±0.3 95.8±1.1
Ours 0.16/0.16 99.4±0.1 99.7±0.5 99.2±0.1 87.2±1.2 87.0±0.6 86.5±1.5 87.3±0.4 97.1±0.2

standard SGD with an initial learning rate of 0.3, and momentum set as 0.9. The hyperparameters
prompt size p, candidate number N , and λ are empirically set to 40, 5, and 0.5, separately (see
discussions in §4.3). The average result of three runs and its standard deviation are recorded.

Datasets. The proposed OpenPrompt is evaluated on three OSSL benchmark image classification
datasets, including CIFAR-10, CIFAR-100 Krizhevsky et al. (2009) and ImageNet-30 Deng et al.
(2009). In the OSSL task, the test set is assumed to contain both known (ID) and unknown (OOD)
classes Saito et al. (2021); Yu et al. (2020). Specifically, for CIFAR10, we use the animal classes (six
classes) as ID data and the other four classes as OOD data. For CIFAR100, we have two experimental
settings: 80 classes as ID data (20 classes as OOD data) and 55 classes as ID data (45 classes as OOD
data) Saito et al. (2021). For ImageNet-30, we pick the first 20 classes (in alphabetical order) as ID
data and use the remaining 10 classes as OOD data Saito et al. (2021).

Baselines. We use MTC Yu et al. (2020) and OpenMatch Saito et al. (2021) with the source codes
as the OSSL baselines. Following Saito et al. (2021), we train two models, one using only labeled
samples (Labeled Only) and the other one employing the FixMatch Sohn et al. (2020) method.
Then, we add the outlier detector from OpenMatch to these two models for OOD detection. The
hyper-parameters of all the methods are tuned by maximizing the AUROC on the validation set.

4.1 RESULTS

CIFAR10 and CIFAR100. Following MTC Yu et al. (2020) and OpenMatch Saito et al. (2021), we
use AUROC as the evaluation metric. The results are shown in Table 1, where the number of classes
for ID and OOD and the number of labeled samples for each class are shown in each column. Since
we employ the ResNet-28-2 He et al. (2016) network architecture for CIFAR10 and CIFAR100, and
the ResNet-18 for ImageNet-30, the number of learnable parameters for each of the two basic network
architectures are respectively recorded. As can be seen from this table, OpenPrompt achieves the best
performance in most cases on both CIFAR10 and CIFAR100. For example, OpenPrompt increased
the AUROC values from 86.4 to 87.3 in CIFAR100 at 100 labels. More importantly, the learnable
parameters of our proposed OpenPrompt are far less than the existing methods, e.g., 23.44M →
0.16 M compared with OpenMatch and 23.8M → 0.16 M compared with FixMatch Sohn et al.
(2020), which are no more than 1%. This is because our method adapts a model on labeled data to
unlabeled by modifying the data space while others modify the model space Bahng et al. (2022).

ImageNet-30. Here, we also evaluate the proposed OpenPrompt on the more challenging dataset
ImageNet-30 Saito et al. (2021). As described in §4, we alphabetically select the first 20 classes
as ID classes and the remaining 10 classes as OOD classes. As shown in the rightmost column of
Table 1, OpenPrompt also has the highest AUROC accuracy on ImageNet-30. In particular, we
see our proposed OpenPrompt leading to substantial performance gains (i.e., 96.4 → 97.1) with
10 % labels in ImageNet-30 compared to OpenMatch. All methods use the ResNet-18 network
architecture on the ImageNet-30 dataset, and the learnable parameters are 33.2M , 32.66M , and
32.73M , respectively. However, our method freezes the entire network except for visual cues, and its
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Table 2: AUROC evaluation of OOD detection. The higher values, the better performance. Supervised
models indicate our proposed OpenMatch but are trained with fully labeled data.

(a) Training on CIFAR10, where there is 100 labeled data per class and unlabeled data.

Method CIFAR10 SVHN LSUN ImageNet CIFAR100 MEAN
Labeled Only 64.7±1.0 83.6±1.0 78.9±0.9 80.5±0.8 80.4±0.5 80.8±0.8

FixMatch Sohn et al. (2020) 60.4±0.4 79.9±1.0 67.7±2.0 76.9±1.1 71.3±1.1 73.9±1.3

MTC Yu et al. (2020) 98.2±0.3 87.6±0.5 82.8±0.6 96.5±0.1 90.0±0.3 89.2±0.4

OpenMatch Saito et al. (2021) 99.7±0.1 93.0±0.4 92.7±0.3 98.7±0.1 95.8±0.4 95.0±0.3

Ours 99.7±0.2 94.1±1.1 93.6±0.7 97.4±0.3 96.2±0.5 95.4±1.3

Supervised 89.4±1.0 95.6±0.5 89.5±0.7 90.8±0.4 90.4±1.0 91.6±0.6

(b) Training on ImageNet-30, where there is 10 % of labeled data and unlabeled data.

Method ImageNet-30 LSUN DTD CUB Flowers Caltech Dogs MEAN
Labeled Only 80.3±0.5 85.9±1.4 75.4±1.0 77.9±0.8 69.0±1.5 78.7±0.8 84.8±1.0 78.6±1.1

FixMatch Sohn et al. (2020) 88.6±0.5 85.7±0.1 83.1±2.5 81.0±4.8 81.9±1.1 83.1±3.4 86.4±3.2 83.0±1.9

MTC Yu et al. (2020) 93.8±0.8 78.0±1.0 59.5±1.5 72.2±0.9 76.4 ±2.1 80.9±0.9 78.0±0.8 74.2±1.2

OpenMatch Saito et al. (2021) 96.3±0.7 89.9±1.9 84.4±0.5 87.7±1.0 80.8±1.9 87.7±0.9 92.1±0.4 87.1±1.1

Ours 97.1±0.5 90.7±1.7 85.3±0.1 89.2±0.3 83.2±1.5 88.6±1.0 90.9±0.2 88.0±0.8

Supervised 92.8±0.8 94.4±0.5 92.7±0.4 91.5±0.9 88.2±1.0 89.9±0.5 92.3±0.8 91.3±0.7

learnable parameters are much smaller than various SOTA baselines, which are just 0.16 M. This
indicates that OpenPrompt achieves promising performance on complex and challenging datasets.

4.2 OOD DETECTION

Since our OpenPrompt could detect OOD samples from unlabeled data, we evaluated the performance
of our prompt-driven joint space learning in separating ID samples from OOD samples in unlabeled
data. Following Saito et al. (2021), we let the following datasets as OOD samples: SVHN Netzer
et al. (2011), LSUN Yu et al. (2015), CIFAR100 and ImageNet for CIFAR10 experiments (see
Table 2a), and LSUN, Dogs Khosla et al. (2011), CUB-200 Wah et al. (2011), Caltech Griffin et al.
(2007), DTD Cimpoi et al. (2014) and Flowers Nilsback & Zisserman (2006) for ImageNet-30 (see
Table 2b). The separation between the ID and OOD samples is evaluated by AUROC. We train a
model utilizing all labeled examples of ID samples to show the gap from a supervised model. As can
be seen in Table 2, OpenPrompt outperforms the various SOTA baselines by 1.1% on SVHN and
0.4% on average on CIFAR10. On ImageNet-30, OpenPrompt improved 2.4% on Flowers and 0.9%
on average compared with OpenMatch. These results demonstrate that our proposed OpenPrompt
is more sensitive to the representation gaps between ID and OOD samples, which leads to a more
robust OSSL framework while they are exposed to unlabeled data containing outliers.

4.3 ANALYSIS

Effectiveness of prompt-driven joint space. To investigate the effectiveness of our proposed
prompt-driven joint space learning mechanism, we built a model that uses a discriminator as an
OOD detector to replace it (termed w/o joint space). We record the AUROC values on CIFAR10
dataset with 100 labeled data per class and unlabeled data in Fig. 4 (a), where the learning rate is
decayed at epoch 400. As can be seen, our model converges faster and has higher accuracy (see the
red curve). However, our method can still achieve satisfactory accuracy without the prompt-driven
joint space mechanism (see the blue curve). This is likely because the visual prompt vϕ inherited
from the labeled training stage is sensitive to the variability in the data space as it only has knowledge
of the ID samples. However, the results are less than ours because the detector is randomly initialized,
which will lead to significant oscillations in the early stages of training (see 10-70 epochs of the blue
curve).

Effectiveness of prompt-wise contrastive representation. Here, we verify our claim that prompt-
wise contrastive representation can further shape the joint space. As shown in the last two rows
of Table 1, we use Ours (w/o CL) to represent represents our model, but without prompt-wise
contrastive learning (CL). As can be seen from this table, without the CL mechanism, the AUROC
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(b) Prompt Size 𝑝 (c) Candidate Number 𝑁(a) w/o Joint Space

Figure 4: A set of ablative studies on CIFAR10. (a) The curve of the ablation study of joint space. (b)
and (c) are the histograms of the different values of prompt size p and candidate number N , where
three colors represent the different numbers of labeled samples per class.

results of Ours (w/o CL) will be lower than Ours. When we derive the ID-specific and OOD-
specific prompt for the prompt-wise contrastive representation, our method provides the highest
AUROC values. It indicates that the prompt-wise contrastive representation can push the OOD
samples away from the ID ones in unlabeled data, thereby enhancing the discrimination of outliers.

Table 3: OOD detection results under different values of λ.

λ LSUN DTD CUB Flowers Caltech Dogs MEAN

0.1 88.1±0.2 83.4±0.7 86.5±0.8 81.9±1.1 87.3±0.5 90.1±0.1 86.2±0.5

0.3 89.9±0.5 84.7±1.5 88.0±0.3 82.5±2.1 88.3±2.4 90.6±1.7 87.3±1.4

0.5 90.7±1.7 85.3±0.1 89.2±0.3 83.2±1.5 88.6±1.0 90.9±0.2 88.0±0.8

0.8 90.5±0.9 84.9±1.3 89.1±1.8 82.7±2.9 87.9±1.2 89.8±3.4 87.5±1.9

1.0 90.4±2.2 84.2±0.3 88.9±0.8 82.6±0.6 88.5±1.1 90.0±0.1 87.4±0.9

Prompt discussion. We aim to
find a balance between prompt
size and model performance.
Usually, it involves the template
and size of the visual prompt.
Following Bahng et al. (2022),
we choose the padding as the
prompt template. Here, we an-
alyze how the prompt sizes p in-
fluence our method. As shown in
Fig. 4 (a), our model achieves the best AUROC scores at p = 40. When p = 100, the AUROC scores
similar to the results of p = 40. However, the number of learnable parameters will be increased from
0.16M to 0.35M resulting in lower efficiency.

Ablation study on N . As mentioned in §3.2, since the distribution of the unlabeled dataset is
unknown in the pre-training stage, we should define multiple candidates for the initial binary classifier
selection in the fine-tuning stage to find a better OOD center to construct the Apollonius circle. As
can be seen in Fig. 4 (c), the greater the number of candidates, the better results. However, the
performance gradually stabilized when N ≥ 5. It should be noted that we should compute the Ao

values (see §3.2) for each candidate, thereby the greater the value of N , the greater the computational
costs. Therefore, according to the result of Figure c, we set N = 5 in our experiments.

Ablation study on λ. Here, we analyze the value of λ how to influence the Apollonius circle. As
shown in Table 3, the larger value of λ, the greater AUROC performance of the OOD detection,
i.e., 86.2 (λ = 0.1) → 88.0 (λ = 0.5). When λ > 0.5, the performances are no longer improving.
Therefore, we set the λ = 0.5 to build the Apollonius circle.

5 CONCLUSION

In this paper, we propose a new efficient framework for OSSL (termed OpenPrompt). Based on
visual prompting, OpenPrompt focuses on data space adaption instead of fine-tuning the whole
model, which could achieve the state-of-the-art performance with less than 1% learnable parameters
compared with other approaches. Our OpenPrompt can effectively detect OOD samples thanks to the
prompt-driven joint space learning mechanism that enlarges the distribution gap between ID and OOD
samples. Furthermore, we reuse the OOD samples through prompt-wise contrastive representation
to explore the structural information of ID and OOD samples and further shape the joint space. We
believe this paper could inspire a shift in the direction of future research toward efficient OSSL.
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A APPENDIX

A.1 DEFINATION OF APOLLONIUS CIRCLE

A (a, b) B (c, d)

Rad
ius

O

X (x, y)

d1
d2

dab

𝑑!
𝑑"
= 	𝜆

Figure 5: Apollonius circle in a two-dimensional Euclidean space.

Given two points A and B, Apollonius of Perga defines a circle as a set of points X which satisfies
the equation

| XA |= λ | XB |, (12)
where λ denotes a positive real number, | XA | and | XB | denotes the Euclidean distance from X
to A and B, respectively. Assuming X , A and B are three points in a two-dimensional Euclidean
space (see Fig 5), we can define the radius of the Apollonius circle as follows:

| XA |
| XB |

= λ

⇒ d1
d2

= λ

⇒
√
(x− a)2 + (y − b)2√
(x− c)2 + (y − d)2

= λ

⇒ (x− a− (λ)2c

1− λ2
)2 + (y − b− (λ)2d

1− λ2
)2 =

(λ)2

(1− (λ)2)2
((a− c)2 + (b− d)2)

(13)

From the last row in Eq 13, we can define the radius of the Apollonius circle as follows:

radius =
λ

1− (λ)2

√
(a− c)2 + (b− d)2

=
λ

1− λ2
d12,

(14)

where d12 denotes the Euclidean distance between point A and point B (as shown in Fig 5).
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