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Abstract 1 

Multimodal Emotion Recognition (MER) 2 

is a vital technology for capturing nuanced 3 

human emotions by integrating 4 

complementary textual, acoustic, and 5 

visual cues. However, real-world MER 6 

systems frequently encounter issues with 7 

missing or conflicting modalities, arising 8 

from sensor failures, privacy constraints, or 9 

contradictory emotional signals. These 10 

issues compromise the efficacy of existing 11 

attention-based fusion models. In this 12 

paper, we propose CUMDF, a 13 

Counterfactual-based Uncertain Missing 14 

Modality Distillation Framework that 15 

addresses these challenges through three 16 

core innovations. Specially, we introduce a 17 

Label-Guided Multimodal Masked 18 

Transformer (LG-MMT) to align features 19 

with target sentiment semantics and 20 

improving robustness under incomplete or 21 

conflicting data. Furthermore, we design 22 

the Adaptive and Generalized Knowledge 23 

Extractors to disentangle modality-specific 24 

information from shared cross-modal 25 

patterns, enhancing representational 26 

diversity and coherence. Finally, we design 27 

a Modality Attribution-based 28 

Counterfactual Inference (MACI) 29 

mechanism that quantifies each modality’s 30 

causal contribution via counterfactual 31 

predictions and dynamically adjusts 32 

distillation weights to focus the student 33 

model on under-optimized modalities. 34 

Experimental results on three benchmark 35 

datasets demonstrate that CUMDF 36 

outperforms state-of-the-art approaches, 37 

highlighting the importance of uncertainty 38 

modeling in MER. 39 

1 Introduction 40 

With the explosive growth of user-generated 41 

content on social media platforms, multimodal 42 

signals (i.e. text, audio and visual) have become 43 

indispensable for the accurate inference of 44 

sentiment and emotion. Multimodal Emotion 45 

Recognition (MER) employs a combination of 46 

cues from these streams to enhance the accuracy of 47 

inference in comparison to unimodal systems, with 48 

extensive applications in human-computer 49 

interaction, virtual assistants and affective 50 

computing in the fields of healthcare and education. 51 

Despite the noteworthy advancements, two 52 

under-explored challenges impede the robustness 53 

and generalizability of existing MER systems. 54 

Firstly, the absence of modalities is a common 55 

occurrence in real-world implementations due to 56 

various factors, including sensor failures, 57 

bandwidth limitations, privacy filters, and 58 

occlusion. This results in irregular availability of 59 

modalities. Models that have been trained on fully 60 

observed data encounter difficulties when 61 

attempting to generalize under these incomplete 62 

conditions. Second, modality conflicts—scenarios 63 

where different modalities convey contradictory 64 

sentiments (e.g., cheerful speech paired with a 65 

frustrated facial expression)—are prevalent in 66 

spontaneous human communication. It is evident 67 

that standard fusion strategies are often insensitive 68 

to such conflicts, resulting in semantically 69 

incoherent feature representations and 70 

compromised sentiment prediction. 71 

To address these challenges, researchers have 72 

explored various approaches to enhance MER 73 

robustness. Early efforts focused on simple fusion 74 

techniques using handcrafted features with 75 

classical classifiers like SVMs (Rozgic et.al, 2012; 76 

Wang et.al, 2014) and ensemble trees (Cummins 77 

et.al, 2018). However, these methods proved 78 

incapable of capturing cross-modal dependencies, 79 

which are critical for emotion recognition (Smith et 80 

al., 2017). The advent of deep learning gave rise to 81 

a more sophisticated array of fusion paradigms. 82 

These include early fusion (Morency et al., 2011; 83 
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Perez et al., 2013; Yu et al., 2021) which aggregates 84 

raw embeddings, and late fusion (Shutova et al., 85 

2016; Morvant et al., 2014; Evangelopoulos et al., 86 

2013) which combines modality-specific 87 

predictions. Nevertheless, these methodologies 88 

continue to encounter challenges in effectively 89 

handling complex interactions between modalities. 90 

More recently, attention-based mechanisms 91 

have become increasingly prominent. These 92 

include global attention modules (Zhang et al., 93 

2020) and bi-GRU multi-attention (Lian et al., 94 

2021), which attempt to focus on salient 95 

multimodal features. Similarly, modality-weighted 96 

fusion techniques, including gated networks 97 

(Arevalo et al., 2017) and self-adaptive path 98 

selection (Yang et al., 2023), have been proposed 99 

to dynamically adjust each modality's contribution. 100 

Mai et al. (Mai et.al, 2023) introduced intra-modal 101 

and inter-modal comparative and semi-102 

comparative learning. This instructional strategy is 103 

employed to facilitate a comprehensive exploration 104 

of cross-modal interactions, to ensure the 105 

maintenance of inter-class relationships, and to 106 

address any existing modal gaps. Despite their 107 

sophistication, these approaches typically assume 108 

complete modality availability and lack 109 

mechanisms to handle missing or conflicting 110 

signals. 111 

With regard to the specific issue of modality 112 

missingness, knowledge distillation (KD) has been 113 

identified as a promising approach. MCTN (Pham 114 

et al., 2019) employs cycle-consistent translation 115 

between modalities with a view to enhancing 116 

representation consistency across different input 117 

combinations. In alternative approaches, the 118 

reconstruction of absent modalities is undertaken at 119 

the feature level (Sun et al., 2023) or through the 120 

estimation of these modalities by means of 121 

completion-based KD (Sun et al., 2024). Further 122 

refinements have been proposed, including 123 

margin-aware distillation (Wei et al., 2023) to 124 

regularize modality importance, graph-based KD 125 

(Deng et al., 2025) to aggregate multi-source 126 

information, and hierarchical cross-modal 127 

distillation (Wei et al., 2024) to improve teacher-128 

student alignment. Zhang et al. (2024) proposed a 129 

novel approach to address the challenges posed by 130 

absent modality and optimization imbalance, 131 

namely sample-weighted distillation and prototype 132 

regularization network. While these approaches 133 

have advanced the field, they still suffer from three 134 

fundamental limitations when dealing with real-135 

world MER scenarios: 136 

Lack of semantic guidance: Existing methods 137 

generally perform cross-modal alignment without 138 

fine-grained label-aware supervision, rendering 139 

them susceptible to spurious correlations in noisy 140 

modalities. In the absence of explicit semantic 141 

anchoring to emotional content, models are unable 142 

to distinguish relevant features from noise, 143 

particularly when modalities provide conflicting 144 

signals. 145 

Inadequate knowledge disentanglement: 146 

Current approaches fail to effectively separate 147 

modality-specific knowledge from shared 148 

information. This limits their ability to preserve 149 

unique modality features while exploiting cross-150 

modality commonalities, which is critical for 151 

robust performance when certain modalities are 152 

missing or unreliable. 153 

Consistent distillation strategies: Most 154 

methods apply identical distillation weights across 155 

all modalities and samples, ignoring the varying 156 

power and reliability of each modality. This 157 

becomes problematic when dealing with 158 

conflicting modalities or different missing patterns 159 

across samples. 160 

 161 
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Figure 1: The proposed CUMDF consists of three core components: (1) the Modality Domain 162 

Knowledge Extractor (2) the Label-Guided Multimodal Masked Transformer, and (3) the Modality 163 

Contribution-based Counterfactual Inference. 164 

To address these limitations, the Counterfactual-165 

based Uncertain Missing Modality Distillation 166 

Framework (CUMDF) is proposed, enhancing 167 

MER performance under incomplete or conflicting 168 

modalities. As demonstrated in Figure 1, CUMDF 169 

introduces three key innovations: 170 

First, we propose a Label-Guided Multimodal 171 

Masked Transformer (LG-MMT), which employs 172 

learnable label embeddings as query inputs within 173 

the attention mechanism. In contrast to previous 174 

fusion methodologies, the LG-MMT model 175 

employs audio-text-label interactions with label 176 

embeddings as anchors to guide emotion feature 177 

fusion. This approach focuses attention on 178 

emotion-relevant features to stabilize cross-modal 179 

fusion and address issues related to missing or 180 

inconsistent signals. 181 

Secondly, we propose the Adaptive Modality-182 

Specific (AMSKE) and the Generalized Modality-183 

Common (GMCKE) Knowledge Extractors, which 184 

decompose modality features into discriminative, 185 

modality-specific traits and cross-modal 186 

commonalities. The explicit modelling of private 187 

and shared knowledge has been shown to enhance 188 

feature expressiveness and compatibility during 189 

fusion, particularly in the presence of noisy or 190 

absent streams. 191 

Finally, the Modality Attribution-based 192 

Counterfactual Inference (MACI) module adapts 193 

distillation by estimating each modality’s causal 194 

impact via full-model and counterfactual 195 

prediction comparisons, dynamically adjusting 196 

distillation weights to promote fairness and 197 

enhance under-optimized modal streams. 198 

2 Methods  199 

2.1 Preliminary 200 

Multimodal Emotion Recognition (MER) is 201 

commonly framed as a regression task. Given a 202 

full-modality video sample set 𝑆 = [𝑋𝐿 , 𝑋𝐴, 𝑋𝑉] , 203 

where 𝑋𝐿
𝑡 ∈ ℝ𝑇𝐿∗𝑑𝐿 , 𝑋𝑉

𝑡 ∈ ℝ𝑇𝑉∗𝑑𝑉  ,and 𝑋𝐴
𝑡 ∈204 

ℝ𝑇𝐴∗𝑑𝐴 , respectively. And 𝑡 represents the teacher 205 

model, 𝑇𝑚  is the sequence length (temporal 206 

dimension) and 𝑑𝑚 is the embedding dimension of 207 

modality 𝑚 ∈ {𝐿, 𝐴, 𝑉} . Meanwhile, we further 208 

extend the traditional MER task to encompass 209 

modality-missing scenario, the modality missing 210 

version features are denoted as 𝑋𝑚
𝑠  , where 𝑠 211 

represents the student model, 𝑚 ∈ {𝐿, 𝐴, 𝑉} . uur 212 

goal is to find the utterance-level sentiments by 213 

employing the multimodal data with missing 214 

modalities. 215 

To handle intra-modality missingness, we 216 

develop the Modality Random Missing Strategy 217 

(MRMS), which generates datasets by dropping 218 

frame-level features with a drop ratio p (0 to 0.7, 219 

0.1 increments). Unlike prior work (Yuan et.al, 220 

2021), this ensures at least one modality remains 221 

per sample for balanced evaluation, replacing 222 

missing segments with zero vectors. Incomplete 223 

features 𝑋𝑚
𝑠  (for 𝑚 ∈ {𝐿, 𝐴, 𝑉}) are then processed 224 

by the student model similarly to the teacher model 225 

(as shown in Eq. 1): 226 

𝑋′
𝑚
𝑡 = 𝐶𝑜𝑛𝑣1𝐷(𝑋𝑚

𝑡 , 𝑘𝑚
𝑡 ) + 𝑃𝐸(𝑇, 𝑑) ∈ ℝ𝑇∗𝑑 (1) 227 

where 𝑃𝐸  denotes to the position in the 228 

sequence and 𝑑 represents the feature dimension. 229 

2.2 Modality Knowledge Extractor (MKE) 230 

To comprehensively represent multimodal inputs, 231 

the framework uses Adaptive Modality-Specific 232 

(AMSKE) and Generalized Modality-Common 233 

(GMCKE) Knowledge Extractors to decompose 234 

unimodal features into modality-specific traits 235 

(𝑋𝑚_𝑠𝑝𝑒
𝑡 ) and transferable cross-modal knowledge 236 

(𝑋𝑚_𝑐𝑜𝑚
𝑡 ). Formally, the teacher model's extractors 237 

are defined as:  238 

𝑋𝑚_𝑠𝑝𝑒
𝑡 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑚_𝑠𝑝𝑒(𝑋′

𝑚
𝑡 ; 𝜃𝑚_𝑠𝑝𝑒) (2) 239 

𝑋𝑚_𝑐𝑜𝑚
𝑡 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑚_𝑐𝑜𝑚(𝑋′

𝑚
𝑡 ; 𝜃𝑚_𝑐𝑜𝑚) (3) 240 

where  𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑚_𝑠𝑝𝑒  and 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑚_𝑐𝑜𝑚 241 

denote the AMSKE and GMCKE, respectively. In 242 

our framework, AMSKE employs a 1-layer 243 

Transformer to learn sequential information of 244 

modalities, and GMCKE is a fine-grained mamba 245 

block. We use the language modality as an example 246 

to present the structure of GMCKE, which is 247 

calculated as follows: 248 

𝑀𝐿𝐴
𝑡 = 𝑋′

𝐿
𝑡 𝑋′

𝐴
𝑡 𝑇

 249 

𝑆𝐿𝐴
𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑡𝑎𝑛(𝑀𝐿𝐴

𝑡 ))  250 

𝑅𝐿𝐴
𝑡 = 𝑆𝐿𝐴

𝑡 𝑋′
𝐴
𝑡 (4) 251 

�̃�𝐿𝐴
𝑡 = 𝑅𝐿𝐴

𝑡 ⨁(𝑅𝐿𝐴
𝑡 ⨀𝑋′

𝐿
𝑡 )  252 

𝑋𝐿_𝑐𝑜𝑚
𝑡 = �̃�𝐿𝐴

𝑡 ⨁�̃�𝐿𝑉
𝑡  253 

where ⊙ represents element-wise multiplication, 254 

⊕ denotes feature concatenation. The final output 255 
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of the modality domain knowledge extractor �̃�𝑚
𝑡  is 256 

a combination of 𝑋𝑚_𝑠𝑝𝑒
𝑡  and 𝑋𝑚_𝑐𝑜𝑚

𝑡 . 257 

2.3 Label-guided Multimodal Masked 258 

Transformer (LG-MMT) 259 

In traditional MER methods, Transformers are 260 

often used for cross-modal relationship modeling. 261 

However, when modalities are absent or in 262 

semantic conflict, Transformers may encounter 263 

challenges due to an absence of global semantic 264 

guidance. To solve this, we propose the Label-265 

guided Multimodal Masked Transformer (LG-266 

MMT), as shown in Figure 2, which uses label 267 

embeddings for each sample as semantic anchors 268 

to guide attention during fusion. 269 

 270 

Figure 2: Structure of the proposed LG-MMT 271 

2.3.1   Label Embedding Generation 272 

For each sample 𝑖 with a label 𝑦𝑖 ∈ {1, … , 𝐶}, we 273 

map it into a dense vector 𝑒𝑖 ∈ ℝ𝑑  using a 274 

learnable label embedding matrix 𝐸𝑦 ∈ ℝ𝐶∗𝑑: 275 

𝑒𝑖 =  𝐸𝑦[𝑦𝑖] (4) 276 

here, 𝑦𝑖 denotes the sample label (discrete class 277 

like "happy" or "sad"), with label embedding 𝑒𝑖 ∈278 

ℝ𝑑  encoding its semantic information. This 279 

embedding is crucial for guiding the attention 280 

mechanism in subsequent layers. 281 

2.3.2 Fusion of Label Embedding with Modality 282 

Features 283 

Let 𝑍𝑚1
𝑖 ∈ ℝ𝑑  and 𝑍𝑚2

𝑖 ∈ ℝ𝑑   be the feature 284 

sequences of modalities 𝑚1  and 285 

𝑚2 with 𝑚1, 𝑚2 ∈ {𝐿, 𝐴, 𝑉} , respectively. The 286 

label embedding 𝑒𝑖  is fused with the modality 287 

features to obtain the label-enhanced features. For 288 

example, to obtain the label-enhanced language 289 

feature 𝑍𝐿
𝑖 , 𝑒𝑖 is repeated along the time dimension 290 

𝑇𝐿   to align with the temporal dimension of the 291 

language feature: 292 

�̃�𝐿
𝑖 = �̃�𝐿

𝑡⨀(𝑊𝑒 ∗ 𝑒𝑖 + 𝑏𝑒) (5) 293 

where 𝑊𝑒  and 𝑏𝑒  are learnable matrix and bias 294 

vector. In this step, the label embedding is 295 

broadcast across the entire sequence, enabling the 296 

model to use the label’s semantic information 297 

throughout the sequence.  298 

2.3.3 Label-guided Attention Computation 299 

Label-enhanced features  �̃�𝑚1
𝑖   and 𝑍𝑚2

𝑖   are fed 300 

into the Label-guided attention, where the label 301 

embedding  𝑒𝑖  acts as query Q,  �̃�𝑚1
𝑖   and 𝑍𝑚2

𝑖   are 302 

served as key K and value V. For instance, label-303 

guided cross-attention between language and 304 

acoustic modalities focuses on features aligning 305 

with label sentiment, enhancing multimodal fusion: 306 

𝑄 = 𝑊𝑄
𝐿𝐸 ∗  𝑒𝑖 307 

𝐾𝐿 = 𝑊𝐾
𝐿 ∗  �̃�𝐿

𝑖 (6) 308 

𝑉𝐴 = 𝑊𝑉
𝐴 ∗  �̃�𝐴

𝑖  309 

where 𝑊𝑄
𝐿𝐸, 𝑊𝐾

𝐿  and 𝑊𝑉
𝐴  are learnable weight 310 

matrices for the query, key, and value 311 

transformations, respectively. Next, we compute 312 

the attention score and apply it to the value vectors 313 

to obtain the weighted features: 314 

ℎ𝑒𝑎𝑑𝐿𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝐿

𝑇

√𝑑𝑘

+ 𝑀𝑎𝑠𝑘) 𝑉𝐴 (7) 315 

𝑀𝑎𝑠𝑘𝑚 = {

0, 𝑖𝑓 𝑡𝑜𝑘𝑒𝑛 𝑜𝑛 𝑡ℎ𝑒 

             𝑝𝑎𝑑𝑑𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8) 316 

where 𝑀𝑎𝑠𝑘  represents the mask matrix to 317 

mask the attention tokens. By improving semantic 318 

relevance between modalities and strengthening 319 

intra-modality cohesion, the attention matrix’s 320 

weights more accurately reflect cross-modal 321 

feature correlations. 322 

After computing the attention heads, we 323 

combine them by concatenating the outputs from 324 

each attention head and passing them through a 325 

feed-forward neural network (FFN) for further 326 

processing. This results in the final feature 327 

representation for each modality: 328 

𝐻𝐿𝐴 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚

(�̃�𝐿 + 𝐹𝐹𝑁(𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑𝐿𝐴
1 , . . . , ℎ𝑒𝑎𝑑𝐿𝐴

ℎ )𝑊𝑂))
 329 

𝐻𝑠 = 𝐺𝐴𝑃(𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝐿𝐴
𝑠 , 𝐻𝐿𝑉

𝑠 , 𝐻𝐴𝑉
𝑠 )) (9) 330 

�̂�𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠_𝑝𝑟𝑒𝐻𝑠 + 𝑏𝑠)  331 

Here, 𝐻𝐿𝐴
𝑠  is the output of language and acoustic 332 

features after attention and FFN processing; 333 

similarly, LG-MMT captures 𝐻𝐿𝑉
𝑠  and 𝐻𝐴𝑉

𝑠 . Global 334 

Average Pooling (GAP) reduces fused feature 335 

dimensionality to obtain 𝐻𝑠 , which averages 336 

features to retain critical information. Finally, 𝐻𝑠 337 

feeds into a Softmax-connected fully connected 338 

layer to compute prediction scores �̂�𝑠. 339 
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2.4 Similarity-based Representation 340 

Distillation 341 

We introduce the Similarity-based Representation 342 

Distillation (SRD) to align the student and teacher 343 

model representations, especially under missing 344 

modalities, via cosine similarity loss on fused 345 

features.  The similarity loss is defined as follows: 346 

𝐿𝑆𝑅𝐷 = 𝛼𝑠𝑡 (1 −
𝑊𝑠𝐻𝑡 ⊙ 𝑊𝑡𝐻𝑠

∥ 𝑊𝑠𝐻𝑡 ∥∥ 𝑊𝑡𝐻𝑠 ∥
) (10) 347 

where 𝛼𝑠𝑡   is the weighting vector to balance 348 

hierarchical consistency and final representation 349 

similarity, 𝐻𝑡  and 𝐻𝑠  represent the joint fused 350 

representations from the teacher and student 351 

models, respectively. The 𝐿𝑆𝑅𝐷  penalizes any 352 

divergence between 𝐻𝑡  and 𝐻𝑠 , encouraging the 353 

student model to approximate the teacher’s 354 

multimodal representation as closely as possible.  355 

2.5 Modality Attribution-based 356 

Counterfactual Inference 357 

To quantify individual modality impacts on 358 

predictions, we introduce the modality attribution-359 

based counterfactual inference (MACI) module. 360 

By excluding specific modalities in counterfactual 361 

predictions, we assess their necessity for decision-362 

making. Formally, the removal of modality m from 363 

the student model was shown to result in the 364 

recompilation of output distributions. This process 365 

defined uni-modal and counterfactual predictions 366 

as follows: 367 

�̂�𝑚
𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠�̃�𝑚

𝑠 + 𝑏𝑠) (11) 368 

�̂�𝑐𝑜𝑛𝑚
𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠𝑐𝑜𝑛

�̃�𝑤/𝑜_𝑚
𝑠 + 𝑏𝑠𝑐𝑜𝑛

) (12) 369 

here, �̂�𝑐𝑜𝑛𝑚
𝑠   is the counterfactual prediction 370 

excluding modality 𝑚 , with �̃�𝑤/𝑜_𝑚
𝑠 =

1

𝑁
∑ �̃�𝑚

𝑠𝑁
𝑖  371 

as the student model’s hidden representation 372 

replacing 𝑚  with its training-set average. The 373 

comparison of �̂�𝑐𝑜𝑛𝑚
𝑠   with the full-modality 374 

prediction �̂�𝑚
𝑠  , enables modality m's impact. 375 

Finally, the attribution score, designated as 𝛿𝑖
𝑚, is 376 

thus defined as the absolute difference between 377 

predictions  �̂�𝑚(𝑖)
𝑠  and �̂�𝑐𝑜𝑛𝑚(𝑖)

𝑠 :  378 

𝛿𝑖
𝑚 = �̂�𝑚(𝑖)

𝑠 − �̂�𝑐𝑜𝑛𝑚(𝑖)
𝑠 (13) 379 

where 𝛿𝑖
𝑚 captures the predictive difference for 380 

the 𝑖-𝑡ℎ sample when modality m is omitted. Here, 381 

�̂�𝑐𝑜𝑛𝑚(𝑖)
𝑠   represents the counterfactual prediction 382 

of the student model, while �̂�𝑚(𝑖)
𝑠   corresponds to 383 

the prediction of the student model under the same 384 

condition. To further quantify the relative 385 

importance of each modality across the dataset, we 386 

define the normalized modality contribution as 387 

follows: 388 

𝑋𝑐𝑜𝑛𝑚
=

∑ |𝛿𝑖
𝑚|𝑁

𝑖=1

∑ ∑ |𝛿𝑖
𝑚′

|𝑁
𝑖=1𝑚′∈𝑀

(14) 389 

where 𝑋𝑐𝑜𝑛𝑚
 denotes the attribution proportion 390 

of modality m, these insights inform modality re-391 

weighting, feature selection, and model 392 

compression in resource-constrained settings. To 393 

ensure the model learns modal relative importance 394 

while maintaining prediction consistency, we 395 

define the counterfactual loss as: 396 

𝜆𝑐𝑜𝑛𝑚
=

𝑋𝑐𝑜𝑛𝑚

∑ 𝑋𝑐𝑜𝑛𝑚′𝑚′∈𝑀

(15) 397 

𝐿𝑐𝑜𝑢 = 𝜆𝑐𝑜𝑛𝑚
∑ 𝑋𝑐𝑜𝑛𝑚

𝑚∈𝑀
(16) 398 

where 𝜆𝑐𝑜𝑛𝑚
 is a normalization coefficient that 399 

ensures the modality attributions sum to 1.  400 

To avoid overfitting and promote robust learning, 401 

we use a regularization loss 𝐿𝑟𝑒𝑔 that penalizes the 402 

magnitudes of the attention mechanism's weight 403 

matrices (query, key, value projection). 404 

Mathematically, it's defined as: 405 

𝐿𝑟𝑒𝑔 = 𝜆𝑄
𝑙𝑒‖𝑊𝑄

𝑙𝑒‖
2

+ 𝜆𝐾
𝑚‖𝑊𝐾

𝑚‖2 + 𝜆𝑉
𝑚‖𝑊𝑉

𝑚‖2 (17) 406 

where 𝑊𝑄
𝑙𝑒, 𝑊𝐾

𝑚, and 𝑊𝑉
𝑚 represent the weight 407 

matrices for the query, key, and value 408 

transformations in the attention layers of the model, 409 

while 𝜆𝑄
𝑙𝑒, 𝜆𝐾

𝑚, and 𝜆𝑉
𝑚 denote their corresponding 410 

regularization coefficients. Finally, we defined the 411 

task-specific loss 𝐿𝑡𝑎𝑠𝑘   to directly optimize the 412 

model’s performance on the sentiment prediction 413 

task We utilize the conventional cross-entropy loss, 414 

which is characterized as: 415 

𝐿𝑡𝑎𝑠𝑘 = −
1

𝑁
∑ 𝑦𝑛

𝑁

𝑛=1

𝑙𝑜𝑔 �̂�𝑛 (18) 416 

where 𝑦𝑛  denotes the true label for the 𝑛 -th 417 

sample, while �̂�𝑛  represents the student model’s 418 

predicted probability of the correct class. Finally, 419 

we define the final loss function of CUMDF is 420 

defined as Eq. (19): 421 

𝐿 = 𝜆1𝐿𝑟𝑒𝑔 + 𝜆2𝐿𝑐𝑜𝑢 + 𝜆3𝐿𝑆𝑅𝐷 + 𝐿𝑡𝑎𝑠𝑘 (19) 422 

where 𝜆1  , 𝜆2 , and 𝜆3  are weights that control 423 

the relative importance of each loss term. 424 

3 Experiments 425 

3.1 Datasets and Evaluation Metrics 426 

We conduct extensive experiments on three MER 427 

datasets with word-aligned data, including MuSI 428 

(Zadeh et.al,2016), MuSEI (Zadeh et.al,2018), and 429 
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IEMuCAP (Busso et.al, 2008). The statistics of the 430 

dataset are shown in Appendix A.1. 431 

3.2 Implementation Details 432 

All models are constructed using the Pytorch 433 

framework, utilizing NVIDIA Tesla V100 GPUs 434 

and torch version 1.8.2. The details of parameter 435 

implementations are listed in Appendix A.2. 436 

3.3 Comparison with the state-of-the-art 437 

We compare our CUMDF with eight exemplary 438 

and replicable state-of-the-art (SuTA) approaches, 439 

including complete-modality methods: Self-MM 440 

(Yu et.al, 2021), CubeMLP (Sun et.al, 2022), and 441 

DMD (Li et.al, 2023) and missing-modality 442 

methods: MCTN (Pham et.al, 2019), EMT (Sun 443 

et.al, 2022) IF-MMIN (Zuo et.al, 2023) and 444 

TransM (Wang et.al, 2020). To simulate missing 445 

inter-modalities, we remove modalities from 446 

samples in Table 1 and Table 2. “{l}” means only 447 

language is present. 448 

Table 1: Performance comparison results on MuSI and MuSEI  449 

Dataset Models 

Testing Conditions 

{𝑙} {𝑎} {𝑣} {𝑙, 𝑎} {𝑙, 𝑣} {𝑎, 𝑣} {𝑙, 𝑎, 𝑣} 

MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 

MOSI 

Self-MM 0.810 66.25 0.764 41.37 0.752 39.15 0.753 68.94 0.742 73.89 0.852 47.90 0.814 83.15 

CubeMLP 0.804 65.78 0.782 43.10 0.748 41.20 0.801 64.76 0.695 68.12 0.823 49.04 0.803 79.82 

DMD 0.795 67.45 0.801 43.65 0.761 42.90 0.698 69.42 0.735 67.93 0.831 51.25 0.892 82.14 

MCTN 0.821 75.56 0.715 58.96 0.797 58.12 0.710 76.43 0.703 73.62 0.864 62.47 0.802 83.75 

EMT 0.845 63.87 0.807 39.25 0.739 43.47 0.721 63.15 0.734 65.85 0.845 48.36 0.789 83.67 

IF-MMIN 0.830 56.14 0.841 46.89 0.815 45.13 0.745 61.27 0.785 64.94 0.802 66.92 0.762 81.24 

TransM 0.857 58.21 0.851 66.83 0.823 51.09 0.749 58.45 0.739 68.92 0.804 65.37 0.785 82.67 

CUMDF 0.766 81.93 0.745 62.29 0.726 60.48 0.689 76.38 0.675 80.41 0.731 75.29 0.718 84.37 

MOSEI 

Self-MM 0.763 67,85 0.731 43.83 0.725 41.74 0.775 69.43 0.688 72.52 0.803 48.95 0.752 82.74 

CubeMLP 0.772 71.65 0.749 43.52 0.736 37.67 0.722 75.94 0.725 74.67 0.824 49.58 0.739 83.07 

DMD 0.796 70.37 0.784 42.37 0.755 38.42 0.684 74.55 0.713 72.68 0.817 50.26 0.807 81.75 

MCTN 0.809 72.93 0.695 44.26 0.788 39.18 0.692 74.21 0.691 73.63 0.848 62.91 0.728 82.78 

EMT 0.791 67.46 0.716 39.55 0.719 32.57 0.700 71.63 0.708 70.05 0.822 48.52 0.780 83.13 

IF-MMIN 0.823 68.59 0.758 41.47 0.781 33.96 0.719 71.26 0.752 70.73 0.796 48.95 0.743 82.76 

TransM 0.801 69.75 0.782 42.56 0.803 34.98 0.727 73.28 0.729 71.19 0.773 50.34 0.775 82.91 

CUMDF 0.742 72.48 0.735 57.53 0.717 58.45 0.678 79.72 0.676 81.03 0.735 71.57 0.704 83.25 

450 

As illustrated in Table 1, CUMDF demonstrates 451 

efficacy in modality missing scenarios in 452 

comparison to baselines for both MuSI and 453 

MuSEI. In the context of MuSI in the language 454 

scenario, CUMDF exhibits the lowest MAE of 455 

0.766 and the highest F1 of 81.93%. This 456 

performance surpasses the second-best by 6.37% in 457 

terms of F1. This phenomenon can be attributed to 458 

the alignment of features with label sentiment 459 

priors by LG-MMT, a process that ensures the 460 

extraction of robust information. 461 

In the {a,v} scenario on MuSI, CUMDF's F1 is 462 

75.29%, which is 9.92% higher than the next best. 463 

This demonstrates the efficacy of MACI, which 464 

adjusts modal contributions based on causal impact, 465 

a feature that is particularly advantageous when 466 

language is missing. 467 

As demonstrated in Table 2, the F1 score 468 

performance of the CUMDF and baseline models 469 

is shown for various modality circumstances on 470 

IEMuCAP. In the "Happy" emotion category, the 471 

CUMDF achieves the highest F1 scores in three out 472 

of seven testing conditions, including single-473 

modality scenarios {l} (82.4%), {a} (69.3%), and 474 

{v} (68.1%). Similarly, the "Sad" category 475 

exhibited consistent superiority of our method over 476 

baselines across five distinct testing conditions. 477 

The adaptability of the model's knowledge 478 

extraction and fusion mechanisms is emphasized 479 
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by its consistent superiority across diverse emotion 480 

categories. 481 

Table 2: F1 score performance comparison results on IEMuCAP 482 

Models Metrics 
Testing Conditions 

{𝑙} {𝑎} {𝑣} {𝑙, 𝑎} {𝑙, 𝑣} {𝑎, 𝑣} {𝑙, 𝑎, 𝑣} 

Self-MM 

Happy 68.1 53.4 51.3 72.5 69.7 62.0 88.6 

Sad 69.2 53.0 53.8 68.9 68.1 61.8 87.9 

Angry 67.5 54.2 53.3 67.1 68.9 57.2 85.7 

Neutral 56.2 48.5 50.7 58.3 56.2 52.6 69.8 

CubeMLP 

Happy 66.2 52.3 50.1 69.4 68.5 56.2 88.9 

Sad 68.5 51.8 54.7 71.8 69.5 57.5 86.7 

Angry 65.2 53.7 51.6 69.5 67.8 56.6 85.4 

Neutral 55.7 48.6 50.3 58.5 56.9 52.8 70.7 

DMD 

Happy 69.8 55.7 52.2 79.3 77.5 65.8 83.1 

Sad 65.5 55.7 53.6 78.3 73.4 68.7 82.8 

Angry 65.3 54.1 51.4 81.7 80.4 59.5 84.6 

Neutral 54.6 51.3 49.5 65.3 62.7 54.9 67.1 

MTCN 

Happy 77.5 63.2 61.7 81.3 80.4 66.5 85.5 

Sad 76.2 64.3 60.5 82.9 81.5 64.3 84.0 

Angry 77.1 61.5 58.4 83.7 81.5 68.4 85.1 

Neutral 60.5 51.2 50.6 65.8 62.7 56.5 67.1 

EMT 

Happy 68.3 54.2 51.5 72.1 69.4 60.3 89.0 

Sad 65.7 54.6 53.4 70.5 68.73 58.1 88.5 

Angry 65.2 53.6 50.9 69.7 69.5 54.8 86.1 

Neutral 53.8 50.4 48.5 57.2 54.3 51.8 71.8 

IF-MMIN 

Happy 80.3 66.8 64.5 83.4 81.7 67.2 90.3 

Sad 79.2 65.9 62.3 82.6 79.5 70.4 85.2 

Angry 80.1 67.6 61.2 83.4 82.3 59.7 84.9 

Neutral 61.2 50.8 49.5 62.4 52.9 55.7 67.2 

TransM 

Happy 82.3 67.7 66.9 83.5 82.6 69.8 87.3 

Sad 81.7 69.5 66.3 84.1 81.8 70.3 86.9 

Angry 81.5 67.6 65.5 82.5 81.6 68.1 85.2 

Neutral 61.2 52.3 43.1 64.9 62.7 57.2 71.5 

CUMDF 

Happy 82.4 69.3 68.1 84.2 82.1 70.1 87.6 

Sad 82.5 71.7 67.5 83.3 82.4 72.4 88.7 

Angry 82.7 67.4 66.3 83.6 82.9 67.3 86.2 

Neutral 63.3 54.1 52.4 68.3 64.5 57.8 71.2 

483 

To illustrate performance variation at different 484 

drop rates, Figure 3 plots the performance curves 485 

of models across intra-modality drop ratios (0.1–486 

0.7). CUMDF maintains significantly higher F1 487 

scores for the "happy" and "sad" categories. This is 488 

due to its AMSKE and GMCKE modules, which 489 

extract modality-specific and modality-common 490 

knowledge to compensate for missing information. 491 

 492 

Figure 3: F1-score results of different intra-modality drop ratios on IMEuCAP. 493 
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3.4 Ablation Studies of Modules 494 

To validate the contribution of each component in 495 

our framework, we conducted comprehensive 496 

ablation studies on the MuSI dataset with a drop 497 

ratio of 0.2, as shown in Table 3.  498 

Ablation studies show removing LG-MMT 499 

causes significant performance drops, confirming 500 

the label-guided attention mechanism focuses on 501 

emotion-relevant features and improves cross-502 

modal alignment. Removing MACI also degrades 503 

performance, validating counterfactual reasoning 504 

to measure modal causal impacts and adaptively 505 

weight them during fusion. Removing MKE leads 506 

to severe performance deterioration, indicating 507 

disentangling modality-specific/shared knowledge 508 

is crucial for capturing unique traits and cross-509 

modal commonalities.  510 

Table 3: Module ablation performance results on CMU-MuSI with a drop ratio of 𝑝 = 0.2. 511 

MKE LG-MMT MACI MAE F1 

   0.820 82.36 

 √ √ 0.782 84.15 

√  √ 0.798 83.82 

√ √  0.764 84.09 

√ √ √ 0.758 84.57 

512 

3.5 Case Study 513 

Figure 4 shows CUMDF versus baseline IF-514 

MMIN on three MuSI test samples, with missing 515 

modalities marked by grey rectangles. CUMDF 516 

outperforms the baseline across missing modality 517 

scenarios by using counterfactual reasoning to 518 

prioritize reliable modal signals, yielding 519 

predictions closer to ground truth labels. 520 

521 

Figure 4: The case of emotion recognition base on our proposed CUMDF. 522 

Conclusion 523 

In this paper, we introduce CUMDF, a novel 524 

distillation framework for multimodal sentiment 525 

analysis that effectively addresses modality 526 

missingness and conflicts. We design a Label-527 

Guided Multimodal Masked Transformer (LG-528 

MMT) that incorporates label embeddings as 529 

semantic anchors to guide cross-modal feature 530 

fusion. The proposed Adaptive Modality-Specific 531 

and Generalized Modality-Common Knowledge 532 

Extractors disentangle unique modality traits from 533 

shared patterns, enhancing representational 534 

coherence. Additionally, our Modality Attribution-535 

based Counterfactual Inference (MACI) 536 

mechanism dynamically adjusts modality 537 

contributions based on their causal impact on 538 

prediction. Extensive experiments on MuSI, 539 

MuSEI, and IEMuCAP datasets demonstrate that 540 

CUMDF consistently outperforms state-of-the-art 541 

approaches across various modality missing 542 

scenarios. 543 

Limitation 544 

uur CUMDF has the following limitations: (1) 545 

The Label-Guided Multimodal Masked 546 

Transformer and counterfactual inference 547 

mechanisms increase computational complexity 548 

compared to simpler fusion approaches. (2) The 549 

effectiveness of CUMDF depends on the quality of 550 

initial modality representations and could benefit 551 

from more advanced feature encoders, though this 552 
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is not the focus of our work. (3) While we evaluated 553 

our framework on standard EMR benchmarks, it 554 

lacks validation on more diverse scenarios such as 555 

real-time streaming data with dynamic modality 556 

availability or datasets from specialized domains 557 

like healthcare or education. Testing across 558 

additional multimodal tasks beyond emotion 559 

recognition could further validate the framework's 560 

generalizability and effectiveness in broader 561 

contexts.  562 
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A Appendices 774 

A.1 Datasets and Evaluation Metrics 775 

We conduct extensive experiments on three 776 

MER datasets with word-aligned data, including 777 

MuSI, MuSEI, and IEMuCAP. The MuSI dataset 778 

consists of 2,199 video clips containing opinion 779 

comments from 89 independent speakers debating 780 

YouTube movie reviews. The sample comprises 41 781 

female and 48 male speakers. Every video clip is 782 

labelled with sentiment strength, from −3  (very 783 

negative) to +3 (extremely positive). The MuSEI 784 

is a dataset consisting of 22,856 video clips, which 785 

has 16,326, 1,871, and 4,659 samples in train, valid, 786 

and test data. Each sample of MuSI and MuSEI is 787 

labeled by human annotators with a sentiment 788 

score of -3 (strongly negative) to +3 (strongly 789 

positive).  790 

un the MuSI and MuSEI datasets, we utilize 791 

weighted F1 score computed for positive/negative 792 

classification results as evaluation metrics. The 793 

IEMuCAP dataset is intended for multi-label 794 

emotion recognition. It comprises 302 videos, 795 

including 151 recorded chat videos. Every sentence 796 

in the dialogue snippets is categorized by a specific 797 

emotion: happiness, sadness, anger, surprise, fear, 798 

and ten additional emotions. In our research, we 799 

follow the idea from (Wang et.al, 2019) and 800 

concentrate on identifying four fundamental 801 

emotions: happiness, sadness, anger, and neutrality. 802 

According to a previous experimental study 803 

(Wang et.al, 2023), our model's performance 804 

leverages two metrics, adopting a dual approach for 805 

classification and regression predictions. For 806 

regression, we provide MAE as a measurement. 807 

For the classification tasks, we provide accuracy 808 

F1-score (F1) as measurement. 809 

A.2 Implementation Details 810 

A.2.1 Feature Extraction 811 

For the language modality, we transform the video 812 

transcripts into pre-trained GloVe (Pennnington 813 

et.al, 2014) word embeddings to acquire a 300-814 

dimensional vector. In the audio modality, we 815 

employ the CuVAREP (Degottex et.al, 2014) to 816 

extract 74-dimensional low-level audio features, 817 

which can process Mel-cepstral coefficients, 818 

fundamental frequency, voiced/unvoiced segments, 819 

normalized amplitude quotient, quasi-open 820 

quotient, glottal source parameters, harmonic 821 

model, phase distortions, and formants. MA-Net 822 

(Zhang et.al, 2021) is utilized as the video feature 823 

extractor for the video modality. Renowned for its 824 

considerable success in facial expression 825 

recognition, we initially employed the MTCNN 826 

face detection algorithm to identify faces. 827 

Subsequently, we use the pre-trained MA-Net 828 

model to extract 1024-dimensional video features. 829 

To attain word-level alignment among the three 830 

modalities, we first process the video and audio 831 

streams via P2FA (Penn, 2013) to provide aligned 832 

timestamps. Thereafter, the video and audio 833 

attributes are averaged throughout these 834 

synchronized intervals. In the CMU-MuSI dataset, 835 

the sequence lengths for all three modalities are 836 

established at 50. Conversely, the other two dataset 837 

maintain a sequence length of 20 throughout all 838 

three modalities. 839 

Additionally, we partition these two datasets into 840 

training sets, validation sets, and test sets according 841 

to established ratios, with the dataset sizes 842 

specified in Table 1. 843 

Table 1: Statistics of Datasets 844 

Dataset CMU-MuSI CMU-MuSEI IEMuCAP 

Training Set 1284 16326 2717 

Validation Set 229 1871 798 

Test set 686 4659 938 

A.2.2 Experimental Setup 845 

All models are constructed using the Pytorch 846 

framework, utilizing NVIDIA Tesla V100 GPUs 847 

and torch version 1.8.2. To facilitate a fair 848 

comparison, we re-implement the state-of-the-art 849 

(SuTA) approaches utilizing publicly accessible 850 

codebases and integrate them with our 851 

experimental frameworks. All experimental 852 

findings are averaged across numerous trials with 853 

five distinct random seeds. 854 
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The hyperparameters of our proposed model 855 

utilize the configurations outlined in (Zeng 856 

et.al,2022) as detailed in Table 2. The learning rate 857 

is established as 0.001, and the concealed size is 858 

designated as 300. We employed the Adam 859 

optimizer to reduce the overall loss function and 860 

enhance the proposed AUMDF. The duration is 861 

established at 20, and the loss weight is designated 862 

at 0.1. The batch size for the CMU-MuSI dataset 863 

is set at 35, while the other two are designated as 864 

32. 865 

Table 2: Hyperparameter settings of CUMDF 866 

Description Symbol Value 

Epoch 𝑏 20 

Dropout rate 𝑑 0.8 

Hidden size ℎ 300 

Learning rate 𝑙𝑟 0.001 

Drop ratio 𝑝 [0.1-0.7] 

Maximum language length 𝑚𝑙 25 

Maximum audio length 𝑚𝑎 150 

Maximum video length 𝑚𝑣 100 

Loss weights 𝜆1, 𝜆2, 𝜆3 0.1 

Early stop 𝑒𝑠 20 
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