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Figure 1: Illustration of the underthinking issue on the challenging AIME2024 testset: In LRMs (e.g.,
QwQ-32B-Preview and DeepSeek-R1-671B), incorrect answers often switch reasoning strategies
more frequently than correct ones (Figure b), leading to longer responses without improved accuracy
(Figure a). In contrast, conventional LLMs (e.g., Qwen-Math-72B and Llama3.3-70B) show no
significant difference in response length between incorrect and correct answers.

Abstract

Long reasoning models (LRMs) such as OpenAI’s o1 and DeepSeek’s R1 have
demonstrated remarkable abilities in complex reasoning tasks by scaling test-
time compute and exhibiting human-like deep thinking. However, we identify a
phenomenon we term underthinking, where LRMs frequently switch between
different reasoning thoughts without sufficiently exploring promising paths to
reach a correct solution. This behavior leads to inadequate depth of reasoning and
decreased performance, particularly on challenging mathematical problems. To
systematically analyze this issue, we conduct experiments on three challenging
test sets and two representative open-source LRMs, revealing that frequent thought
switching correlates with incorrect responses. We introduce a novel metric to quan-
tify underthinking by measuring token efficiency in incorrect answers. To address
underthinking, we propose a decoding strategy with thought switching penalty (TIP)
that discourages premature transitions between thoughts, encouraging deeper explo-
ration of each reasoning path. Experimental results demonstrate that our approach
improves accuracy across challenging datasets without requiring model fine-tuning.
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Our findings contribute to understanding reasoning inefficiencies in LRMs and offer
a practical solution to enhance their problem-solving capabilities. Our code is open-
source and available at https://github.com/wangyuenlp/underthinking.

1 Introduction

Long reasoning models (LRMs) (OpenAI, 2024; DeepSeek, 2025; Qwen, 2024; Kimi, 2025) have
revolutionized artificial intelligence by enabling models to tackle increasingly complex tasks. LRMs,
known for their deep reasoning capabilities, exemplify the potential of large language models (LLMs)
to exhibit human-like deep thinking by scaling test-time computation during problem-solving. These
models aim to explore diverse reasoning strategies, reflect on their decisions, and iteratively refine
solutions, closely mimicking human cognitive processes.

Despite their successes, a critical yet underexplored question remains: Are long reasoning models
thinking deeply enough? This study provides an initial exploration of this problem. In this work,
we investigate a phenomenon we term underthinking, which refers to the tendency of LRMs to
prematurely abandon promising lines of reasoning, leading to inadequate depth of thought. To
systematically analyze underthinking, we conduct experiments on three challenging test sets (e.g.,
MATH500, GPQA Diamond, and AIME2024) and two open-source LRMs with visible long chains
of thought (e.g., QwQ-32B-Preview and DeepSeek-R1-671B). Through extensive analyses, we found
that underthinking manifests in the following patterns: (1) it occurs more frequently on harder
problems, (2) it leads to frequent switching between different thoughts without reaching a conclusion
in each, and (3) it correlates with incorrect responses due to insufficient exploration of reasoning
paths. For example, Figure 1 compares the token usage and number of thoughts of correct and
incorrect responses. On average, LRMs consume 225% more tokens in incorrect responses than in
correct ones due to 418% more frequent thought-switching behaviors.

To quantify this phenomenon, we introduce a novel underthinking metric that measures token effi-
ciency in incorrect responses by evaluating the proportion of the response that contributes to reaching
correct thoughts. Combining the widely-used accuracy metric with the proposed underthinking metric
provides a more comprehensive assessment of LRMs models: accuracy measures how often the
model can produce correct responses, while the underthinking metric evaluates the token efficiency
within incorrect responses that contributes to reaching correct thoughts.

In response to these findings, we propose a decoding strategy with thought switching penalty
(TIP) that discourages premature transitions between thoughts during the generation process. By
adjusting decoding penalties for tokens associated with thought switching, the model is encouraged
to thoroughly develop each line of reasoning before considering alternatives. Experimental results
show that employing TIP improves accuracy across challenging test sets without requiring additional
model fine-tuning.

Our study makes the following contributions:

1. We formally define and characterize the underthinking issue in long reasoning models, where
models frequently abandon promising reasoning paths prematurely, leading to inadequate depth of
reasoning on challenging problems.

2. We introduce a novel metric to evaluate underthinking by measuring token efficiency in incorrect
responses, providing a quantitative framework to assess reasoning inefficiencies.

3. We propose a decoding approach with thought switching penalty (TIP) that encourages models to
deeply explore each reasoning thought before switching, improving accuracy without additional
model fine-tuning.

2 Observing Underthinking Issues

In this section, we present a comprehensive analysis of outputs from LRMs on challenging math
problems. We begin by illustrating the frequent thinking switch phenomenon observed in responses
to these problems, as shown in Figure 2, highlighting how this behavior differs significantly between
correct and incorrect answers (Section 2.1). We then show that this phenomenon leads to an inadequate
depth of reasoning, causing models to abandon promising reasoning paths prematurely (Section 2.2).
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Let a, b, x, and y be real numbers with a>4 and b>1 such that \frac{x^2}{a^2}+\frac{y^2}{a^2-16}
=\frac{(x-20)^2}{b^2-1}+\frac{(y-11)^2}{b^2}=1. Find the least possible value of a+b.

So I've got this problem here that involves some equations with variables a, b, x, and y, and I need to find the least possible value of a 
+ b given some conditions. ... Perhaps I can think of this as a system of equations and try to solve for x and y in terms of a and b.

Thought1 
411 tokens

Alternatively, maybe there's a geometric interpretation. Since both equations represent ellipses, perhaps the condition is that these 
ellipses are tangent to each other. ... So, unless there's some transformation or something, they don't seem to be the same ellipse.

Thought2 
588 tokens

Alternatively, perhaps the problem is that for some (x,y), both equations hold simultaneously, and I need to find a and b such that this 
is possible. ... solve the first equation for y in terms of x and substitute into the second equation. But that seems messy.

Thought3 
109 tokens

Alternatively, perhaps I can consider this as an optimization problem where I need to minimize a + b subject to the condition that the 
equations have a solution. ... But I'm not sure how to set that up algebraically. 

Thought4 
280 tokens

Alternatively, perhaps I can consider the distance between the centers of the two ellipses and relate it to their axes. ... But (y - 11)^2 
is y^2 - 22y + 121. However, I only have y^2, not y. So maybe this isn't the best way to substitute.

Thought5 
613 tokens

……

Given that, perhaps I need to accept that this problem is beyond my current ability and seek help or look for a different problem. 

**Final Answer**:   \[ \boxed{15} \]

Q: 

20 More Thoughts 
Averaged 284 tokens

Figure 2: An example of underthinking issue for QwQ-32B-Preview’s output that consists of 25
reasoning thoughts within a single solution. The final correct answer for this example is 23. Thoughts
#1,3,4,5 are promising and can lead to the correct answer if explored sufficiently. As intermediate
cognitive steps, reasoning thoughts typically does not engage in thorough deduction to get a answer.

Based on this observation, we propose a metric to empirically assess the underthinking issues and
present empirical results in Section 2.3. We conclude that LRMs often underthink when they fail to
tackle challenging math problems.

2.1 Frequent Thinking Switch of LRMs

We conduct experiments on three widely-used challenging testsets: MATH500 (Hendrycks et al.,
2021), GPQA Diamond (Rein et al., 2023), and AIME 2022-2024 (MAA Committees). We mainly
investigate two widely recognized open-source LRMs featuring visible long CoT: QwQ-32B-Preview
and DeepSeek-R1-671B. We also include DeepSeek-R1-Preview to show the development of R1
series models. Given DeepSeek-R1-Preview’s daily message limit of 50 via web interface, we
evaluated this model solely on the MATH500 and AIME test sets.

Definition of Reasoning Thoughts In this paper, we define thoughts as the intermediate cognitive
steps within a reasoning solution produced by the model. LRMs often switch reasoning thoughts
using terms like “alternatively”. For instance, as shown in Figure 2, the problem-solving process
involves multiple reasoning thoughts, shifting from algebraic manipulation to geometric interpretation
and optimization strategies. The ability to switch between different reasoning strategies allows for a
broader exploration of potential solutions and demonstrates the flexibility of the model in tackling
complex problems. In this study, we provide a comprehensive analysis of the side effects associated
with this ability to switch reasoning thoughts.

We utilize the Llama-3.3-70B model to automatically segment a response into reasoning thoughts
due to its superior capabilities in both instruction following and mathematical reasoning. Initially, we
manually analyzed responses from the QwQ-32B-Preview model to gather expressions indicative
of shifts in thought. We then tasked the Llama-3.3-70B model with scanning the entire response
to identify all occurrences of such expressions. Furthermore, we asked the model to determine
whether these expressions truly signify a change in thought or merely reflect a stylistic pattern in
the response. Only the expressions indicating a genuine thought shift were used as separators for
reasoning processes.

LRMs Switch Thinking More Frequently on Harder Problems Figure 3 shows the averaged
thoughts and tokens in generated responses across various difficulty levels in the MATH500 test set.
Clearly, all models generate more reasoning thoughts with the increase of difficulty level, which is
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Figure 3: Average number of thoughts and tokens across different difficulty levels on MATH500.
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(b) GPQA Diamond

Figure 4: LRMs switch thinking more frequently on incorrect responses, thus expend more tokens
without contributing to accuracy.

consistent with the growth of generated tokens. This observation suggests that as the complexity of
the problems increases, the models tend to switch thoughts more frequently. This behavior implies
that LRMs are able to dynamically adjust their reasoning processes to tackle more challenging
problems. The following experiments focus on Level 5 in the MATH500 test set (MATH500-Hard).

Increased Thought Switching in LRMs during Incorrect Responses When examining the
behavior of LRMs, we observe a distinct pattern in how they handle incorrect responses. As depicted
in Figures 1 and 4, these models exhibit a significant increase in the frequency of thought switching
while generating incorrect answers across all test sets. This trend suggests that although the models
are designed to dynamically adjust their cognitive processes to solve problems, more frequent thought
switching does not necessarily lead to higher accuracy. Essentially, the models may be expending
additional computational resources – evidenced by an increase in generated tokens – without achieving
more accurate solutions. These insights are crucial because they highlight the need not only to explore
additional cognitive pathways when faced with challenges but also to operate in a more targeted
and efficient manner, thereby improving accuracy even when complex reasoning is required. In
the following sections, we empirically validate the inefficiencies associated with frequent thought
switching in incorrect responses.

2.2 Existence of Underthinking

The behavior of frequent thinking switch in incorrect responses could stem either from (1) genuine
underthinking, where the model succeeds in finding promising strategies but fails to stick with them,
or from (2) a lack of understanding, prompting it to explore diverse but ineffective approaches.
To disentangle these possibilities, we propose an assessment framework that evaluates whether an
abandoned reasoning path is actually sufficient to derive a correct answer. By focusing on whether
the model can persistently follow and deepen a single, promising line of thought, we can identify
instances of underthinking.

Assessing Thought Correctness In the example presented in Figure 2, we observe that some early
thoughts may lead to the correct answer. For instance, Thought 1 initiates a correct interpretation
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by recognizing that the given equations resemble those of ellipses centered at (0,0) and (20,11).
Setting the two expressions equal is a valid approach to finding common points (x, y) that satisfy
both equations. Instead of concentrating on thoroughly exploring the plausible thought with further
algebraic manipulation and optimization techniques, the model frequently shifts its focus and uses
approximately 7,270 additional tokens without arriving at a correct answer. Ultimately, it concludes
with a guessed answer that lacks support from the extended COT process.

We leverage LLMs to assess whether each thought leads to a correct answer using the prompt detailed
in Appendix A.Specifically, we use two models distilled from DeepSeek-R1-671B based on Llama
and Qwen – DeepSeek-R1-Distill-Llama-70B and DeepSeek-R1-Distill-Qwen-32B, which achieve
new state-of-the-art results for dense models across various reasoning benchmarks. If at least one
model generates a confidence score of 2 for a thought, we regard it as a correct thought.

We evaluate the accuracy of our assessment approach using responses generated by Qwen-32B-
Preview for 90 instances from the AIME 22-24 test sets. We utilize the final thought in each response
as the test example and its correctness as the ground-truth label. To ensure a fair comparison, we
randomly streamline correct thoughts to match the average length of incorrect thoughts. Ultimately,
we have 35 correct thoughts with an average length of 278.1 tokens and 55 incorrect thoughts with an
average length of 278.3 tokens. Our assessment approach achieves accuracies of 82.9% for correct
examples and 81.8% for incorrect examples, demonstrating its effectiveness.

QwQ-32B-Preview

#T
ok

en
s (

K
)

0

1

2

3

4

5

#T
ho

ug
ht

s

0

2

4

6

8

10

12

Level (Difficulty↑)
1 2 3 4 5

Thoughts
Tokens

4.02.31.91.51.1

11.2

6.2
4.84.2

3.5

11.2

6.2
4.84.2

3.5

DS-R1-Preview

#T
ok

en
s (

K
)

0

1

2

3

4

5

#T
ho

ug
ht

s

0

2

4

6

8

10

12

Level (Difficulty↑)
1 2 3 4 5

Thoughts
Tokens

3.32.11.51.21.0

9.4

5.6

2.92.73.1

9.4

5.6

2.92.73.1

DS-R1-671B

#T
ok

en
s (

K
)

0

1

2

3

4

5

#T
ho

ug
ht

s

0

2

4

6

8

10

12

Level (Difficulty↑)
1 2 3 4 5

Thoughts
Tokens

4.42.82.11.41.4

6.0
4.6

3.3
2.02.6

6.0
4.6

3.3
2.02.6

C
or

re
ct

ne
ss

 R
at

io

0%

10%

20%

30%

40%

50%

Index of Thought
1 2 3 4 5 6 7 8 9 ≥10

32.0%
28.1%

32.4%34.3%

28.6%
33.3%

30.6%30.6%30.6%

38.9%

25.5%

33.3%

39.4%

24.2%

44.1%

31.4%

48.6%

31.4%

37.1%

31.4%

19.0%

13.3%13.3%

20.0%

13.3%

46.7%

20.0%20.0%

25.0%25.0%

DeepSeek-R1-671B
DeepSeek-R1-Preview
QwQ-32B-Preview

D
is

tri
bu

tio
n

0%

20%

40%

60%

80%

100%

Ratio of Correct Thoughts
>0 ≥0.1 ≥0.2 ≥0.3 ≥0.4 ≥0.5 ≥0.6 ≥0.7 ≥0.8 ≥0.92.7%

10.8%10.8%
16.2%

24.3%
32.4%

48.6%

59.5%
67.6%

78.4%

0.0%
5.3%

10.5%13.2%
21.1%

36.8%

47.4%

63.2%
71.1%

84.2%

0.0%0.0%
5.6%5.6%5.6%

11.1%

22.2%

38.9%

55.6%

72.2%

DeepSeek-R1-671B
DeepSeek-R1-Preview
QwQ-32B-Preview

Figure 5: The ratio of correct reasoning thoughts at
each index in incorrect responses.

Early-Stage Thoughts Are Correct but
Abandoned in Incorrect Responses Fig-
ure 5 depicts the ratio of correct thoughts at
each index in incorrect responses on the three
challenging test sets. The analysis highlights
a critical insight into the phenomenon of un-
derthinking. Specifically, a notable proportion
of initial thoughts across various models were
correct but were not pursued to completion.
This tendency to abruptly shift away from
these promising thoughts indicates an inad-
equate depth of reasoning, where potentially
correct solutions are prematurely abandoned
before being thoroughly explored. This ob-
servation suggests a need for enhancing the
models’ ability to persistently explore a specific line of reasoning deeply and accurately before opting
to switch to alternative thought processes.
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Figure 6: The distribution of thought correctness
ratio in incorrect responses.

Most Incorrect Responses Contain Correct
Thoughts Figure 6 plots the thought correct-
ness ratios in incorrect responses from vari-
ous models. We observe that over 70% of
incorrect responses contain at least one cor-
rect thought. Furthermore, in more than 50%
of these responses, over 10% of the thoughts
are correct. Combined with observations from
Figure 5, this suggests that while LRMs can
initiate correct reasoning pathways, they may
struggle to continue these pathways to reach
the correct conclusion. This highlights the im-
portance of encouraging models to maintain
and expand their initial correct thoughts to
synthesize them into accurate final answers.
These insights lead us to propose an underthinking metric based on the presence of the first correct
thought in the subsequent section.
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2.3 Empirical Underthinking Results

In this section, we propose a metric for empirically assessing underthinking issues based on token
efficiency, complementing the widely used accuracy metric.

Underthinking Metric Intuitively, if a model generates a correct thought at an early stage and then
switches to other thoughts without reaching a correct answer, the tokens generated thereafter do not
contribute to reaching a correct solution and are considered inefficient due to underthinking. The
underthinking score, denoted as ξUT , is defined as:

ξUT =
1

N

N∑
i=1

(
1− T̂i

Ti

)
(1)

Here, N represents the number of instances in a given test set where the evaluated model generates
incorrect responses. Ti is the total number of tokens in the i-th incorrect response, and T̂i is the
number of tokens from the beginning of that response up to and including the first correct thought.
If there is no correct thought in the i-th response, T̂i = Ti, indicating that the model lacks an
understanding of this problem, leading it to explore diverse but ineffective approaches. Therefore, it
cannot be considered underthinking. Consider Figure 2 as an example: the first reasoning thought
can reach a correct answer if fully explored, with T̂ = 411. Consequently, ξUT = 1− 411

7681 = 0.946,
which can be considered extremely inefficient, reflecting a high underthinking score.

The metric ξUT complements the accuracy metric by quantifying the extent of underthinking by
measuring the token efficiency in generating effective content within an incorrect response:

• A lower value of ξUT indicates higher token efficiency, meaning that a greater proportion of tokens
in incorrect responses contribute towards reaching a correct thought before switching to another
thought. This suggests that the model is more efficient in its token utilization even when it fails to
provide a correct answer.

• A higher value of ξUT signifies lower token efficiency, indicating that a larger number of tokens do
not contribute effectively towards generating a correct thought. This reflects greater underthinking,
where the model generates redundant or irrelevant tokens by frequently switching thoughts.

Table 1: Underthinking scores on challenging testsets.
Models Accuracy(↑) UT Score (↓)

MATH500-Hard (Level 5)
QwQ-32B-Preview 84.3 58.2
DeepSeek-R1-Preview 83.6 61.5
DeepSeek-R1-671B 92.5 65.4

GPQA Diamond
QwQ-32B-Preview 59.6 48.3
DeepSeek-R1-671B 73.2 58.8

AIME2024
QwQ-32B-Preview 46.7 65.0
DeepSeek-R1-Preview 46.7 75.7
DeepSeek-R1-671B 73.3 37.0

Empirical Results Table 1 pro-
vides insights into model performance
across challenging test sets, evaluat-
ing both accuracy and underthinking
(UT) scores. Clearly, all LRMs suffer
from significant underthinking issues,
although there are considerable differ-
ences across models and test sets. The
results reveals that the relationship be-
tween model accuracy and underthink-
ing varies across different datasets.
On the MATH500-Hard and GPQA
Diamond datasets, higher accuracy
achieved by the superior DeepSeek-
R1-671B model is accompanied by
higher UT Scores, indicating more
underthinking in incorrect responses.
This suggests that while the model is more capable overall, it may produce longer but less effective
reasoning when uncertain, possibly due to exploring multiple incorrect reasoning paths without
efficiently converging on the correct solution. Conversely, on the AIME2024 test set, the DeepSeek-
R1-671B model not only attains higher accuracy but also exhibits a lower UT score, reflecting less
underthinking and greater token efficiency. This implies that the model’s reasoning remains focused
and effective even when it does not arrive at the correct answer, perhaps due to better alignment with
the problem types and reasoning processes required by the AIME2024 task.

These findings illustrate that underthinking behavior is sensitive to the nature of the dataset and
the tasks involved. The larger model’s superior capabilities do not uniformly translate to less
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Table 2: Underthinking scores of Qwen3 Family on AIME24. We report the average number of
thought-switching tokens (V̂ in Equation 3.1) and the average interval between them.

Models Accuracy (↑) Switching Tokens Weighted
Pass@1 Pass@4 Pass@8 Pass@16 Number Interval UT Score (↓)

Qwen3-4B 65.6 79.5 81.6 83.3 27.6 372.1 15.0±18.5

Qwen3-8B 64.6 78.0 81.6 83.3 20.3 561.4 16.8±20.6

Qwen3-14B 70.8 82.3 86.6 90.0 18.2 506.6 13.4±20.1

Qwen3-32B 73.8 87.5 90.0 93.3 13.7 681.3 10.6±14.5

underthinking across all tasks. In some cases, increased model capacity leads to more elaborate but
inefficient reasoning in incorrect responses, while in others, it enhances both accuracy and reasoning
efficiency. Understanding the underthinking phenomenon is crucial for developing models that not
only provide correct answers but also exhibit effective reasoning processes.

Furthermore, due to different training strategies, models across different families may differ funda-
mentally: some reach correctness intuitively (low UT score), while others do so through iterative
refinement (higher UT score). Since both approaches can achieve high accuracy, this observation
explains the weak correlation between UT score and accuracy shown in Table 1. Nevertheless, within
specific model families, UT scores show a clearer correlation with accuracy. This trend may result
from similar training strategies that reduce behavioral variance, as supported by the results in Table 2.
Within the Qwen3 family, for instance, we observed a clear trend where the severity of underthinking
decreases as model size increases.

3 Mitigating Underthinking Issues

In this section, we propose a lightweight mechanism that mitigates underthinking issues without
requiring any model fine-tuning.

3.1 Decoding with Thought Switching Penalty

Aforementioned findings show that LRMs prioritize exploring many solutions over deeply investi-
gating one. Inspired by the success of the coverage penalty in neural machine translation (Tu et al.,
2016; Wu et al., 2016), we propose a novel decoding algorithm with a thought switching penalty to
encourage the model to explore potential thoughts more thoroughly before moving on to new ones.

Standard Decoding In standard decoding, the probability of each token v at position t is computed
using the softmax function over the logits zt ∈ R|V | (|V | is the vocabulary size) in the output layer:

P (xt = v|x<t) =
exp (zt,v)∑

v′∈V exp (zt,v′)

where zt,v ∈ zt is the logit for token v. By repeating this step for each position in the sequence, the
model generates sequences of tokens, computing probabilities for each possible continuation.

Thought Switching Penalty (TIP) To encourage the model to delve deeper into current thoughts
before switching, we introduce a penalty on tokens that are associated with thought transitions. A
key consideration in designing this penalty is to distinguish between unproductive, rapid thought-
switching and deliberate, strategic shifts in reasoning (e.g., backtracking) (Gandhi et al., 2025).
Therefore, TIP is designed to be selective: it specifically targets and penalizes thought-switching
tokens only when they appear with high frequency within a recent context, a pattern indicative of
shallow exploration. This ensures that isolated or intentional shifts in thought remain unpenalized,
preserving the model’s ability to employ effective complex reasoning strategies like backward
chaining. Let V̂ ⊂ V be the set of tokens associated with thought switching (e.g., “alternatively”).
We modify the logits as follows:

ẑt,v =

{
zt,v − α, if v ∈ V̂ and t < Ψ+ β

zt,v, otherwise
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Table 3: Pass@k performance of the proposed TIP method. We report the average number of thought-
switching tokens (V̂ in Equation 3.1) and the average interval between them in the generated samples.

Models Accuracy (↑) Switching Tokens Weighted
Pass@1 Pass@4 Pass@8 Pass@16 Number Interval UT Score (↓)

MATH500-Hard (Level 5)
QwQ-32B-Preview 83.1 92.4 94.4 95.8 12.6 445.6 11.7±20.5

+ TIP 83.7 93.2 95.3 96.4 5.7 517.6 11.0±19.5

R1-Distill-Qwen-32B 88.3 94.5 96.1 97.0 6.7 792.5 3.3±8.8

+ TIP 89.4 94.6 96.1 97.0 2.7 964.0 3.0±8.5

GPQA Diamond
QwQ-32B-Preview 57.6 78.5 85.3 90.3 21.1 356.8 25.1±23.9

+ TIP 59.1 78.9 85.8 91.2 7.3 432.5 23.2±23.2

R1-Distill-Qwen-32B 61.6 78.1 83.6 86.9 13.4 548.6 22.3±25.0

+ TIP 61.7 80.2 86.6 90.4 4.6 747.1 23.1±25.3

AIME2024
QwQ-32B-Preview 38.3 53.7 58.5 62.7 16.1 459.7 40.6±28.4

+ TIP 44.1 61.6 68.3 74.0 13.9 515.7 35.8±27.8

R1-Distill-Qwen-32B 61.4 75.9 79.1 81.7 8.2 819.5 19.6±20.6

+ TIP 64.1 79.0 81.7 83.0 4.5 1018.0 17.7±20.6

DeepSeek-R1 73.8 86.2 88.8 89.8 13.8 580.1 14.6±19.1

+ TIP 74.8 86.4 88.8 89.8 5.7 941.6 13.0±18.0

where

• α ≥ 0 (Penalty Strength) is a parameter controlling the strength of the penalty applied to thought-
switching tokens. A larger α results in a greater reduction of the logits for these tokens, making
them less likely to be chosen.

• β ≥ 0 (Penalty Duration) specifies the number of positions from the start of a thought at Ψ,
during which the penalty is active. A larger β extends the penalty over more positions, further
discouraging early thought switching.

When α = 0 or β = 0 , the penalty is effectively disabled, and the decoding process reduces
to the standard decoding algorithm. The adjusted logits ẑt,v reduce the probability of generating
thought-switching tokens within a specified window, encouraging the model to continue expanding
on the current thought before moving on. The new probability distribution becomes:

P̂ (xt = v |x<t) =
exp (ẑt,v)∑

v′∈V exp (ẑt,v′)

3.2 Experimental Results

For reliable evaluation, we report Pass@1 computed from 32 samples per problem with a temperature
of 0.7 and a top_p value of 0.95. We tuned α ∈ {3, 5, 10, 20, 30} and β ∈ {300, 400, 500, 600, 700}
on the AIME 2022-2023 development set using QwQ-32B-Preview, selecting the best pair α =
3, β = 600 for all models and benchmarks. Please refer Appendix B.2 for more details.

Standard Decoding Table 3 shows that our TIP method consistently improves performance in all
cases by mitigating the underthinking issues. On AIME-24, Pass@1 improves by 5.8% on QwQ-
32B-Preview, 2.7% on R1-Distill-Qwen, and 1.0% on DeepSeek-R1, while the underthinking (UT)
score drops across the board. Observing the indicators, we see fewer thought-switching tokens and
larger intervals when using TIP, confirming that our method encourages models to explore individual
reasoning paths more thoroughly and mitigates underthinking. For example, when applying TIP to
DeepSeek-R1 on AIME2024, the average thought-switching tokens decreased (13.8→5.7), and the
average interval between switches increased (580.1→941.6). These changes reflect fewer premature
transitions, resulting in a more focused and human-like exploration of reasoning paths.
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Table 4: Results of TIP for best-of-N sampling on AIME2024. We conducted 10,000 trials by
randomly sampling from the 32 samples and reported the average results. “(Averaged)” denotes the
average performance over 32 samples.

Models 4 Samples 8 Samples 16 Samples
Acc.(↑) UT (↓) Acc.(↑) UT (↓) Acc.(↑) UT (↓)

QwQ (Averaged) 38.4 40.5 38.3 40.6 38.3 40.6
+ TIP (Averaged) 44.1 35.8 44.0 35.9 44.0 35.9

QwQ + Self-Consistency 43.7 35.4 44.3 34.0 44.6 31.9
+ TIP 51.4 26.6 53.4 24.3 53.9 24.1

QwQ + Laconic Decoding 47.0 28.2 47.0 25.5 45.1 24.0
+ TIP 50.3 26.7 51.6 23.3 50.9 20.8

R1-Distill-Qwen (Averaged) 61.4 19.2 61.3 19.2 61.3 19.1
+ TIP (Averaged) 64.1 17.8 64.0 17.7 64.1 17.7

R1-Distill-Qwen + Self-Consistency 67.0 13.4 67.8 11.4 68.9 8.9
+ TIP 69.9 12.5 71.4 11.0 72.3 9.1

R1-Distill-Qwen + Laconic Decoding 71.1 11.3 74.4 8.7 77.5 7.4
+ TIP 75.4 9.8 78.0 7.3 77.9 6.5

R1 (Averaged) 73.9 14.5 73.7 14.6 73.8 14.5
+ TIP (Averaged) 74.8 13.0 74.8 12.9 74.8 13.0

R1 + Self-Consistency 79.3 10.1 79.8 9.8 79.7 9.5
+ TIP 81.3 7.5 82.2 6.4 82.1 5.8

R1 + Laconic Decoding 81.4 8.1 82.6 6.2 83.2 5.1
+ TIP 83.1 7.4 83.8 6.6 83.3 6.7

Best-of-N Sampling To further assess TIP, we combined it with two widely used best-of-N
sampling methods: (1) Self-Consistency (Wang et al., 2023), selecting the most consistent answer
from multiple samples; (2) Laconic Decoding (Raoof & Dimakis, 2025), selecting the shortest of
multiple generated answers, based on the observation that correct responses often have fewer tokens.

Table 4 indicates that using TIP consistently boosts accuracy across all model-method combinations.
For instance, applying TIP to Self-Consistency with QwQ-32B-Preview (4-sample setting) signifi-
cantly raises accuracy (43.7%→51.4%) and reduces UT scores (35.4→26.6). Similarly, combining
Laconic Decoding with TIP yields consistent gains, particularly pronounced for stronger models
(e.g., R1-Distill-Qwen: 74.4%→78.0% at 8 samples). These results clearly demonstrate that the TIP
method successfully complements existing sampling strategies, encouraging more thorough reasoning
and reliably mitigating underthinking issues in challenging mathematical reasoning scenarios.

Overall, the TIP approach represents a significant step toward addressing the underthinking problem
in LRMs. Although the hyperparameters are tuned on the AIME 2022 and 2023 test sets using
the QwQ-32B-Preview model, the consistent improvements observed across various test sets and
models with the same hyperparameters validate the generalizability of the method. Our findings also
suggest that the TIP method synergizes well with best-of-N sampling strategies, leading to further
improvements in accuracy and reductions in underthinking scores. This indicates that encouraging
more thorough exploration of individual reasoning paths complements the diversity introduced by
sampling methods.

4 Related Work

Scaling Test-Time Compute Recent advancements in deep reasoning models, such as OpenAI’s
o1, have emphasized scaling test-time compute to improve complex problem-solving capabilities.
One approach focuses on expanding the search space by considering multiple candidate solutions
during decoding, exemplified by self-consistency (Wang et al., 2023), best-of-n decoding, and
minimum Bayes risk decoding (Lightman et al., 2024; Li et al., 2023; Khanov et al., 2024; Heineman
et al., 2024; Wu et al., 2024). Another influential direction involves promoting human-like deep
thinking, beginning with Chain-of-Thought (Wei et al., 2022), where models mimic human reasoning
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processes (Cesista, 2024; Pfau et al., 2024). Recent models, such as QwQ (Qwen, 2024), DeepSeek-
R1 (DeepSeek, 2025), and Kimi-1.5 (Kimi, 2025), leverage reinforcement learning (RL) to enable
strategic, reflective reasoning and improve accuracy in complex tasks.

Efficient Thinking Efficient reasoning matters as much for language reasoning models (LRMs) as
it does for human cognition. Models sometimes suffer overthinking, wasting resources on trivial
paths (Chen et al., 2024). In contrast, we focus on the less-explored issue of underthinking, where
models prematurely abandon promising reasoning directions, limiting performance on challenging
problems. Along this direction, recent research has begun exploring methods to enhance reasoning
efficiency. For instance, Laconic decoding implements shortest-of-n decoding strategies to minimize
error-prone lengthy responses (Raoof & Dimakis, 2025), while Muennighoff et al. (2025) propose
techniques to optimize test-time computation through dynamic termination signals.

Manipulating Decoding Penalties Penalty mechanisms in NLP decoding have become increas-
ingly relevant to addressing shortcomings in traditional search methods. Length normalization
penalties (Jean et al., 2015; Koehn & Knowles, 2017; Tu et al., 2017; Murray & Chiang, 2018)
encourage appropriate translation lengths, improving fluency and adequacy. Additionally, coverage
penalties (Tu et al., 2016; Wu et al., 2016) reduce textual redundancies by ensuring comprehensive
attention over source tokens. See et al. (2017) also applied these ideas to summarization tasks. In
this work, we introduce specific decoding penalties to mitigate underthinking, prompting models to
sustain deeper reflection rather than superficial or frequent strategy shifts. To our knowledge, we are
the first to investigate decoding penalties to address the underthinking problem.

5 Conclusion

In this work, we identified underthinking as a key limitation for LRMs performing challenging
reasoning tasks, highlighting how premature abandonment of promising paths reduces efficiency
and accuracy. We developed a new metric to quantify underthinking based on token efficiency
in incorrect responses, and introduced a decoding strategy – thought switching penalty (TIP) – to
encourage deeper exploration before shifting reasoning directions. Empirical evaluations show that
TIP significantly reduces underthinking and improves performance on difficult reasoning benchmarks,
without requiring additional model training.

This work contributes to a deeper understanding of reasoning processes in LRMs and provides a
practical approach to align their problem-solving capabilities. Future directions include explor-
ing adaptive mechanisms within models to self-regulate thought transitions and further improving
reasoning efficiency.
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A Assessing Thought Correctness

In the example presented in Figure 2, we observe that some early thoughts may lead to the correct
answer. For instance, Thought 1 initiates a correct interpretation by recognizing that the given
equations resemble those of ellipses centered at (0,0) and (20,11). Setting the two expressions equal is
a valid approach to finding common points (x, y) that satisfy both equations. Instead of concentrating
on thoroughly exploring the plausible thought with further algebraic manipulation and optimization
techniques, the model frequently shifts its focus and uses approximately 7,270 additional tokens
without arriving at a correct answer. Ultimately, it concludes with a guessed answer that lacks support
from the extended COT process.

We leverage LLMs to assess whether each thought leads to a correct answer using the following
prompt:

Problem P = {problem}
Solution Draft S = {split solutions}
Correct Answer A = {expected answer}

1. Please analyze the relevance between the solution S and the problem P, and conduct some
verifications to check the correctness of the solution itself. Please think step by step to give an
explanation **EXPLANATION**.
2. If you think the solution draft S can lead to the correct answer A of the problem P, please
stick to the line of thinking without deviation and carry it through to completion. If you think it
cannot yield the correct answer or you’re not sure, don’t force yourself to give an answer and
generate **None**.
3. Please tell me honestly how confident you are that you can solve the problem P correctly
based on the the solution draft S. Out of 2, please generate your confidence score **CONFI-
DENT_SCORE**.

Please output **EXPLANATION** and **CONFIDENT_SCORE** according to the following
format:
EXPLANATION: \boxed{}
CONFIDENT_SCORE: \boxed{}

Specifically, we use two models distilled from DeepSeek-R1-671B based on Llama and Qwen –
DeepSeek-R1-Distill-Llama-70B and DeepSeek-R1-Distill-Qwen-32B, which achieve new state-of-
the-art results for dense models across various reasoning benchmarks. If at least one model generates
a confidence score of 2 for a thought, we regard it as a correct thought.

We evaluate the accuracy of our assessment approach using responses generated by Qwen-32B-
Preview for 90 instances from the AIME 2022, 2023, and 2024 test sets. We utilize the final thought
in each response as the test example and its correctness as the ground-truth label. To ensure a
fair comparison, we randomly streamline correct thoughts to match the average length of incorrect
thoughts. Ultimately, we have 35 correct thoughts with an average length of 278.1 tokens and
55 incorrect thoughts with an average length of 278.3 tokens. Our assessment approach achieves
accuracies of 82.9% for correct examples and 81.8% for incorrect examples, demonstrating its
effectiveness.

B Experimental Details of TIP

B.1 Selection of Thought-Switching Tokens

A key component of our TIP decoding strategy is the use of a predefined set of thought-switching
tokens that signal a potential switch in the reasoning path. The selection of these tokens is treated
as a task-specific hyperparameter. For our experiments, they were chosen empirically based on a
qualitative analysis of common thought-switching patterns observed in the model’s outputs. Specif-
ically, we select alternative and messy as thought-switching tokens in our implementation. This
approach provides a simple yet effective mechanism that can be adapted to different tasks or model
behaviors without extensive tuning. Besides, since LLM tokenizers can split a single word into
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Table 5: Accuracy on AIME2022-23 with respect to different values of α and β.

Pass@1 α
Accuracy 3 5 10 20

β

300 35.2 37.0 39.0 39.4
400 39.3 37.1 37.1 38.4
500 38.5 38.7 39.1 39.2
600 39.8 39.4 38.0 38.0
700 37.1 39.4 39.0 38.3

multiple subword tokens, the switching penalty is applied exclusively to the first subword token of a
designated thought-switching word.

B.2 Grid Search of α and β

To ensure robust conclusions, we report Pass@1 results computed from 32 samples per instance. We
calculate the weighted underthinking score for each instance over its 32 samples:

ξwUT =
1

32

32∑
i=1

ξUT (si) (2)

where si is the i-th sample of the instance, and ξUT (si) = 0 when si is correct.

By adjusting α and β, we can control the model’s behavior to achieve the desired level of thought
exploration. We performed a grid search with α values in [3, 5, 10, 20, 30] and β values in
[300, 400, 500, 600, 700] using a development set that included the AIME 2022 and 2023 test sets.
Table 5 lists the impact of varying the penalty strength α and penalty duration β on the model’s accu-
racy. We observe that increasing the penalty strength α generally leads to an improvement in accuracy
up to a certain threshold, after which the benefits plateau or even diminish. Adjusting the penalty
duration β also significantly affects performance: At a lower penalty strength (α = 3), increasing
β from 300 to 600 results in accuracy gains from 35.2% to 39.8%, the highest observed accuracy
in our experiment. Conversely, at higher penalty strengths (α = 20), extending β beyond 300 leads
to a decrease in accuracy, indicating that too long a penalty duration can hinder performance when
combined with a strong penalty. We selected α = 3 and β = 600 for our subsequent experiments.

C Generalization to Multimodal Reasoning

Table 6: Underthinking scores on challenging testsets.
Models Accuracy(↑) UT Score (↓)

MiMo-VL-7B-RL 56.7 4.8
GLM-4.1V-Thinking 58.7 17.1

To investigate if underthinking
extends beyond text-only domains,
we evaluated two vision-language
models, GLM-4.1V-Thinking (Hong
et al., 2025) and MiMo-VL-
7B-RL (Xiaomi, 2025), on the
OE_MM_maths_en_COMP subset of
OlympiadBench (He et al., 2024). This benchmark contains competition-level mathematics problems
that require synthesizing information from both text and images. As shown in Table 6, both models
exhibit underthinking. This finding leads to two implications: first, our framework can be adapted to
analyse multimodal reasoning, and second, it suggests that underthinking is a general reasoning
failure not confined to a single modality.

14



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
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3. Theory assumptions and proofs
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15



Answer: [NA]

Justification: The paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
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• The proofs can either appear in the main paper or the supplemental material, but if
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We elaborated in detail on the implementation details of the proposed metric
and decode strategy.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will make our code publicly available soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided a detailed description of the backbone model used in the
experiment, the generation details, and the hyperparameter grid search result of TIP.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present the pass@k results for various backbone models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report related information in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In this paper, we adhere strictly to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is foundational research and not tied to particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: In this paper, no data or models were released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have complied with the license for using the dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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