Thoughts Are All Over the Place: On the Underthinking of Long Reasoning Models

Yue Wang 1,* Qiuzhi Liu 2,* Jiahao Xu 2,* Tian Liang 2,* Xingyu Chen 2,3,* Zhiwei He 2,3,* Linfeng Song 2 Dian Yu 2 Juntao Li 1 Zhuosheng Zhang 3 Rui Wang 3 Zhaopeng Tu 2,† Haitao Mi 2 Dong Yu 2

¹Soochow University ²Tencent ³Shanghai Jiao Tong University

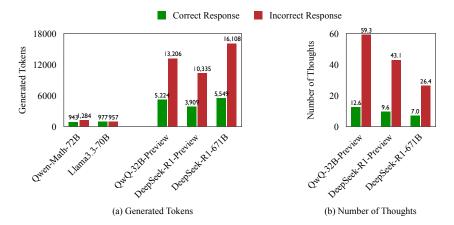


Figure 1: Illustration of the **underthinking issue** on the challenging AIME2024 testset: In LRMs (e.g., QwQ-32B-Preview and DeepSeek-R1-671B), incorrect answers often switch reasoning strategies more frequently than correct ones (Figure b), leading to longer responses without improved accuracy (Figure a). In contrast, conventional LLMs (e.g., Qwen-Math-72B and Llama3.3-70B) show no significant difference in response length between incorrect and correct answers.

Abstract

Long reasoning models (LRMs) such as OpenAI's o1 and DeepSeek's R1 have demonstrated remarkable abilities in complex reasoning tasks by scaling test-time compute and exhibiting human-like deep thinking. However, we identify a phenomenon we term **underthinking**, where LRMs frequently switch between different reasoning thoughts without sufficiently exploring promising paths to reach a correct solution. This behavior leads to inadequate depth of reasoning and decreased performance, particularly on challenging mathematical problems. To systematically analyze this issue, we conduct experiments on three challenging test sets and two representative open-source LRMs, revealing that frequent thought switching correlates with incorrect responses. We introduce a novel metric to quantify underthinking by measuring token efficiency in incorrect answers. To address underthinking, we propose a decoding strategy with thought switching penalty (TIP) that discourages premature transitions between thoughts, encouraging deeper exploration of each reasoning path. Experimental results demonstrate that our approach improves accuracy across challenging datasets without requiring model fine-tuning.

^{*}Equal Contribution. The work was done when Yue, Xingyu and Zhiwei were interning at Tencent.

[†]Correspondence to: Zhaopeng Tu <zptu@tencent.com>

Our findings contribute to understanding reasoning inefficiencies in LRMs and offer a practical solution to enhance their problem-solving capabilities. Our code is open-source and available at https://github.com/wangyuenlp/underthinking.

1 Introduction

Long reasoning models (LRMs) (OpenAI, 2024; DeepSeek, 2025; Qwen, 2024; Kimi, 2025) have revolutionized artificial intelligence by enabling models to tackle increasingly complex tasks. LRMs, known for their deep reasoning capabilities, exemplify the potential of large language models (LLMs) to exhibit human-like deep thinking by scaling test-time computation during problem-solving. These models aim to explore diverse reasoning strategies, reflect on their decisions, and iteratively refine solutions, closely mimicking human cognitive processes.

Despite their successes, a critical yet underexplored question remains: Are long reasoning models thinking deeply enough? This study provides an initial exploration of this problem. In this work, we investigate a phenomenon we term underthinking, which refers to the tendency of LRMs to prematurely abandon promising lines of reasoning, leading to inadequate depth of thought. To systematically analyze underthinking, we conduct experiments on three challenging test sets (e.g., MATH500, GPQA Diamond, and AIME2024) and two open-source LRMs with visible long chains of thought (e.g., QwQ-32B-Preview and DeepSeek-R1-671B). Through extensive analyses, we found that underthinking manifests in the following patterns: (1) it occurs more frequently on harder problems, (2) it leads to frequent switching between different thoughts without reaching a conclusion in each, and (3) it correlates with incorrect responses due to insufficient exploration of reasoning paths. For example, Figure 1 compares the token usage and number of thoughts of correct and incorrect responses. On average, LRMs consume 225% more tokens in incorrect responses than in correct ones due to 418% more frequent thought-switching behaviors.

To quantify this phenomenon, we introduce a novel *underthinking metric* that measures token efficiency in incorrect responses by evaluating the proportion of the response that contributes to reaching correct thoughts. Combining the widely-used accuracy metric with the proposed underthinking metric provides a more comprehensive assessment of LRMs models: accuracy measures how often the model can produce *correct responses*, while the underthinking metric evaluates the token efficiency within *incorrect responses* that contributes to reaching correct thoughts.

In response to these findings, we propose a decoding strategy with thought switching penalty (TIP) that discourages premature transitions between thoughts during the generation process. By adjusting decoding penalties for tokens associated with thought switching, the model is encouraged to thoroughly develop each line of reasoning before considering alternatives. Experimental results show that employing TIP improves accuracy across challenging test sets without requiring additional model fine-tuning.

Our study makes the following contributions:

- We formally define and characterize the underthinking issue in long reasoning models, where models frequently abandon promising reasoning paths prematurely, leading to inadequate depth of reasoning on challenging problems.
- 2. We introduce a novel metric to evaluate underthinking by measuring token efficiency in incorrect responses, providing a quantitative framework to assess reasoning inefficiencies.
- 3. We propose a decoding approach with thought switching penalty (TIP) that encourages models to deeply explore each reasoning thought before switching, improving accuracy without additional model fine-tuning.

2 Observing Underthinking Issues

In this section, we present a comprehensive analysis of outputs from LRMs on *challenging math problems*. We begin by illustrating the frequent thinking switch phenomenon observed in responses to these problems, as shown in Figure 2, highlighting how this behavior differs significantly between correct and incorrect answers (Section 2.1). We then show that this phenomenon leads to an inadequate depth of reasoning, causing models to *abandon promising reasoning paths prematurely* (Section 2.2).

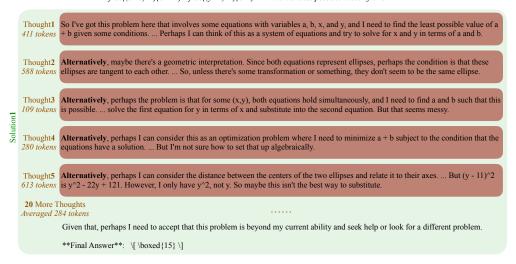


Figure 2: An example of underthinking issue for QwQ-32B-Preview's output that consists of 25 reasoning thoughts within a single solution. The final correct answer for this example is 23. Thoughts #1,3,4,5 are promising and can lead to the correct answer if explored sufficiently. As intermediate cognitive steps, reasoning thoughts typically does not engage in thorough deduction to get a answer.

Based on this observation, we propose a metric to empirically assess the underthinking issues and present empirical results in Section 2.3. We conclude that *LRMs often underthink when they fail to tackle challenging math problems*.

2.1 Frequent Thinking Switch of LRMs

We conduct experiments on three widely-used challenging testsets: **MATH500** (Hendrycks et al., 2021), **GPQA Diamond** (Rein et al., 2023), and **AIME 2022-2024** (MAA Committees). We mainly investigate two widely recognized open-source LRMs featuring visible long CoT: QwQ-32B-Preview and DeepSeek-R1-671B. We also include DeepSeek-R1-Preview to show the development of R1 series models. Given DeepSeek-R1-Preview's daily message limit of 50 via web interface, we evaluated this model solely on the MATH500 and AIME test sets.

Definition of Reasoning Thoughts In this paper, we define *thoughts* as the intermediate cognitive steps within a reasoning solution produced by the model. LRMs often switch reasoning thoughts using terms like "alternatively". For instance, as shown in Figure 2, the problem-solving process involves multiple reasoning thoughts, shifting from algebraic manipulation to geometric interpretation and optimization strategies. The ability to switch between different reasoning strategies allows for a broader exploration of potential solutions and demonstrates the flexibility of the model in tackling complex problems. In this study, we provide a comprehensive analysis of the side effects associated with this ability to switch reasoning thoughts.

We utilize the Llama-3.3-70B model to automatically segment a response into reasoning thoughts due to its superior capabilities in both instruction following and mathematical reasoning. Initially, we manually analyzed responses from the QwQ-32B-Preview model to gather expressions indicative of shifts in thought. We then tasked the Llama-3.3-70B model with scanning the entire response to identify all occurrences of such expressions. Furthermore, we asked the model to determine whether these expressions truly signify a change in thought or merely reflect a stylistic pattern in the response. Only the expressions indicating a genuine thought shift were used as separators for reasoning processes.

LRMs Switch Thinking More Frequently on Harder Problems Figure 3 shows the averaged thoughts and tokens in generated responses across various difficulty levels in the MATH500 test set. Clearly, all models generate more reasoning thoughts with the increase of difficulty level, which is

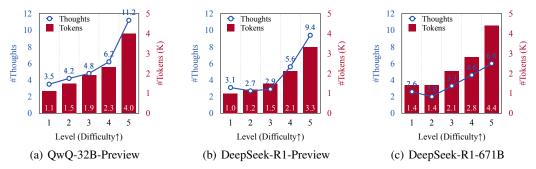


Figure 3: Average number of thoughts and tokens across different difficulty levels on MATH500.

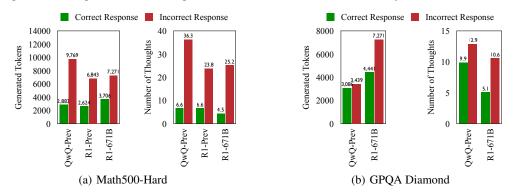


Figure 4: LRMs switch thinking more frequently on incorrect responses, thus expend more tokens without contributing to accuracy.

consistent with the growth of generated tokens. This observation suggests that as the complexity of the problems increases, the models tend to switch thoughts more frequently. This behavior implies that LRMs are able to dynamically adjust their reasoning processes to tackle more challenging problems. The following experiments focus on Level 5 in the MATH500 test set (MATH500-Hard).

Increased Thought Switching in LRMs during Incorrect Responses When examining the behavior of LRMs, we observe a distinct pattern in how they handle incorrect responses. As depicted in Figures 1 and 4, these models exhibit a significant increase in the frequency of thought switching while generating incorrect answers across all test sets. This trend suggests that although the models are designed to dynamically adjust their cognitive processes to solve problems, more frequent thought switching does not necessarily lead to higher accuracy. Essentially, the models may be expending additional computational resources – evidenced by an increase in generated tokens – without achieving more accurate solutions. These insights are crucial because they highlight the need not only to explore additional cognitive pathways when faced with challenges but also to operate in a more targeted and efficient manner, thereby improving accuracy even when complex reasoning is required. In the following sections, we empirically validate the inefficiencies associated with frequent thought switching in incorrect responses.

2.2 Existence of Underthinking

The behavior of frequent thinking switch in incorrect responses could stem either from (1) genuine underthinking, where the model succeeds in finding promising strategies but fails to stick with them, or from (2) a lack of understanding, prompting it to explore diverse but ineffective approaches. To disentangle these possibilities, we propose an assessment framework that evaluates whether an abandoned reasoning path is actually sufficient to derive a correct answer. By focusing on whether the model can persistently follow and deepen a single, promising line of thought, we can identify instances of underthinking.

Assessing Thought Correctness In the example presented in Figure 2, we observe that some early thoughts may lead to the correct answer. For instance, Thought 1 initiates a correct interpretation

by recognizing that the given equations resemble those of ellipses centered at (0,0) and (20,11). Setting the two expressions equal is a valid approach to finding common points (x,y) that satisfy both equations. Instead of concentrating on thoroughly exploring the plausible thought with further algebraic manipulation and optimization techniques, the model frequently shifts its focus and uses approximately 7,270 additional tokens without arriving at a correct answer. Ultimately, it concludes with a guessed answer that lacks support from the extended COT process.

We leverage LLMs to assess whether each thought leads to a correct answer using the prompt detailed in Appendix A.Specifically, we use two models distilled from DeepSeek-R1-671B based on Llama and Qwen – DeepSeek-R1-Distill-Llama-70B and DeepSeek-R1-Distill-Qwen-32B, which achieve new state-of-the-art results for dense models across various reasoning benchmarks. If at least one model generates a confidence score of 2 for a thought, we regard it as a correct thought.

We evaluate the accuracy of our assessment approach using responses generated by Qwen-32B-Preview for 90 instances from the AIME 22-24 test sets. We utilize the final thought in each response as the test example and its correctness as the ground-truth label. To ensure a fair comparison, we randomly streamline correct thoughts to match the average length of incorrect thoughts. Ultimately, we have 35 correct thoughts with an average length of 278.1 tokens and 55 incorrect thoughts with an average length of 278.3 tokens. Our assessment approach achieves accuracies of **82.9**% for correct examples and **81.8**% for incorrect examples, demonstrating its effectiveness.

Early-Stage Thoughts Are Correct but Abandoned in Incorrect Responses Figure 5 depicts the ratio of correct thoughts at each index in incorrect responses on the three challenging test sets. The analysis highlights a critical insight into the phenomenon of underthinking. Specifically, a notable proportion of initial thoughts across various models were correct but were not pursued to completion. This tendency to abruptly shift away from these promising thoughts indicates an inadequate depth of reasoning, where potentially correct solutions are prematurely abandoned before being thoroughly explored. This observation suggests a need for enhancing the models' ability to persistently explore a specific

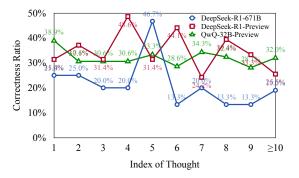


Figure 5: The ratio of correct reasoning thoughts at each index in incorrect responses.

models' ability to persistently explore a specific line of reasoning deeply and accurately before opting to switch to alternative thought processes.

Most Incorrect Responses Contain Correct Thoughts Figure 6 plots the thought correctness ratios in incorrect responses from various models. We observe that over 70% of incorrect responses contain at least one correct thought. Furthermore, in more than 50% of these responses, over 10% of the thoughts are correct. Combined with observations from Figure 5, this suggests that while LRMs can initiate correct reasoning pathways, they may struggle to continue these pathways to reach the correct conclusion. This highlights the importance of encouraging models to maintain and expand their initial correct thoughts to synthesize them into accurate final answers.

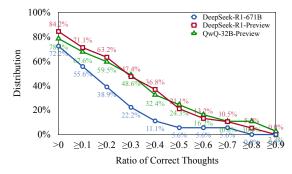


Figure 6: The distribution of thought correctness ratio in incorrect responses.

These insights lead us to propose an underthinking metric based on the presence of the first correct thought in the subsequent section.

2.3 Empirical Underthinking Results

In this section, we propose a metric for empirically assessing underthinking issues based on token efficiency, complementing the widely used accuracy metric.

Underthinking Metric Intuitively, if a model generates a correct thought at an early stage and then switches to other thoughts without reaching a correct answer, the tokens generated thereafter do not contribute to reaching a correct solution and are considered inefficient due to underthinking. The underthinking score, denoted as ξ_{UT} , is defined as:

$$\xi_{UT} = \frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{\hat{T}_i}{T_i} \right) \tag{1}$$

Here, N represents the number of instances in a given test set where the evaluated model generates incorrect responses. T_i is the total number of tokens in the i-th incorrect response, and \hat{T}_i is the number of tokens from the beginning of that response up to and including the first correct thought. If there is no correct thought in the i-th response, $\hat{T}_i = T_i$, indicating that the model lacks an understanding of this problem, leading it to explore diverse but ineffective approaches. Therefore, it cannot be considered underthinking. Consider Figure 2 as an example: the first reasoning thought can reach a correct answer if fully explored, with $\hat{T} = 411$. Consequently, $\xi_{UT} = 1 - \frac{411}{7681} = 0.946$, which can be considered extremely inefficient, reflecting a high underthinking score.

The metric ξ_{UT} complements the accuracy metric by quantifying the extent of underthinking by measuring the token efficiency in generating effective content within **an incorrect response**:

- A lower value of ξ_{UT} indicates higher token efficiency, meaning that a greater proportion of tokens in incorrect responses contribute towards reaching a correct thought before switching to another thought. This suggests that the model is more efficient in its token utilization even when it fails to provide a correct answer.
- A higher value of ξ_{UT} signifies lower token efficiency, indicating that a larger number of tokens do not contribute effectively towards generating a correct thought. This reflects greater underthinking, where the model generates redundant or irrelevant tokens by frequently switching thoughts.

Empirical Results Table 1 provides insights into model performance across challenging test sets, evaluating both accuracy and underthinking (UT) scores. Clearly, all LRMs suffer from significant underthinking issues, although there are considerable differences across models and test sets. The results reveals that the relationship between model accuracy and underthinking varies across different datasets. On the MATH500-Hard and GPQA Diamond datasets, higher accuracy achieved by the superior DeepSeek-R1-671B model is accompanied by higher UT Scores, indicating more underthinking in incorrect responses.

Table 1: Underthinking scores on challenging testsets.

Models	$Accuracy(\uparrow)$	UT Score (↓)				
MATH500-Hard (Level 5)						
QwQ-32B-Preview	84.3	58.2				
DeepSeek-R1-Preview	83.6	61.5				
DeepSeek-R1-671B	92.5	65.4				
GPQA Diamond						
QwQ-32B-Preview	59.6	48.3				
DeepSeek-R1-671B	73.2	58.8				
AIME2024						
QwQ-32B-Preview	46.7	65.0				
DeepSeek-R1-Preview	46.7	75.7				
DeepSeek-R1-671B	73.3	37.0				

This suggests that while the model is more capable overall, it may produce longer but less effective reasoning when uncertain, possibly due to exploring multiple incorrect reasoning paths without efficiently converging on the correct solution. Conversely, on the AIME2024 test set, the DeepSeek-R1-671B model not only attains higher accuracy but also exhibits a lower UT score, reflecting less underthinking and greater token efficiency. This implies that the model's reasoning remains focused and effective even when it does not arrive at the correct answer, perhaps due to better alignment with the problem types and reasoning processes required by the AIME2024 task.

These findings illustrate that underthinking behavior is sensitive to the nature of the dataset and the tasks involved. The larger model's superior capabilities do not uniformly translate to less

Table 2: Underthinking scores of Qwen3 Family on AIME24. We report the average number of thought-switching tokens (\hat{V} in Equation 3.1) and the average interval between them.

Models	Accuracy (†)				Switching Tokens		Weighted
1VIOUCIS	Pass@1	Pass@4	Pass@8	Pass@16	Number	Interval	$UT\ Score\ (\downarrow)$
Qwen3-4B	65.6	79.5	81.6	83.3	27.6	372.1	$15.0_{\pm 18.5}$
Qwen3-8B	64.6	78.0	81.6	83.3	20.3	561.4	$16.8_{\pm 20.6}$
Qwen3-14B	70.8	82.3	86.6	90.0	18.2	506.6	$13.4_{\pm 20.1}$
Qwen3-32B	73.8	87.5	90.0	93.3	13.7	681.3	$10.6_{\pm 14.5}$

underthinking across all tasks. In some cases, increased model capacity leads to more elaborate but inefficient reasoning in incorrect responses, while in others, it enhances both accuracy and reasoning efficiency. Understanding the underthinking phenomenon is crucial for developing models that not only provide correct answers but also exhibit effective reasoning processes.

Furthermore, due to different training strategies, models across different families may differ fundamentally: some reach correctness intuitively (low UT score), while others do so through iterative refinement (higher UT score). Since both approaches can achieve high accuracy, this observation explains the weak correlation between UT score and accuracy shown in Table 1. Nevertheless, within specific model families, UT scores show a clearer correlation with accuracy. This trend may result from similar training strategies that reduce behavioral variance, as supported by the results in Table 2. Within the Qwen3 family, for instance, we observed a clear trend where the severity of underthinking decreases as model size increases.

3 Mitigating Underthinking Issues

In this section, we propose a lightweight mechanism that mitigates underthinking issues without requiring any model fine-tuning.

3.1 Decoding with Thought Switching Penalty

Aforementioned findings show that LRMs prioritize exploring many solutions over deeply investigating one. Inspired by the success of the coverage penalty in neural machine translation (Tu et al., 2016; Wu et al., 2016), we propose a novel decoding algorithm with a *thought switching penalty* to encourage the model to explore potential thoughts more thoroughly before moving on to new ones.

Standard Decoding In standard decoding, the probability of each token v at position t is computed using the softmax function over the logits $\mathbf{z}_t \in \mathbb{R}^{|V|}$ (|V| is the vocabulary size) in the output layer:

$$P(x_t = v | x_{< t}) = \frac{\exp(z_{t,v})}{\sum_{v' \in V} \exp(z_{t,v'})}$$

where $z_{t,v} \in \mathbf{z}_t$ is the logit for token v. By repeating this step for each position in the sequence, the model generates sequences of tokens, computing probabilities for each possible continuation.

Thought Switching Penalty (TIP) To encourage the model to delve deeper into current thoughts before switching, we introduce a penalty on tokens that are associated with thought transitions. A key consideration in designing this penalty is to distinguish between unproductive, rapid thought-switching and deliberate, strategic shifts in reasoning (e.g., backtracking) (Gandhi et al., 2025). Therefore, TIP is designed to be selective: it specifically targets and penalizes thought-switching tokens only when they appear with high frequency within a recent context, a pattern indicative of shallow exploration. This ensures that isolated or intentional shifts in thought remain unpenalized, preserving the model's ability to employ effective complex reasoning strategies like backward chaining. Let $\widehat{V} \subset V$ be the set of tokens associated with thought switching (e.g., "alternatively"). We modify the logits as follows:

$$\hat{z}_{t,v} = \begin{cases} z_{t,v} - \alpha, & \text{if } v \in \widehat{V} \text{ and } t < \Psi + \beta \\ z_{t,v}, & \text{otherwise} \end{cases}$$

Table 3: Pass@k performance of the proposed TIP method. We report the average number of thought-switching tokens (\hat{V} in Equation 3.1) and the average interval between them in the generated samples.

Models	Accuracy (↑)				Switching Tokens		Weighted		
Wides	Pass@1	Pass@4	Pass@8	Pass@16	Number	Interval	UT Score (↓)		
MATH500-Hard (Level 5)									
QwQ-32B-Preview	83.1	92.4	94.4	95.8	12.6	445.6	$11.7_{\pm 20.5}$		
+ TIP	83.7	93.2	95.3	96.4	5.7	517.6	$11.0_{\pm 19.5}$		
R1-Distill-Qwen-32B	88.3	94.5	96.1	97.0	-6.7	$-79\bar{2}.\bar{5}$	$3.3_{\pm 8.8}$		
+ TIP	89.4	94.6	96.1	97.0	2.7	964.0	$3.0_{\pm 8.5}$		
GPQA Diamond									
QwQ-32B-Preview	57.6	78.5	85.3	90.3	21.1	356.8	$25.1_{\pm 23.9}$		
+ TIP	59.1	78.9	85.8	91.2	7.3	432.5	$23.2_{\pm 23.2}$		
R1-Distill-Qwen-32B	61.6	78.1	83.6	86.9	13.4	-548.6	$-22.3_{\pm 25.0}$		
+ TIP	61.7	80.2	86.6	90.4	4.6	747.1	$23.1_{\pm 25.3}$		
AIME2024									
QwQ-32B-Preview	38.3	53.7	58.5	62.7	16.1	459.7	$40.6_{\pm 28.4}$		
+ TIP	44.1	61.6	68.3	74.0	13.9	515.7	$35.8_{\pm 27.8}$		
R1-Distill-Qwen-32B	61.4	75.9	79.1	81.7	$ \bar{8}.\bar{2}$	-819.5	$19.6_{\pm 20.6}$		
+ TIP	64.1	79.0	81.7	83.0	4.5	1018.0	$17.7_{\pm 20.6}$		
DeepSeek-R1	73.8	86.2	88.8	89.8	13.8	$-580.\overline{1}$	$14.6_{\pm 19.1}$		
+ TIP	74.8	86.4	88.8	89.8	5.7	941.6	$13.0_{\pm 18.0}$		

where

- $\alpha \geq 0$ (*Penalty Strength*) is a parameter controlling the strength of the penalty applied to thought-switching tokens. A larger α results in a greater reduction of the logits for these tokens, making them less likely to be chosen.
- $\beta \geq 0$ (*Penalty Duration*) specifies the number of positions from the start of a thought at Ψ , during which the penalty is active. A larger β extends the penalty over more positions, further discouraging early thought switching.

When $\alpha=0$ or $\beta=0$, the penalty is effectively disabled, and the decoding process reduces to the standard decoding algorithm. The adjusted logits $\hat{z}_{t,v}$ reduce the probability of generating thought-switching tokens within a specified window, encouraging the model to continue expanding on the current thought before moving on. The new probability distribution becomes:

$$\hat{P}(x_t = v \mid x_{< t}) = \frac{\exp(\hat{z}_{t,v})}{\sum_{v' \in V} \exp(\hat{z}_{t,v'})}$$

3.2 Experimental Results

For reliable evaluation, we report Pass@1 computed from 32 samples per problem with a temperature of 0.7 and a top_p value of 0.95. We tuned $\alpha \in \{3, 5, 10, 20, 30\}$ and $\beta \in \{300, 400, 500, 600, 700\}$ on the AIME 2022-2023 development set using QwQ-32B-Preview, selecting the best pair $\alpha = 3, \beta = 600$ for all models and benchmarks. Please refer Appendix B.2 for more details.

Standard Decoding Table 3 shows that our TIP method consistently improves performance in all cases by mitigating the underthinking issues. On AIME-24, Pass@1 improves by 5.8% on QwQ-32B-Preview, 2.7% on R1-Distill-Qwen, and 1.0% on DeepSeek-R1, while the underthinking (UT) score drops across the board. Observing the indicators, we see fewer thought-switching tokens and larger intervals when using TIP, confirming that our method encourages models to explore individual reasoning paths more thoroughly and mitigates underthinking. For example, when applying TIP to DeepSeek-R1 on AIME2024, the average thought-switching tokens decreased (13.8 \rightarrow 5.7), and the average interval between switches increased (580.1 \rightarrow 941.6). These changes reflect fewer premature transitions, resulting in a more focused and human-like exploration of reasoning paths.

Table 4: Results of TIP for best-of-N sampling on AIME2024. We conducted 10,000 trials by randomly sampling from the 32 samples and reported the average results. "(Averaged)" denotes the average performance over 32 samples.

Models	4 San	nples	8 Samples		16 Samples	
1,104015	Acc.(†)	UT (↓)	Acc.(†)	UT (↓)	Acc.(†)	UT (↓)
QwQ (Averaged)	38.4	40.5	38.3	40.6	38.3	40.6
+ TIP (Averaged)	44.1	35.8	44.0	35.9	44.0	35.9
QwQ + Self-Consistency	43.7	35.4	44.3	34.0	44.6	31.9
+ TIP	51.4	26.6	53.4	24.3	53.9	24.1
QwQ + Laconic Decoding	47.0	28.2	47.0	25.5	45.1	24.0
+ TIP	50.3	26.7	51.6	23.3	50.9	20.8
R1-Distill-Qwen (Averaged)	61.4	19.2	61.3	19.2	61.3	19.1
+ TIP (Averaged)	64.1	17.8	64.0	17.7	64.1	17.7
R1-Distill-Qwen + Self-Consistency	67.0	13.4	- 6 7 . 8	<u>1</u> 1.4	68.9	8.9
+ TIP	69.9	12.5	71.4	11.0	72.3	9.1
R1-Distill-Qwen + Laconic Decoding	71.1	11.3	74.4	8.7	77.5	7.4
+ TIP	75.4	9.8	78.0	7.3	77.9	6.5
R1 (Averaged)	73.9	14.5	73.7	14.6	73.8	14.5
+ TIP (Averaged)	74.8	13.0	74.8	12.9	74.8	13.0
R1 + Self-Consistency	79.3	10.1	79.8	9.8	79.7	9.5
+ TIP	81.3	7.5	82.2	6.4	82.1	5.8
R1 + Laconic Decoding	81.4	8.1	82.6	6.2	83.2	5.1
+ TIP	83.1	7.4	83.8	6.6	83.3	6.7

Best-of-N Sampling To further assess TIP, we combined it with two widely used best-of-N sampling methods: (1) **Self-Consistency** (Wang et al., 2023), selecting the most consistent answer from multiple samples; (2) **Laconic Decoding** (Raoof & Dimakis, 2025), selecting the shortest of multiple generated answers, based on the observation that correct responses often have fewer tokens.

Table 4 indicates that using TIP consistently boosts accuracy across all model-method combinations. For instance, applying TIP to Self-Consistency with QwQ-32B-Preview (4-sample setting) significantly raises accuracy (43.7% \rightarrow 51.4%) and reduces UT scores (35.4 \rightarrow 26.6). Similarly, combining Laconic Decoding with TIP yields consistent gains, particularly pronounced for stronger models (e.g., R1-Distill-Qwen: 74.4% \rightarrow 78.0% at 8 samples). These results clearly demonstrate that the TIP method successfully complements existing sampling strategies, encouraging more thorough reasoning and reliably mitigating underthinking issues in challenging mathematical reasoning scenarios.

Overall, the TIP approach represents a significant step toward addressing the underthinking problem in LRMs. Although the hyperparameters are tuned on the AIME 2022 and 2023 test sets using the QwQ-32B-Preview model, the consistent improvements observed across various test sets and models with the same hyperparameters validate the generalizability of the method. Our findings also suggest that the TIP method synergizes well with best-of-N sampling strategies, leading to further improvements in accuracy and reductions in underthinking scores. This indicates that encouraging more thorough exploration of individual reasoning paths complements the diversity introduced by sampling methods.

4 Related Work

Scaling Test-Time Compute Recent advancements in deep reasoning models, such as OpenAI's o1, have emphasized scaling test-time compute to improve complex problem-solving capabilities. One approach focuses on **expanding the search space** by considering multiple candidate solutions during decoding, exemplified by self-consistency (Wang et al., 2023), best-of-n decoding, and minimum Bayes risk decoding (Lightman et al., 2024; Li et al., 2023; Khanov et al., 2024; Heineman et al., 2024; Wu et al., 2024). Another influential direction involves promoting **human-like deep thinking**, beginning with Chain-of-Thought (Wei et al., 2022), where models mimic human reasoning

processes (Cesista, 2024; Pfau et al., 2024). Recent models, such as QwQ (Qwen, 2024), DeepSeek-R1 (DeepSeek, 2025), and Kimi-1.5 (Kimi, 2025), leverage reinforcement learning (RL) to enable strategic, reflective reasoning and improve accuracy in complex tasks.

Efficient Thinking Efficient reasoning matters as much for language reasoning models (LRMs) as it does for human cognition. Models sometimes suffer **overthinking**, wasting resources on trivial paths (Chen et al., 2024). In contrast, we focus on the less-explored issue of **underthinking**, where models prematurely abandon promising reasoning directions, limiting performance on challenging problems. Along this direction, recent research has begun exploring methods to enhance reasoning efficiency. For instance, Laconic decoding implements shortest-of-n decoding strategies to minimize error-prone lengthy responses (Raoof & Dimakis, 2025), while Muennighoff et al. (2025) propose techniques to optimize test-time computation through dynamic termination signals.

Manipulating Decoding Penalties Penalty mechanisms in NLP decoding have become increasingly relevant to addressing shortcomings in traditional search methods. Length normalization penalties (Jean et al., 2015; Koehn & Knowles, 2017; Tu et al., 2017; Murray & Chiang, 2018) encourage appropriate translation lengths, improving fluency and adequacy. Additionally, coverage penalties (Tu et al., 2016; Wu et al., 2016) reduce textual redundancies by ensuring comprehensive attention over source tokens. See et al. (2017) also applied these ideas to summarization tasks. In this work, we introduce specific decoding penalties to mitigate underthinking, prompting models to sustain deeper reflection rather than superficial or frequent strategy shifts. To our knowledge, we are the first to investigate decoding penalties to address the underthinking problem.

5 Conclusion

In this work, we identified underthinking as a key limitation for LRMs performing challenging reasoning tasks, highlighting how premature abandonment of promising paths reduces efficiency and accuracy. We developed a new metric to quantify underthinking based on token efficiency in incorrect responses, and introduced a decoding strategy – thought switching penalty (TIP) – to encourage deeper exploration before shifting reasoning directions. Empirical evaluations show that TIP significantly reduces underthinking and improves performance on difficult reasoning benchmarks, without requiring additional model training.

This work contributes to a deeper understanding of reasoning processes in LRMs and provides a practical approach to align their problem-solving capabilities. Future directions include exploring adaptive mechanisms within models to self-regulate thought transitions and further improving reasoning efficiency.

References

- Cesista, F. L. Multimodal structured generation: Cvpr's 2nd mmfm challenge technical report. arXiv preprint arXiv:2406.11403, 2024.
- Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song, L., Liu, Q., Zhou, M., Zhang, Z., Wang, R., Tu, Z., Mi, H., and Yu, D. Do not think that much for 2+3=? on the overthinking of o1-like llms, 2024. URL https://arxiv.org/abs/2412.21187.
- DeepSeek. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. 2025. URL https://api.semanticscholar.org/CorpusID:275789950.
- Gandhi, K., Chakravarthy, A., Singh, A., Lile, N., and Goodman, N. D. Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv* preprint *arXiv*:2503.01307, 2025.
- He, C., Luo, R., Bai, Y., Hu, S., Thai, Z., Shen, J., Hu, J., Han, X., Huang, Y., Zhang, Y., et al. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3828–3850, 2024.

- Heineman, D., Dou, Y., and Xu, W. Improving minimum bayes risk decoding with multi-prompt. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 22525–22545, 2024.
- Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J. Measuring mathematical problem solving with the MATH dataset. In *NeurIPS*, 2021.
- Hong, W., Yu, W., Gu, X., Wang, G., Gan, G., Tang, H., Cheng, J., Qi, J., Ji, J., Pan, L., et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.
- Jean, S., Firat, O., Cho, K., Memisevic, R., and Bengio, Y. Montreal neural machine translation systems for wmt'15. In *Proceedings of the tenth workshop on statistical machine translation*, pp. 134–140, 2015.
- Khanov, M., Burapacheep, J., and Li, Y. Args: Alignment as reward-guided search. In *The Twelfth International Conference on Learning Representations*, 2024.
- Kimi. Kimi k1.5: Scaling reinforcement learning with llms. 2025.
- Koehn, P. and Knowles, R. Six challenges for neural machine translation. In *Proceedings of the First Workshop on Neural Machine Translation*, pp. 28–39, 2017.
- Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., and Chen, W. Making language models better reasoners with step-aware verifier. In Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5315–5333, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.291. URL https://aclanthology.org/2023.acl-long.291.
- Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and Cobbe, K. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=v8L0pN6E0i.
- MAA Committees. Aime problems and solutions. https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.
- Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L., Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E., and Hashimoto, T. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
- Murray, K. and Chiang, D. Correcting length bias in neural machine translation. In *Proceedings of the Third Conference on Machine Translation: Research Papers*, pp. 212–223, 2018.
- OpenAI. Learning to reason with llms. https://openai.com/index/learning-to-reason-with-llms, 2024.
- Pfau, J., Merrill, W., and Bowman, S. R. Let's think dot by dot: Hidden computation in transformer language models. *arXiv preprint arXiv:2404.15758*, 2024.
- Qwen. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL https://qwenlm.github.io/blog/qwq-32b-preview/.
- Raoof, N. and Dimakis, A. Laconic decoding. https://x.com/AlexGDimakis/status/1885447830120362099, February 2025.
- Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y., Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A graduate-level google-proof q&a benchmark. *arXiv preprint arXiv:2311.12022*, 2023.
- See, A., Liu, P. J., and Manning, C. D. Get to the point: Summarization with pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1073–1083, 2017.

- Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. Modeling coverage for neural machine translation. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 76–85, 2016.
- Tu, Z., Liu, Y., Shang, L., Liu, X., and Li, H. Neural machine translation with reconstruction. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 31, 2017.
- Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=1PL1NIMMrw.
- Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837, 2022.
- Wu, I., Fernandes, P., Bertsch, A., Kim, S., Pakazad, S., and Neubig, G. Better instruction-following through minimum bayes risk. *arXiv preprint arXiv:2410.02902*, 2024.
- Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J. Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. *arXiv*, 2016.
- Xiaomi, L.-C.-T. Mimo-vl technical report, 2025. URL https://arxiv.org/abs/2506.03569.

A Assessing Thought Correctness

In the example presented in Figure 2, we observe that some early thoughts may lead to the correct answer. For instance, Thought 1 initiates a correct interpretation by recognizing that the given equations resemble those of ellipses centered at (0,0) and (20,11). Setting the two expressions equal is a valid approach to finding common points (x,y) that satisfy both equations. Instead of concentrating on thoroughly exploring the plausible thought with further algebraic manipulation and optimization techniques, the model frequently shifts its focus and uses approximately 7,270 additional tokens without arriving at a correct answer. Ultimately, it concludes with a guessed answer that lacks support from the extended COT process.

We leverage LLMs to assess whether each thought leads to a correct answer using the following prompt:

Problem P = {problem} Solution Draft S = {split solutions} Correct Answer A = {expected answer}

- 1. Please analyze the relevance between the solution S and the problem P, and conduct some verifications to check the correctness of the solution itself. Please think step by step to give an explanation **EXPLANATION**.
- 2. If you think the solution draft S can lead to the correct answer A of the problem P, please stick to the line of thinking without deviation and carry it through to completion. If you think it cannot yield the correct answer or you're not sure, don't force yourself to give an answer and generate **None**.
- 3. Please tell me honestly how confident you are that you can solve the problem P correctly based on the the solution draft S. Out of 2, please generate your confidence score **CONFIDENT_SCORE**.

Please output **EXPLANATION** and **CONFIDENT_SCORE** according to the following format:

EXPLANATION: \boxed{}
CONFIDENT_SCORE: \boxed{}

Specifically, we use two models distilled from DeepSeek-R1-671B based on Llama and Qwen – *DeepSeek-R1-Distill-Llama-70B* and *DeepSeek-R1-Distill-Qwen-32B*, which achieve new state-of-the-art results for dense models across various reasoning benchmarks. If at least one model generates a confidence score of 2 for a thought, we regard it as a correct thought.

We evaluate the accuracy of our assessment approach using responses generated by Qwen-32B-Preview for 90 instances from the AIME 2022, 2023, and 2024 test sets. We utilize the final thought in each response as the test example and its correctness as the ground-truth label. To ensure a fair comparison, we randomly streamline correct thoughts to match the average length of incorrect thoughts. Ultimately, we have 35 correct thoughts with an average length of 278.1 tokens and 55 incorrect thoughts with an average length of 278.3 tokens. Our assessment approach achieves accuracies of 82.9% for correct examples and 81.8% for incorrect examples, demonstrating its effectiveness.

B Experimental Details of TIP

B.1 Selection of Thought-Switching Tokens

A key component of our TIP decoding strategy is the use of a predefined set of thought-switching tokens that signal a potential switch in the reasoning path. The selection of these tokens is treated as a task-specific hyperparameter. For our experiments, they were chosen empirically based on a qualitative analysis of common thought-switching patterns observed in the model's outputs. Specifically, we select alternative and messy as thought-switching tokens in our implementation. This approach provides a simple yet effective mechanism that can be adapted to different tasks or model behaviors without extensive tuning. Besides, since LLM tokenizers can split a single word into

Table 5: Accuracy on AIME2022-23 with respect to different values of α and β .

Pas	ss@1	α			
Acc	uracy	3	5	10	20
	300	35.2	37.0	39.0	39.4
	400	39.3	37.1	37.1	38.4
β	500	38.5	38.7	39.1	39.2
	600	39.8	39.4	38.0	38.0
	700	37.1	39.4	39.0	38.3

multiple subword tokens, the switching penalty is applied exclusively to the first subword token of a designated thought-switching word.

B.2 Grid Search of α and β

To ensure robust conclusions, we report Pass@1 results computed from 32 samples per instance. We calculate the weighted underthinking score for each instance over its 32 samples:

$$\xi_{wUT} = \frac{1}{32} \sum_{i=1}^{32} \xi_{UT}(s_i) \tag{2}$$

where s_i is the *i*-th sample of the instance, and $\xi_{UT}(s_i) = 0$ when s_i is correct.

By adjusting α and β , we can control the model's behavior to achieve the desired level of thought exploration. We performed a grid search with α values in [3,5,10,20,30] and β values in [300,400,500,600,700] using a development set that included the AIME 2022 and 2023 test sets. Table 5 lists the impact of varying the penalty strength α and penalty duration β on the model's accuracy. We observe that increasing the penalty strength α generally leads to an improvement in accuracy up to a certain threshold, after which the benefits plateau or even diminish. Adjusting the penalty duration β also significantly affects performance: At a lower penalty strength ($\alpha = 3$), increasing β from 300 to 600 results in accuracy gains from 35.2% to 39.8%, the highest observed accuracy in our experiment. Conversely, at higher penalty strengths ($\alpha = 20$), extending β beyond 300 leads to a decrease in accuracy, indicating that too long a penalty duration can hinder performance when combined with a strong penalty. We selected $\alpha = 3$ and $\beta = 600$ for our subsequent experiments.

C Generalization to Multimodal Reasoning

To investigate if underthinking extends beyond text-only domains, we evaluated two vision-language models, GLM-4.1V-Thinking (Hong et al., 2025) and MiMo-VL-7B-RL (Xiaomi, 2025), on the OE_MM_maths_en_COMP subset of

Table 6: Underthinking scores on challenging testsets.

Models	$Accuracy(\uparrow)$	UT Score (\downarrow)
MiMo-VL-7B-RL	56.7	4.8
GLM-4.1V-Thinking	58.7	17.1

OlympiadBench (He et al., 2024). This benchmark contains competition-level mathematics problems that require synthesizing information from both text and images. As shown in Table 6, both models exhibit underthinking. This finding leads to two implications: first, our framework can be adapted to analyse multimodal reasoning, and second, it suggests that underthinking is a general reasoning failure not confined to a single modality.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: In this paper, we define the underthinking issue in long reasoning models, introduce a novel metric and propose a decoding approach with thought switching penalty. Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 2.3, we claim that underthinking behavior is sensitive to the nature of the dataset and the tasks involved. The larger model's superior capabilities do not uniformly translate to less underthinking across all tasks, which needs further exploration.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We elaborated in detail on the implementation details of the proposed metric and decode strategy.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We will make our code publicly available soon.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have provided a detailed description of the backbone model used in the experiment, the generation details, and the hyperparameter grid search result of TIP.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present the pass@k results for various backbone models.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We report related information in appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: In this paper, we adhere strictly to the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational research and not tied to particular applications.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: In this paper, no data or models were released.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have complied with the license for using the dataset.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.