
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING-AUGMENTED FREQUENT DIRECTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

An influential paper of Hsu et al. (ICLR’19) introduced the study of learning-augmented stream-
ing algorithms in the context of frequency estimation. A fundamental problem in the streaming
literature, the goal of frequency estimation is to approximate the number of occurrences of items
appearing in a long stream of data using only a small amount of memory. Hsu et al. develop a
natural framework to combine the worst-case guarantees of popular solutions such as CountMin
and CountSketch with learned predictions of high frequency elements. They demonstrate that
learning the underlying structure of data can be used to yield better streaming algorithms, both
in theory and practice.

We simplify and generalize past work on learning-augmented frequency estimation. Our first
contribution is a learning-augmented variant of the Misra-Gries algorithm which improves upon
the error of learned CountMin and learned CountSketch and achieves the state-of-the-art perfor-
mance of randomized algorithms (Aamand et al., NeurIPS’23) with a simpler, deterministic al-
gorithm. Our second contribution is to adapt learning-augmentation to a high-dimensional gen-
eralization of frequency estimation corresponding to finding important directions (top singular
vectors) of a matrix given its rows one-by-one in a stream. We analyze a learning-augmented
variant of the Frequent Directions algorithm, extending the theoretical and empirical under-
standing of learned predictions to matrix streaming.

1 INTRODUCTION

Learning-augmented algorithms combine the worst-case analysis of traditional algorithm design
with machine learning to exploit structure in the specific inputs on which the algorithm is deployed.
A burgeoning line of work in this context has studied algorithms furnished with predictions given
by domain experts or learned from past data. This general methodology has been applied to create
input-optimized data structures (Kraska et al., 2018; Mitzenmacher, 2018), graph algorithms (Dinitz
et al., 2021; Chen et al., 2022c), online algorithms (Lykouris & Vassilvitskii, 2021; Gollapudi &
Panigrahi, 2019), streaming algorithms (Hsu et al., 2019; Jiang et al., 2020; Chen et al., 2022a)
among many other applications1. Within the context of streaming algorithms, where the input arrives
in an online fashion and the algorithm has too little memory to store everything, predictors can
highlight data which are worth remembering. This intuition was formalized in an influential work
of Hsu et al. (2019) in the context of frequency estimation, a fundamental streaming problem where
the goal is to provide an estimate of how many times any element appeared in the stream.

Given access to a heavy-hitter oracle identifying the highest frequency elements, Hsu et al. (2019)
give a natural framework where the heavy-hitters are counted exactly while the rest of the frequen-
cies are approximated using standard algorithms such as CountMin (Cormode & Muthukrishnan,
2005) or CountSketch (Charikar et al., 2002). They study the setting where the frequencies follow a
power law distribution, commonly seen in practice and therefore well-studied for frequency estima-
tion (Cormode & Muthukrishnan, 2005; Metwally et al., 2005; Minton & Price, 2012). Given access
to an oracle which can recover the heaviest elements, they give improved error bounds where error is
taken in expectation over the empirical distribution of frequencies. A sequence of follow-up works
investigate how to learn good predictors (Du et al., 2021; Chen et al., 2022b), apply the results to
other streaming models (Shahout et al., 2024), and give improved algorithms (Aamand et al., 2023).

1There are hundreds of papers written on this topics. See the survey of Mitzenmacher & Vassilvitskii (2022)
or the website https://algorithms-with-predictions.github.io/.

1

https://algorithms-with-predictions.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Algorithms Weighted Error Predictions? Analysis

Frequent Direction Θ

(
ln m

ln 2d
m

)
·ln d

m

(ln d)2 · ∥A∥2
F

m

 No Theorem 3.3

Learned Frequent Direction Θ
(

1
(ln d)2 ·

∥A∥2
F

m

)
Yes Theorem 3.4

Table 1: Error bounds for Frequent Directions with n input vectors from the domain Rd using m×d
words of memory, assuming that the matrix consisting of input vectors has singular value σ2

i ∝ 1/i.
The weighted error is defined by Equation (2).

In this work, we define and analyze the corresponding problem in the setting where each data point
is a vector rather than an integer, and the goal is to find frequent directions rather than elements (cap-
turing low-rank structure in the space spanned by the vectors). This setting of “matrix streaming”
is an important tool in big data applications including image analysis, text processing, and numer-
ical linear algebra. Low-rank approximations via SVD/PCA are ubiquitous in these applications,
and streaming algorithms for this problem allow for memory-efficient estimation of these approxi-
mations. In the matrix context, we define a corresponding notion of expected error and power-law
distributed data. We develop a learning-augmented streaming algorithm for the problem based on
the Frequent Directions (FD) algorithm (Ghashami et al., 2016) and give a detailed theoretical anal-
ysis on the space/error tradeoffs of our algorithm given predictions of the important directions of the
input matrix. Our framework captures and significantly generalizes that of frequency estimation in
one dimension. When the input vectors are basis vectors, our algorithm corresponds to a learning-
augmented version of the popular Misra-Gries (Misra & Gries, 1982) heavy hitters algorithm. In this
special case of our model, our algorithm achieves state-of-the-art bounds for learning-augmented
frequency estimation, matching that of Aamand et al. (2023). In contrast to prior work, we achieve
this performance without specializing our algorithm for power-law distributed data.

We experimentally verify the performance of our learning-augmented algorithms on real data. Fol-
lowing prior work, we consider datasets containing numerous problem instances in a temporal order
(each instance being either a sequence of items for frequency estimation or a sequence of matrices
for matrix streaming). Using predictions trained on past data, we demonstrate the power of incorpo-
rating learned structure in our algorithms, achieving state-of-the-art performance in both settings.

Our Contributions

• We generalize the learning-augmented frequency estimation model to the matrix streaming setting:
each stream element is a row vector of a matrix A. We define corresponding notions of expected
error and power-law distributed data with respect to the singular vectors and values of A.

• In this setting, we develop and analyze a learning-augmented version of the Frequent Directions
algorithm of Ghashami et al. (2016). Given predictions of the important directions (correspond-
ing to the top right singular vectors of A), we demonstrate an asymptotically better space/error
tradeoff than the base algorithm without learning. See Table 1.

• As a special case of our setting and a corollary of our analysis, we bound the performance of
learning-augmented Misra-Gries for frequency estimation. In the learning-augmented setting,
past work has analyzed randomized algorithms CountMin and CountSketch as well as specialized
variants (Hsu et al., 2019; Aamand et al., 2023). To our knowledge, no analysis has been done
prior to our work for the popular, deterministic Misra-Gries algorithm. Our analysis shows that
learned Misra-Gries achieves state-of-the-art learning-augmented frequency estimation bounds,
without randomness or specializing the algorithm for Zipfian data. See Table 2.

• We empirically validate our theoretical results via experiments on real data. For matrix streaming,
our learning-augmented Frequent Directions algorithm outperforms the non-learned version by 1-
2 orders of magnitude on all datasets. For frequency estimation, our learned Misra-Gries algorithm
achieves superior or competitive performance against the baselines.

Related Work The learning-augmented frequency estimation problem was introduced in Hsu et al.
(2019). They suggest the model of predicted frequencies and give the first analysis of learning-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm Weighted Error Rand? Pred? Reference

CountMin Θ
(

n
m

)
Yes No (Aamand et al., 2023)

Learned CountMin Θ

(
(ln d

m)2

m
n

(ln d)2

)
Yes Yes (Hsu et al., 2019)

CountSketch O
(

1
m

n
ln d

)
Yes No (Aamand et al., 2023)

Learned CountSketch O
(

ln d
m

m
n

(ln d)2

)
Yes Yes (Aamand et al., 2023)

CountSketch++ O
(

lnm+poly(ln ln d)
m

n
(ln d)2

)
Yes No (Aamand et al., 2023)

Learned CountSketch ++ O
(

1
m

n
(ln d)2

)
Yes Yes (Aamand et al., 2023)

Misra-Gries Θ
((

ln m

ln 2d
m

)
ln d

m
m

n
(ln d)2

)
No No Theorem 3.1

Learned Misra-Gries Θ
(

1
m

n
(ln d)2

)
No Yes Theorem 3.2

Table 2: Error bounds for frequency estimation with n input elements from the domain [d] using m
words of memory, assuming that the frequency of element i ∈ [d] follows f(i) ∝ 1/i. The weighted
error indicates that element i is queried with a probability proportional to 1/i.

augmented CountMin and CountSketch with weighted error and Zipfian frequencies. Du et al.
(2021) evaluate several choices for the loss functions to use to learn the frequency predictor and
Chen et al. (2022b) develop a procedure to learn a good predictor itself with a streaming algorithm.
Shahout et al. (2024) extend the model to sliding window streams where frequency estimation is re-
stricted to recently appearing items. Shahout & Mitzenmacher (2024) analyze a learning-augmented
version of the SpaceSaving algorithm (Metwally et al., 2005) which is a deterministic algorithm for
frequency estimation, but, unlike our work, they do not give space/error tradeoffs comparable to
Hsu et al. (2019). Aamand et al. (2023) give tight analysis for CountMin and CountSketch both with
and without learned predictions in the setting of weighted error with Zipfian data. Furthermore,
they develop a new algorithm based on the CountSketch, which we refer to as learning-augmented
CountSketch++, which has better asymptotic and empirical performance.

Matrix sketching and low-rank approximations are ubiquitous in machine learning. The line of work
most pertinent to our work is that on matrix streaming where rows arrive one-by-one, and in small
space, the goal is to maintain a low-rank approximation of the full matrix. The Frequent Directions
algorithm for the matrix streaming problem was introduced by Liberty (2013). Subsequent work of
Ghashami & Phillips (2014a) and Woodruff (2014) refined the analysis and gave a matching lower
bound. These works were joined and developed in Ghashami et al. (2016) with an even simpler
analysis given by Liberty (2022).

A related line of work is on learning sketching matrices for low-rank approximation, studied in
Indyk et al. (2019; 2021). Their goal is to learn a sketching matrix S with few rows so that the
low-rank approximation of A can be recovered from SA. The main guarantee is that the classical
low-rank approximation algorithm of Clarkson & Woodruff (2013), which uses a random S, can be
augmented so that only half of its rows are random, while retaining worst-case error. The learned
half of S can be optimized empirically, leading to a small sketch SA in practice. The difference
between these works and us is that their overall procedure cannot be implemented in a single pass
over the stream. We discuss other related works in Appendix A.

Organization Section 2 delves into the necessary preliminaries for our algorithm. We define the
problems of frequency estimation, and its natural higher dimensional version, introduce our notion of
estimation error for these problems, and discuss the two related algorithms Misra-Gries and Frequent
Directions for these problems. In Section 3, we introduce our learning-augmented versions of Misra-
Gries and Frequent Directions. We also analyse the performance of learned Misra-Gries algorithms,
postponing the the analysis of learned Frequent Directions to Appendix D. Section 4 presents our
experiment results with extensive figures given in Appendix F.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

Frequency Estimation. Let n, d ∈ N+, and consider a sequence a1, a2, . . . , an ∈ [d] arriving
one by one. We are interested in the number of times each element in [d] appears in the stream.
Specifically, the frequency f(i) of element i ∈ [d] is defined as f(i) .

= |{t ∈ [n] : at = i}|. Thus,∑
i∈[d] f(i) = n. Given estimates f̃(i) for each , i ∈ [d], we focus on the following weighted

estimation error (Hsu et al., 2019; Aamand et al., 2023): Err .
=
∑

i∈[d]
f(i)
n ·

∣∣∣f(i)− f̃(i)
∣∣∣ . (1)

The weighted error assigns a weight to each element’s estimation error proportional to its frequency,
reflecting the intuition that frequent elements are queried more often than less frequent ones.

Direction Frequency. The frequency estimation problem has a natural high-dimensional exten-
sion. The input now consists of a stream of vectors A1,A2, . . . ,An ∈ Rd. For each unit vector
v⃗ ∈ Rd, we define its ”frequency,” f(v⃗), as the sum of the squares of the projected lengths of each
input vector onto v⃗. Specifically, let A ∈ Rn×d denote the matrix whose rows are AT

1 , . . . ,A
T
n .

Then f(v⃗)
.
= ∥Av⃗∥22.

To see the definition is a natural extension of the element frequency in the frequency estimation
problem, suppose each input vector At is one of the standard basis vectors e⃗1, . . . , e⃗d in Rd. Further,
we restrict the frequency query vector v⃗ to be one of these standard basis vectors, i.e., v⃗ = e⃗i for
some i ∈ [d]. Then f(e⃗i) = ∥Ae⃗i∥22 =

∑
t∈[n]⟨At, e⃗i⟩2 =

∑
t∈[n] 1[At=e⃗i], which is simply the

number of times e⃗i appears in A.

Estimation Error. Consider an algorithm that can provide an estimate f̃(v⃗) of f(v⃗) for any unit
vector v⃗ ∈ Rd. The estimation error of a single vector is given by

∣∣∣f(v⃗)− f̃(v⃗)
∣∣∣ = ∣∣∣∥Av⃗∥22 − f̃(v⃗)

∣∣∣.
Since the set of all unit vectors in Rd is uncountably infinite, we propose to study the following
weighted error:

Err =
∑
i∈[d]

σ2
i

∥A∥2F
·
∣∣∣∥Av⃗i∥22 − f̃(v⃗i)

∣∣∣ , (2)

where σ1, . . . , σd denote the singular values of A, v⃗1, . . . , v⃗d are the corresponding right singular
vectors, and ∥A∥F is its Frobenius norm.

To see how this generalizes Equation (1), assume again that the rows of A consist of standard basis
vectors and that f(e⃗1) ≥ f(e⃗2) ≥ · · · ≥ f(e⃗d). In this case, it is straightforward to verify that
σ2
i = f(e⃗i) and v⃗i = e⃗i for all i ∈ [d]. Consequently, ∥Av⃗i∥22 = f(e⃗i), and ∥A∥2F =

∑
i∈[d] σ

2
i =

n. Therefore, Equation (2) reduces to Equation (1) in this case. Moreover, for a specific class of
algorithms, we can offer an alternative and intuitive interpretation of the weighted error.

Lemma 2.1. For algorithms that estimate f̃(v⃗) by first constructing a matrix B and then applying
the formula f̃(v⃗) = ∥Bv⃗∥22 such that 0 ≤ f̃(v⃗) ≤ f(v⃗), the weighted error defined in Equation (2)

satisfies Err ∝ Ev⃗∼N(0,ATA)

[
∥Av⃗∥22 − f̃(v⃗)

]
. (3)

The conditions stated in the lemma apply to the Frequent Directions algorithm (Ghashami et al.,
2016), discussed later in the section. The lemma asserts that the weighted error is proportional to
the expected difference between ∥Av⃗∥22 and f̃(v⃗), where v⃗ is sampled from a multivariate normal
distribution with mean 0 and covariance matrix ATA. The proof is included in the Appendix B.

Zipfian Distribution. We follows the assumption that in the frequency estimation problem, the
element frequencies follow a Zipfian distribution (Hsu et al., 2019; Aamand et al., 2023), i.e., f(i) ∝
1/i ∀i ∈ [d]. Naturally, for the high dimensional counterpart, we assume that σ2

i ∝ 1/i.

Misra-Gries and Frequent Directions Algorithms. The Misra-Gries algorithm (Misra & Gries,
1982) is a well-known algorithm developed for frequency estimation in the streaming setting with
limited memory. Its high-dimensional counterpart is the Frequent Directions algorithm (Ghashami
et al., 2016). We focus on presenting the Frequent Directions algorithm here along with a brief
explanation of how Misra-Gries can be derived from it.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The algorithm is described in Algorithm 1. The matrix B created during the initialization phase can
be viewed as an array of m buckets, where each bucket can store a vector in Rd. As each input vector
Ai arrives, the algorithm updates B using an ”update” procedure, inserting AT

i into the first avail-
able bucket in B. If B is full, additional operations are triggered (Lines 7 - 10): essentially, the algo-

rithm performs a singular value decomposition (SVD) of B, such that B =
∑

j∈[d] σ
(i)
j ·u⃗

(i)
j

(
v⃗
(i)
j

)T
,

where u⃗(i)
j and v⃗

(i)
j are the columns of matrices U(i) and V(i), respectively, and σ

(i)
j are the diagonal

entries of ΣΣΣ(i). The algorithm then retains only the first τ − 1 right singular vectors, v⃗(i)1 , . . . , v⃗
(i)
τ−1,

scaled by the factors
(
(σ

(i)
1)2 − (σ

(i)
τ)2

)1/2
, . . . ,

(
(σ

(i)
τ−1)

2 − (σ
(i)
τ)2

)1/2
respectively.

Algorithm 1 Frequent Direction AFD

1: Procedure INITIALIZATION
2: Input: sketch parameters m, τ, d ∈ N+, s.t., τ ≤ m ≤ d
3: Reserve m× d space for an empty matrix B

4: Procedure UPDATE
5: Input: an input vector Ai ∈ Rd

6: B← [B;AT
i] matrix obtained by appending AT

i after the last row B
7: if B has m rows then
8: U(i),ΣΣΣ(i),V(i) ← SVD(B)

9: ΣΣΣ(i) ←
√
max{ΣΣΣ(i)2 − (σ

(i)
τ)2I, 0}, where σ

(i)
τ is the τ (th) largest singular value

10: B← ΣΣΣ(i)V(i)T

11: Procedure RETURN
12: return B

To reduce the algorithm to Misra-Gries, we make the following modifications: each input vector Ai

is an element in [d], and B is replaced by a dynamic array with a capacity of m. The SVD operation
is replaced by an aggregation step, where identical elements in B are grouped together, retaining
only one copy of each along with its frequency in B. Consequently, lines 7–10 now correspond to
selecting the top-(τ − 1) elements and reducing their frequencies by f(τ) 2 .

Based on recent work by Liberty (2022), Algorithm 1 possesses the following properties. For com-
pleteness, we provide a brief proof in the Appendix.

Proposition 2.2 ((Liberty, 2022)). Algorithm 1 uses O(md) space, operates in O
(

nm2d
m+1−τ

)
time,

and ensures that ATA−BTB ⪰ 0. Moreover, it guarantees the following error bound:

∥ATA−BTB∥2 ≤ min
k∈[0 . . τ−1]

∥A− [A]k∥2F
τ − k

, (4)

where ∥·∥2 is the spectral norm of a matrix, and [A]k is the best rank-k approximation of A.

Note that the error in this context is defined by the maximum distortion rather than a weighted
one. If τ = (1 − Ω(1))m, the running time reduces to O(nmd). Furthermore, for k = 0, the
error bound simplifies to the original bound established by Liberty (2013). These bounds can be
adapted for the Misra-Gries algorithm, where ATA − BTB ⪰ 0 implies that the algorithm never
overestimates element frequencies. Additionally, when implemented with a hash table, the running
time for Misra-Gries can be further optimized to O(n).

3 LEARNING-AUGMENTED FREQUENT DIRECTION

We aim to augment the Frequent Directions algorithm with learned predictions. The framework is
presented in Algorithm 2. Given space for storing m vectors in Rd, the algorithm reserves mL ≤ m

2A common implementation of Misra-Gries sets τ = m, and the aggregation step can be optimized using
hash tables.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

slots for the predicted ”frequent directions” w⃗1, . . . , w⃗mL
, which are orthonormal vectors returned

by a learned oracle. The algorithm then initializes two seperate instances of Algorithm 1, denoted
by A↓

FD and A⊥
FD, with space usage mL and m− 2 ·mL, respectively.

After initialization, when an input vector Ai arrives, the algorithm decomposes it into two com-
ponents, Ai = Ai,↓ + Ai,⊥, where Ai,↓ is the projection of Ai onto the subspace spanned by
w⃗1, . . . , w⃗mL

, and Ai,⊥ is the component orthogonal to this subspace. The vector Ai,↓ is passed to
A↓

FD, while Ai,⊥ is passed toA⊥
FD. Intuitively,A↓

FD is responsible to compute a sketch matrix for the
subspace predicted by the learned oracle, whereasA⊥

FD is responsible to compute a sketch matrix for
the orthogonal subspace. When the algorithm terminates, the output matrix is obtained by stacking
the matrices returned by A↓

FD and A⊥
FD. To adapt this framework for the learning-augmented Misra-

Gries algorithm, A↓
FD corresponds to an array to record the exact counts of the predicted elements

and A⊥
FD corresponds to a Misra-Gries algorithm over all other elements.

Algorithm 2 Learning-Augmented Frequent Direction ALFD

1: Procedure INITIALIZATION
2: Input: sketch parameters m, d ∈ N+; learned oracle parameter mL s.t., mL ≤ m
3: Let PH = [w⃗1 | . . . | w⃗mL

] ∈ Rd×mL be the matrix consisting of the mL orthonormal
columns, which are the frequent directions predicted by the learned oracle

4: Initialize an instance of Algorithm 1: A↓
FD.initialization(mL, 0.5 ·mL, d)

5: Initialize an instance of Algorithm 1: A⊥
FD.initialization(m−2 ·mL, 0.5 · (m−2 ·mL), d)

6: Procedure UPDATE
7: Input: an input vector Ai

8: Ai,↓ ← PHPT
HAi

9: Ai,⊥ ← Ai −Ai,↓

10: A↓
FD.update(Ai,↓)

11: A⊥
FD.update(Ai,⊥)

12: Procedure RETURN
13: B↓ ← A↓

FD.return()
14: B⊥ ← A⊥

FD.return()

15: B←
[
B↓;B⊥]T

16: return B

3.1 THEORETICAL ANALYSIS

We present the theoretical analysis for the (learned) Misra-Gries and (learned) Frequent Directions
algorithms under a Zipfian distribution. The error bounds for the (learned) Misra-Gries algorithms
are detailed in Theorems 3.1 and 3.2. The corresponding results for the (learned) Frequent Direc-
tions algorithm are provided in Theorems 3.3 and 3.4. The complete proofs for are provided in
Appendix C and Appendix D, respectively.

Due to space constraints, we provide sketch proofs for the (learned) Misra-Gries algorithm only. The
proofs for the (learned) Frequent Directions algorithm follow similar techniques. Since the structure
of Misra-Gries is simpler, analyzing its bounds first offers clearer insights into the problems.

Theorem 3.1 (Expected Error of the Misra-Gries Algorithm). Given a stream of n elements from a
domain [d], where each element i has a frequency f(i) ∝ 1/i for i ∈ [d], the Misra-Gries algorithm

using m words of memory achieves expected error of Err ∈ Θ
((

ln m
ln d

m

)
· ln d

m

(ln d)2 ·
n
m

)
. (5)

Proof Sketch. At a high level, we first derive an upper bound on the maximum estimation error
using Fact 2.2 under the Zipfian distribution assumption. We then partition the elements into two
groups: those with frequencies exceeding this error and those that do not. For the first group, the
estimation error for each element is bounded by the maximum error. For the second group, since
Misra-Gries never overestimates their frequencies, the error is limited to the actual frequency of
each element. For each group, we can show that the weighted error is bounded above by the RHS

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of (5). For the lower bound, we construct an adversarial input sequence such that the weighted error
of elements in the first group indeed matches the upper bound, proving that the bound is tight. □

Theorem 3.2 (Expected Error of the Learned Misra-Gries Algorithm). Given a stream of n elements
from a domain [d], where each element i has a frequency f(i) ∝ 1/i for i ∈ [d], and assuming a
perfect oracle, the learning-augmented Misra-Gries algorithm using m words of memory achieves
expected error of Err ∈ Θ

(
1
m ·

n
(ln d)2

)
.

Here, a perfect oracle is defined as one that makes no mistakes in predicting the top frequent ele-
ments. The scenario where the learning oracle is not perfect will be discussed later in this section.

Proof Sketch. Under the assumption of access to a perfect oracle, the algorithm does not make
estimation error on the top-mL elements. For the remaining elements, the Misra-Gries algorithm
never overestimates its frequency: f̃(i) ∈ [0, f(i)]. Hence the weighted error is at most

Err =

d∑
i=mL+1

f(i)

n
·
∣∣∣f̃(i)− f(i)

∣∣∣ ≤ d∑
i=mL+1

1

i · ln d
· n

i · ln d
∈ O

(
1

m
· n

(ln d)2

)
. (6)

The lower bound is obtained using a similar technique as in Theorem 3.1, by constructing an input
sequence such that the error incurred by the non-predicted elements matches the upper bound. □

Comparison with Previous Work. This guarantee matches that of the learning-augmented fre-
quency estimation algorithm of Aamand et al. (2023) but with significant simplifications. Aamand
et al. (2023) also reserve separate buckets for the predicted heavy hitters, but to get a robust algo-
rithm in case of faulty predictions, they maintain O(log log n) additional CountSketch tables for
determining if an arriving element (which is not predicted to be heavy) is in fact a heavy hitter with
reasonably high probability. If these tables deem the element light, they output zero as the estimate,
and otherwise, they use the estimate of a separate CountSketch table. In contrast, our algorithm uses
just a single implementation of the simple and classic Misra-Gries algorithm. This approach has the
additional advantage of being deterministic in contrast to CountSketch, which is randomized.

Robustness and Resilience to Prediction Errors. We note that the learned Misra-Gries algorithm
is robust in the sense that it essentially retains the error bounds of its classic counterpart regardless
of predictor quality. Indeed, the learned version allocates m/2 space to maintain exact counts of
elements predicted to be heavy, and uses a classic Misra-Gries sketch of size m/2 for the remaining
elements. Thus, it incurs no error on the elements predicted to be heavy and on the elements pre-
dicted to be light, we get the error guarantees of classic Misra-Gries (using space m/2 instead of
m). It is further worth noting that the error bound of Theorem 3.2 holds even for non-perfect learn-
ing oracles or predictions as long as their accuracy is high enough. Specifically, assume that the
algorithm allocates some mL ∈ Ω(m) buckets for the learned oracle. Further, assume that only the
top c ·mL elements with the highest frequencies are included among the mL heavy hitters predicted
by the oracle, for some c ≤ 1 (e.g., c = 0.1). In this case, Inequality (6) still holds: the summation
now starts from c ·mL + 1 instead of mL + 1, which does not affect the asymptotic error.

The corresponding theorems for (learned) Frequent Directions are below with proofs in Appendix D.
Theorem 3.3 (Expected Error of the FREQUENT DIRECTIONS Algorithm). Assume that the singu-
lar values of the input matrix A to the Algorithm 1 satisfies σ2

i ∝ 1
i , for all i ∈ [d], it achieves an

expected error of Err(AFD) ∈ Θ
((

ln m
ln 2d

m

)
· ln d

m

(ln d)2 ·
∥A∥2

F

m

)
.

Theorem 3.4 (Expected Error of the Learned FREQUENT DIRECTIONS Algorithm). Assume that
the singular values of the input matrix A to Algorithm 2 satisfies σ2

i ∝ 1
i , for all i ∈ [d], and that

learning oracle is perfect, it achieves an expected error of Err(AFD) ∈ Θ
(

1
(ln d)2 ·

∥A∥2
F

m

)
.

Robustness of Learned Frequent Directions. It turns out that Algorithm 2 does not come with
a robustness guarantee similar to that of Learned Misra-Gries discussed above. In fact, we can
construct adversarial inputs for which the expected error is much worse than in the classic setting.
Fortunately, there is a way to modify the algorithm slightly using the fact that the residual error
∥A − [A]k∥2F can be computed within a constant factor using an algorithm from Li et al. (2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Since the error of the algorithm scales with the residual error, this essentially allows us to determine
if we should output the result of a learned or standard Frequent Directions algorithm. The result
is Theorem E.1 on robustness. Combined with Theorem E.2, which explicitly bounds the error of Al-
gorithm 2 in terms of the true and predicted frequent directions, we obtain consistency/robustness
tradeoffs for the modified algorithm. Details are provided in Appendix E.

4 EXPERIMENTS

We complement our theoretical results with experiments on real data both in the frequency estima-
tion (1-dimensional stream elements) and frequent directions (row vector stream elements) settings.
We highlight the main experimental results here and include extensive figures in Appendix F.

4.1 FREQUENT DIRECTIONS EXPERIMENTS

Datasets and Predictions We use datasets from Indyk et al. (2019) and Indyk et al. (2021), prior
works on learning-based low rank approximation not in the streaming setting. The Hyper dataset
(Imamoglu et al., 2018) contains a sequence of hyperspectral images of natural scenes. We consider
80 images each of dimension 1024 × 768. The Logo, Friends, and Eagle datasets come from high-
resolution Youtube videos3. We consider 20 frames from each video each with dimension 3240 ×
1920. We plot the distribution of singular values for each dataset in Appendix F. For each dataset, we
use the top singular vectors of the first matrix in the sequence to form the prediction via a low-rank
projection matrix (see Algorithm 2).

Baselines We compare two streaming algorithms and one incomparable baseline. In the streaming
setting, we compare the Frequent Directions algorithm of Ghashami et al. (2016) with our learning-
augmented variant. Both implementations are based on an existing implementation of Frequent Di-
rections4. We additionally plot the performance of the low-rank approximation given by the largest
right singular vectors (weighted by singular values). This matrix is not computable in a stream as it
involves taking the SVD of the entire matrix A but we evaluate it for comparison purposes. Results
are displayed based on the rank of the matrix output by the algorithm, which we vary from 20 to 200.
For both Frequent Directions and our learned variant, the space used by the streaming algorithm is
twice the rank: this is a choice made in the Frequent Directions implementation to avoid running
SVD on every insertion and thus improve the update time. We use half of the space for the learned
projection component and half for the orthogonal component in our algorithm.

Results For each of the four datasets, we plot tradeoffs between median error (across the sequence
of matrices) and rank as well as error across the sequence for a fixed rank of 100 (see Figure 1).
We include the latter plots for choices of rank in Appendix F. Our learning-augmented Frequent
Directions algorithm improves upon the base Frequent Directions by 1-2 orders of magnitude on
all datasets. In most cases, it performs within an order of magnitude of the (full-memory, non-
streaming) SVD approximation. In all cases, increasing rank, or equivalently, space, yields signifi-
cant improvement in the error. These results indicate that learned hints taken from the SVD solution
on the first matrix in the sequence can be extremely powerful in improving matrix approximations in
streams. As the sequences of matrices retain self-similarity (e.g., due to being a sequence of frames
in a video), the predicted projection allows our streaming algorithm to achieve error closer to that of
the memory-intensive SVD solution than that of the base streaming algorithm.

4.2 FREQUENCY ESTIMATION EXPERIMENTS

Datasets and Predictions We test our algorithm and baselines on the CAIDA (CAIDA, 2016)
and AOL (Pass et al., 2006) datasets used in prior work (Hsu et al., 2019; Aamand et al., 2023).
The CAIDA dataset contains 50 minutes of internet traffic data, with a stream corresponding to the
IP addressed associated with packets passing through an ISP over a minute of data. Each minute
of data contains approximately 30 million packets with 1 million unique IPs. The AOL dataset

3Originally downloaded from http://youtu.be/L5HQoFIaT4I, http://youtu.be/
xmLZsEfXEgE and http://youtu.be/ufnf_q_3Ofg and appearing in Indyk et al. (2019).

4https://github.com/edoliberty/frequent-directions

8

http://youtu.be/L5HQoFIaT4I
http://youtu.be/xmLZsEfXEgE
http://youtu.be/xmLZsEfXEgE
http://youtu.be/ufnf_q_3Ofg
https://github.com/edoliberty/frequent-directions

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

20 40 60 80 100 120 140 160 180 200
Rank

10 6

10 5

10 4

10 3

Er
ro

r

Error/Rank Tradeoff
SVD
FD
Learned FD (ours)

0 10 20 30 40 50 60 70 80
Matrices

10 6

10 5

10 4

10 3

Er
ro

r

Rank: 100
SVD
FD
Learned FD (ours)

(a) Hyper

20 40 60 80 100 120 140 160 180 200
Rank

102

104

106

108

Er
ro

r

Error/Rank Tradeoff
SVD
FD
Learned FD (ours)

0 2 4 6 8 10 12 14 16 18
Matrices

102

103

104

105

106

Er
ro

r

Rank: 100
SVD
FD
Learned FD (ours)

(b) Logo

20 40 60 80 100 120 140 160 180 200
Rank

103

104

105

106

107

Er
ro

r

Error/Rank Tradeoff
SVD
FD
Learned FD (ours)

0 2 4 6 8 10 12 14 16 18
Matrices

10 8

10 5

10 2

101

104

Er
ro

r

Rank: 100

SVD
FD
Learned FD (ours)

(c) Eagle

20 40 60 80 100 120 140 160 180 200
Rank

102

104

106

108

Er
ro

r

Error/Rank Tradeoff
SVD
FD
Learned FD (ours)

0 2 4 6 8 10 12 14 16 18
Matrices

103

104

105

106

Er
ro

r

Rank: 100
SVD
FD
Learned FD (ours)

(d) Friends

Figure 1: Comparison of matrix approximations. The Frequent Directions and learning-augmented
Frequent Directions algorithms are streaming algorithms while the exact SVD stores the entire ma-
trix to compute a low-rank approximation (so it cannot be implemented in a stream). For each
dataset, the left plot shows median error (error formula from Equation (2)) as the rank of the approx-
imation varies while the right plot shows error over the sequence of matrices with a fixed rank of
100. The sudden drop in error in Eagle corresponds to several frames of a black screen in the video.

contains 80 days of internet search query data with each stream (corresponding to a day) having
around 300k total queries and 100k unique queries. We plot the frequency distribution for both

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

datasets in Appendix F. We use recurrent neural networks trained in past work of Hsu et al. (2019)
as the predictor for both datasets.

Algorithms We compare our learning-augmented Misra-Gries algorithm with learning-augmented
CountSketch (Hsu et al., 2019) and learning-augmented CountSketch++ (Aamand et al., 2023). As
in Aamand et al. (2023), we forego comparisons against CountMin as it has worse performance both
in theory (Aamand et al., 2023) and practice (Hsu et al., 2019). For the prior state-of-the-art, learned
CS++, the implemented algorithm does not exactly correspond to the one which achieves the best
theoretical bounds as only a single CountSketch table is used (as opposed to two) and the number
of rows of the sketch is 3 (as opposed to O(log log n)). There is a tunable hyperparameter C where
elements with estimated frequency less than Cn/w have their estimates truncated to zero (where n
is the stream length and w is the sketch width). The space stored by the sketch corresponds to 3w
as there are 3 rows. For Misra-Gries, the space corresponds to double the number of stored counters
as each counter requires storing a key as well as a count. As in prior work, for all algorithms, their
learned variants use half of the space for the normal algorithm and half of the space to store exact
counts for the elements with top predicted frequencies.

500 1000 1500 2000 2500 3000
Space

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
ei

gh
te

d
Er

ro
r

1e12 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50
Streams

1

2

3

4

5

6

7

W
ei

gh
te

d
Er

ro
r

1e11 Space: 750
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

500 1000 1500 2000 2500 3000
Space

0

1

2

3

4

5

W
ei

gh
te

d
Er

ro
r

1e7 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50 60 70 80
Streams

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d
Er

ro
r

1e7 Space: 750
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 2: Comparison of learning-augmented frequency estimation algorithms. Top: CAIDA, Bot-
tom: AOL. For both datasets, the left plot show the median error of each method (across all 50
streams) with varying space budgets. The right plot shows the performance of each algorithm across
streams with fixed space of 750 words. Randomized algorithms are averaged across 10 trials and
one standard deviation is shaded.

Results For both datasets, we compare the learning-augmented algorithms by plotting the tradeoff
between median error and space as well as error across the sequence of streams for a fixed space of
750 (see Figure 2). In Appendix F, we include the latter plots for all choices of space, as well as all
corresponding plots both without predictions (to compare the base CS, CS++, and MG algorithms)
and under unweighted error (taken as the unweighted sum of absolute errors over all stream items re-
gardless of frequency) which was also evaluated in prior work. The learning-augmented Misra-Gries
algorithm improves significantly over learning-augmented CountSketch, as implied by our theoret-
ical bounds. Furthermore, it is competitive with the state-of-the-art learning-augmented CS++ al-
gorithm. Sometimes our algorithm outperforms the best hyperparameter choice CS++ and often
outperforms several of the hyperparameter choices of CS++. Furthermore, learning-augmented MG
has no equivalent tunable parameter and is simpler to deploy (especially as CS++ is already a sim-
plification of the theoretical algorithm of Aamand et al. (2023)). As learning-augmented MG is the
only deterministic algorithm with provable guarantees in the setting of Hsu et al. (2019), our results
indicate that there is essentially no cost to derandomization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anders Aamand, Justin Y. Chen, Huy Lê Nguyen, Sandeep Silwal, and Ali Vakilian. Im-
proved frequency estimation algorithms with and without predictions. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
2e49934cac6cb8604b0c67cfa0828718-Abstract-Conference.html.

CAIDA. Caida internet traces, chicago. http://www.caida.org/data/monitors/passive-equinix-
chicago.xml, 2016.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In International Colloquium on Automata, Languages, and Programming, pp. 693–703. Springer,
2002.

Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld,
Sandeep Silwal, Tal Wagner, David Woodruff, and Michael Zhang. Triangle and four cycle count-
ing with predictions in graph streams. In International Conference on Learning Representations,
2022a.

Justin Y. Chen, Piotr Indyk, and Tal Wagner. Streaming algorithms for support-aware histograms.
In Proceedings of the 39th International Conference on Machine Learning, 2022b.

Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algo-
rithms via learned predictions. In International Conference on Machine Learning, pp. 3583–3602.
PMLR, 2022c.

Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input spar-
sity time. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (eds.), Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pp. 81–90. ACM,
2013. doi: 10.1145/2488608.2488620. URL https://doi.org/10.1145/2488608.
2488620.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Faster matchings via learned duals. ArXiv, abs/2107.09770, 2021. URL https://api.
semanticscholar.org/CorpusID:236154892.

Elbert Du, Franklyn Wang, and Michael Mitzenmacher. Putting the “learning” into learning-
augmented algorithms for frequency estimation. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 2860–2869. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/du21d.html.

Mina Ghashami and Jeff M. Phillips. Relative errors for deterministic low-rank matrix approxima-
tions. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’14, pp. 707–717, USA, 2014a. Society for Industrial and Applied Mathematics. ISBN
9781611973389.

Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank matrix approxima-
tions. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
pp. 707–717. SIAM, 2014b.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016. doi:
10.1137/15M1009718. URL https://doi.org/10.1137/15M1009718.

Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In International Conference on Machine Learning, 2019. URL https://api.
semanticscholar.org/CorpusID:174800680.

11

http://papers.nips.cc/paper_files/paper/2023/hash/2e49934cac6cb8604b0c67cfa0828718-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2e49934cac6cb8604b0c67cfa0828718-Abstract-Conference.html
https://doi.org/10.1145/2488608.2488620
https://doi.org/10.1145/2488608.2488620
https://api.semanticscholar.org/CorpusID:236154892
https://api.semanticscholar.org/CorpusID:236154892
https://proceedings.mlr.press/v139/du21d.html
https://proceedings.mlr.press/v139/du21d.html
https://doi.org/10.1137/15M1009718
https://api.semanticscholar.org/CorpusID:174800680
https://api.semanticscholar.org/CorpusID:174800680

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=r1lohoCqY7.

Nevrez Imamoglu, Yu Oishi, Xiaoqiang Zhang, Guanqun Ding, Yuming Fang, Toru Kouyama, and
Ryosuke Nakamura. Hyperspectral image dataset for benchmarking on salient object detection.
In 2018 Tenth international conference on quality of multimedia experience (qoMEX), pp. 1–3.
IEEE, 2018.

Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/1625abb8e458a79765c62009235e9d5b-Paper.pdf.

Piotr Indyk, Tal Wagner, and David Woodruff. Few-shot data-driven algorithms for low rank ap-
proximation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 10678–10690. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/588da7a73a2e919a23cb9a419c4c6d44-Paper.pdf.

Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P Woodruff. Learning-augmented data
stream algorithms. ICLR, 2020.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pp. 489–504, New York, NY, USA, 2018. Association for Computing Machin-
ery. ISBN 9781450347037. doi: 10.1145/3183713.3196909. URL https://doi.org/10.
1145/3183713.3196909.

Yi Li, Honghao Lin, and David P. Woodruff. Optimal sketching for residual error estimation for
matrix and vector norms. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=RsJwmWvE6Q.

Edo Liberty. Simple and deterministic matrix sketching. In Inderjit S. Dhillon, Yehuda Koren,
Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman,
and Ramasamy Uthurusamy (eds.), The 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pp. 581–
588. ACM, 2013. doi: 10.1145/2487575.2487623. URL https://doi.org/10.1145/
2487575.2487623.

Edo Liberty. Even simpler deterministic matrix sketching. CoRR, abs/2202.01780, 2022. URL
https://arxiv.org/abs/2202.01780.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. J.
ACM, 68(4), July 2021. ISSN 0004-5411. doi: 10.1145/3447579. URL https://doi.org/
10.1145/3447579.

Ahmed Metwally, Divyakant Agrawal, and A. Abbadi. Efficient computation of frequent and top-
k elements in data streams. In International Conference on Database Theory, pp. 398–412, 01
2005. ISBN 978-3-540-24288-8. doi: 10.1007/978-3-540-30570-5 27.

Raphael A Meyer, Cameron Musco, Christopher Musco, and David P Woodruff. Hutch++: Optimal
stochastic trace estimation. In Symposium on Simplicity in Algorithms (SOSA), pp. 142–155.
SIAM, 2021.

Gregory T. Minton and Eric Price. Improved concentration bounds for count-sketch. In ACM-SIAM
Symposium on Discrete Algorithms, 2012. URL https://api.semanticscholar.org/
CorpusID:11724394.

12

https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7
https://proceedings.neurips.cc/paper_files/paper/2019/file/1625abb8e458a79765c62009235e9d5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1625abb8e458a79765c62009235e9d5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/588da7a73a2e919a23cb9a419c4c6d44-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/588da7a73a2e919a23cb9a419c4c6d44-Paper.pdf
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://openreview.net/forum?id=RsJwmWvE6Q
https://openreview.net/forum?id=RsJwmWvE6Q
https://doi.org/10.1145/2487575.2487623
https://doi.org/10.1145/2487575.2487623
https://arxiv.org/abs/2202.01780
https://doi.org/10.1145/3447579
https://doi.org/10.1145/3447579
https://api.semanticscholar.org/CorpusID:11724394
https://api.semanticscholar.org/CorpusID:11724394

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–
152, 1982. doi: 10.1016/0167-6423(82)90012-0. URL https://doi.org/10.1016/
0167-6423(82)90012-0.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. Advances
in Neural Information Processing Systems, 31, 2018.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Commun. ACM, 65
(7):33–35, June 2022. ISSN 0001-0782. doi: 10.1145/3528087. URL https://doi.org/
10.1145/3528087.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In Proceedings of the 1st
international conference on Scalable information systems, pp. 1–es, 2006.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
2006 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp. 143–152.
IEEE, 2006.

Rana Shahout and Michael Mitzenmacher. Learning-based heavy hitters and flow frequency esti-
mation in streams. In arXiv preprint, 06 2024. doi: 10.48550/arXiv.2406.16270.

Rana Shahout, Ibrahim Sabek, and Michael Mitzenmacher. Learning-augmented frequency estima-
tion in sliding windows. In arXiv preprint, 09 2024. doi: 10.48550/arXiv.2409.11516.

Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Practical sketching algorithms
for low-rank matrix approximation. SIAM Journal on Matrix Analysis and Applications, 38(4):
1454–1485, 2017.

David Woodruff. Low rank approximation lower bounds in row-update streams. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/58e4d44e550d0f7ee0a23d6b02d9b0db-Paper.pdf.

David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

13

https://doi.org/10.1016/0167-6423(82)90012-0
https://doi.org/10.1016/0167-6423(82)90012-0
https://doi.org/10.1145/3528087
https://doi.org/10.1145/3528087
https://proceedings.neurips.cc/paper_files/paper/2014/file/58e4d44e550d0f7ee0a23d6b02d9b0db-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/58e4d44e550d0f7ee0a23d6b02d9b0db-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Other Related Works 15

B Missing Proofs for Preliminaries 15

C Analysis of Misra-Gries 18

D Analysis of Frequent Directions 21
D.1 Frequent Directions Under Zipfian . 21
D.2 Learned Frequent Directions Under Zipfian . 22

E Consistency/Robustness trade offs 25
E.1 The Error of Non-Perfect Oracles. 26

F Additional Experiments 28
F.1 Dataset Statistics . 28
F.2 Noise Analysis in Frequent Directions . 28
F.3 Additional Frequent Directions Experiments 29
F.4 Additional Frequency Estimation Experiments 30

Table of Notations

Symbol Definition
n Number of Inputs in the Stream

d
Domain Size (Frequency Estimation)
Dimension (Frequent Directions)

f(·) Frequency
ai The ith input element in the stream (Frequency Estimation)
Ai The ith input vector in the stream (Frequent Directions)
A Stream Input Matrix
e⃗i Standard Basis Vector
σi Singular Value of a Matrix

N(·, ·) Normal Distribution
U(i),ΣΣΣ(i),V(i) The SVD decomposition matrices at the ith iteration of Algorithm 1

Table 3: Definitions of Main Notation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A OTHER RELATED WORKS

There is also a vast literature on sketching based algorithms for low-rank approximation without any
learned-augmentation (Sarlos, 2006; Ghashami & Phillips, 2014b; Liberty, 2013; Tropp et al., 2017;
Meyer et al., 2021). We refer to the monograph Woodruff et al. (2014) for more details.

B MISSING PROOFS FOR PRELIMINARIES

We refer the reader to Section 2 for the full statements.

Proof of Lemma 2.1.

E
v⃗∼N(0,ATA)

[
∥Av⃗∥22 − f̃(v⃗)

]
= E

[
v⃗TATAv⃗

]
− E

[
v⃗TBTBv⃗

]
= E

[
tr(v⃗TATAv⃗)

]
− E

[
tr(v⃗TBTBv⃗)

]
= E

[
tr(ATAxxT)

]
− E

[
tr(BTBxxT)

]
= tr(ATAE

[
xxT

]
)− tr(BTBE

[
xxT

]
)

= tr((ATA)2)− tr(BTBATA)

Let v⃗i be the right singular vectors of A:

tr
((

ATA
)2)

= tr

∑

i∈[d]

σ2
i · v⃗iv⃗Ti

2
 (7)

= tr

∑
i∈[d]

σ4
i · v⃗iv⃗Ti

 =
∑
i∈[d]

σ4
i , (8)

tr
(
BTBATA

)
= tr

BTB

∑
i∈[d]

σ2
i · v⃗iv⃗Ti

 (9)

=
∑
i∈[d]

σ2
i · tr

(
BTBv⃗iv⃗

T
i

)
=
∑
i∈[d]

σ2
i · tr

(
v⃗Ti B

TBv⃗i
)
. (10)

Therefore,

E
v⃗∼N(0,ATA)

[
v⃗T (ATA−BTB)v⃗

]
=
∑
i∈[d]

σ4
i −

∑
i∈[d]

σ2
i · tr

(
v⃗Ti B

TBv⃗i
)
. (11)

Further, since f̃(v⃗) = ∥Bv⃗∥22 and 0 ≤ f̃(v⃗) ≤ f(v⃗), Equation (2) can be written as∑
i∈[d]

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i. (12)

The first term is given by

∑
i∈[d]

σ2
i · v⃗Ti

∑
j∈[d]

σ2
j v⃗j v⃗

T
j

v⃗i =
∑
i∈[d]

σ4
i · v⃗Ti v⃗i =

∑
i∈[d]

σ4
i . (13)

Further note that

E
v⃗∼N(0,ATA)

[
∥v⃗∥22

]
= E

z∼N(0,I)

[
zTAAT z

]
= E

z∼N(0,I)

[
tr
(
zTAAT z

)]
(14)

= E
z∼N(0,I)

[
tr
(
AAT zzT

)]
= tr

(
AAT

)
= ∥A∥2F . (15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Therefore, ∑
i∈[d]

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i =

Ev⃗∼N(0,ATA)

[
v⃗T (ATA−BTB)v⃗

]
Ev⃗∼N(0,ATA)

[
∥v⃗∥22

] . (16)

Proof of Fact 2.2. For consistence, at each iteration, if B has less than m rows after insertion, we
still define

U(i),ΣΣΣ(i),V(i) ← SVD(B), and ΣΣΣ(i) = ΣΣΣ(i).

To analyze the error, let B(i) denote the value of B after the i(th) iteration, and define

∆(i) .
= AT

i Ai +B(i−1)TB(i−1) −B(i)TB(i)

= V(i)ΣΣΣ(i)TU(i)TU(i)ΣΣΣ(i)V(i)T −V(i)ΣΣΣ(i)
T

ΣΣΣ(i)V(i)T

= V(i)

(
ΣΣΣ(i)TΣΣΣ(i) −ΣΣΣ(i)

T

ΣΣΣ(i)

)
V(i)T .

Then

ATA−B(n)TB(n) =
∑
i∈[n]

(
AT

i Ai +B(i−1)TB(i−1) −B(i)TB(i)
)
=
∑
i∈[n]

∆(i). (17)

Since each ∆(i) ⪰ 0, we prove that

ATA−B(n)TB(n) ⪰ 0. (18)

Let v⃗1, . . . , v⃗d ∈ Rk be the right singular vectors of A. For each k = 0, . . . , τ − 1, define the
projection matrix Pk = [⃗0 | . . . | 0⃗ | v⃗k+1 | . . . | v⃗d] ∈ Rd×d, consisting of columns vectors
0⃗, . . . , 0⃗, v⃗k+1, . . . , v⃗d. The null space is thus spanned by the top-k right singular vectors of A. We
claim the following holds:∥∥∥∆(i)

∥∥∥
2
≤ 1

τ − k
· tr
(
Pk

T
∆(i)Pk

)
, ∀k = 0, . . . , τ − 1. (19)

Before proving it, we complete the proof of the error:

∥∥∥ATA−B(n)TB(n)
∥∥∥
2
=

∥∥∥∥∥∥
∑
i∈[n]

∆(i)

∥∥∥∥∥∥
2

≤
∑
i∈[n]

∥∥∥∆(i)
∥∥∥
2
≤ 1

τ − k
·
∑
i∈[n]

tr
(
Pk

T
∆(i)Pk

)
(20)

=
1

τ − k
· tr

Pk
T

(∑
i∈[n]

∆(i)

)
Pk

 (21)

=
1

τ − k
· tr
(
Pk

T
ATAPk

)
=

1

τ − k
· ∥A− [A]k∥2F . (22)

Proof of Inequality (19): First,∥∥∥∆(i)
∥∥∥
2
=

∥∥∥∥V(i)

(
ΣΣΣ(i)TΣΣΣ(i) −ΣΣΣ(i)

T

ΣΣΣ(i)

)
V(i)T

∥∥∥∥
2

=

∥∥∥∥ΣΣΣ(i)TΣΣΣ(i) −ΣΣΣ(i)
T

ΣΣΣ(i)

∥∥∥∥
2

=

∥∥∥∥min{ΣΣΣ(i)2,
(
σ(i)
τ

)2
I}
∥∥∥∥
2

=
(
σ(i)
τ

)2
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where σ
(i)
τ is the τ (th) largest singular value of ΣΣΣ(i). Next,

tr
(
∆(i)

)
= tr

(
V(i)

(
ΣΣΣ(i)TΣΣΣ(i) −ΣΣΣ(i)

T

ΣΣΣ(i)

)
V(i)T

)
(23)

= tr

(
ΣΣΣ(i)TΣΣΣ(i) −ΣΣΣ(i)

T

ΣΣΣ(i)

)
=
∑
j∈[d]

(
σ
(i)
j

)2
≥ τ ·

(
σ(i)
τ

)2
. (24)

Next, let Pk = [v⃗1 | . . . | v⃗k | 0⃗ | . . . | 0⃗] ∈ Rd×d be the projection matrix to the space spanned by
the top-k right singular vectors of A. Then Pk + Pk = I , and

tr
(
∆(i)

)
= tr

((
Pk + Pk

)T
∆(i)

(
Pk + Pk

))
= tr

(
P T

k ∆(i)Pk

)
+ tr

(
Pk

T
∆(i)Pk

)
. (25)

Expanding tr
(
P T

k ∆(i)Pk

)
we get

tr
(
P T

k ∆(i)Pk

)
=
∑
j∈[k]

v⃗Tj ∆
(i)v⃗j ≤ k ·

(
σ(i)
τ

)2
, (26)

which implies that

tr
(
Pk

T
∆(i)Pk

)
≤ (τ − k) ·

(
σ(i)
τ

)2
= (τ − k) ·

∥∥∥∆(i)
∥∥∥2
2
. (27)

Running Time: For each Ai, inserting it into B takes O(d) time. When B reaches its capacity of
m rows, the operations in Lines 7-10 are triggered, and performing the SVD requires O(m2d) time.

After completing this step, B has at least m − τ + 1 empty rows. Thus, the algorithm can ac-
commodate at least m − τ + 1 additional insertions before Lines 7-10 need to be executed again.
Consequently, the total running time is:

O

(
n

m− τ + 1
·m2d

)
. (28)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C ANALYSIS OF MISRA-GRIES

Proof of Theorem 3.1. We need to prove both upper bounds and lower bounds for the theorem.

Upper Bound for Theorem 3.1. W.L.O.G., assume that f(1) ≥ f(2) ≥ · · · ≥ f(d). Since f(i) ∝ 1
i

for each i ∈ [d], and the input stream consists of n elements, it follows that f(i) ≈ n
i·ln d .

Assume that we have a Misra-Gries sketch of size m ∈ N+. Then by translating the error guarantee
from Fact 2.2 for Misra-Gries, we have

max
i∈[d]

∣∣∣f̃(i)− f(i)
∣∣∣ ≤ min

k∈[0 . .m−1]

n−
∑

j∈[k] f(i)

τ − k
≤

n−
∑

j∈[m/2] f(i)

m/2
=

2 · n · ln 2d
m

m · ln d
. (29)

Further,

i ≥ m

2 · ln 2d
m

=⇒ f(i) =
n

i · ln d
≤

2 · n · ln 2d
m

m · ln d
(30)

Since we also know that 0 ≤ f̃(i) ≤ f(i), it follows that

∑
i∈[d

f(i)

n
·
∣∣∣f̃(i)− f(i)

∣∣∣ =
m

2·ln 2d
m∑

i=1

f(i)

n
·
∣∣∣f̃(i)− f(i)

∣∣∣+ d∑
i= m

2·ln 2d
m

+1

f(i)

n
·
∣∣∣f̃(i)− f(i)

∣∣∣

≤

m

2·ln 2d
m∑

i=1

f(i)

n
·
2 · n · ln 2d

m

m · ln d
+

d∑
i= m

2·ln 2d
m

+1

f(i)

n
· f(i)

≤

m

2·ln 2d
m∑

i=1

1

i · ln d
·
2 · n · ln 2d

m

m · ln d
+

d∑
i= m

2·ln 2d
m

+1

1

i · ln d
· n

i · ln d

∈ O

(
ln m

2·ln 2d
m

ln d
·
n · ln d

m

m · ln d
+

1
m

2·ln 2d
m

+ 1
· n

(ln d)2

)

= O

(
ln m

2·ln 2d
m

1
·

n · ln d
m

m · (ln d)2
+

ln d
m

m
· n

(ln d)2

)

= O

((
ln

m

ln 2d
m

)
·
ln d

m

m
· n

(ln d)2

)

Lower Bound for Theorem 3.1. To prove the lower bound, we assume there is an adversary which
controls the order that the input elements arrive, under the constraints that

∑
i∈[d] f(i) = n and

f(i) ∝ 1/i, to maximize the error of the Misra-Gries algorithm.

Denote B the array maintained by the Misra-Gries algorithm, containing m buckets. Initially, all
buckets are empty.

First, the adversary inserts elements 1, . . . , t to the Misra-Gries algorithm, with multiplicities
f(1), . . . , f(t), where t = m

ln 2d
m

. After this, B contains t non-empty buckets (for simplicity, here

we assume that
∑

i∈[t] f(i) is a multiple of m), which stores elements 1, . . . , t, associated with their
recorded frequencies f(1), . . . , f(t), which we call their counters.

Next, let C be the multi-set consisting of elements t+1, . . . , d, such that each element i ∈ [t+ 1 . . d]
has multiplicity f(i) in C. Consider the following game:

• Adversary: pick an element i from C that is not in B. If such element exists, remove one
copy of it from C, and send it to the Misra-Gries algorithm as the next input. If there is no
such element, stop the game.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Misra-Gries Algorithm: process the input i.

During this game, B are filled up and contains no empty bucket after at most every m input, and the
counters of elements 1, . . . , t decrease by 1 (if they are still above zero) when B is updated to make
empty buckets.

Further, when the game stops, there can be at most m distinct elements in C, with frequency sum at
most

∑t+m
i=t+1 f(i). It follows that the counters of elements 1, . . . , t in B decrease at least by

1

m
·

d∑
i=m+t+1

f(i) ∈ Ω

(
n · ln d

m

m · ln d

)
, since m+ t+ 1 ≤ 2m.

Therefore, the weighted error introduced by these counters is at least

Ω

∑
i∈[t]

1

i · ln d
·
n · ln d

m

m · ln d

 = Ω

(
ln t

ln d
·
n · ln d

m

m · ln d

)
= Ω

((
ln

m

ln 2d
m

)
·

ln d
m

(ln d)2
· n
m

)
.

Proof of Theorem 3.2. We need to prove both upper bounds and lower bounds for the theorem.

Upper Bound for Theorem 3.2. It suffices to show that, there exists a parameter setting of mL

which enables the algorithm to achieve the desired error bound.

Assume that the algorithm reserves mL = m/3 words for the learned oracle. Then for each element
i ∈ [mL], its frequency estimate f̃(i) = f(i). And for each i /∈ [mL], the Misra-Gries algorithm
never overestimate its frequency: f̃(i) ∈ [0, f(i)]. Hence

Err =

d∑
i=mL+1

f(i)

n
·
∣∣∣f̃(i)− f(i)

∣∣∣ ≤ d∑
i=mL+1

1

i · ln d
· n

i · ln d
∈ O

(
1

m
· n

(ln d)2

)
. (31)

Lower Bound for Theorem 3.2. To establish the lower bound, we consider an adversarial sce-
nario where an adversary controls the order in which elements arrive, subject to the constraints∑

i∈[d] f(i) = n and f(i) ∝ 1/i. The adversary’s goal is to maximize the error of the learned
Misra-Gries algorithm.

According to the framework presented in Algorithm 2 for the learned Frequent Directions, the
learned Misra-Gries algorithm initializes two separate Misra-Gries instances: one for the mL el-
ements predicted to be frequent and one for elements predicted to be non-frequent.

Since mL memory words are already reserved for storing the frequencies of the predicted frequent
elements, we do not need to run a full Misra-Gries algorithm on the these elements. Instead, we
only record their observed frequencies.

By overloading the notation a little, let us denote B as the array used by the Misra-Gries instance
managing the predicted non-frequent elements, which has a capacity of m −mL buckets. Initially,
all buckets in B are empty.

Since the learned Misra-Gries algorithm incurs no estimation error for the predicted frequent ele-
ments, our analysis focuses on the non-frequent elements and the potential error introduced by the
Misra-Gries instance that processes them.

Let C denote the multi-set of elements mL+1, . . . , d, where each element i ∈ [mL + 1 . . d] appears
with multiplicity f(i) in C. Consider the following adversarial game:

• Adversary’s Role: At each step, the adversary selects an element i from C that is not cur-
rently stored in the array B. If such an element exists, the adversary removes one occur-
rence of i from C and sends it to the Misra-Gries algorithm as the next input. If there is no
such element left, the adversary halts the game.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Misra-Gries Algorithm’s Role: The Misra-Gries algorithm processes the incoming element
i as it would normally, using the array B of capacity m−mL.

After the game, the remaining elements in C are fed to the Misra-Gries algorithm in arbitrary order
by the adversary.

Now, consider the estimation error made by the Misra-Gries algorithm on the elements mL +
1, . . . ,mL + 2(m − mL). Since the array B can only store up to m − mL elements, the algo-
rithm must estimate the frequency of at least m−mL elements from this range as zero. Therefore,
the error is at least

mL+2(m−mL)∑
i=mL+(m−mL)+1

f(i)

n
· f(i) =

mL+2(m−mL)∑
i=m−mL+1

1

i · ln d
· n

i · ln d
∈ Ω

(
n

m · ln2 d

)
,

which finishes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D ANALYSIS OF FREQUENT DIRECTIONS

D.1 FREQUENT DIRECTIONS UNDER ZIPFIAN

Proof of Theorem 3.3. We need to prove both upper bounds and lower bounds for the theorem.

Upper Bound for Theorem 3.3. First, based on the assumption that σ2
i ∝ 1

i , and Fact 2.2, we have

∥ATA−BTB∥2 ≤ min
k∈[0 . .m−1]

∥A− [A]k∥2F
τ − k

(32)

= min
k∈[0 . .m−1]

∑d
i=k+1 σ

2
i

τ − k
(33)

= min
k∈[0 . .m−1]

(Hd −Hk) · ∥A∥2F
(τ − k) · ln d

(34)

≤
2 · (Hd −Hm/2) · ∥A∥

2
F

m · ln d
(35)

∈ O

(
∥A∥2F · ln

2d
m

m · ln d

)
, (36)

where Hm
.
=
∑

j∈[m]
1
j ,∀m ∈ N+ are the harmonic numbers. Further,

i ≥ m

ln 2d
m

=⇒ σ2
i =
∥A∥2F
i · ln d

≤
∥A∥2F · ln

2d
m

m · ln d
(37)

Since BTB ⪰ 0, and ATA −BTB ⪰ 0 by Fact 2.2, it follows that for each right singular vector
v⃗i of A

0 ≤ v⃗Ti (A
TA−BTB)v⃗i ≤ v⃗Ti A

TAv⃗i ≤ σ2
i , (38)

where σi is the singular value associated with v⃗i.

Therefore, the expected error is given by

Err(AFD)
.
=
∑
i∈[d]

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i (39)

=

m

ln 2d
m∑

i=1

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i +

d∑
i= m

ln 2d
m

+1

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i (40)

∈ O

m

ln 2d
m∑

i=1

σ2
i

∥A∥2F
·
∥A∥2F · ln

2d
m

m · ln d
+

d∑
i= m

ln 2d
m

+1

σ2
i

∥A∥2F
· σ2

i

 (41)

= O

m

ln 2d
m∑

i=1

1

i · ln d
·
∥A∥2F · ln

2d
m

m · ln d
+

d∑
i= m

ln 2d
m

+1

1

i · ln d
·
∥A∥2F
i · ln d

 (42)

= O

(
ln m

ln 2d
m

ln d
·
∥A∥2F · ln

2d
m

m · ln d
+

1
m

ln 2d
m

+ 1
·
∥A∥2F
(ln d)2

)
(43)

= O

(
ln m

ln 2d
m

1
·
∥A∥2F · ln

2d
m

m · (ln d)2
+

ln 2d
m

m
·
∥A∥2F
(ln d)2

)
(44)

= O

((
ln

m

ln 2d
m

)
·
ln d

m

m
·
∥A∥2F
(ln d)2

)
(45)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Lower Bound for Theorem 3.3. The proof of the lower bound follows the same approach as the one
for Theorem 3.1, in Appendix C.

Assume that A consists of standard basis vectors e⃗1, . . . , e⃗d ∈ Rd. Let f(e⃗i) denote the number of
occurrences of e⃗i in A. Without loss of generality, assume that f(e⃗1) ≥ . . . ≥ f(e⃗d). In this case,
we have f(e⃗i) = σ2

i and
∑

i∈[d] f(e⃗i) =
∑

i∈[d] σ
2
i = ∥A∥2F = n. Further, we can then view the B

maintained by the Frequent Directions algorithm as an array of m buckets.

Now the setting is exactly the same as the Misra-Gries algorithm. Consequently, the constructive
lower bound proof from Theorem 3.1 directly applies to Frequent Directions.

D.2 LEARNED FREQUENT DIRECTIONS UNDER ZIPFIAN

We need an additional result to prove Theorem 3.4. Recall that PH in Algorithm 2 consists of or-
thonormal column vectors w⃗1, . . . , w⃗mL

∈ Rd. Extending this set of vectors to form an orthonormal
basis of Rd: w⃗1, . . . , w⃗mL

, w⃗mL+1, . . . , w⃗d. Write PH = [w⃗mL+1 | . . . | w⃗d] the projection ma-
trix to the orthogonal subspace. Let A↓

.
= APHPT

H be the matrix of projecting the rows of A to
the predicted subspace, and A⊥

.
= A−A↓ = A(I −PHPT

H).

The following lemma holds.

Lemma D.1. For a vector x⃗ ∈ Rd, we have

x⃗TATAx⃗ = x⃗TAT
↓ A↓x⃗+ x⃗TAT

⊥A⊥x⃗+ 2 ·
∑
i∈[d]

σ2
i · ⟨PT

H v⃗i,P
T
H x⃗⟩ · ⟨PT

H
v⃗i,P

T
H
x⃗⟩. (46)

The proof of the lemma is included at the end of the section.

Proof of Theorem 3.4. We need to prove both upper bounds and lower bounds for the theorem.

Upper Bound for Theorem 3.4. It suffices to show that, there exists a parameter setting of mL

which enables the algorithm to achieve the desired error bound. We assume that the algorithm uses
mL = m/3 predicted directions from the learned oracle.

Recall that Algorithm 2 maintains two instances of Algorithm 1: A↓
FD and A⊥

FD. The former pro-
cesses the vectors projected onto the subspace defined by PH , while the latter handles the vectors
projected onto the orthogonal subspace. Therefore, the input to A↓

FD is A↓ = APHPT
H , and the

input to A⊥
FD is A⊥ = A −A↓ = A(I − PHPT

H) = APHPT
H

. Ultimately, the resulting matrix

B is a combination of the matrices returned by A↓
FD and A⊥

FD, specifically denoted as B↓ and B⊥,
respectively.

Combined with Lemma D.1, for each right singular vector v⃗j of A, we have

v⃗Tj (A
TA−BTB)v⃗j = v⃗Tj A

T v⃗jA− v⃗Tj (B↓)
TB↓v⃗j − v⃗Tj (B⊥)

TB⊥v⃗j (47)

= v⃗Tj A
T
↓ A↓v⃗j − v⃗Tj (B↓)

TB↓v⃗j (48)

+ v⃗Tj A
T
⊥A⊥v⃗j − v⃗Tj (B⊥)

TB⊥v⃗j (49)

+ 2 ·
∑
i∈[d]

σ2
i · ⟨PT

H v⃗i,P
T
H v⃗j⟩ · ⟨PT

H
v⃗i,P

T
H
v⃗j⟩. (50)

First, observe that sinceA↓
FD is allocated mL × d space for the matrix A↓ with rank at most mL, by

the error guarantee of Frequent Direction algorithm (Fact 2.2), it is guaranteed that v⃗Tj A
T
↓ A↓v⃗j −

v⃗Tj (B↓)
TB↓v⃗j = 0.

Second, note that ⟨PT
H v⃗i,P

T
H v⃗j⟩ is the inner product, between the projected vectors v⃗i and v⃗j

to the subspace H specified by the predicted frequent directions, and that ⟨PT
H
v⃗i,P

T
H
v⃗j⟩ is the

inner product, between the projected vectors v⃗i and v⃗j to the orthogonal complement of H .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

In particular, when the machine learning oracle makes perfect predictions of v⃗1, . . . , v⃗mL
, i.e.,

w⃗1 = v⃗1, . . . , w⃗mL
= v⃗mL

, then for each i, either PT
H v⃗i or PT

H
v⃗i will be zero.

Therefore, it holds that
v⃗Tj (A

TA−BTB)v⃗j = v⃗Tj A
T
⊥A⊥v⃗j − v⃗Tj (B⊥)

TB⊥v⃗j . (51)

Further, by the property of Frequent Direction algorithmA⊥
FD, AT

⊥A⊥− (B⊥)
TB⊥ ⪰ 0. And since

A⊥ is the projection of A to the subspace spanned by the right singular vectors v⃗mL+1, . . . , v⃗d, it
still has right singular vectors v⃗mL+1, . . . , v⃗d, associated with singular values σmL+1, . . . , σd. It
follows that

0 ≤ v⃗Tj (A
TA−BTB)v⃗j (52)

= v⃗Tj A
T
⊥A⊥v⃗j − v⃗Tj (B⊥)

TB⊥v⃗j (53)

≤ v⃗Tj A
T
⊥A⊥v⃗j (54)

≤
{
σ2
j , j > mL

0 j ≤ mL
. (55)

Therefore, the weighted error is given by

Err(AFD)
.
=
∑
i∈[d]

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i (56)

=

mL∑
i=1

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i +

d∑
i=mL+1

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i (57)

=

d∑
i=mL+1

σ2
i

∥A∥2F
· v⃗Ti (ATA−BTB)v⃗i (58)

∈ O

(
d∑

i=mL+1

σ2
i

∥A∥2F
· σ2

i

)
(59)

= O

(
d∑

i=mL+1

1

i · ln d
·
∥A∥2F
i · ln d

)
(60)

= O

(
1

mL + 1
·
∥A∥2F
(ln d)2

)
(61)

Noting that mL ∈ Θ(m) finishes the proof of upper bound.

Lower Bound for Theorem 3.4. The proof of the lower bound follows the same approach as the one
for Theorem 3.2, in Appendix C.

Assume that A consists of standard basis vectors e⃗1, . . . , e⃗d ∈ Rd. Let f(e⃗i) denote the number of
occurrences of e⃗i in A. Without loss of generality, assume that f(e⃗1) ≥ . . . ≥ f(e⃗d). In this case,
we have f(e⃗i) = σ2

i and
∑

i∈[d] f(e⃗i) =
∑

i∈[d] σ
2
i = ∥A∥2F = n. Further, we can then view the B

maintained by the Frequent Directions algorithm as an array of m buckets.

Now the setting is exactly the same as the Misra-Gries algorithm. Consequently, the constructive
lower bound proof from Theorem 3.2 directly applies to learned Frequent Directions.

We next prove Lemma D.1.

Proof of Lemma D.1. First, observe that

x⃗TATAx⃗ = x⃗T (A↓ +A⊥)
T
(A↓ +A⊥)x⃗ (62)

= x⃗TAT
↓ A↓x⃗+ x⃗TAT

⊥A⊥x⃗+ x⃗TAT
↓ A⊥x⃗+ x⃗TAT

⊥A↓x⃗. (63)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

It suffices to show that

x⃗TAT
↓ A⊥x⃗ = x⃗TAT

⊥A↓x⃗ =
∑
i∈[d]

σ2
i · ⟨PT

H
v⃗i,P

T
H
x⃗⟩ · ⟨PT

H v⃗i,P
T
H x⃗⟩ (64)

Note that

x⃗TAT
↓ A⊥x⃗ = x⃗T

(
PT

HPHAT
)(

A(I −PHPT
H)x⃗

)
(65)

= x⃗TPT
HPHATA(I −PHPT

H)x⃗ (66)

= x⃗T (I −PHPT
H)TAT APHPT

H x⃗ = x⃗TAT
⊥A↓x⃗. (67)

Hence, it remains to study x⃗TAT
↓ A⊥x⃗ or x⃗TAT

⊥A↓x⃗. Keeping expanding one of them

x⃗TAT
↓ A⊥x⃗ = x⃗T (I −PHPT

H)TAT APHPT
H x⃗ (68)

= x⃗T (I −PHPT
H)T

∑
i∈[d]

σ2
i v⃗iv⃗

T
i

PHPT
H x⃗ (69)

=
∑
i∈[d]

σ2
i · ⟨v⃗i, (I −PHPT

H)x⃗⟩ · ⟨v⃗i,PHPT
H x⃗⟩. (70)

Since I −PHPT
H = PHPT

H
,

x⃗TAT
↓ A⊥x⃗ =

∑
i∈[d]

σ2
i · ⟨v⃗i,PHPT

H
x⃗⟩ · ⟨v⃗i,PHPT

H x⃗⟩ (71)

=
∑
i∈[d]

σ2
i · ⟨PT

H
v⃗i,P

T
H
x⃗⟩ · ⟨PT

H v⃗i,P
T
H x⃗⟩ (72)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E CONSISTENCY/ROBUSTNESS TRADE OFFS

If the predictions are perfect, the sketch B output by Algorithm 2 satisfies that BTB ⪯ ATA. This
property in particular gives the quantity x⃗TBTBx⃗ ≤ x⃗TATAx⃗ for any vector x⃗ and as further
BTB ⪰ 0, we get that the error |v⃗Ti BTBv⃗i − v⃗Ti A

TAv⃗i| ≤ σ2
i for any of the singular vectors v⃗i

(and with perfect predictions the errors on the predicted singular vectors are zero). Unfortunately,
with imperfect predictions, the guarantee that BTB ⪯ ATA is not retained. To take a simple
example, suppose that d = 2 and that the input matrix A = (1, 1) has just one row. Suppose we
create two frequent direction sketches by projecting onto the standard basis vectors e1 and e2 and
stack the resulting sketches B1 and B2 to get a sketch matrix B. It is then easy to check that B
is in fact the identify matrix. In particular, if x⃗ = e1 − e2, then ∥Bx⃗∥22 = 2 whereas ∥Ax⃗∥22 = 0
showing that ATA −BTB is not positive semidefinite. The absence of this property poses issues
in proving consistency/robustness trade offs for the algorithm. Indeed, our analysis of the classic
frequent directions algorithm under Zipfian distributions, crucially uses that the error incurred in the
light directions v⃗i for i ≥ m

ln d
m

is at most σ2
i .

In this section, we address this issue by presenting a variant of Algorithm 2 that does indeed provide
consistency/robustness trade-offs with only a constant factor blow up in space. To do so, we will
maintain three different sketches of the matrix A. The first sketch is the standard frequent directions
sketch Liberty (2013) in Algorithm 1, the second one is the learning-augmented sketch produced
by Algorithm 2, and the final sketch computes an approximation to the residual error ∥A− [A]k∥2F
within a constant factor using an algorithm from Li et al. (2024). Let B1 be the output of Algorithm 1
on input A and B2 be the output of Algorithm 2 on input A. Suppose for simplicity that we knew
∥A− [A]k∥2F exactly. Then, the idea is that when queried with a unit vector x⃗, we compute ∥B1x∥22
and ∥B2x∥22. If these are within 2

∥A−[A]k∥2
F

m−k of each other, we output ∥B2x∥22 as the final estimate
of x⃗TATAx⃗, otherwise, we output ∥B1x∥22. The idea behind this approach is that in the latter
case, we know that the learning-based algorithm must have performed poorly with an error of at
least ∥A−[A]k∥2

F

m−k and by outputting the estimate from the classic algorithm, we retain its theoretical

guarantee. On the other hand, in the former case, we know that the error is at most 3∥A−[A]k∥2
F

m−k but
could be much better if the learning augmented algorithm performed well.

To state our the exact result, we recall that the algorithm from Li et al. (2024) using space O(k2/ε4)
maintains a sketch of A such that from the sketch we can compute an estimate α such that ∥A −
[A]k∥2F ≤ α ≤ (1 + ε)∥A − [A]k∥2F . We denote this algorithm Ares(k, ε). Our final algorithm is
Algorithm 3 for which we prove the following result.
Theorem E.1. [Worst-Case guarantees] For any unit vector x⃗, the estimate Γ of ∥Ax⃗∥22 returned
by Algorithm 3 satisfies

|∥Ax⃗∥22 − Γ| ≤ min

(∣∣∥Ax⃗∥22 − ∥B2x∥22
∣∣ , 6∥A− [A]k∥2F

m− k

)
.

In other words, the Error of Algorithm 3 is asymptotically bounded by the minimum of Algorithm 2
and the classic Frequent Direction algorithm.

Proof. Suppose first that |∥B2x⃗∥22 − ∥B1x⃗∥22| ≤ 2α. Then |∥Ax⃗∥22 − Γ| =
∣∣∥Ax⃗∥22 − ∥B2x∥22

∣∣.
Moreover, by the approximation guarantees of Ares and AFD,∣∣∥Ax⃗∥22 − ∥B2x∥22

∣∣ ≤ ∣∣∥Ax⃗∥22 − ∥B1x∥22
∣∣+ ∣∣∥B1x∥22 − ∥B2x∥22

∣∣ ≤ α+ 2α ≤ 6
∥A− [A]k∥2F

m− k
,

as desired.

Suppose on the other hand that |∥B2x⃗∥22 − ∥B1x⃗∥22| > 2α. Since by Fact 2.2, we always have that∣∣∥Ax⃗∥22 − ∥B1x∥22
∣∣ ≤ ∥A−[A]k∥2

F

m−k ≤ α, it follows that
∣∣∥Ax⃗∥22 − ∥B2x∥22

∣∣ > α ≥ ∥A−[A]k∥2
F

m−k .
But since in this case, we output ∥B1x⃗∥22, the estimate of the standard frequent direction, we again
have by Fact 2.2 that

∣∣∥Ax⃗∥22 − ∥B2x∥22
∣∣ ≤ ∥A−[A]k∥2

F

m−k as desired.

We note that the constant 6 in the theorem can be replaced by any constant > 3 by increasing the
space used for Ares.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 3 Robust Learning-based Frequent Direction ARLFD

1: Procedure INITIALIZATION
2: Input: sketch parameters m, d ∈ N+; learned oracle parameter mL s.t., mL ≤ m; predicted

frequent directions PH = [w⃗1 | . . . | w⃗mL
] ∈ Rd×mL , query vector x⃗.

3: Initialize an instance of Algorithm 1: AFD.initialization(m, 0.5 ·m, d)
4: Initialize an instance of Algorithm 2: ALFD.initialization(m, 0.5 ·m, d)
5: Initialize the residual error estimation algorithm Li et al. (2024) Ares(m/2, 1)

6: Procedure UPDATE

7: AFD.update(Ai)
8: ALFD.update(Ai)
9: Ares.update(Ai)

10: Procedure RETURN
11: B1 ← AFD.return()
12: B2 ← AFD.return()
13: α0 ← Ares.return()
14: α← α0

m−k

15: return (B1,B2, α)

16: Procedure QUERY(x⃗)
17: if |∥B2x⃗∥22 − ∥B1x⃗∥22| ≤ 2α then
18: return ∥B2x⃗∥22
19: else
20: return ∥B1x⃗∥22

E.1 THE ERROR OF NON-PERFECT ORACLES.

We will now obtain a more fine-grained understanding of the consistency/robustness trade off of Al-
gorithm 3. Consider the SVD A =

∑
i∈[d] σiu⃗iv⃗

T
i . Let A↓

.
= APHPT

H be the matrix of projecting
the rows of A to the predicted subspace, and A⊥

.
= A −A↓ = A(I − PHPT

H). Recall that PH

consists of orthonormal column vectors w⃗1, . . . , w⃗mL
∈ Rd. Extending this set of vectors to form

an orthonormal basis of Rd: w⃗1, . . . , w⃗mL
, w⃗mL+1, . . . , w⃗d. Write PH = [w⃗mL+1 | . . . | w⃗d] the

projection matrix to the orthogonal subspace.

Based on Lemma D.1, for each vector, we can write

x⃗TATAx⃗ = x⃗TAT
↓ A↓x⃗+ x⃗TAT

⊥A⊥x⃗+ 2 ·
∑
i∈[d]

σ2
i · ⟨PT

H v⃗i,P
T
H x⃗⟩ · ⟨PT

H
v⃗i,P

T
H
x⃗⟩. (73)

To understand the significance of Lemma D.1, note that our algorithm attempts to approximate the
first two terms (through either exact or approximate Frequent Direction sketches), but ignores the
final one. Therefore, regardless of how successful it is in approximating x⃗TAT

↓ A↓x⃗+ x⃗TAT
⊥A⊥x⃗,

we will have 2 ·
∑

i∈[d] σ
2
i · ⟨PT

H v⃗i,P
T
H x⃗⟩ · ⟨PT

H
v⃗i,P

T
H
x⃗⟩ occurring as an additional added error.

Note that ⟨PT
H v⃗i,P

T
H v⃗j⟩ is the inner product, between the projected vectors v⃗i and v⃗j to the sub-

space H specified by the predicted frequent directions, and that ⟨PT
H
v⃗i,P

T
H
v⃗j⟩ is the inner product,

between the projected vectors v⃗i and v⃗j to the orthogonal complement of H . In particular, if PH

consists of a set of correctly predicted singular vectors of A, then for any i, either PT
H v⃗i or PT

H
v⃗i

will be zero and in particular the additional added error will be zero. In order to obtain an algo-
rithm performing as well as if we had perfect predictions, it therefore suffices that the predictions
are accurate enough that

∣∣∣∣∣∣
∑
i∈[d]

σ2
i · ⟨PT

H v⃗i,P
T
H v⃗j⟩ · ⟨PT

H
v⃗i,P

T
H
v⃗j⟩

∣∣∣∣∣∣ ∈ O

(
∥A− [A]k∥2F

m
.

)
(74)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

To obtain a more general smoothness/robustness trade off, one can plug into Theorem E.1. Doing
so in the setting of Theorem 3.4 where the singular values follow a Zipfian distribution, we obtain
the following immediate corollary.
Corollary E.2. Consider the setting of Theorem 3.4, but where we run Algorithm 3 instead of
Algorithm 2 and where we make no assumptions on the quality of the oracle. Then the error
Err(ARLFD) is at most

O

(
1

(ln d)2
·
∥A∥2F
m

)
+ 2

∑
i∈[d]

σ2
i

∥A∥2F
·
∑
j∈[d]

σ2
j · ⟨PT

H v⃗j ,P
T
H v⃗i⟩ · ⟨PT

H
v⃗j ,P

T
H
v⃗i⟩,

but also always bounded by

O

(
ln m

ln d
m

)
· ln d

m

(ln d)2
·
∥A∥2F
m

.

We finish by showing an example demonstrating that even with very accurate predictions, the extra
added error can be prohibitive. Assume that the input space is R2, and the input vectors are either
(1, 0) or (0, 1). Assume that σ2

1 = 107, σ2
2 = 1,, v⃗1 = (1, 0), and v⃗2 = (0, 1).

In this case, assume that mL = 1. A perfect PH should be PH = (1, 0), but we will assume
that the actual prediction we get is a little perturbed, say we change it to PH = (cos 1

100 , sin
1

100).
Therefore, PH = (sin 1

100 ,− cos 1
100),∑

i∈[2]

σ2
i · ⟨PT

H v⃗i,P
T
H v⃗1⟩ · ⟨PT

H
v⃗i,P

T
H
v⃗1⟩ = 107 · ⟨cos 1

100
, cos

1

100
⟩ · ⟨sin 1

100
, sin

1

100
⟩ (75)

+ 1 · ⟨sin 1

100
, cos

1

100
⟩ · ⟨− cos

1

100
, sin

1

100
⟩ (76)

≈ 107 cos2
1

100
· sin2 1

100
(77)

≈ 107 · 1

1002
≈ 103. (78)

In general, assume that PH = (cos θ, sin θ) for small θ. The∑
i∈[2]

σ2
i · ⟨PT

H v⃗i,P
T
H v⃗1⟩ · ⟨PT

H
v⃗i,P

T
H
v⃗1⟩ = σ2

1 cos
2 θ · sin2 θ ≈ σ2

1θ
2 (79)

So we need θ ≈ 1/
√
m, in order that this bound is comparable with the normal FD bound.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F ADDITIONAL EXPERIMENTS

In this section, we include figures which did not fit in the main text.

F.1 DATASET STATISTICS

100 101 102 103 104 105 106

Sorted Elements

101

103

105

Fr
eq

ue
nc

y

CAIDA Log-Log Frequencies

100 101 102 103 104 105

Sorted Elements

100

101

102

103

Fr
eq

ue
nc

y

AOL Log-Log Frequencies

Figure 3: Log-log plot of frequencies for the CAIDA and AOL datasets.

100 101 102 103

Sorted Index

102

103

104

Si
ng

ul
ar

 V
al

ue

Hyper Log-Log Singular Values

100 101 102 103

Sorted Index

101

102

103

104

105

Si
ng

ul
ar

 V
al

ue

Logo Log-Log Singular Values

Figure 4: Log-log plot of singular values for the first Hyper and Logo matrices.

100 101 102 103

Sorted Index

10 10

10 7

10 4

10 1

102

105

Si
ng

ul
ar

 V
al

ue

Eagle Log-Log Singular Values

Figure 5: Log-log plot of singular values for the first Eagle and Friends matrices.

F.2 NOISE ANALYSIS IN FREQUENT DIRECTIONS

We present the following figure for the

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

10 5 10 4 10 3 10 2 10 1

Noise

103

105

107

109

Er
ro

r

Noise Analysis (Rank: 100)
SVD
FD
Learned FD (ours)

Figure 6: Analysis of prediction noise in matrix streaming on the first matrix of the Logo dataset.
The rank of the algorithms is 100. The baselines of Frequent Directions and the true SVD are shown
as dashed lines. Our learned Frequent Directions algorithm uses perfect predictions corrupted by a
matrix of Gaussian noise with standard deviation σ/

√
d where σ is displayed as the amount of noise

on the horizontal axis. The linear relationship on the log-log plot indicates that the performance of
our algorithm decays polynomially with the amount of noise.

F.3 ADDITIONAL FREQUENT DIRECTIONS EXPERIMENTS

We present plots of error/rank tradeoffs and error across sequences of matrices with fixed rank for
all four datasets Hyper, Logo, Eagle, and Friends.

F.3.1 HYPER DATASET

0 10 20 30 40 50 60 70 80
Matrices

10 5

10 4

10 3

Er
ro

r

Rank: 20
SVD
FD
Learned FD (ours)

0 10 20 30 40 50 60 70 80
Matrices

10 6

10 5

10 4

Er
ro

r

Rank: 200
SVD
FD
Learned FD (ours)

Figure 7: Frequent directions results on the Hyper dataset.

F.3.2 LOGO DATASET

0 2 4 6 8 10 12 14 16 18
Matrices

105

106

107

108

Er
ro

r

Rank: 20
SVD
FD
Learned FD (ours)

0 2 4 6 8 10 12 14 16 18
Matrices

100

101

102

103

104

105

Er
ro

r

Rank: 200
SVD
FD
Learned FD (ours)

Figure 8: Frequent directions results on the Logo dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

F.3.3 EAGLE DATASET

0 2 4 6 8 10 12 14 16 18
Matrices

10 8

10 5

10 2

101

104

107
Er

ro
r

Rank: 20

SVD
FD
Learned FD (ours)

0 2 4 6 8 10 12 14 16 18
Matrices

10 8

10 5

10 2

101

104

Er
ro

r

Rank: 200

SVD
FD
Learned FD (ours)

Figure 9: Frequent directions results on the Eagle dataset.

F.3.4 FRIENDS DATASET

0 2 4 6 8 10 12 14 16 18
Matrices

105

106

107

Er
ro

r

Rank: 20
SVD
FD
Learned FD (ours)

0 2 4 6 8 10 12 14 16 18
Matrices

101

102

103

104

105
Er

ro
r

Rank: 200
SVD
FD
Learned FD (ours)

Figure 10: Frequent directions results on the Friends dataset.

F.4 ADDITIONAL FREQUENCY ESTIMATION EXPERIMENTS

Here, we present all frequency estimation results comparing our Learned Misra-Gries algorithm with
Learned CountSketch of Hsu et al. (2019) and Learned CountSketch++ of Aamand et al. (2023). We
present results both with and without learned predictions. Additionally, we present results both with
standard weighted error discussed in this paper as well as unweighted error also evaluated in the
experiments of prior work. The unweighted error corresponds to taking the sum of absolute errors
across all items appearing in the stream (not weighted by their frequencies).

F.4.1 NO PREDICTIONS, WEIGHTED ERROR

500 1000 1500 2000 2500 3000
Space

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d
Er

ro
r

1e12 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50
Streams

2

4

6

8

W
ei

gh
te

d
Er

ro
r

1e11 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 11: Frequency estimation on the CAIDA dataset with weighted error and no predictions.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

500 1000 1500 2000 2500 3000
Space

0

1

2

3

4

5

W
ei

gh
te

d
Er

ro
r

1e7 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50 60 70 80
Streams

1

2

3

4

5

W
ei

gh
te

d
Er

ro
r

1e7 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 12: Frequency estimation on the AOL dataset with weighted error and no predictions.

F.4.2 WITH PREDICTIONS, WEIGHTED ERROR

500 1000 1500 2000 2500 3000
Space

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
ei

gh
te

d
Er

ro
r

1e12 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50
Streams

0.2

0.4

0.6

0.8

1.0

1.2

W
ei

gh
te

d
Er

ro
r

1e12 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 13: Frequency estimation on the CAIDA dataset with weighted error and learned predictions.

500 1000 1500 2000 2500 3000
Space

0

1

2

3

4

5

W
ei

gh
te

d
Er

ro
r

1e7 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50 60 70 80
Streams

0

1

2

3

4

5

W
ei

gh
te

d
Er

ro
r

1e7 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 14: Frequency estimation on the AOL dataset with weighted error and learned predictions.

F.4.3 NO PREDICTIONS, UNWEIGHTED ERROR

500 1000 1500 2000 2500 3000
Space

0

1

2

3

Un
we

ig
ht

ed
 E

rro
r

1e10 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50
Streams

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 15: Frequency estimation on the CAIDA dataset with unweighted error and no predictions.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

500 1000 1500 2000 2500 3000
Space

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50 60 70 80
Streams

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 16: Frequency estimation on the AOL dataset with unweighted error and no predictions.

F.4.4 WITH PREDICTIONS, UNWEIGHTED ERROR

500 1000 1500 2000 2500 3000
Space

0

1

2

3

4

5

Un
we

ig
ht

ed
 E

rro
r

1e10 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50
Streams

0

1

2

3

4

Un
we

ig
ht

ed
 E

rro
r

1e10 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 17: Frequency estimation on the CAIDA dataset with unweighted error and learned predic-
tions.

500 1000 1500 2000 2500 3000
Space

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Error/Space Tradeoff
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

0 10 20 30 40 50 60 70 80
Streams

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Un
we

ig
ht

ed
 E

rro
r

1e7 Space: 300
CS
CS++ (C=1)
CS++ (C=2)
CS++ (C=5)
MG (ours)

Figure 18: Frequency estimation on the AOL dataset with unweighted error and learned predictions.

32

	
	introduction
	Preliminaries
	Learning-augmented Frequent Direction
	Theoretical Analysis

	experiments
	Frequent Directions Experiments
	Frequency Estimation Experiments

	Appendix

	 Appendix
	Other Related Works
	Missing Proofs for Preliminaries
	Analysis of Misra-Gries
	Analysis of Frequent Directions
	Frequent Directions Under Zipfian
	Learned Frequent Directions Under Zipfian

	Consistency/Robustness trade offs
	The Error of Non-Perfect Oracles.

	Additional Experiments
	Dataset Statistics
	Noise Analysis in Frequent Directions
	Additional Frequent Directions Experiments
	Hyper dataset
	Logo dataset
	Eagle dataset
	Friends dataset

	Additional Frequency Estimation Experiments
	No Predictions, Weighted Error
	With Predictions, Weighted Error
	No Predictions, Unweighted Error
	With Predictions, Unweighted Error

