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ABSTRACT

Good teachers always tailor their explanations to the learners. Cognitive scien-
tists model this process under the rationality principle: teachers try to maximise
the learner’s utility while minimising teaching costs. To this end, human teachers
seem to build mental models of the learner’s internal state, a capacity known as
Theory of Mind (ToM). Inspired by cognitive science, we build on Bayesian ToM
mechanisms to design teacher agents that, like humans, tailor their teaching strate-
gies to the learners. Our ToM-equipped teachers construct models of learners’
internal states from observations and leverage them to select demonstrations that
maximise the learners’ rewards while minimising teaching costs. Our experiments
in simulated environments demonstrate that learners taught this way are more ef-
ficient than those taught in a learner-agnostic way. This effect gets stronger when
the teacher’s model of the learner better aligns with the actual learner’s state, ei-
ther using a more accurate prior or after accumulating observations of the learner’s
behaviour. This work is a first step towards social machines that teach us and each
other, see https://teacher-with-tom.github.io.

1 INTRODUCTION

When tasked with imparting an understanding of the solar system, a physics teacher tailors their
explanation based on the audience. The approach taken for a 10-year-old astrophysics enthusiast
differs significantly from that employed for an advanced master’s student. In fact, the teacher pro-
vides an explanation that maximises the likelihood of the listener understanding the concept. This
pedagogical sampling phenomenon has been explored in cognitive science notably in Gweon et al.
(2018). This study involves children being asked to demonstrate the use of a toy to knowledgeable
or ignorant children learners. It shows that the behaviour of the teacher-child depends on prior ob-
servations of the learner-child. Specifically, if the learner has previously interacted with a similar toy
in the presence of the teacher, the teacher only exhibits partial functionality of the toy. Conversely,
when no prior interaction is observed, the teacher demonstrates the complete use of the toy.

By definition, the aim of a teacher is to ensure the learner’s understanding. An option for the teacher
would be to demonstrate the full functionality of the toy each time, but this comes with a cost.
Rather, the teacher strikes a balance between the learner’s understanding, reflected in its subsequent
behaviour, and the costs of teaching. Assuming the teacher is rational, we can thus consider that this
trade-off is the teacher’s utility (Goodman & Frank, 2016; Jara-Ettinger et al., 2016). Importantly,
learners also evaluate the teacher based on its actions (Bass et al., 2022) teachers who solely provide
the missing information for the learner to achieve the task are also perceived as more trustworthy
than over-informative ones (Gweon et al., 2018).

More generally, human teachers choose how to teach based on a prediction of how their guidance
signal will be received, as outlined in the Inferential Social Learning (ISL) framework (Gweon,
2021). In this framework, humans acquire knowledge by making inferences from observing others’
behaviour and leverage this knowledge to help others learn. More precisely, ISL is grounded on
a set of cognitive mechanisms constituting the Theory of Mind (ToM), which refers to the human
ability to understand and predict the actions of others by inferring their mental states, such as prior
knowledge, goals, intentions, beliefs etc. (Baker & Saxe, 2011). ToM can be understood as the
inverse planning of an intuitive behavioural model predicting what others would do given their men-
tal state (Baker et al., 2009). To be efficient, human pedagogical interventions such as selection of
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examples (Shafto et al., 2014) or demonstrations (Ho et al., 2021) require ToM. ISL is considered
a key component to humans mutual understanding as well as a foundation of humans’ powerful ca-
pacity to efficiently learn from others. Therefore, incorporating ISL mechanisms into AI systems is
a promising way to make human–machine interactions more informative, productive, and beneficial
to humans (Gweon et al., 2023; Sigaud et al., 2022).

In this paper, we introduce teacher agents equipped with a ToM model of the learner agent’s in-
ternal state, including its goal, intention, belief, and sensory capacity. The goal of this work is to
study whether learner-specific teachers who model the learner’s internal state are more efficient than
learner-agnostic ones and more importantly to explore the limitations of ToM models with inaccu-
rate priors or limited observation of the learner, in a context where providing guidance incurs a cost
proportional to its informativeness.

Figure 1: (A) The teacher observes a learner with a particular internal state behaving in a sim-
ple environment Mobs and infers a ToM model of this learner. (B) In a more complex environment
Mdemo, the teacher uses this ToM model to predict the usefulness for the observed learner of each
demonstration of a provided dataset D, out of which it selects the utility-optimal demonstration d∗.
The learner observes d∗ and updates its knowledge about Mdemo. (C) The learner behaves in Mdemo

and receives a reward. The teacher is evaluated on the utility of d∗, which is the learner’s reward
minus the cost incurred by the teacher in delivering that demonstration.

To achieve this, as depicted in Figure 1, we define ToM-teachers able to

1. update a belief about the internal state (i.e. goal, intention, belief, sensory capacity) of an
unknown learner through Bayesian inference based on observations of its behaviour in a
simple environment, see Figure 1(A), and

2. leverage this belief to estimate the utility of different demonstrations in a more complex
environment, similarly to human planning as described in Ho et al. (2022), in order to
select the most effective one for the specific observed learner, see Figure 1(B).

To conduct our experiments, we present two environments: a toy environment reminiscent of
Gweon’s study mentioned above (Gweon et al., 2018), and a more challenging gridworld envi-
ronment for goal-conditioned 2D navigation, see Figure 1. Depending on its sensory capacity, the
learner might require the help of a teacher agent providing a demonstration showing the locations of
the objects needed to complete the task. However, the teacher ignores the goal of the learner and its
sensory capacity, but can infer them from a past trajectory of the learner in a simpler environment.

In this setup, the teacher must select the most useful demonstration providing enough information to
help the learner reach its goal, but at a minimal teaching cost. The demonstration utility is optimal
if it contains the necessary and sufficient amount of information for the learner to reach its goal. In
this context, we show that the teacher must display accurate ISL abilities, inferring the learner’s goal
and sensory capacity from the past trajectory to effectively assist the learner. While this result might
not be surprising, we further find, on the other hand, that some learner-agnostic teaching strategies
outperform ToM-teachers when inaccurate prior of the learner’s policy and/or limited observation
of its behaviour are available.

2



Under review as a conference paper at ICLR 2024

2 RELATED WORK

In addition to cognitive science researches on human pedagogy (Shafto et al., 2014; Gweon, 2021;
Ho et al., 2021), this work is related to the following interconnected research areas:

Theory of Mind (ToM): Observer agents capable of inferring the internal state, including the goal,
of another agent have been developed based on Bayesian Inference (Ying et al., 2023; Reddy et al.,
2018) and neural networks (Rabinowitz et al., 2018; Nguyen et al., 2022). The introduction of a
ToM model of the teacher used by the learner to modulate guidance has demonstrated benefits in
the learning process, as shown in Peltola et al. (2019). However, these works do not explore how
to leverage these models of ToM for the teacher to assist the learner in achieving its goal, as human
teachers do, as explained in Ho et al. (2022).

Machine teaching: Machine Teaching is formalised as the problem of identifying the minimal
teaching signal maximising the learner’s reward (Zhu et al., 2018; Brown & Niekum, 2019). The
teacher possesses knowledge of the learner’s goal and aims to either generate the teaching data (Zhu,
2013) or to extract it from a dataset (Yang & Shafto, 2017), helping the learner agent achieve its goal.
A teaching signal is considered optimally useful if it maximises utility, that is it enables the learner
to achieve its goal while minimising the teaching cost (Zhu et al., 2018). In our framework the
teacher must select the most helpful demonstration from a given set for various types of learner. Yet,
unlike these prior studies, our teacher assists various learners with different goals and sensory ca-
pacities, and thus different optimal demonstrations. Previous studies have demonstrated the benefits
of adaptivity in sequential machine teaching (Chen et al., 2018) and motor control (Srivastava et al.,
2022) for learning. Unlike this prior research, we introduce a model of ToM explicitly modeling the
learner’s mental state as a pivotal component of our teacher’s adaptivity. The demonstration selec-
tion strategy of our teacher is similar to the one used in cognitive science to model human’s strategy
as described in Ho et al. (2022): it uses the learner’s ToM model to predict the outcomes of different
possible demonstrations for the learner, in order to select the demonstration of optimal utility.

Bayesian Inference: Bayesian Inference is a widely used mechanism for inferring the goals of other
agents by computing posterior probabilities based on their actions and policies (Baker et al., 2009;
Baker & Saxe, 2011; Zhi-Xuan et al., 2020; Ying et al., 2023). In our work, we employ it as a tool to
infer the internal state of the learner, including its goal and sensory capacity. In Shafto et al. (2012);
Bass et al. (2022), Bayesian ToM models were conversely used by the learner to infer the internal
state of the teacher. Additionally, similarly to Zhu (2013); Ho et al. (2022), we assume a Bayesian
learner to ensure direct communication from the teacher to the learner as the demonstration selected
by the teacher modifies the belief of the learner about the environment.

3 METHODS

Our general framework is depicted in Figure 1. Below we describe the components in more details.

3.1 LEARNING ENVIRONMENT

We introduce the learners’ environment as a Goal-Conditioned Partially Observable Markov Deci-
sion Process (GC-POMDP), which is a combination of a Goal-Conditioned Markov Decision Pro-
cess (GC-MDP) and, similarly to Rabinowitz et al. (2018), a Partially Observable Markov Decision
Process (POMDP). In GC-POMDPs, agents aim at achieving different goals with limited informa-
tion on the current state of the environment. An instance Mj of a GC-POMDP is defined by:

• A set of states Sj , a set of possible actions Aj , a transition function T j : Sj ×Aj → Sj ,

• A set of possible goals Gj ,

• A history-dependent goal-conditioned reward function Rj : Hj × Gj → R, where Hj is the
space of histories. We define a history as a sequence of state-action pairs over time, which can be
formulated as Hj =

⋃
t H

j
t in which Hj

t = {(s0, a0, . . . , st−1, at−1)} =
∏

t

(
Sj ×Aj

)
.

We consider that all GC-POMDPs share their action and goal spaces denoted A and G. In summary,
a GC-POMDP is defined as Mj = (Sj ,A, T j ,G, Rj).
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In practice, our GC-POMDPs are different instances of similar gridworld environments constructed
from the MiniGrid library (Chevalier-Boisvert et al., 2023). Another example with a toy environ-
ment is described in Appendix A.

3.2 LEARNER

We consider a finite family of agents L = {Li, i ∈ I} that we call learners. A learner Li is defined
by a goal gi ∈ G and an observation function vi, i.e. Li = (gi, vi).

In an environment Mj = (Sj ,A, T j ,G, Rj), the observation function is defined on the state space
towards an observation space Ωi, vi : Sj → Ωi. The set of observation functions is denoted V and is
assumed to be identical for all the considered GC-POMDPs. The aim of the learner is to maximise
the reward functions Rj , conditioned on the learner’s goal gi. In practice, the learner must achieve
its goal in minimum time to maximise its reward. We characterise the behaviour of a learner Li on
Mj as a trajectory τi = {(st, ait) ∈ Sj × A}Tt=0. For the same trajectory, two learners Li and Li′

with different observation functions vi ̸= vi′ acquire different knowledge about the environment,
and two learners with different goals gi ̸= gi′ receive different rewards.

In POMDPs, since the state is not directly observed, the learner must rely on the recent history of
observations, to infer a distribution over states and maintain a belief on the environment state (Kael-
bling et al., 1998; Ghavamzadeh et al., 2015). To model learner’s Li policy, we thus consider at every
step t its belief bi,jt over a set of possible states Sj

B of environment Mj . We assume that the support
of the belief contains the real state space, Sj ⊂ Sj

B and note Bj the continuous space of beliefs.

At every step t, the environment being in a state st ∈ Sj and the observation being oit = vi(st), the
belief of learner Li about the state s ∈ Sj

B of the environment is updated using Bayesian update:

∀s ∈ Sj
B , bi,jt+1(s) =

bi,jt (s)× P(oit|s)∫
s′∈Sj

B
bi,jt (s′)× P(oit|s′)

. (1)

Unless mentioned otherwise, we assume that the learner’s initial belief bi,j0 on the state of Mj

is uniform over the set of possible states Sj
B . In the experiments presented below, we additionally

assume that all learners share a policy on the environment Mj conditioned by a goal, an observation
function and a belief:

πj(.|g, v, bL) : ∪iΩi ×A → [0, 1], with (g, v, bL) ∈ G × V × Bj . (2)

To simulate a trajectory τ i of learner Li on Mj , one only needs to know the tuple (πj , gi, vi, b
i,j
0 ).

In practice, the learners use a single policy denoted π for all the considered GC-POMDPs.

Moreover, within MiniGrid environments, the observation functions vi are defined by a square area
of size vi × vi cells, known as the receptive field of learner Li. This receptive field defines the
localised region in front of the learner, mimicking visual sensory capacities and a larger receptive
field size helps the learner reach its goal faster.

3.3 TEACHER

We introduce an agent called teacher whose aim is to optimally help the learner maximise its reward
on a GC-POMDP Mdemo = (Sdemo,A, T demo,G, Rdemo) by providing a demonstration.

3.3.1 UTILITY BASED DEMONSTRATION SELECTION STRATEGY

We define a demonstration of length n ∈ N on Mdemo as a sequence of actions d =
(ademo

0 , . . . , ademo
n−1) ∈ (A)n. We consider the demonstration to be provided as if the teacher were

teleoperating the learner as described in Silva & Costa (2019). Thus, at step t of the demonstra-
tion, learner Li observes ōit+1 = vi

(
Tdemo(st, a

demo
t )

)
. Following the same demonstration leads to

varying observation sequences for learners with different observation functions. The learner’s belief
about the new environment Mdemo is updated based on the observations (ōi1, . . . , ō

i
n) resulting from

the demonstration, as in Equation 1 and depicted in Figure 1(B).
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This updated belief is then used as initial belief bi,demo
0 by the learner. In other words, the aim of

the demonstration is to provide to the learner a prior knowledge about the new environment. The
environment is then reset to its initial state, and the learner behaves following a policy πdemo defined
in Equation 2 starting with belief bi,demo

0 . As shown in Figure 1(C), the execution of this policy
produces a trajectory τ demo = {(sdemo

t , ademo
t )}Tt=0 where T ∈ N and the learner receives a reward

Rdemo(τ demo, gi) denoted Rdemo(Li|d), which represents the reward of learner Li on environment
Mdemo after having observed demonstration d.

We assume that the teacher knows the environment Mdemo and has access to a set of potential
demonstrations D to be shown on Mdemo as well as a teaching cost function cα : D → R param-
eterised α ∈ R+. For a given parameter α, the cost of a demonstration d ∈ D, denoted cα(d),
represents the cost for the teacher of showing demonstration d to a learner. In our context, this
function increases with the length of the demonstration.

We introduce on the environment Mdemo the utility of a demonstration d for a learner Li as the
reward of the learner after having observed the demonstration d on Mdemo minus the cost for the
teacher of showing this demonstration: udemo

α (d, Li) = Rdemo(Li|d)− cα(d). The aim of the teacher
is to select the demonstration d∗i that maximises the utility for the learner Li:

d∗i = argmax
d∈D

udemo
α (d, Li)︸ ︷︷ ︸

Rdemo(Li|d)−cα(d)

. (3)

However, the teacher does not know neither the learner’s goal gi nor its observation function vi.
Instead, it can only access a past trajectory τ obs of the same learner Li, but in a different environment
Mobs = (Sobs,A, T obs,G, Robs), see Figure 1(A). Therefore, in order to approximate Equation 3,
the teacher should estimate the utility of each demonstration d in D for this learner, see Figure 1(B).
As the teacher knows the teaching cost function, this is equivalent to estimating the learner’s reward.

3.3.2 TEACHING ENVIRONMENT

Teaching an unknown learner Li = (gi, vi) can be formalised as maximising a reward function
in a POMDP framework (Rafferty et al., 2015; Yu et al., 2023) which can be simplified in the
case of demonstration selection into a contextual Multi-Arms bandit (MAB) (Clément et al., 2015).
Our approach involves a teaching MAB relying on a pair of environments (Mobs,Mdemo). The
teaching state space is the set of all possible learners L = G × V . The MAB being in state Li,
the observation function Oobs generates a context (τ obs = {(sk, aobs

k )}K−1
k=0 , bLi

0 ) ∈ ∆obs which
corresponds respectively to a trajectory of learner Li within the environment Mobs and the learner’s
initial belief. The teaching action space is the available set of demonstrations D on Mdemo. The
reward function is the utility udemo

α defined on the environment Mdemo which takes as arguments a
state (the learner’s internal state) and an action (a demonstration). The teaching contextual MAB is
therefore defined as E = {L,D,Oobs,∆obs, udemo

α }.

3.3.3 BAYESIAN TOM-TEACHER

To estimate the utility udemo
α (d, Li) of a demonstration d in the teaching MAB E in state Li, we

introduce a teacher equipped with a ToM model that we refer to as ToM-teacher. In our case, the
ToM is used to model the MAB state (learner’s hidden internal state) from an observation (past
trajectory and initial belief), leading to the estimation of the teaching MAB reward function that is
the utility function over the set of demonstrations for the unknown learner Li.

We present a ToM-teacher using Bayesian inference, called Bayesian ToM-teacher. We assume that
the teacher has access to a behavioural model of the learners – that is an approximation of their
policy π̂ – along with a support for the teaching MAB state constituted by sets of possible goals GB

and observation functions VB . We make the assumption that these spaces are discrete and that both
sets contain the real sets of goals and observation functions (G ⊂ GB and V ⊂ VB).

From an observation of the teaching MAB state, Oobs(Li) = (τ obs, bLi
0 ), the Bayesian ToM-teacher

computes a belief bT about the teaching MAB state, that is a probability distribution over the joint
space GB × VB . At step k ∈ [0,K − 1] of the observed trajectory τ obs, for every pair (g, v) ∈
GB × VB , it derives from Equation 1 and the observed initial belief bLi

0 , the belief that a learner
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would have with observation function v after producing the trajectory τ obs[0 : k− 1], denoted bv,obs
k .

It then updates its own belief about the learner goal and observation function based on the Bayesian
update rule:

∀(g, v) ∈ GB × VB , bTk+1(g, v) =
bTk (g, v)× π̂

(
v(sk−1), a

obs
k |g, bv,obs

k

)
∑

g′×v′∈GB×VB
bTk (g

′, v′)× π̂
(
v′(sk−1), a

obs
k |g′, bv′,obs

k

) .
(4)

The quantity bTk (g, v) represents the probability of the learner having a goal g and an observation
function v, given that it produced trajectory τ obs[0 : k − 1], under the assumption that, to generate
τ obs[0 : k − 1], the learner follows policy π̂. The final belief bTK(g, v) represents the probability that
the teaching MAB is in state L = (g, v).

The teacher estimates the utility of a demonstration d ∈ D in the teaching MAB E in state Li by
computing the expected value:

ûdemo
α (d) =

∑
(g,v)∈GB×VB

ûdemo
α (d, L = (g, v))× bTK(g, v), (5)

where ûdemo
α (d, L) is the estimated utility of demonstration d for a teaching MAB in state L.

To compute this quantity, the teacher computes the belief bv,demo
0 of a learner L = (g, v) on

Mdemo after having observed demonstration d, based on Equation 1 and the observed initial be-
lief bLi

0 . From the tuple (π̂, g, v, bv,demo
0 ), the teacher simulates a trajectory τ̂ demo and computes

the associated estimated reward R̂demo(L|d) = Rdemo(τ̂ demo, g) leading to the estimated utility
ûdemo
α (d, L) = R̂demo(L|d)− cα(d). The expected utility can be expressed as the expected reward of

the unknown learner after following demonstration d minus the cost of the demonstration:

ûdemo
α (d) =

 ∑
(g,v)∈GB×VB

R̂demo(L = (g, v)|d)× bTK(g, v)


︸ ︷︷ ︸

Expected reward

−cα(d). (6)

The teacher selects the greedy demonstration d∗ over the estimated utility of the teaching MAB E in
state Li, approximating Equation 3 with d∗ = argmaxd∈D ûα(d).

We define two ToM-teachers which differ in their prior model of the learner’s policy π̂:

• The aligned ToM-teacher possesses exact knowledge of the learner’s policy, π̂ = π.

• The rational ToM-teacher (with parameter λ) only assumes that the learner is rational, meaning it
tries to reach the goal in minimum time, but its approximate policy π̂ ̸= π is based on a Boltzmann
policy that considers the expected distance between the learner and the goal after taking different
actions. The temperature parameter λ of the Boltzmann policy represents the assumed degree of
rationality of the learner in terms of how much the learner favours actions towards its goal, see
Appendix B.3 for more details.

4 EXPERIMENTS

Environments: The observation environment Mobs is a 11 × 11 MiniGrid gridworld (Chevalier-
Boisvert et al., 2023) and is enclosed by walls along its borders. The environments contains four
door-key pairs of colours in the set G = {green, blue, purple, yellow}. To open a door, an agent
has to possess the key of the same colour. We study the influence of the observation environment’s
size on the accuracy of the ToM models in Appendix G.

The demonstration environment Mdemo, contains the same objects but over 33 × 33 cells. It is
composed of nine rooms of 11 × 11 cells, separated by walls. In both environments, a trajectory
stops either when the learner opens its goal door or when the maximum number of actions is elapsed.

Learner: The learner’s goal is to open a door as fast as possible. We use the default goal-conditioned
trajectory reward function of the MiniGrid environments: R(τ, g) = 1 − 0.9 × length(τ)

max steps if the door
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of colour g ∈ G is open at the end of trajectory τ , and R(τ, g) = 0 otherwise. In Mobs, we set
max steps = 112 = 121, and in Mdemo, we use max steps = 332

2 = 544.

The learner possesses either a view with dimensions v× v cells with v ∈ {3, 5} or full observability
(v = full obs) of the environment. With v ̸= full obs, the learner does not see behind the walls.

We define the learner’s policy as a decision tree (Appendix B.1). We assume that the learner attempts
to reach the key before trying to open the door and acts greedily when it knows the location of the
objects and actively explores otherwise. The greedy policy follows the shortest path computed by the
A∗ algorithm (Hart et al., 1968) within the known parts of the environment. The active exploration
policy selects actions best reducing the uncertainty on the environment state.

Teachers: As defined above in Section 3.3, we consider two teachers equipped with a ToM model
of the learner, an aligned ToM-teacher and a rational ToM-teacher with a parameter λ. We
compare the utilities of their demonstrations to that of 5 baseline teachers, one for upper-bound and
four learner-agnostic teachers which do not leverage the past observations of the learner in their
strategies for demonstration selection:

The omniscient teacher knows the actual goal, observation function and policy of the learner and
provides the utility-optimal demonstration. It sets an upper-bound teacher’s utilities.

The reward-optimal non-adaptive teacher selects the demonstration in D maximising the mean
reward over all the possible learners without considering the teaching cost. In practice, this teacher
provides the demonstration showing all the objects (keys and doors) of the environment.

The utility-optimal non-adaptive teacher selects the demonstration in D maximising the mean
utility over all possible learners.

The uniform modelling teacher uniformly samples a learner in (g, v) ∈ L and provides the demon-
stration maximising the utility for L = (g, v).

The uniform sampling teacher selects a demonstration uniformly among the set D of available
demonstrations. This teacher does not have any model of the learner.

Demonstration set: The demonstration set D contains shortest demonstrations for each pairs
(g, v) ∈ G × V showing the learner’s key and door goal at a distance of at least v. In addition,
we generate demonstrations showing N ∈ [3, 8] random objects (key or door) of the environment,
see Appendix B.2 for details. We use a linear teaching cost with parameter α = 0.6 normalised by
the size lmax of the longest demonstration of D. For a demonstration of length ld, the teaching cost
is cα(ld) = α× ld

lmax
. In practice, the longest demonstration is the one showing all objects, N = 8.

Metrics: A teacher is evaluated based on the measured utility of the demonstration it has selected
for the observed learner L, given by udemo

α (d∗, L) = Rdemo(L|d∗)− cα(d
∗).

Experiments: We conducted 100 experiments for each pair (g, v) ∈ G × V . Mean utilities of
demonstrations selected by teachers for learners with a fixed receptive field size v are in Figure 2
and Appendix CTable1. Computed over 400 trials with a 95% confidence interval, Student T-tests as-
sess significant differences between mean utilities of two teachers. Environments, both observation
and demonstration, are randomly generated in each trial. All teachers operate within the same en-
vironment pair (Mobs,Mdemo), selecting demonstrations from the same set D, while ToM-teachers
observe the same learner trajectory on Mobs.

5 RESULTS

We provide results when the learners are observed under two conditions: for a full episode or for only
their 10 first actions, leading to more uncertain inference about their goals and sensory capacities.

5.1 OBSERVING A FULL TRAJECTORY OF THE LEARNER

Figure 2 illustrates the mean utility of the demonstrations selected by each teacher, for learners with
varying receptive field sizes acting in Mobs during a full episode.
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Figure 2: Mean utilities and 95% confidence interval of ToM-teachers (rational teacher with param-
eter λ = 0.01) and baseline teachers for learners with varying receptive field sizes of [3, 5, full obs]
observed on Mobs during a full episode.

Across all the considered learners with varying receptive field sizes, the demonstrations chosen
by the ToM-teachers outperform those of learner-agnostic baseline teachers. As the task difficulty
increases for the learner (i.e., when its receptive field size decreases), the learner requires both more
informative and more specific demonstrations to achieve its goal. Consequently, having an accurate
model of the learner becomes necessary to ensure the selection of helpful demonstrations.

The mean utility of aligned ToM-teachers is not significantly different from that of the omniscient
demonstrations (p-values > 0.3)1 for learners with receptive field of sizes 3 and 5. In contrast,
uniform teachers select demonstrations with close-to-null mean utility for learners with a receptive
field size of 3 and demonstrations that are four times less useful than those of the ToM-teachers for
learners with receptive field size of 5. The utility-optimal and reward-optimal non-adaptive teachers
perform at most half as well as the ToM-teachers for these learners, see Appendix C Table 1.

On the contrary, as the task becomes easier for the learners (with wider sensory capacities), the mean
utilities of the demonstrations selected by learner-agnostic teachers get closer to those of the ToM
and omniscient teachers’ demonstrations, as the need for selecting a specific demonstration based
on an accurate model of the learner decreases. In fact, with full observability, any demonstration
from the demonstration set suffices for the learner to reach the goal.

With a teaching cost of α = 0.6 it is worth noting that the utility-optimal non-adaptive teacher tends
to select less informative demonstrations (with low teaching cost) leading to higher mean utility for
learners with full observability and lower mean utility for learners with a limited view. Selecting
the demonstration maximising the mean reward over the learners proves to be too expensive and
consistently results in poor utility. We further discuss the teaching cost parameter in Appendix F.

The precision of the ToM-teacher’s behavioural model of the learner (i.e. its policy) directly impacts
the utility of the selected demonstrations. The aligned ToM-teacher selects more beneficial demon-
strations on average than the rational ToM-teacher which relies on an approximation of the learner’s
policy, for learners with receptive field of sizes 3 and 5 (p-values < 0.01) and their utilities are not
significantly different for learner with full observability (p-value > 0.15), see Appendix C Table 1.

A high degree of accuracy of the ToM-teacher’s model of the learner’s behavioural policy enhances
belief updates of Equation 4, resulting in more accurate modelling of the learner’s internal state. To
illustrate this, we derive in Appendix D explicit inferences regarding the learner’s goal and receptive
field size from ToM-teachers beliefs featuring varying degrees of accuracy.

5.2 LIMITED OBSERVATION OF THE LEARNER

Now, instead of having access to the entire trajectory τ obs of the learner in Mobs, the teacher only
has access to its first 10 actions, that is the partial trajectory τ obs[: 10].

1A t-test with null hypothesis H0: there is no significant difference between the utilities of both teachers.
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Figure 3: Mean utilities and 95% confidence interval of teachers as in Figure 2 observed on Mobs

during the 10 first steps of an episode (τ obs[: 10]).

As expected, with limited information about the learner, both ToM-teachers select demonstrations
achieving mean utilities that are further away from the utility of the omniscient teacher’s demon-
strations. Nonetheless, the aligned ToM-teacher still outperforms the learner-agnostic teachers on
average for all the considered learners, as depicted in Figure 3.

However, relying solely on the hypothesis that the learner is highly rational is not enough to accu-
rately model its internal state when having access to limited observation of its behaviour. In fact, the
utility of the demonstration selected by the rational ToM-teacher with low temperature parameter
λ = 0.01 decreases approximately by 100%, 75% and 25% for learners with receptive field sizes of
3, 5 and full observability, see Appendix C Table 2. As detailed in Appendix F E, with the approx-
imate learner’s policy, the rational ToM-teacher misinterprets the learner’s behaviour. This leads to
incorrect conclusions about the learner’s internal state and, consequently, inaccurate demonstration
selection. As a result, the performance of the rational teacher is not significantly different from that
of the uniform modelling teacher for learners with limited view (p-values > 0.15) but significantly
lower for learners with full observability (p-value < 0.01).

Furthermore, in this limited information context, providing the demonstration maximising the mean
utility on all the learners proves to be more useful that relying on an imprecise behavioural model
of the learner. For all considered learners, the utility-optimal non-adaptive teacher significantly
outperforms the rational ToM-teacher (p-values < 0.01), see Appendix C Table 2.

6 CONCLUSION AND FUTURE WORKS

In this work, we have studied the integration of ISL mechanism for teaching learners with different
goals, beliefs or sensory capacities. We integrated a Theory of Mind model using Bayesian inference
into a teacher agent to infer the learner’s internal state and adapt its teaching strategy. We demon-
strated that leveraging this ToM model, combined with a behavioural model of the learner, is more
efficient than adopting learner-agnostic teaching strategies. We also explored the limitations of ToM
models with limited observation of the learner and approximate behavioural models. In summary,
we have shown that machine ISL can enhance knowledge transmission between AI systems, and we
are convinced that it represents a pathway toward richer and more trustworthy knowledge exchange
between AI systems and humans (Gweon et al., 2023; Sigaud et al., 2022).

There are many exciting directions for future work, particularly towards more tractable models
of ToM mechanisms in higher-dimensional environments, for example, using variational methods
(Zintgraf et al., 2020) or ensembling to approximate Bayesian inference. Another direction for fu-
ture research is to employ reinforcement learning to train the teacher to generate the appropriate
demonstration as done in Caselles-Dupré et al. (2022), rather than selecting demonstrations from a
provided set. Finally, the prior information introduced in the teacher’s Bayesian ToM model of the
learners, particularly through belief supports, could be reduced by employing deep neural network-
based ToM models as in Rabinowitz et al. (2018).
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A TOY ENVIRONMENT

We test our ToM-teacher on a toy environment, see Figure 4. This simpler environment is another
instance of the formal framework presented in the main paper. We consider POMDPs instead of GC-
POMDPs, where the learner is characterised solely by a belief rather than a goal and an observation
function. This reduces the support of ToM-teacher’s beliefs but the general framework remains
unchanged.

Figure 4: Interaction with toy environments, where white cells represent musical buttons, black cells
represent silent buttons, and a star represents a button press. (A) The teacher observes a learner

with a particular internal state behaving in a simple environment Mobs and infers a ToM model of
this learner. (B) In a more complex environment Mdemo, the teacher uses this ToM model to predict
the usefulness for the observed learner of each demonstration of a provided dataset D, out of which
it selects the utility-optimal demonstration d∗. The learner observes d∗ and updates its knowledge
about Mdemo. (C) The learner behaves in Mdemo and receives a reward. The teacher is evaluated on
the utility of d∗, which is the learner’s reward minus the cost incurred by the teacher in delivering
that demonstration.

A.1 ENVIRONMENT

The environment is reminiscent to the toy used in the study presented in Gweon et al. (2018). It
represents a toy with N = 20 buttons among which M = 3 buttons produce music and the rest do
nothing. As mentioned earlier, this environment is formalised as a POMDP Mj = (Sj ,A, T j , Rj).
We model it as a 1D gridworld with a single state Sj = {sj} with sj [n] = 1 if the nth button
produces music an sj [n] = 0 otherwise, and identity transition function. The action space is the
set of buttons A = [0, N − 1]. Unlike in GC-POMDPs, where the reward function is defined over
trajectories, in this context, the reward function is defined for individual actions. Specifically, the
reward function is ∀a ∈ A, Rj(a) = sj [a]. Contrary to the main paper, in this environment, we
consider that all the agents share the same observation function that reveals the state of one cell at a
time, v(a) = sj [a].

One trajectory of an agent in Mj is defined by the action-reward pairs {(ajk, r
j
k = sj [ajk])}

K−1
k=0 . As

mentioned in Section 3.1, we consider environments Mj sharing the same action space. This means
that we consider toys with the same number of buttons but different musical ones.

A.2 LEARNER

As defined in Section 3.2, the learner has a belief on the state of the environment and updates it from
observations following the Bayesian update rule Equation 1.
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However, in this particular case, the conditional probability of the observation ot = v(at) = sj [at]
knowing the state of the environment s ∈ Sj is P(ot|s) = 1 (ot = s[at]).

In contrast to 2D navigation task, where learners were defined both by their goals and beliefs (i.e.,
observation functions), in this environment, we characterise learners solely by their beliefs. Addi-
tionally, these beliefs do not vary because of different observation functions but because of their
initial values bL0 .

For a learner, the initial belief corresponds to prior knowledge on the environment. In the context
of the study presented in Section 1 from Gweon et al. (2018), if a child has previously interacted
with a toy featuring a single musical button (M = 1), their initial belief about a similar new toy
would be that it also has one musical button. As a result, we can assume that their initial belief
only assigns nonzero probability to the configurations of the toy that contain exactly one musical
button. Similar reasoning can be extended to the prior beliefs corresponding to toys with two or
three musical buttons. The initial belief of each learner is expressed as:

∀i ∈ [1, 2, 3], ∀s ∈ Sj
B , bLi

0 (s) =
1
((∑N−1

n s[n]
)
= i

)
∑

s′∈Sj
B

((∑N−1
n′ s′[n′]

)
= i

) =
1
((∑N−1

n s[n]
)
= i

)
(
N
i

) .

The last learner L0 does not have any prior on the environment:

∀s ∈ Sj
B , bL0

0 (s) =
1

|Sj
B |

=
1

2N
.

All the learners follow a policy conditioned by their beliefs: if they are certain about the state
of the environment they play greedy, otherwise they explore. This policy aligns with the concept
underlying the learner’s policy in the 2D navigation task, but in this case, it is formalised as follows:

∀a ∈ Aj , π(a|bL) =

{
1(s[a]=1)∑

a′∈Aj (s[a′]=1) if ∃s ∈ Sj
B s.t bL(s) = 1

1
|Aj | otherwise.

(7)

A learner Li is thus entirely defined by its initial belief and belief-conditioned policy, Li = (π, bLi
0 ).

A.3 TEACHER

A.3.1 UTILITY BASED DEMONSTRATION SELECTION STRATEGY

In this experiment, the set of demonstrations includes examples of one, two, or three musical buttons,
along with a demonstration revealing all the buttons of the toy. Intuitively, to achieve maximal
reward on Mdemo, a learner has to play greedy, thus has to be certain about the toy’s configuration,
see Equation 7. Therefore, a learner Li exposed to a demonstration revealing i or more buttons can
achieve maximal reward.

A.3.2 TOM-TEACHER

The ToM-teacher is identical to the one defined in Section 3.3.3. The teacher has to help an unknown
learner L by providing it with a demonstration. It has a belief bT on the internal state of the learner
and has access to an approximation of the learner policy π̂ as well as to one of its past trajectory
τ obs = {(aobs

k , rk)}K−1
k=0 , on an environment Mobs. In this experiment, the learners are characterised

solely by their belief (i.e., initial belief). Therefore, the support of the ToM-teacher’s belief is a finite
set of possible initial beliefs BB . In this context, Equation 4 can be simplified by:

∀bi0 ∈ BB , bTk+1(b
i
0) =

bTk (b
i
0)× π̂(aobs

k |bik)∑
bi

′
0 ∈BB

bTk (b
i′
0 )× π̂(aobs

k |bi′k )
,

with bik the belief that would have learner Li = (π̂, bi0) after having observed the slice of the trajec-
tory τ obs[0 : k − 1].
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The remainder of the interaction is consistent with the main paper: after the teacher updates its
belief, it estimates the utility of each possible demonstration and chooses the one that maximises
this estimation.

A.4 EXPERIMENTS

Environment: The observation environment Mobs is a toy with N = 20 buttons, including M = 3
musical buttons that are randomly distributed on the toy. The demonstration environment Mdemo

features the same toy but with different locations for the musical buttons.

Learner: We consider learners with four different initial beliefs, see Section A.2, and sharing the
policy described in Equation 7.

Demonstration set: The demonstration set contains four samples: three demonstrating one, two
and three musical buttons respectively, and one demonstration featuring all buttons. We use a linear
teaching cost cα(d) = α× len(d) with α = 0.03, meaning the longest demonstration of size 20 has
a cost of 0.6.

Teacher: For the experiments, we only consider an aligned ToM-teacher, with access to the true
policy of the learners, π̂ = π. We use the same baselines as in the main paper (see Section 4): the

omniscient teacher providing an upper bound on the teacher’s utilities, the utility-optimal non-
adaptive teacher, the reward-optimal non-adaptive learner, and the uniform sampling teacher.
In these experiments, all demonstrations are specific to each learner, resulting in the fusion of the
uniform modelling and uniform sampling teachers.

Metrics: The utility of the teacher is computed on one action aL of the learner on Mdemo after
having observed the demonstration d∗ selected by the teacher: udemo

α (d∗, L) = Rdemo(aL)− cα(d
∗).

Experiments: We conducted 300 experiments for each learner. In each trial, both Mobs and
Mdemo are randomly generated, and all teachers are evaluated within the same environment pair
(Mobs,Mdemo) – all teachers select a demonstration from the same demonstration set D.

A.5 RESULTS

Figure 5 illustrates the mean utility of the demonstrations selected by each teacher, for learners with
varying initial belief on Mobs observed for 40 actions.

Figure 5: Mean utilities and 95% confidence interval of the aligned ToM-teacher and baseline teach-
ers for learners with varying initial beliefs observed on Mobs during 40 actions.

Similarly to the results found in the 2D navigation task (Section 5), the aligned ToM-teacher out-
performs the learner-agnostic teachers for learners who believe the toy contains one or two musical
buttons (p-values < 0.01). Furthermore, the utility of the demonstrations provided by the aligned
ToM-teacher for learners who believe there are one, two, or three musical buttons, shows no signifi-
cant difference from that of the omniscient teacher (p-values > 0.9).
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However, in this experiment, since all the provided demonstrations are optimal for specific learners,
the reward-optimal non-adaptive teacher, which provides a demonstration featuring all the buttons of
the toy, performs not significantly differently from the omniscient teacher for the learners for whom
this demonstration is optimal (p-value > 0.9), i.e., the learners with no initial prior knowledge about
the toy. Similarly, with a teaching cost parameter of α = 0.03, the most useful demonstration, on
average across all learners, is the one displaying the three musical buttons. Therefore, the demon-
stration selected by the utility-optimal non-adaptive teacher achieves mean utility not significantly
different from that of the aligned ToM-teacher and omniscient teacher for learners requiring to be
shown exactly three musical buttons (p-values > 0.9).

Note that in this particular environment, there are cases in which both learners with no prior knowl-
edge about the environment and learners believing there are three musical buttons behave the same.
Therefore, the teacher’s belief about the learner’s internal state cannot exceed 0.5. With a high
teaching cost parameter of α = 0.03, the teacher selects the less costly demonstration, resulting in
the poorer utility of the aligned ToM-teacher for learners with uniform initial beliefs, requiring the
display of the entire toy.

In this environment, the aligned ToM-teacher achieves high utility for all learners, while the learner-
agnostic teacher selects demonstrations that are beneficial to some learners but poorly useful to
others. Just as in the 2D navigation task, modelling the learner’s internal state, which in this case
represents an initial prior belief about the toy, proves to be essential for selecting useful demonstra-
tions for all the learners under consideration.

B IMPLEMENTATION DETAILS

All the code necessary to reproduce the experiments from the main paper, the appendix, and gen-
erate the figures can be found at https://github.com/teacher-with-ToM/Utility_
Based_Adaptive_Teaching.

B.1 LEARNERS’ POLICY

The learner always starts at the bottom centre of the environment, i.e. at coordinates (s − 1,
⌊
s
2

⌋
)

when dealing with an environment of size s× s.

In cases where the view is partial, the learner’s sight is bounded by the walls, as defined in the
MiniGrid library.

Figure 6: Policy 2 of the learner conditioned by its goal, observation function and belief for 2D
navigation task
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We construct the learner’s policy as a decision tree, as illustrated in Figure 6. We assume that the
learner first searches for the key before heading to the door. Similar to a Bayes-optimal policy (Duff
& Barto, 2002), the learner leverages its uncertainty about the environment to select its actions.

Exploitation: Specifically, when the learner knows the precise location of either the key or the
door, it follows a greedy policy, following the shortest path computed by the A∗ algorithm with a
Manhattan distance heuristic. This information is contained in the learner’s belief.

Exploration: Uncertainty also plays a crucial role in actively exploring the environment when
the learner lacks information about the object’s location that it aims to reach. At time t,
the learner selects action at to maximally reduce its uncertainty. In other words, the learner
chooses at time t an action at that will provide the greatest amount of new knowledge about
the environment at time t + 1. Therefore, we can derive at from the following equation:
at = argmaxa∈A{

∑
c∈v(s′) H(bLt [c]) s.t s′ = T (s, a)}, where H is the Shannon entropy2 and

bLt [c] the belief of the learner about the cell c of the MiniGrid environment.

B.2 DEMONSTRATION

To generate the demonstrations we utilise the Nearest Neighbour Algorithm based on distance maps
computed by the Dijkstra algorithm and following shortest paths computed by the A∗ algorithm with
the Manhattan distance heuristic.

To generate a demonstration, we define a set of objects to be shown for a receptive field size. The
first object to be shown is the one closest to the initial agent’s position based on the Dijkstra distance
map. The agent follows the shortest path computed by the A∗ algorithm until the object appears in
the receptive field. Then, we repeat the process, moving to the object closest to the current agent’s
position, until all objects have been shown.

Specifically, for learner-specific demonstrations, the set of objects includes the key and door of
the learner’s goal colour, and the receptive field size matches that of the learner. For unspecific
demonstrations, objects are randomly selected from the set of objects present in the environment,
and we use the smallest receptive field of size 3.

B.3 RATIONAL TOM-TEACHER

The model of this teacher is based on two assumptions (1) the learner will grab the key before
heading to the door (2) The learner is rational, meaning it will try to open the door in the minimal
amount of time.

These assumptions give rise to an approximation of the learner’s policy π̂ conditioned by a belief,
an observation function and a goal. Similarly to the real learner’s policy, π̂ can be decomposed in
an exploitation policy when the the learner knows the location of the object it want to reach and an
exploration policy otherwise.

Exploitation: We model the learner’s level of rationality using a Boltzmann policy that favours
actions bringing the learner closer to the object it needs to reach.

In MiniGrid environments, the learner has a position and an orientation, and the left and right
actions only change the learner’s orientation. As a result, when taking these actions, the spatial
distance between the learner and the object remains identical, leading to the contradiction that ’going
left then forward’ is improbable compared to ’going forward then left’. Therefore, when following
a greedy strategy, we assume that if the learner selects the left (resp. right) action, it intends either
to perform a u-turn (going to the position behind itself) or to move left (resp. right). The learner’s
approximate exploitation policy, when attempting to reach an object obj for which it is certain about
the location pobs, i.e.,

∑
{s : s[pobj ]=obj} b

L(s) = 1, is expressed as follows:

2The Shannon Entropy of a probability distribution P with discrete support is H(P ) =
−
∑

x∈supp(P ) P (x)× log(P (x)).
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π̂(s, a|g, v, bL) =


exp(−(d(pu turn

t+1 ,g)−d(pt,pobs))/λ)+exp(−(d(pa
t+1,pobs)−d(pt,g))/λ)

2×Const if a ∈ {left, right}
exp(−(d(pa

t+1,g)−d(pt,pobs))/λ)
Const if a = forward,

where pt represents the current position of the learner, pu turn
t+1 is the resulting position after per-

forming a u-turn, and pat+1 is the position after taking action a if a is forward, and taking action a
and going forward is a ∈ {left, right}. The distance d between two objects in the environment is
computed using Dijkstra’s algorithm.

For λ → 0, π̂ models a learner following a shortest path towards the object. Conversely, for λ → ∞,
the approximate policy models a learner uniformly selecting an action, thus λ reflects the learner’s
degree of rationality.

Exploration: This teacher does not have any prior knowledge about the exploration policy and
assumes it to be uniform.

In our experiment in Section 4, the learners’ policy is based on a shortest path algorithm, repre-
senting perfect rationality. Therfore, we employ the lowest temperature parameter λ for the rational
ToM-teacher. However, if the learner’s policy were learned, the temperature parameter would also
need to be learned to align with the learner’s policy which might be noisily rational.

C ADDITIONAL RESULTS

Here we present the precise values along with 95% confidence interval of the mean utilities of
the ToM and baseline teachers in the experiments presented in the main paper and displayed in
Figure 2 when the teacher has access to a full trajectory of the learner and Figure 3 when the teacher’s
observation of the learner is limited to 10 actions.

Table 1: Mean utilities and 95% confidence interval of the demonstrations selected by the ToM-
teachers and the baseline teachers after having observed the learners on a full episode. The rational
teacher has a temperature parameter of λ = 0.01.

Utility for learners Utility for learners Utility for learners
Teacher with receptive with receptive with full

field size of 3 field size of 5 observability

Aligned ToM-teacher 0.64± 0.01 0.68± 0.01 0.86± 0.01
Rational ToM-teacher 0.54± 0.03 0.62± 0.02 0.85± 0.01

Omniscient 0.65± 0.01 0.68± 0.01 0.90± 0.00
Utility-optimal non-adaptive 0.14± 0.03 0.33± 0.03 0.79± 0.01
Reward-optimal non-adaptive 0.28± 0.01 0.28± 0.01 0.31± 0.00
Uniform sampling 0.01± 0.03 0.15± 0.04 0.60± 0.02
Uniform modelling 0.01± 0.03 0.17± 0.04 0.76± 0.01

D INTERNAL STATE INFERENCE

In order to evaluate the ToM models of our teachers, we derive explicit inferences of the learner’s
goal and receptive field size by taking the Maximum A Posteriori (MAP) estimations on the teacher’s
belief. At step k of the observed learner’s trajectory, the teacher’s belief about the learner’s goal is
the marginal probability ∀g ∈ GB , bTk (g) =

∑
v∈VB

bTk (g, v), —a similar formulation applies to
the teacher’s belief regarding the learner’s receptive field size. In that sense, the MAP estimator
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Table 2: Mean utilities and 95% confidence interval of the demonstrations selected by the ToM-
teachers and the baseline teachers after having observed the learners on the 10 first steps of an
episode. The rational teacher has a temperature parameter of λ = 0.01. In bold, the mean utilities
that are significantly different from the first experiment Table 1 (p-values < 0.01).

Utility for learners Utility for learners Utility for learners
Teacher with receptive with receptive with full

field size of 3 field size of 5 observability

Aligned ToM-teacher 0.39 ± 0.02 0.62 ± 0.02 0.86 ± 0.01
Rational ToM-teacher -0.03 ± 0.04 0.14 ± 0.05 0.63 ± 0.04

Omniscient 0.64± 0.01 0.70± 0.01 0.90± 0.00
Utility-optimal non-adaptive 0.13± 0.03 0.36± 0.03 0.79± 0.01
Reward-optimal non-adaptive 0.27± 0.01 0.29± 0.01 0.31± 0.00
Uniform sampling 0.00± 0.03 0.20± 0.04 0.58± 0.02
Uniform modelling −0.01± 0.03 0.18± 0.04 0.76± 0.01

of the learner’s goal is ĝTk = argmaxg∈GB
bTk (g), and equivalently for the MAP estimation of the

learner’s receptive field size v̂Tk .

In Figure 7, the ToM models are evaluated on the accuracy of their MAP estimators as well as
on their uncertainty. If learner Li is observed on k steps of its trajectory, the accuracy of the
teacher’s MAP estimators of the learner’s goal (Goal-inference accuracy), and receptive field size
(RF-inference accuracy) are 1(gi = ĝTk ) and 1(vi = v̂Tk ) respectively. We also evaluate the uncer-
tainty of the ToM models with the Shannon entropy of the teachers’ beliefs. The higher the Shannon
entropy, the higher the teacher’s uncertainty about the goal and receptive field size of the learner.

As soon as the learner grabs the key, the teacher is certain about the learner’s goal. We define a first
phase of the episode corresponding to the segment of the trajectory before the learner obtains the
key. We evaluate the accuracy and uncertainty of the ToM models about the learner’s goal along this
first phase and the accuracy and uncertainty about the learner’s receptive field size along the entire
episode.

We compare the MAP estimators and uncertainty of aligned and rational ToM-teachers with varying
temperature parameter λ ∈ [0.01, 0.5, 1., 3., 10] – the lower the temperature parameter, the more
rational the learner is assumed to be.

Goal-inference:

The MAP estimators of the learner’s goal perform not significantly different for all teachers at both
the very beginning and the end of the first phase of the episode. In fact, all teachers start with
uniform beliefs, resulting in uniform MAP estimators and achieve perfect accuracy as soon as the
learner grabs the key. Nonetheless, at every stage, the accuracy of the teachers’ MAP estimators of
the learner’s goal is significantly higher for the teachers with more accurate behavioural models of
the learner, i.e. aligned teachers and rational teachers with low-temperature parameters.

We can observe that while the accuracy of all MAP estimators increases throughout the first phase
of the episode, the beliefs about the learner’s goal of the rational ToM-teachers with extreme values
of the temperature parameter (λ = 3 and λ = 10) remain weak: the uncertainty remains high and
abruptly decreases when the learner obtains the key – at the end of the first phase of the episode. In
contrast, the aligned and rational ToM-teachers with low temperature parameters exhibit both linear
increase of the MAP estimator accuracy and decrease in uncertainty throughout the first phase.
This demonstrates their ability to accurately and confidently infer the goal based on the learner’s
behaviour before acquiring its key.

RF-inference: Inferring the receptive field size of the learner is a more difficult task than inferring
its goal. As a consequence, having a model of the learner’s policy proves to be essential to correctly
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Figure 7: Mean and 95% confidence interval of the accuracy of the MAP estimators and the un-
certainty (Shannon entropy of the teachers’ beliefs) of the aligned and rational ToM-teachers with
varying temperature parameter λ, regarding the learner’s goal and receptive field size respectively
as a function of the percentage of the first phase and of the entire episode.

draw inferences from the learner’s behaviour. The MAP estimator of the learner’s receptive field
size of the aligned teacher converges faster in accuracy (≈ 60% of the episode) and reaches an
accuracy superior to 0.9 while all rational teachers achieve lower accuracy on average at the end
of the episode and need more observation of the learner to converge (for the teacher with higher
assumed level of rationality, λ = 0.01, the accuracy of the MAP estimator converges at ≈ 80% of
the episode towards an accuracy of ≈ 0.8).

At any given stage in the episode, the accuracy and the confidence of the ToM model on the learner’s
internal state are inversely proportional to the accuracy of the teacher’s behavioural model of the
learner: the less accurate the model, the more inaccurate (lower accuracy) and uncertain (higher
Shannon entropy) the inferences are. In the context of limited observation of the learner (i.e., early
stages of the episode) this explains the results obtained in Section 5.2.
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E EXAMPLE OF MISREADING LEARNER’S BEHAVIOUR

Figure 8: Evolution of uncertainty regarding the learner’s goal and the receptive field size for both
the rational ToM-teacher (λ = 0.01) and the aligned ToM-teacher during the observation of a learner
(Figure 1 (A)) with a real goal of purple and a receptive field size of 3. At every time t, the colour
bars represent the average goal colour and receptive field size weighted by the teachers’ beliefs.

Figure 8 illustrates a case in which, during the episode, the rational ToM-teacher misinterprets the
learner’s behaviour, drawing false conclusions about its internal state, while the aligned ToM-teacher
avoids such mistakes, having greater insight into the learner’s behavioural policy. In fact, at the
beginning of the trajectory, while exploring, the learner gets closer to the yellow key. Consequently,
the rational ToM-teacher believes that the learner’s goal colour is yellow and it has full observability.
On the other hand, the aligned ToM-teacher recognises that the learner is not following the path it
would have taken if it indeed had the assumed internal state, thereby avoiding any misinterpretation.

In this example, if the teachers’ observation of the learner had been limited to only 10 actions, the
rational ToM-teacher would have erroneously selected the demonstration for a learner with a yellow
goal and full observability, resulting in poor utility on the more complex demonstration environment.
By contrast, the aligned ToM-teacher would have selected the demonstration maximising the mean
utility for learners with different goals but a receptive field of size 3, as it would be certain about the
sensory capacity but not the goal. This example illustrates the results found in Section 5.2 as well
as in Appendix D.

F TEACHING COST PARAMETER

With a low teaching cost parameter of α = 0.1, the utility-optimal teacher selects the same demon-
strations as the reward-optimal teacher, specifically the demonstration showing all objects in the
environment. As a result, they achieve utilities that are not significantly different for all the learn-
ers (p-values > 0.6). These teachers’ utilities approach those of the ToM and omniscient teachers.
Furthermore, the utilities of the ToM teachers are closer to those of the omniscient teacher because
making a mistake becomes less costly. In the context of a low teaching cost, modelling the internal
state of the learner makes little difference. Specifically, with a teaching cost of α = 0, all teachers
except uniform ones perform the same, matching the omniscient teacher’s utility.
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(a) Teaching cost parameter α = 0.8

(b) Teaching cost parameter α = 0.1

Figure 9: Mean utilities and 95% confidence interval of ToM-teachers (rational teacher with param-
eter λ = 0.01) and baseline teachers for learners with varying receptive field sizes of [3, 5, full obs]
observed on Mobs during a full episode.

On the other hand, with a high teaching cost parameter of α = 0.8, the reward-optimal demonstra-
tion showing all the objects in the environment becomes too expensive and leads to poor utility for
all learners. The utility-optimal teacher selects less informative demonstrations with low teaching
cost leading to high mean utility not significantly different (p-values > 0.4) from that of the ToM
teachers, for learners that require no information (i.e. learners with full observability). However,
this strategy results in poor utilities for learners with limited receptive field size, who require infor-
mative and specific demonstrations to achieve their goal in the complex environment. Therefore,
with a high teaching cost, modelling the learner’s internal state becomes essential to select useful
demonstrations for all learners.

G SIZE OF THE OBSERVATION ENVIRONMENT

In our framework, the observational environment Mobs must be simple enough for all learners to
interact with the objects, enabling the ToM-teacher to infer their mental states. On the contrary, the
demonstration environment Mdemo where the teacher conducts teaching needs enough complexity
for learners to require the teacher’s assistance to achieve the task.

However, while maintaining this requirement, the complexity of the observation environment can
vary. To evaluate how this complexity influences the accuracy of the teachers’ ToM models, we
compute the accuracy of the MAP estimators for the learner’s goal and receptive field, as defined in
Appendix D. This evaluation occurs after observing a single trajectory of the learner in observation
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environments of different sizes. To ensure that all learners can interact with the objects, we employ
the same MiniGrid environment defined in Section 4, but within an environment of size s × s with
s ∈ [11, 15, 21, 25], where the maximum number of steps is set to max steps = s2.

Figure 10: Mean and 95% confidence interval of the accuracy of the MAP estimators of the aligned
and rational ToM-teachers with varying temperature parameter λ, regarding the learner’s goal and
receptive field size respectively, as a function of the size of the observation environment Mobs.

The larger the environment’s size (s × s), the greater the dispersion of its objects. As indicated
in Figure 10, the increment in environment size has only a minor impact on the accuracy of the
MAP estimator for the ToM models concerning the learners’ goals. Specifically, in scenarios devoid
of obstacles (apart from the doors and keys) and with sufficient timesteps, all learners can access
their respective keys and/or doors, resulting in high goal accuracy of all the teachers. Nonetheless, a
slight reduction in accuracy is observed in larger environments. Occasionally, even within expansive
environments lacking inner walls, certain learners may be unable to reach their keys and doors. The
limited interaction with the objects hampers the ToM model’s ability to accurately infer their goals.

Additionally, in Figure 10, we note that the accuracy of the MAP estimator for the receptive field
sizes of the learners, specifically for ToM-teachers equipped with an accurate model of the learners’
policy (teachers with low temperature parameter λ or aligned), increases with the environment’s
size. This outcome can be attributed to two phenomena. Firstly, as learners navigate larger environ-
ments, they undertake a greater number of actions to reach their goals. Consequently, the teacher
gains access to longer sequences of observations, enabling a more refined modeling of the learner’s
internal state. Secondly, the increased dispersion of objects within larger environments reduces the
ambiguity between the behaviours of learners with different sizes of receptive field, thereby resulting
in higher accuracy within larger environments.
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