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ABSTRACT

Graph diffusion models have shown promise in generating complex networks,
but they often suffer from two critical limitations: On the one hand, terminating
the forward diffusion in pure Gaussian noise graph erases the intrinsic structural
signatures of the original network, leading to sub-optimal generative outcomes.
On the other hand, the unconstrained diffusion trajectory progressively obliter-
ates topological characteristics, resulting in complete structural degradation. To
address these issues, we propose Null-Model-Guided Graph Diffusion (NMG-
GD), a principled framework with tailored designs for graph generation. First, we
claim that traditional isotropic priors (e.g., Gaussian or fully structured graphs)
distort salient topological features. Instead, we adopt a null-model distribution as
the forward diffusion endpoint, which explicitly preserves critical network statis-
tics such as degree sequences and clustering coefficients—ensuring global con-
sistency. Second, we derive a null-model-guided continuous-time stochastic dif-
ferential equation (SDE) and introduce the Position-enhanced Graph Score Net-
work (PGSN). PGSN ingests both continuous and quantized adjacencies, fusing
random-walk, shortest-path and null-model cues in a permutation-equivariant en-
coder,which can significantly elevates sample quality. Extensive experiments on
three public datasets (including social and biological networks) demonstrate that
NMG-GD achieves state-of-the-art performance. It shows the significant advan-
tages in structural similarity and generation efficiency.

1 INTRODUCTION

Graph generation has wide applications in various fields such as social networks (Davies & Ajmeri,
2022)), recommendation systems (Wu et al.| [2022)), rug synthesis (Yang et al., 2024b)), and protein
modeling (Liu et al.| [2023). Traditional methods for graph generation date back to random graph
models (Watts & Strogatz, |1998}; |Albert & Barabasi, [2002; |[Erdos & Rényil 2006), which capture
limited graph statistic properties. Recent deep graph generative models leverage neural networks to
directly learn graph structure distributions effectively. Prominent paradigms include models based
on variational autoencoders (VAE) (Kipf & Welling, 2016; |Simonovsky & Komodakis, 2018 [Liu
et al., [2019b), models based on generative adversarial networks (GAN) (Bojchevski et al.l 2018;
Cao & Kipf} [2022), models based on recurrent neural networks (RNN) (You et al.,2018)), flow-based
models (Zang & Wang| |2020; Shi et al.,[2020; Luo et al.}, 2021} [Liu et al.,|2019a), and autoregressive
models (Li et al., 2018 You et al., 2018}; [Liao et al., 20205 [Dai et al., 2020; (Chen et al., 2021]).

Diffusion models have emerged as a rapidly developing technique in computer vision and recently
achieved state-of-the-art performance in enhancing generative capabilities in the image domain (Cao
& Kipfl 2022} Yang et al.,[20244a). It gradually perturbs the data distribution during the forward diffu-
sion process and then learns to recover the data distribution from noise through the reverse diffusion
process. Motivated by the compelling generative performance of diffusion models, a growing body
of work has begun to adapt these techniques to graph data and derived graph diffusion models can
be categorized into two main types: discrete denoising diffusion models and continuous denoising
diffusion models. The core idea of discrete denoising diffusion models is to introduce noise via a
sequence of discrete graph edits, while continuous denoising diffusion models add Gaussian noise
to the node features and graph adjacency matrices. In the reverse generation phase, a graph neural
network is developed to predict the original clean graph from the noisy input.
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Despite promising results on some datasets, current graph diffusion models usually set the termi-
nal state to either an isotropic Gaussian graph or a fully structured one(complete graphs or empty
graphs), both erasing nontrivial topology: the Gaussian limit washes out degree and communities,
while the all-or-nothing densities (p = 1 or 0) clash with the sparse and (dis)assortative patterns
seen in real graphs. Thus, during reverse diffusion, the model must reinvent all higher-order statistics
from white noise or a trivial edge set, yielding over-smoothed, overly dense samples or disconnected
fragments that lack rich-club connectivity, disassortative hubs. In addition, existing studies predom-
inantly inject isotropic Gaussian noise at each diffusion step, entirely oblivious to any directional
preference. A handful of recent attempts replace this blind noise with locally directed perturba-
tions, regulating the process through myopic neighborhood constraints (Yang et al., 2023)). While
these constraints guarantee single-step plausibility, they offer no mechanism to explicitly steer the
terminal distribution, inevitably degrading graph-generation quality.

In this paper, we propose a Null-Model-Guided Graph Diffusion (NMG-GD), aiming to achieve
high-quality graph generation and efficient sampling. In the forward diffusion process, we employ
a stochastic differential equation (SDE) to characterize the evolution of graphs. By introducing
directional diffusion, we progressively perturb the graph structure, ultimately converging to a n-order
null model graph. It not only provides an intuitive theoretical foundation for the diffusion process,
but also offers crucial topological information for the subsequent reverse generation process. In the
reverse generation phase, we utilize reverse time SDEs to sample the original graph distribution from
the null model graph. To this end, we leverage an efficient position-enhanced graph score network
that extracts structural and positional cues from quantized graphs and fuses them with the continuous
adjacency matrix, thereby effectively capturing the dynamic evolution of graph topology.

To summarize, our work makes the following contributions:

e Leveraging the structured randomness of null-model graphs to overcome the limitations
of conventional diffusion priors serves. Null model graphs preserve critical topological
properties (e.g., degree distributions, connectivity) while randomising nonessential struc-
tural features. We propose adopting null model graphs as the terminal state of the diffusion
process, a design that explicitly embeds structural constraints into the diffusion trajectory.

e The design of directional noise enforces a global trajectory constraint, guiding the noise
to progressively align with the structured randomness of the null model during diffu-
sion—enabling more faithful capture of graph complexity and stochasticity. By prioritiz-
ing global optimality over local adjustments, our method overcomes the myopia of existing
strategies, laying a rigorous foundation for high-fidelity graph generation.

e We conduct extensive experiments and the results demonstrate that the proposed NMG-
GD outperforms state-of-the-art self-supervised methods and even supervised methods on
3 benchmark datasets. Additionally, we provide comprehensive ablation studies to gain a
deeper understanding of the mechanisms underlying NMG-GD.

2 RELATED WORK

In addition to the graph generation approaches mentioned before, we summarize the notable existing
literature on the construction of our framework.

2.1 DIFFUSION MODELS

Diffusion models have gained significant attention for their ability to generate high-quality data
samples, particularly in the domain of image generation (Song & Ermon), 2020} |Song et al., [2022;
Kingma et al., 2023} [Bao et al), [2022). The core concept of diffusion models is to progressively
corrupt a data sample with noise through a forward diffusion process and then learn to reconstruct
the original data through a reverse diffusion process (Sohl-Dickstein et al., 2015). This framework
has been extended to various applications, including representation learning in computer vision. For
example, Preechakul et al. (Preechakul et al.,2022)) introduced Diff-AE, which integrates an encoder
to capture high-level semantics and a conditional diffusion model that leverages these semantics as
input conditions. Abstreiter et al. (Mittal et al., 2021) enhanced the denoising score matching
framework to enable unsupervised representation learning.
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2.2  GRAPH GENERATIVE MODELS

Graph generative models were originally proposed to generate diverse graphs based on the structural
prior of target graph set (Miiller et alJ,[1995). Subsequent deep-learning approaches—including au-
toregressive GraphRNN (You et al., [2018), VAE-based GraphVAE (Kipf & Welling} 2016), GRAN
(Liao et al.,|2020) and flow-based Graph Flows (Liu et al.,|2019a)(Shi et al., 2020)—directly learn
the distribution of observed graph collections (Goodfellow et al., 2014} (Creswell et al.l 2018} |Gui
et al., 20205 [Li et al.l [2018; [Vahdat & Kautz, 2021). However, the limited capacity of these back-
bones yields unsatisfactory generation quality.

Consequently, several approaches have been proposed to develop diffusion models for the graph
domain (Niu et al.| 2020; |(Gnaneshwar et al., [2022} [Jo et al., 2022} |Vignac et al., 2023). BIGG (Dai
et al., 2020) is the state-of-the-art autoregressive tree-based model which adopts a binary tree data
structure to generate each edge and associates the set of edges with each node via a tree-structured
autoregressive model. EDP-GNN (Niu et al., 2020) is a permutation invariance approach for graph
generation via graph score matching and annealed Langevin dynamic sampling. GraphGDP (Huang
et al.| 2022)) generates new graphs by reversing the process with a position-enhanced score network
(PGSN) that equivariantly estimates scores from perturbed structure and position cues.Pard (Zhao
et al.,2024) is a permutation-invariant autoregressive diffusion model that decomposes graph gener-
ation into a sequence of block-wise enlargements governed by a shared discrete denoising diffusion
process. However, most existing models still adopt a Gaussian graph or a fully structured graph
as the terminal distribution, overlooking the intrinsic structural properties of networks and lead-
ing to sub-optimal generative outcomes. Although some studies recognize the distinction between
graphs and images and inject directional noise to guide the diffusion, they rely merely on local
constraints(Yang et al., [2023)), fail to control the final noise distribution, and thus cannot guarantee
global statistical accuracy. In contrast, in our proposed NMG-GD framework, we leverage global
constraints by setting the final distribution of the graph diffusion process to be the null model. Our
method achieves a globally optimal solution rather than just a locally optimal one. Through this
approach, we are able to generate high-quality graphs.

3 PRELIMINARIES

3.1 GRAPH DIFFUSION MODEL

Denoising diffusion model (Ho et al., |2020) is formulated as two Markov chains: a forward diffu-
sion process that injects noise until the data distribution nearly collapses to an isotropic Gaussian,
and a reverse denoising process that learns to iteratively restore the original data.

Formally, given an observed graph Gy ~ ¢(Gy), the forward chain progressively perturbs it into a
sequence of noisy graphs G1, Ga, ..., G via a fixed variance schedule 5, € (0,1):

Q(Gt | Gt—l) = N<Gt; v1- Bt Gi—1, ﬁtI) (D

Under the Markov assumption, the joint distribution conditioned on G factorizes as:

T
4(Gr,....Gr | Go) =[] _ a(Gt|Gin) @

With oy =1 — 3; and &y = Hizl «s, any intermediate graph can be sampled in closed form:

Gy =V Go+V1—ae, e~N(0,1) (3)

During training, a parameterized reverse transition py(Gi—1 | G¢) is optimised to minimize the
variational lower bound (VLB) on the negative log-likelihood:

T
Lvig = E, ZDKL(Q(Gt—l | Gt,Go) || po(Gi—1 | Gy)) 4

t=1



Under review as a conference paper at ICLR 2026

The discrete-time DDPM can be seamlessly transferred to a fully continuous formulation by treating
the noise schedule. The forward chain converges to an It6 stochastic differential equation (SDE):

Gy = f(Gy,t) dt + g(t) dw, 5)

where w; denotes a standard Wiener process, and the drift coefficients f(Gy,t) and diffusion co-
efficients g(t) are chosen to reproduce the noise schedule 3; in the continuum limit. Under the
variance-preserving (VP) prescription, for instance, one sets f(t) = —13(t) G, and g(t) = \/B(t).
The reverse denoising process similarly admits an SDE representation:

dGy = | f(Gy,t) — ¢°(t) Vlog pi(G) | dt + g(t) dwy (6)

where w; is a reverse Brownian motion in time and V slog p;(G) is the score function. The score
is approximated by a neural network €y(Gy,t) trained via the continuous analog of the DDPM
objective, resulting in a score-based generative model that continuously evolves from prior noise to
data.

3.2 NULL MODEL

In network science, it is strictly defined as a randomized graph structure with explicit topological
constraints (Vaa & Mii, [2022); the aim is to preserve core attributes—degree sequence, component
count, clustering, community partition—while maximally randomizing unconstrained wiring.The
most basic null model is the configuration model: it freezes the entire degree sequence and rewires
edges uniformly at random. This single constraint yields an ensemble whose deviations from the
original reveal nonrandom edge preferences such as degree correlations or community structure.

Let the original network be an undirected simple graph G = (V, E') with a degree sequence k =
(k1,...,kn), satisfying Zf;l k; = 2|M|. Create k; stubs for each node v;, yielding 2| M| stubs in
total; uniformly pair stubs and link the corresponding nodes to obtain the configuration model null
graph G. Repeat until no self-loops or multiple edges remain.

4 MODEL

In this section, we present the technical design of our proposed NMG-GD, accompanied by the
overall model architecture depicted in Figure[T}

Forward Diffusion Process
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Figure 1: We inject constrained null-model noise into the adjacency matrix via a continuous-time
SDE, yielding NMI adjacency matrices that terminate at the first-order null-model graph. The re-
verse SDE uses the score V4, log p:(A:). Lower-triangle evolution is shown in the figure.

We perturbing the original graph toward a first-order null model graphs can be achieved through a
continuous-time forward diffusion process described by an SDE. During the forward propagation
process, constrained null model noise is added to the adjacency matrix of the graph to obtain NMI
(Null Model Infused) Continuous Adjacency matrices, which gradually evolve into the terminal
diffusion distribution-the first-order null model graph. We can convert this SDE with the score of
the data distribution V4,log p;(A;) at each time t.
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Conventional graph diffusion models (Ho et al.,2020; Song et al.,2020) rely on sequentially adding
isotropic Gaussian noise, driving the terminal state toward the standard normal distribution N'(0, I).
However, this paradigm is ill-suited for graph data owing to their pronounced structural heterogene-
ity, power-law degree distributions, community structure, and higher-order motifs. Two key limita-
tions emerge: (1) Locality bias: Existing directed-diffusion approaches (Yang et al., 2023)) adjust the
noise direction only via batch-wise local moments, lacking an explicit global endpoint constraint.
(2) Endpoint mismatch: Graph generation differs fundamentally from image synthesis; enforcing a
fully structured graph as the terminal prior forcibly destroys salient topological properties such as
degree sequences and clustering coefficients, leading to premature semantic collapse.

Building on this, We propose a NMG-GD framework that steers the diffusion process toward a
null model distribution. Incorporating g,u(A) lets the model retain prescribed structural invari-
ants—e.g., degree sequences or edge-weight distributions—of the original graph, and we can switch
among zeroth-order, first-order or second-order null models as the task demands. Adopting this
null model as the terminal prior guides the diffusion to preserve key topological observables while
preventing excessive randomization.

4.1 NULL-MODEL-GUIDED CONTINUOUS DIFFUSION MODEL

We explicitly revise the standard DDPM Markov kernel as a null-model-guided transition kernel:

Ay =V Ao +V1I—a (e + 0 gun(4)), e~ N(0,I) (N

This reformulation relocates the terminal distribution of the diffusion process from an isotropic
Gaussian matrix to the manifold prescribed by a null model. As ¢ — T, the forward process
drives A7 toward the null-model distribution 7¢gy,1(A) rather than the conventional A/ (0, I). Con-
sequently, key graph statistics encoded in the null model—e.g., degree sequences, community
strengths, or spectral radius—are preserved throughout denoising, precluding catastrophic loss of
structural information.The term e continues to supply isotropic Gaussian perturbations, whereas
7 gnun(A) acts as an elastic restoring force that projects the sample toward the statistical manifold
of the null model. In the limits = 0 and n = 1 the process reduces, respectively, to the standard
DDPM and to direct resampling from the null model.

Via a second-order Taylor expansion, we continuously extend the discrete formulation and thereby
obtain its SDE representation.

We can decompose the given stochastic differential equation. Due to the limitation of space, the
derivation of Equation (8) is provided in Appendix A.2.

dA; = f(A,t)dt + g(t) dt (8)
where, the drift term is
f(At) = —%t) (At — 1 guun) )
the diffusion coefficient is
o(0) = V/FWE (1),/(6) ~ N (5 o, 1) (10)

In the limit 7' — oo the process converges to the stationary distribution A7 ~ g (A), ensuring
global consistency and a physically interpretable terminal state.

4.2 NULL-MODEL-GUIDED REVERSE PROPAGATION

Building upon the null-model-guided forward process in Equation (), the corresponding reverse
time SDE takes the explicit form. The derivation of Equation (11) is provided in Appendix A.3.

dA, = [F(A,1) = g*(t) ¥ alog pe(A) At] dt + ()= (t) b (1)
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where Vy4,log pi(A:) is the null-model-guided score function, which refines local structure and
effects controlled convergence from chaotic noise to the true graph distribution.

We directly use the Position-Enhanced Graph Score Network(PGSN) (Huang et al., 2022) as our
score estimator ~

B so(Ar, Ay, t) = Va,log pi(Ar) (12)
where A; is a quantized graph obtained by thresholding or reparameterizing the continuous adja-
cency matrix, thereby reconciling the inherent tension between discrete graph data and the contin-
uous SDE framework. PGSN is permutation-equivariant, guaranteeing the invariance required for
graph isomorphism.

PGSN takes as input the continuous perturbed adjacency matrix A; and internally computes its
discrete counterpart A; via thresholding. Node degrees are encoded into one-hot vectors to capture
low-order statistics. For each node, an r-step random-walk landing-probability vector is computed,
resulting in the Random Walk Structural Encoding (RWSE) that reflects global reachability. These
features are projected and processed through a series of message-passing Graph Neural Network
(GNN) layers. At each layer, edge embeddings are refined by fusing incident node representations
with the corresponding RWSE and Shortest-Path-Distance (SPD) encodings.It outputs an edge-level
score sg( Ay, Ay, t) that is permutation-equivariant.

4.3 LoOSS FUNCTION

The loss function is a critical component in the training process, as it directly influences the model’s
ability to learn from the data and generalize to unseen examples.

Since the graphs are undirected, we only manipulate the lower triangular part of the adjacency matrix
and then perform symmetrization to obtain the complete symmetric adjacency matrix.

According to the definition of the forward diffusion process (refer to Equation (8)), combined with
the property of affine drift coefficients, the perturbation kernel po;(A¢|Ag) (i.e., the marginal distri-
bution of graph A; at time ¢ with respect to the initial graph A) for the null model-guided diffusion
is expressed as follows:

First, the basic form of the perturbation kernel without the null model is provided:

pOt(At‘AO) — N <Ata Aoe_% fot /B(S)dS’I _ Ie_ fot B(S)ds) (13)

The perturbation kernel with the null model incorporated is

Pot(At|Ag) = N(At; Age 3o Bl)ds o - 3 Js ﬁ(sms)qnu“(Ao), [ T JoAls)ds
(14)

Here, ¢,un(Ao) denotes the null model constructed based on the initial graph A (e.g., the configura-
tion model preserving the node degree sequence), and 7 € [0, 1] is the null model weight parameter,
which adjusts the influence of the null model on the mean of the diffusion process. The derivation
of Equation (14) is provided in Appendix A.4.

Using the aforementioned perturbation kernel, we can perturb the initial graph, without the need
to execute the forward diffusion process step-by-step. While the forward diffusion process directly
operates on the distribution of continuous-domain adjacency matrices, it also implicitly defines a
corresponding transformation on the discrete-domain graph distribution: by simply quantizing the
continuously sampled A (setting a discretization threshold of 0.3 for edge values), we can convert
it into a discrete graph A;. As diffusion proceeds, the structural signals specific to the original graph
are gradually erased, yet the core topological constraints encoded in g (Ag)—such as the node
degree sequence -level statistical properties—remain preserved.

Finally, the training objective of the model is defined as follows.

min Et{)\(t) Ea, Ea,ja, [ l|so(As, Ay, t) — Va 1ng0t(At|A0)Hﬂ } (15)

Here, 6 denotes the parameters of the score network sg(-), Va logpo:(A¢|Ay) is the gradient of
the log-probability of the perturbation kernel with respect to A (i.e., the analytical score function),
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and A(t) is a time-varying weight coefficient used to balance the training contribution of different
diffusion time steps.

5 EXPERIMENTS

In this section, we empirically demonstrate the power of the proposed NMG-GD in the task of graph
generation.

5.1 DATASETS

We evaluate our graph generative model across four diverse graph datasets, which differ in terms of
graph scale and attributes.

1) Community-small:Comprises 100 community graphs where 12 < |V| < 20. These graphs
are composed of two equally sized communities, each generated via the Erd§s-Rényi model
(E-R) (Erd6s & Rényi,|{1960) with p = 0.7.

2) Ego-small: Involves 200 one-hop ego graphs where 4 < |V| < 18, sourced from the
Citeseer network (Sen et al.,|2008)). Here, nodes correspond to documents and edges signify
citation relationships.

3) Enzymes: Includes 563 protein graphs where 10 < |V| < 125, selected from the BRENDA
database (Schomburg et al., 2004).

We further partition the datasets into training and test sets at a ratio of 8:2. The validation set
is derived from the initial 20% of the training graphs. When assessing model performance on
Community-small and Ego-small, we produce 1024 graph samples in accordance with (Liu et al.,
2019a)) and (Niu et al.,2020) to achieve more robust evaluation outcomes for small graphs. For the
Enzymes datasets, we generate a number of graphs equivalent to the size of the test set.

5.2 EVALUATION METRICS

Assessing and comparing graph generative models presents a significant challenge. We employ two
types of metrics to conduct a thorough evaluation of the quality of graph generation.

1) Classical Structure Metrics: The widely-used evaluation metrics are based on Maximum
Mean Discrepancy (MMD) measures to assess the distance between the distributions of
the generated graph set S, and the test set S; (Liu et al., 2019a; |You et al., 2018} [Liao
et al., |2020; Dai et al., [2020; |Chen et al.| 2021} |[N1u et al.,[2020). We employ three graph-
level structure descriptor functions, which are described in (You et al., 2018} [Liao et al.|
2020), including the degree distribution, the clustering coefficient distribution and the
Laplacian spectrum histograms. We adopt the Total-Variation (TV) kernel as an efficient
and valid Mercer-like kernel. This formulation replaces the conventional Euclidean distance
with an anisotropic measure that penalizes jumps along coordinate directions, thereby re-
taining sharp transitions while still furnishing a smooth similarity score.

2) Neural-network-based Metrics: Thompson et al.(Thompson et al., 2022) introduce several
random GIN-based metrics for graph generative model evaluation, as the pre-existing struc-
ture metrics fail to capture the diversity of graph samples. The graph representations are
extracted by random-initialized GIN (Xu et al.,2018), where MMD (i.e., MMD computed
with the TV kernel), F1 PR (i.e., the harmonic mean of improved precision and recall) and
F1 DC (i.e., the harmonic mean of density and coverage) are built.

For Classical Structural Metrics, the smaller the value, the better the performance of the generated
graph. The specific metrics include: degree distribution (Deg.), clustering coefficient distribution
(Clus.), and spectrum of graph Laplacian (Spec.). Additionally, lower average values of three MMD
metrics (Avg.) indicate closer alignment between generated and reference distributions, thus better
performance. For Neural-Network-Based Measures, MMD (the smaller the value, the better), F1
PR and F1 DC (the closer the value is to 1, the better) are used to evaluate the performance. The top
cell in each column is marked in bold according to its rank.
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5.3 BASELINES

We compare the performance of our models against other graph generative models including ER
(Erdos & Rényil 2006), VGAE (Kipf & Welling, 2016)), GraphRNN (You et al.| [2018), GRAN
(Liao et al, [2020), GraphRNN-U (the random-order GraphRNN) and GRAN-U (the random-order
GRAN), EDP-GNN (Niu et al.,2020), BIGG (Dai et al.,|2020), GraphGDP (Huang et al., 2022) and
Pard (Zhao et al ., |2024).

5.4 GRAPH GENERATION QUALITY

In the forward SDE, we fix Bpin = 0.1, select Bnax € {5, 10,20}, and set = 0.1. All samples are
subsequently refined via Langevin-corrected dynamics.

Table 1: Comparison of performance of graph generation models with classical structural metrics.

Community-small Ego-small Enzymes
[V‘mux =20, IE‘max =62 ‘V‘max =17, ‘Elmax = 66 |V|max = 125, ‘Elmax =149
[V]ave = 15, |Elave ~ 36 [V]ave = 6, |Elave = 9 [V ]avg = 33, |Elayg = 63
Deg. Clus. Spec. Avg. Deg. Clus. Spec. Avg. Deg. Clus. Spec. Avg.
GraphRNN 0.106 0.115 0.091 0.104 0.155 0.229 0.167 0.184 0397 0302 0.260 0.320
GRAN 0.125 0.164 0.111 0.133 0.096 0.072 0.095 0.088 0215 0.147 0.034 0.132
BIGG 0.041 0.073 0.050 0.055 0.024 0.029 0.028 0.027 0.020 0.019 0.019 0.019
ER 0.300 0.239 0.100 0.213 0.200 0.094 0.361 0.218 0.844 0.381 0.104 0.443
VGAE 0.391 0257 0.095 0.248 0.146 0.046 0.249 0.147 0.811 0.514 0.153 0.493
GraphRNN-U  0.410 0.297 0.103 0.270 0471 0416 0.398 0.429 0932 1.000 0.367 0.766
GRAN-U 0.106 0.127 0.083 0.106 0.155 0.229 0.167 0.184 0.343 0.122 0.041 0.169

EDP-GNN 0.100 0.140 0.085 0.108 0.026 0.032 0.037 0.032 0.120 0.644 0.070 0.278
GraphGDP 0.039 0.074 0.052 0.055 0.023  0.029 0.030 0.027 0.023  0.025 0.019 0.022
Pard 0.023 0.071 0.186 0.093 0.037 0.091 0.032 0.053 0.008 0.026 0.013 0.016

NMG-GD 0.037  0.047 0.043 0.042 0.021  0.024 0.021 0.022 0.023 0.029 0.019 0.023

Table 2: Comparison of performance of graph generation models with neural-network-based mea-
sures.

Community-small Enzymes
MMD ({) F1 PR (1) F1 DC (1) MMD (1) F1 PR (1) F1 DC (1)
GraphRNN 0.353+£0.088 0.252+0.183 0.407£0.171 1.495+0.037 0.000+ 0.000  0.000+ 0.000
GRAN 0.196 +0.014 0.824+0.141 0.793£0.099 0.069 +£0.008 0.915+0.035 0.738 +£0.027
BIGG 0.052+0.003 0.135+0.087 1.048£0.035 0.019£0.000 0.964+0.008 0.966 +0.012
ER 0278 £0.046  0.363+0.201 0.335£0.096 0.808 £0.065 0.046£0.030 0.019 +0.005
VGAE 0.360 £ 0.065 0.292+0.165 0.292+0.113 0.716 £0.033 0.012£0.016 0.002 = 0.003
GraphRNN-U 0970 £0.113  0.066 £0.043  0.079 £0.003  1.263 £0.177  0.000 £ 0.000  0.000 £ 0.000
GRAN-U 0.164 +0.016 0.859+0.082 0.888+0.053 0.242+0.033 0.671+0.056 0.364 +0.024

EDP-GNN 0.125+0.004 0913+0.108 0.977+0.044 0.119£0.010 0.954+0.012 0.846 +0.020
GraphGDP 0.066 +0.012 0.656+0.138 1.042+0.014 0.026 £0.001 0.974£0.005 0.932 +0.015
Pard 0.165 +£0.021  0.790 £ 0.030 0.475+0.073 0.053+0.005 0.952+0.023 0.883 +0.049

NMG-GD 0.065 £ 0.011 0.692+0.115 1.029 £ 0.054 0.020 £ 0.002 0.979 £0.006 0.933 + 0.014

We summarize the key observations after evaluating the proposed NMG-GD for graph generation.
(1) Among all competitive baseline models, our method achieves a marked improvement in both
convergence stability and generation fidelity. (2) Compared with conventional methods such as
GraphRNN, graph diffusion models demonstrate superior performance across both classical and
neural-network-based metrics. (3) Relative to existing graph diffusion models, the proposed NMG-
GD model achieves remarkable performance gains by incorporating direction noise with global con-
straints and by refining the terminal state.

Figure 2] illustrates the reverse generation process of two exemplar instances of NMG-GD. In the
early stages of generation, the model produces a graph that approximates the first-order null model
of the original. As the number of iterations increases, the generated graph retains progressively
more structural characteristics (e.g., community structure) and thereby closely approximates the
distribution of the original graph.
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reverse generation
Original graph 100 200 400

(a)

Original graph 100 200 400

(b)

Figure 2: Graph visualization of different steps in the generative diffusion processes on Community-
small (a-b).

5.5 ABLATION STUDY AND PARAMETER SENSITIVITY ANALYSIS

To validate the effectiveness of the design for NMG-GD, we compare it with its variants using gen-
erative diffusion processes on the Community-small dataset. All models are trained with a unified
configuration of 64 hidden dimensions and 4 million training steps.

NMG-GD-
Variant

~ Deg.
NMG-GD &

Clus.

0.06 ~ Spec.

Deg. Clus. Spec.

(@) (b)

Figure 3: (a) Ablation Study; (b) Parameter Sensitivity Analysis w.r.t. 7).

The dynamics of NMG-GD are described by Equation (8). The variant of NMG-GD evolves ac-
cording to
B(t)

—T(At — N qnun) dt + v/ B(t) dw (16)

As evidenced by the results, NMG-GD consistently surpasses this variant across all metrics, thereby
confirming the effectiveness of the proposed design.

dA; =

To identify the optimal parameter 7), we conducted a parameter sensitivity analysis experiment on
the Community-small dataset over 3 x 10 training iterations. The outcomes are summarised in the
accompanying Figure [3(b). We can find that the optimal value of ) varies under different evaluation
metrics.

6 CONCLUSIONS

In this work, we elevate the diffusion terminus from Gaussian graph or fully structural graph to a
first-order null-model graph, substituting global statistical constraints for local directional perturba-
tions. The resulting null-model-guided stochastic differential equation (SDE) yields a terminal state
that retains essential structural information. This paradigm shift endows continuous-time graph dif-
fusion with both theoretical transparency and enhanced sample quality. Extending the framework to
attributed or temporal graphs, constitutes an immediate direction for future research.
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A APPENDIX

A.1 DDPM FORWARD KERNEL

In diffusion models, given a sample Ay ~ q(A), the forward process progressively adds Gaussian
noise 7' times, yielding x1, s, ..., z7r. The magnitude of each perturbation is governed by a se-
quence of variance hyper-parameters [3;. Because each time step depends only on its immediate
predecessor, the chain is Markovian.

Let 3, denote the variance scheduled at step ¢. As ¢ increases, x; converges toward pure noise; in
the limit ¢t — oo it becomes standard Gaussian. The conditional transition can therefore be written

q(Ay | Aiq) (Aﬁ V1=B A 17@1) (17)
After reparameterized sampling, g(A4; | A—1) = (At; V1—06A_q, BtI) can be written as:
Ay =g A1+ /Beer,  e~N(0,I). (18)

where oy = 1 — §; with 8; € (0,1).

A.2 DERIVATION OF EQUATION (8)

We wish the terminal distribution to be a null model graph; consequently, the discrete-time update
is

AtZ\/OétAt_1—|—\/1—Olt (€+77qnu11(A)), €NN(O,I) (19)
To move from discrete steps to a continuous-time formulation, we introduce the continuous limit.
Ay =At+ %), Ai1=AQ1), e-1=ct), Bi=+Bt+7) (20)

so that the single-step update becomes
At + At) = /1 — B(t + At)At A(t Bt + At)AL? (e(t) + 1 gaun(A)) 1)
Using the Taylor expansiony/1 —z ~ 1 — Z:

B(t+ At)

At + At) ~ [1_ 5

At} A(t) + /Bt + DOAL (e(t) + 7 gan(A))  (22)

A(t+ At) — A(t)

~ —Mm At) + v/ B(E+ AAL e(t) + v/ B(E + AAL 7 gun (A)
~ OB 44) + VBAP (1) + VBOSE 1 g () 9

dA(t) ﬂ( ) dt + \/ dt + \/ 77 Qnull 24)

Collecting drift terms gives the final guided forward SDE

dA(t) = =2 (A(t) — 7 gaun(A))dt + /B(2) (e(t) + nqnuu(A))dt 25)

Let E/(t) =e(t) + %77 Gnunn (A).

Since (t) ~ N(0,I), the combined noise term is distributed as
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1
£/0) ~ N (1 dwa(4).1) 26)

Introducing the shorthand A, for the guided process we obtain
1
dA(t) = - (A(t) —-n qnuu(A))dt + /B )dt, £ (t) ~ N(annulh I) (27)

We hereby redefine f(A,t) and g(¢) as follows:

£(a.1) = =29 (40) ~ ngun(4)), -
o(t) = VBD /(1)

A.3 DERIVATION OF EQUATION (11)

We now derive the reverse transition (A; | Ai+a¢). Starting from the Bayes decomposition

q(At717At)AO)
q(AthO)
q(As | Ar—1) q(As—1 | Ao) q(Ao)

Q(Atfl | Aton) =

= (29)
q(A¢ | Ao) q(Ao)
_ q(Ay | Ar—1) q(As—1 | Ao)
q(A¢ | Ao)
we write the continuous analogue as
q(Avrar | Ar) q(Ayr) (30)
q(Airar)
The explicit expressions of the factors in Equation (29) are presented below.
1 Avpne — Ay — fA DAL — 31 gaun(A) g7 (At)?
A Ay) = ——exp| — z .31
q(Avyae | Ar) \/ﬂgtﬁt XP( 2gt2At2 (3D
q(Ae)
————— =exp(log q(A;) — log q(A 32
TAra) p(log g(A¢) — log g(Arrar)) (32)

Performing a Taylor expansion on log q(A;ya¢):

log p(Assat) =log p(Ar) + (Aryar — Ar)Valog p(Aryar) + (t+ At — )V log p(Aring) + - -
(33)

Hence Equation (32) becomes
eXp((—At+At + At)VA logp(At+At)) (34)

Collecting exponents and completing the square gives the Gaussian reverse kernel

2
. 1 (At+At — Ay — f(A )AL — %77 QHull(A)gtAt)
E e — _
quation TN eXp( 262\t
(35)
x exp| — (Apyas — Ar)Va lzgp(At-‘rAt) ) 29t2At2
2g7 At?
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We now analyze the quadratic form in the exponential factor:

1
Q= —W [At - (At+At —(f(At) + %77 G (A)g: — QEVA IOgP(AHAt)At)Atﬂ ? (36)
t

to highlight the mean and variance of the reverse transition. The resulting update is

Ay = Apyne — (f(A, t) + %7] nut(A)ge — 97V 4 IOgP(AHAt)At) At + giyatAte (37)
or equivalently

Ay — Appar = (f(A, t)+ %7} Goun (A) gt — QEVA IOgP(AtJrAt)At) At — giyatAte (38)
Re-expressed as a forward difference (At > 0) we obtain

Aviar — A = (FIA ) + 3ngun(A)ge — 97 Valog p(Arpae) At) At + gipniAte. (39)

Taking the limit At — dt gives the reverse time SDE
dAy = [F(A) = () Valog pe(A) At dt + g(1)e/ (1) db e’ ~ N (3ngun(4),1)  (40)

A.4 DERIVATION OF EQUATION (14)

The basic form of the perturbation kernel without the null model is:

pOt(At‘AO) :N (AtQAOB_% f()t ﬁ(S)dS,I _ Ie_ fot ﬁ(s)ds) (41)

From Equation (8], we proceed to derive its mean and variance.

The mean E[A(t)] satisfies the following deterministic differential equation:

dE[A(t)] _@(}E[A(t)} — 1gnun (A)) 42

dt 2
This is a first-order linear ordinary differential equation, which can be written in the standard form:
dy
o TPy =Q() 43)

where y = E[A(t)], P(t) = @, and Q(¢t) = @nqnuu(/l).

According to the solution method for first-order linear ordinary differential equations, the solution
is given by:

y(t) = e~ S PO (/ Q(t)el PWatgs 1 C) (44)
Substituting P(t) and Q(t) into the equation, we obtain:
E[A(t)] = e~ % Jo P()ds ( t @U%uu(z‘l)e% Jo plwdugg 4 C) (45)
Assuming the initial condition E[A(0)] = Az, we have C' = Ag — ngnun(A). Therefore:
E[A(1)] = ngnun(A) + (Ao — ndan(4)) e~ Jo 5 (46)

Compared to the VP-SDE, we have not altered the variance, hence it remains as:

I—Te JoBs)ds (47)
Therefore, the mean and variance are as follows:
e = A06*% Jo Bls)ds 77(1 _e 3l B(S)dS)Qnull(Ao), S, =1-Te" Jo B(s)ds (48)
The perturbation kernel with the null model incorporated is:

pot(A¢|Ag) = N(At; Age 2l A 4 (I - el B(S)ds)qHull(AO)» I-Te JoA)ds
(49)
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