
ProgramTab: Boosting Table Reasoning of LLMs
via Programmatic Paradigm

Anonymous ACL submission

Abstract001

Table-based reasoning with large language002
models (LLMs), which requires reasoning003
based on natural language questions and struc-004
tured tabular data, has gained widespread at-005
tention. However, a series of issues still con-006
strain the application of this task. The previ-007
ous approaches suffered from significant per-008
formance degradation when faced with large009
tables due to the difficulty of long text mod-010
eling and the limitation of input length for011
LLMs. The text-to-SQL approach is used to012
efficiently extract key information from tables013
and generate smaller sub-tables. However, tab-014
ular data, especially web tables, often lack the015
necessary structure and consistency, making016
them unsuitable for performing mathematical017
logic operations using SQL queries. We pro-018
pose the ProgramTab framework, which guides019
LLMs employing in-context learning to per-020
form tabular data preprocessing with Python021
code, as well as the momentous contents ex-022
traction with row and column extraction and023
SQL generation. Data preprocessing includes024
defining the data format and type based on the025
different questions. The experiment results on026
WikiTQ and TabFact datasets demonstrate that027
the ProgramTab framework effectively deals028
with table-based reasoning tasks and outper-029
forms all LLM-based baselines.030

1 Introduction031

Tables, as a popular form of data representation,032

play a significant role in everyday work and life.033

Analysis and reasoning based on tabular data have034

emerged as a hot topic in natural language process-035

ing, attracting wide attention from academia and036

industry. The main downstream tasks of tabular rea-037

soning include table-based fact verification (Chen038

et al., 2020; Aly et al., 2021) and table-based ques-039

tion answering (Panupong and Percy, 2015; Cho040

et al., 2019). The challenges of these tasks lie041

in how to enable language models to comprehend042

date opponent result

september 6, 1981 at los angeles
rams w 27-20

september 13, 1981 at cleveland
browns w 9-3

september 27, 1981 miami dolphins l 10-16
… … …

december 20, 1981 pittsburgh
steelers w 21-20

Title: 1981 Houston Oilers season

Figure 1: An example of a table in WikiTQ dataset.

table data content, including text, numbers, etc., 043

establish their connection with user queries, and ex- 044

ecute efficient logical reasoning and computations. 045

Recently, LLMs (Brown et al., 2020; Hoffmann 046

et al., 2022; OpenAI, 2022; Touvron et al., 2023) 047

have significantly transformed the landscape of 048

natural language processing tasks with their im- 049

pressive understanding and generation capabilities. 050

Instead of fine-tuning the pre-trained models, suf- 051

ficiently making use of the in-context learning of 052

LLMs to solve complex tabular data reasoning has 053

been a mainstream direction (Chen, 2023; Cheng 054

et al., 2023; Ye et al., 2023; Wang et al., 2024). 055

However, current methods still face several limi- 056

tations. Firstly, most of the work (Cheng et al., 057

2023; Ye et al., 2023; Wang et al., 2024) treats 058

the entire table as an input, which is unsuitable 059

for tables containing large amounts of data. When 060

the total number of tokens in a table exceeds the 061

maximum input limitation of LLMs, the content of 062

the table will be truncated, leading to information 063

loss and consequently affecting the performance of 064

LLMs. This has been verified in the work of (Chen, 065

2023). To mitigate the length constraint of inputs, 066

the common approach is to utilize a programmatic 067

language, such as generating SQL queries to re- 068

trieve the most relevant rows and column data (Ye 069

et al., 2023; Nahid and Rafiei, 2024b; Zhang et al., 070

1

2024c,a). However, table data, especially the web071

table is usually provided as strings and often072

lacks the necessary structure and consistency,073

requiring conversion to the appropriate format074

and data types for mathematical logic opera-075

tions to avoid calculation errors. It will require076

SQL to preprocess the data while extracting the rel-077

evant information, which increases the complexity078

of generating SQL for LLMs. For example, for the079

table shown in Figure 1, when the question is about080

the number of games the Houston Oilers won in081

the 1981 season, the ‘w’ and ‘l’ symbols from the082

result cell aren’t provided as a single column and083

need to be extracted, which is defined as the "lack084

of necessary structure". Regarding the absence of085

consistency, we can find that the structure at the086

"year" column in Figure 2 is inconsistent, such as087

"1931" and "spring 1932".088

To address the above challenges, with the help of089

in-context learning in LLMs, we introduce the Pro-090

gramTab framework, which executes with program091

languages (Python and SQL) to flexibly handle092

the table contents based on the questions. Specifi-093

cally, as shown in Figure 2, (1) we utilize the em-094

bedding model to compute the relevant scores of095

each line of tables with the questions and resort the096

lines in descending order. In the following steps,097

the top K lines with higher relevant scores are ex-098

tracted as instances to replace the complete tables.099

With the most relevant lines as input, (2) LLMs are100

prompted to select the columns related to the ques-101

tions, (3) generate the Python code to preprocess102

the table data, including unifying the data format103

and defining the data type for each column. After104

that, (4) SQL queries are generated using chain-105

of-thought (CoT) (Wei et al., 2023) and executed106

to obtain the most valuable information. Finally,107

(5) LLMs process this information and produce the108

final answers.109

We validate our ProgramTab framework by con-110

ducting experiments on two challenging table rea-111

soning datasets: WikiTQ (Panupong and Percy,112

2015) and TabFact (Chen et al., 2020). With113

three LLM backbones, our evaluation demonstrated114

that ProgramTab achieves excellent performance115

on table-based reasoning benchmarks, and outper-116

forms all the other baselines with different LLM117

backbones. Besides, ProgramTab is not limited by118

the input length of table data, which obtains a sig-119

nificant efficiency and effectiveness improvement120

compared with other strong baselines.121

2 Related Work 122

In this section, we introduce the related approaches 123

of table-based reasoning and divide them into two 124

categories: fine-tuning-based and prompting-based 125

table reasoning. 126

2.1 Fine-tuning-based Table reasoning 127

Table-based understanding and reasoning tasks are 128

significant in data analysis systems. Many ap- 129

proaches focus on constructing pre-trained lan- 130

guage models and fine-tuning them to address these 131

tasks (Zhang et al., 2020; Patnaik et al., 2024). 132

Among them, mask language models (MLM) are 133

widely adopted. For example, TaPas (Herzig et al., 134

2020) acquires BERT (Devlin et al., 2019) to parse 135

table information via pre-training. PASTA (Gu 136

et al., 2022) pre-trains DeBERTaV3 (He et al., 137

2021) to perform six types of common sen- 138

tence–table cloze tasks. Besides, TAPEX (Liu 139

et al., 2022) employs the BART (Lewis et al., 2020) 140

model to learn the neural SQL executors over a syn- 141

thetic corpus. OmniTab (Jiang et al., 2022) lever- 142

ages retrieval to pair relevant natural sentences with 143

mask-based pre-training and synthesizes natural 144

language questions by converting sampled SQL 145

from tables. Inner Table Retrieval (ITR) (Lin et al., 146

2023) extracts sub-tables to preserve the most rele- 147

vant information for the questions. 148

2.2 Prompting-based Table Reasoning 149

Recently, LLMs (Hoffmann et al., 2022; OpenAI, 150

2023; Touvron et al., 2023) have gained widespread 151

attention due to their powerful understanding and 152

generation capabilities. Given a few augmenting 153

few-shot examples relevant to the tasks, the LLMs 154

can tackle various reasoning tasks (Fu et al., 2023; 155

Zhang et al., 2023). A few approaches also employ 156

LLMs to tackle table reasoning tasks with few-shot 157

prompts. TableCoT (Tai et al., 2023) systemati- 158

cally explores the performance of LLMs on table 159

reasoning tasks and finds that LLMs are excellent 160

at solving such tasks, especially combined with 161

CoT approach. Besides, rather than generating 162

general text, additional programmatic text, such 163

as Python programs (Chen et al., 2022; Gao et al., 164

2023), and Text-to-SQL (Rajkumar et al., 2022) 165

approaches are employed to improve the perfor- 166

mance further. LEVER (Ni et al., 2023) improves 167

the performance of code LLMs on language-to- 168

code tasks by training separate verifiers to validate 169

the programs generated by LLMs and their exe- 170

2

def function(df):
 # step 1: standardize the data format
 df['year'] = df['year'].str.extract('(\\d{4})‘)
 # step 2: set the data type for each column
 df['year'] = df['year'].astype(int)
 df['national_cup'] = df['national_cup'].astype(str)
 # step 3 (optional): extract the information
 df['years_to_win_after_1936'] = df['year'] - 1936
 return df

call the function, don't change df anymore
df = function(df)

year national cup

1936/1937 champion

1931 n/a

… …

year division playoffs national cup

1936/37 n/a not qualify champion

1931 1 no playoff n/a

… … … …

year division playoffs national cup

1931 1 no playoff n/a

spring 1932 1 no playoff 1st round

fall 1932 1 no playoff n/a

1933/34 n/a no playoff ?

… … … …

1936/37 n/a not qualify champion

… … … …

Question(Q):
how long did it take for the new york americans to win the
national cup after 1936?

Title: New York Americans (soccer)

⑤ Answer Generation

year national cup
years_to_w
in_after_19

36

1936 champion 0

1931 n/a -5

… … …

step1: select the `years_to_win_after_1936` where `national_cup` =
'champion'
SQL1: SELECT `years_to_win_after_1936` FROM test WHERE `year` >
1936 AND `national_cup` = 'champion'

years_to_win_after_1936

17

The 'year' column will help us identify the year
after 1936 when they won the National Cup, and the
'national_cup' column will indicate whether they were
the champions in that specific year.
The answer is year, national_cup.

Therefore, the answer is 17 years.

④ SQL Generation with CoT and Execution

③ Data Redefinition with Python Code and Execution

② Column Extraction

① Row Retrieval

Execute

Question(Q): how long did it … after 1936?

Question(Q): how long did it … after 1936?

Question(Q): how long did it … after 1936?

Question(Q): how long did it … after 1936?

Figure 2: The overview of ProgramTab for table-based reasoning.

cution results. Binder (Cheng et al., 2023) maps171

the task input to a program that allows generat-172

ing SQL or Python programs and extending their173

functions by calling LLMs in the program. Re-174

AcTable (Zhang et al., 2024b) breaks down the175

problem into multiple steps and uses LLMs to gen-176

erate code programs that are executed through ex-177

ternal tools for each step. Finally, it leverages ma-178

jority voting to improve overall accuracy. Wang179

et al. (2024) proposes a Chain-of-Table framework180

that designs a series of table operations and dynam-181

ically plans an operation chain based on the inputs.182

It’s difficult for LLMs to perform reasoning when183

confronted with large tables with multiple rows.184

Dater (Ye et al., 2023), TabSQLify (Nahid and185

Rafiei, 2024b) and H-STAR (Nikhil et al., 2024)186

decompose the original table into the sub-table by187

selecting the relevant rows and columns. After that,188

Dater and Alter (Zhang et al., 2024a) also propose189

the parsing-execution-filling and query augmenta-190

tion strategy respectively to decompose a complex191

question into simpler step-by-step sub-questions by192

generating an intermediate SQL. E5 (Zhang et al.,193

2024c) presents an algorithm to condense large ta-194

bles while maintaining useful information. The195

most similar work is NormTab (Nahid and Rafiei,196

2024a), which utilizes LLMs to regularize table197

content, making it conducive to SQL query gener-198

ation. Unlike previous works, which typically ex-199

tract information directly using SQL queries to ob- 200

tain answers—thus increasing the difficulty of SQL 201

generation, we propose an innovative approach that 202

leverages LLMs to generate code for data prepro- 203

cessing. It effectively reduces the difficulty of SQL 204

generation and improves efficiency compared to 205

NormTab. Additionally, we present innovative op- 206

timization methods for SQL generation process. 207

3 ProgramTab Reasoning 208

As shown in Figure 2, ProgramTab consists of five 209

procedures: 1) row retrieval, 2) column extrac- 210

tion, 3) data definition with code, 4) SQL gener- 211

ation and 5) answer generation. In this section, 212

we describe the above procedures in detail. The 213

original table is denoted as T . 214

3.1 Row Retrieval 215

To alleviate the limitation of the input length of 216

LLMs, we first execute row retrieval, extracting 217

the most relevant rows to represent the entire table 218

content. Specifically, for each row of data in the 219

table, we concatenate the column name and value 220

of the cells to form a text segment, and an embed- 221

ding model GTE-base (Li et al., 2023) is utilized to 222

calculate the relevance score between the row data 223

and the question. Ultimately, the top K most rele- 224

vant rows are selected as instances in the prompt 225

templates of the following steps, which effectively 226

3

Task description: Please select the relevant columns about the
question from ### Table headers. We also provide a few rows about
the value of different headers to assist to choose the columns.
Please follow the format that describe the reasons of choosing the
column firstly and give the conclusion as 'The answer is' finally.

###Example1:
Question: which team won previous to crettyard?
Table header: team | county | wins | years won
A few rows:
row1: Greystones | Wicklow | 1 | 2011
row2: Ballymore Eustace | Kildare | 1 | 2010
row3: Maynooth | Kildare | 1 | 2009
Answer: To find out which team won before crettyard, we need to
look at the 'years won' column to determine the year crettyard won
and find the team that won the year before. Besides, the 'team'
column is also crucial because it has the names of the teams that
won in those years. The answer is team, years won.

###Example2:
Question: did february 2012 or july 2006 have more total votes?
Table header: polling_firm | month | link | favor | oppose
A few rows:
row1: utgers-eagleton | march 2014 | | 64 | 28
row2: quinnipiac | july 2013 | | 60 | 31
row3: rutgers-eagleton | june 2013 | | 59 | 30
Answer: To answer the question about whether February 2012 or
July 2006 had more total votes, we need to look at the 'month'
column to find the data for these two specific months. In addition,
the 'favor' and 'oppose' columns are also important because they
contain the number of votes. By adding these two columns together,
we can get the total votes for each month. The answer is month,
favor, oppose.

Problem to be solved:
Question: {}
Table header: {}
A few rows:{}
Answer:

Figure 3: Prompt for LLMs to extract columns.

alleviates the whole table as the input context.227

3.2 Column Extraction228

To minimize the impact of irrelevant data, it is229

essential to extract the relevant columns and utilize230

them for LLMs to conduct reasoning (Zhang et al.,231

2024a). As shown in Figure 3, given the question,232

table header, and top K rows as input context, we233

prompt LLMs to follow the examples and extract234

the related columns with additional explanation.235

Based on the LLMs filter columns, we extract them236

from T and obtain Tcol.237

3.3 Data Redefinition with Code238

Specifically, to maintain the flexibility of table data,239

the string type is adopted for the table data espe-240

cially collected from the web. Besides, the format241

of data is not always consistent which causes a242

great challenge for SQL generation. For example,243

as shown in Figure 2, the values of column year in244

T are not rigorous, which conclude three different245

formats with string type: ‘1931’, ‘spring 1932’,246

and ‘1933/34’. Therefore, it’s necessary to rede-247

fine data, including unifying the format, defining248

the data type, and extracting additional information249

(the detailed discussion about data redefinition is250

presented in Section 5.1). The related prompt is251

shown in Figure 4, given the current data format252

code, we acquire LLMs to generate Python code253

Task description: Based on the questions and current data format
with python, define a new function to supplement subsequent processing
operations with python according to the following steps:
- step 1 (optional): standardize the data format for each column.
- step 2: set the data type for each column (the type must be one of int,
float, string and datetime).
- step 3 (optional): extract the useful information by adding new
columns if needed.
- Note: you just need to output the code, don't answer the questions and
don't redefine the df.
Here are some examples to help you understand this task.
###Example1:
Question: how many people stayed at least 3 years in office?
Current code of data format:
data = {'took_office': ['march 4, 1803', 'march 4, 1809', 'march 4,
1815'], 'left_office': ['march 3, 1809', 'march 3, 1815', 'april 18,
1816’]}
df = pd.DataFrame(data)
Answer:
def function(df):

step 1: standardize the data format: the question only need the
years

df['took_office'] = df['took_office'].map(lambda x: x.split(',
')[-1])

df['left_office'] = df['left_office'].map(lambda x: x.split(',
')[-1])

step 2: set the data type: set the year to int type
df['took_office'] = df['took_office'].astype(int)
df['left_office'] = df['left_office'].astype(int)
step 3: extract the information
df['stayed_years_in_office'] = df['left_office'] -

df['took_office’]
return df

call the function, don't change df anymore
df = function(df)

###Example2:
Question: what's the number of parishes founded in the 1800s?
Current code of data format:
data = {'parish': ['st mary', 'the immaculate conception', 'st james the
less'], 'founded': ['1852', '1854', '1828’]}
df = pd.DataFrame(data)
Answer:
def function(df):

step 1: all data format are the same, there is no need to
change

step 2: set the data type
df['parish'] = df['parish'].astype(str)
df['founded'] = df['founded'].astype(int)
step 3: there is no data need to extract
return df

call the function, don't change df anymore
df = function(df)

Problem to be solved:

Figure 4: The prompt for LLMs to perform data redefi-
nition with code.

with the following steps. Firstly, if there is column 254

data with inconsistent formats, standardize it to 255

form a unified format. Besides, the data type for 256

each column must be set to make it suitable for 257

performing mathematical logical operations, such 258

as defining the column to the integer type. We re- 259

quire that the data type must be one of integer, float, 260

string, and datetime types. Finally, additional infor- 261

mation could be extracted by adding new columns. 262

Among them, annotations are added for each step 263

to benefit LLMs to follow the above steps more 264

effectively. Besides, steps 1 and 3 are optional, 265

depending on the specific cases. For instance, the 266

formats of each column in Figure 4 example 2 are 267

consistent, there is no need to extract extra infor- 268

mation. As a result, steps 1 and 3 are unnecessary. 269

3.4 SQL Generation 270

The table data after redefining is unified and meets 271

the requirements for SQL execution. In this step, 272

we make use of few-shot learning to prompt LLMs 273

4

Task description:
You are a data scientist specializing in text-to-SQL tasks. Given the
Question and Database schema, you should decompose the question into
multiple steps and generate their SQL. Please add the `` for every
column you select in the SQL. Note: Just output the step and sql. Here
are some examples to help you understand this task.

Example1:
Database title: The table about 2000 Olympic Games.
Database scheme:
CREATE TABLE test(
"race_name" TEXT; VALUES: [vuelta a guatemala, vuelta a colombia],
"winner_country" TEXT; VALUES: [usa, aus])
Question: who won more races, the usa or australia?
Sub-step and their SQL:
step1: obtain the count of usa win.
SQL1: SELECT COUNT(`race_name`) FROM test WHERE `winner_country` = 'usa’
step2: obtain the count of aus win.
SQL2: SELECT COUNT(`race_name`) FROM test WHERE `winner_country` = 'aus’
step3: Compare the count of usa and aus, and select the most
SQL3: SELECT `winner_country`, won_count FROM (SELECT `winner_country`,
COUNT(`race_name`) AS won_count FROM test WHERE `winner_country` in
('usa', 'aus')) ORDER BY won_count DESC LIMIT 1\n\n

Example2:
Database title: The table about members of Third Incarnation of Lachlan.
Database scheme:
CREATE TABLE test(
"row_id" INTEGER; VALUES: [0, 1],
"member" TEXT; VALUES: [john ryan, james martin],
"term" TEXT; VALUES: [1859-1864, 1864-1869])
Question: of the members of the third incarnation of the lachlan,
who served the longest?
Sub-step and their SQL:
step1: obtain the all `member` and sorted them based on `term` with DESC
SQL1: SELECT `member` FROM test ORDER BY `term` DESC
step2: select the longest `member` by LIMIT 1
SQL2: SELECT `member` FROM test ORDER BY `term` DESC LIMIT 1

Problem to be solved:\n

Figure 5: Prompt for LLMs to generate SQL with CoT.

to perform SQL generation. Specifically, as pre-274

sented in Figure 5, the essential information is pro-275

vided, such as the database title, schema, and top276

K relevant rows. With these contexts, LLMs are277

prompted to decompose the question into multi-278

ple steps and generate their sub-SQL with the CoT279

method. We find that the CoT style is beneficial for280

LLMs to generate the final SQL queries, and the281

specific analysis is described in Section 5.1.282

3.5 Answer Generation283

After executing the SQL query obtained from the284

previous step, the most relevant information is285

gained from the table. As presented in Figure 6,286

during this step, based on the results from executing287

the SQL query and the question, we utilize LLMs288

to reason with the additional explanation and fi-289

nally make a conclusion. Consequently, we can290

conveniently extract the results from the conclu-291

sions as final answers. This approach helps LLMs292

concentrate on the relevant parts to understand the293

context and answer the questions.294

4 Experiments295

4.1 Datasets296

We design relevant prompts and utilize the pow-297

erful in-context learning ability of LLMs to di-298

rectly reason on the test set. We evaluate299

the proposed ProgramTab on three public table300

Task description: Based on the table title, question and execution
result of the sql query bellow, find the answer to the given question
correctly. If there are multiple answers, please split them by ' | '.
Note: Only choose the answers from SQL Answer.

Table_title: piotr kędzia
Question: in what city did piotr's last 1st place finish occur?
SQL: select `year`, `venus` from test where `position` = '1st' order by
`year` DESC LIMIT 1
SQL Answer:
Table Schema: year | venus
Values: 2007 | bangkok, Thailand
A: The SQL answer contain the year and venus about piotr's last 1st
place, and the question ask about the city which means the venus, and
the city where Piotr's last 1st place finish occurred is Bangkok,
Thailand.
Therefore, the answer is bangkok, thailand.

Table_title: playa de oro international airport
Question: how many more passengers flew to los angeles than to saskatoon
from manzanillo airport in 2013?
SQL: select `city`, `passengers` from test where `city` in ('united
states, los angeles', 'canada, saskatoon’);
SQL Answer:
Table Schema: city | passengers
Values: united states, los angeles | 14,749
canada, saskatoon | 2,282
A: The SQL answer contains the number of passengers who flew to los
angeles and saskatoon from manzanillo airport 14,749, 2,282. So, the
difference in the number of passengers between los angeles and saskatoon
is 14,749 - 2,282 = 12,467.
Therefore, the answer is 12,467.

Problem to be solved:\n

Figure 6: Prompt for LLMs to generate final answers.

reasoning benchmarks: TabFact (Chen et al., 301

2020), WikiTQ (Panupong and Percy, 2015) and 302

HiTab (Cheng et al., 2022). Among them, Tab- 303

Fact is a table-based binary fact verification bench- 304

mark. Given a statement, we need to ascertain the 305

truthfulness of it based on the table. We report 306

the accuracy of the test set, which contains 2,024 307

statements and 298 tables. Besides, WikiTQ is 308

one of the most commonly used and highly com- 309

plex datasets, collected and annotated based on 310

Wikipedia tables. The WikiTQ comprises 4,344 311

question-answer pairs in the test set. HiTab is the 312

dataset that contains hierarchical tables with com- 313

plex hierarchical indexing. 314

4.2 Baselines 315

We divide the baselines into two categories: (1) 316

approaches that spend additional computing re- 317

sources to train proprietary models with custom 318

training data, such as TaPas (Herzig et al., 2020), 319

GraPPa (Yu et al., 2021), TAPEX (Liu et al., 2022), 320

PASTA (Gu et al., 2022), TaCube (Zhou et al., 321

2022), OmniTab (Jiang et al., 2022), ITR (Lin 322

et al., 2023) and CABINET (Patnaik et al., 2024). 323

(2) without training, approaches that design few 324

shot prompts and employ the in-context ability of 325

LLMs, such as TableCoT (Tai et al., 2023), Re- 326

AcTable (Zhang et al., 2024b), Binder (Cheng 327

et al., 2023), Dater (Ye et al., 2023), Chain-of- 328

Table (Wang et al., 2024), Alter (Zhang et al., 329

2024a), E5 (Zhang et al., 2024c), NormTab (Nahid 330

and Rafiei, 2024a), TabSQLify (Nahid and Rafiei, 331

5

Methods Backbone Accuracy

Previous Work with Training
TaPas BERT 83.9
Tapex BART 86.7

PASTA DeBERTaV3 90.8

Previous Work without Training
E5 GPT-4 88.7

ReAcTable

GPT-3.5-Turbo

73.1
TableCoT 73.1

Binder 79.1
Dater 78.0
Alter 84.3

NormTab 68.9
TabSQLify 79.5
H-STAR 85.0

ProgramTab (Ours) 85.9
Binder

Llama-3.1-70B-Instruct

78.1
Dater 81.6

Chain-of-Table 85.6
TabSQLify 70.7

ProgramTab (Ours) 86.8
Binder

GPT-4o-mini

84.6
Dater 80.9

Chain-of-Table 84.2
TabSQLify 78.7
H-STAR 89.4

ProgramTab (Ours) 89.6

Table 1: Accuracy of ProgramTab compared to the base-
lines on TabFact test set.

2024b) and H-STAR (Nikhil et al., 2024).332

4.3 Implementation Details333

In our settings, we conduct experiments by uti-334

lizing closed-source LLMs (GPT-3.5-Turbo and335

GPT-4o-mini1) and the open-source LLM Llama-336

3.1-70B-Instruct2 as the backbones. The prompt337

templates for each procedure are described in Sec-338

tion 3. Besides, the details of hyper-parameters are339

presented in Appendix A.2. Notably, syntax errors340

occasionally occurred during data redefinition and341

SQL generation, resulting in non-executable code.342

To address this issue, we adopted a retry mecha-343

nism. Specifically, when a runtime error occurred344

during both processes, we attempted to rerun the345

process, with a maximum of five attempts. If all346

five attempts failed, it was concluded that LLMs347

were unable to handle the given table, and no fur-348

ther steps were executed. About the evaluation349

metrics, we follow Nahid and Rafiei (2024b) to350

use the official denotation accuracy and employ351

the binary classification accuracy for WikiTQ and352

TabFact datasets evaluation respectively.353

4.4 Results354

As presented in Table 1 and Table 2 (the additional355

results on HiTab in Appendix A.4.), (1) the previ-356

ous work, training with specific tasks perform well.357

1https://openai.com/index/gpt-4o-mini-advancing-cost-
efficient-intelligence/

2https://ai.meta.com/blog/meta-llama-3-1/

Methods Backbone Accuracy

Previous Work with Training
TaPas BERT 48.8

GraPPa RoBERTa 52.7
Tapex

BART

57.5
TaCube 60.8

OmniTab 62.8
ITR 63.4

CABINET 69.1

Previous Work without Training
TableCoT

Codex

48.8
Binder 61.9

ReAcTable 65.8
Dater 65.9

E5 GPT-4 65.5
ReAcTable

GPT-3.5-Turbo

52.5
TableCoT 52.4

Binder 55.4
Dater 52.8
Alter 67.4

TabSQLify 64.7
NormTab 61.2
H-STAR 69.6

ProgramTab (Ours) 70.3
Binder

Llama3.1-70B-Instruct

50.5
Dater 43.5

Chain-of-Table 62.2
TabSQLify 55.8

ProgramTab (Ours) 75.5
Binder

GPT-4o-mini

58.8
Dater 58.3

Chain-of-Table 55.6
TabSQLify 57.0
H-STAR 74.9

ProgramTab (Ours) 76.0

Table 2: Performance of ProgramTab compared to the
baselines on WikiTQ test set.

Specifically, PASTA (Gu et al., 2022) achieves 358

90.8% accuracy on TabFact, while CABINET (Pat- 359

naik et al., 2024) obtains 69.1% on WikiTQ. Us- 360

ing GPT-4o-mini as the backbone, ProgramTab 361

achieved performance comparable to PASTA on 362

the TabFact dataset. Furthermore, on the WikiTQ 363

dataset, ProgramTab outperformed CABINET re- 364

gardless of the large model used as its backbone. 365

Due to unnecessary additional fine-tuning, the gen- 366

eralization of ProgramTab is better. (2) Compared 367

to previous work without training, ProgramTab 368

with different LLM backbones outperforms the 369

other baselines on all evaluation benchmarks. In ad- 370

dition, our framework with GPT-4o-mini achieves 371

better performance compared to E5 with GPT-4. 372

(3) With stronger coding and reasoning abilities, 373

ProgramTab with Llama-3.1-70B-Instruct and GPT- 374

4o-mini achieve better performance. 375

5 Analysis 376

5.1 Ablation Study Results 377

To evaluate the effectiveness of each procedure in 378

the ProgramTab framework, we pay attention to 379

two important steps: data redefinition (DR) and 380

SQL generation (SG). Specifically, we remove the 381

6

Methods TabFact WikiTQ

Binder 79.1 55.4
Dater 78.0 52.8
TabSQLify 79.5 64.7
ProgramTab 85.9 70.3

w/o DR 81.6 (↓ 4.3) 59.4 (↓ 10.9)
w/o CoT SG 84.1 (↓ 1.8) 65.0 (↓ 5.3)

Table 3: Ablation results of GPT-3.5-Turbo-based Pro-
gramTab with and without data redefinition and CoT
SQL generation.

DR procedure described in Section 3.3 and keep382

the other steps unchanged. The result in Table 3383

shows that without the DR step to preprocess the384

tabular data, it will require SQL to preprocess the385

data and extract the relevant information, which386

increases the complexity of generating SQL for387

LLMs. Therefore, the performance significantly388

decreases on both datasets, especially on WikiTQ389

which is more complex. This conclusion is also ver-390

ified by Wang et al. (2024). Besides, we replace the391

procedure described in Section 3.4 with the SQL392

generation without CoT (denotes as w/o CoT SG).393

The special prompt is shown in Appendix A.1. Ta-394

ble 3 presents that the performance of ProgramTab395

w/o SG CoT drops when discarding question de-396

composition. It verifies that compared with direct397

SQL generation, decomposing the questions into398

multiple steps and generating their sub-SQL is ef-399

fective in reducing the difficulty of SQL generation.400

5.2 Performance Analysis under Large Tables401

As described in Section 1, Chen (2023) and Ye402

et al. (2023) have presented that LLMs suffer from403

significant performance degeneration when deal-404

ing with large tables. To evaluate the effectiveness405

of ProgramTab, we extract the large tables from406

WikiTQ and TabFact datasets. Specifically, we de-407

fine the large tables for WikiTQ when the token408

counts are larger than 4000 because 4000 tokens are409

the maximum token limitation for GPT-3.5-Turbo.410

Besides, We follow Nahid and Rafiei (2024b) to411

choose 1200 tokens for TabFact because the ta-412

bles almost contain few data. We then compare413

ProgramTab with Binder, Dater, Chain-of-Table,414

TableCoT, and TabSQLify. As shown in Table 4,415

we observe that all strong baselines suffer from a416

significant decline in performance on two datasets.417

For example, Binder with Codex merely achieves418

29.6% accuracy on the WikiTQ dataset and even419

can’t be applied when utilizing GPT-3.5-Turbo as420

Methods Backbone TabFact WikiTQ

Binder Codex - 29.6
Chain-of-Table GPT-3.5-Turbo-16k-0613 - 44.8

Binder

GPT-3.5-Turbo

- 0.0
Dater - 34.6
TableCoT 55.5 35.1
TabSQLify 72.8 52.3
ProgramTab 86.6 68.0

Table 4: Performance of ProgramTab and strong base-
lines on large tables from TabFact and WikiTQ.

Methods Datasets Cut-off(%)
0-10% 10-25% 25-50% 50%+

TabSQLify
WikiTQ

64.6 60.6 66.3 56.2
ProgramTab 70.8 62.4 62.6 68.0

TabSQLify
TabFact

79.1 80.8 70.0 72.8
ProgramTab 89.0 86.5 77.5 86.4

Table 5: Performance of ProgramTab on the different
cutoff thresholds categories.

the backbone. Besides, TabSQLify obtains subop- 421

timal performance thanks to its effective extraction 422

of columns and rows employing the text-to-SQL 423

method. In contrast, ProgramTab significantly out- 424

performs all baselines and even improves compared 425

with performance on the full TabFact dataset. It 426

could be clarified that the row retrieval and column 427

extraction procedures in our framework are effec- 428

tive in providing the relevant rows as the context, 429

which is beneficial for SQL generation to extract 430

the final information from the large tables. 431

5.3 Robustness Analysis 432

Following Nahid and Rafiei (2024b), we verify the 433

robustness of ProgramTab based on the different 434

cutoff thresholds. Specifically, the cutoff thresholds 435

are established to discard tabular tokens exceeding 436

these limits. For example, if the original table has 437

800 tokens and the maximum threshold is set to 438

600, it means that 200 tokens of the original ta- 439

ble are truncated, and the percentage is 200/800 = 440

25.0%. In our experiment, we set the cutoff thresh- 441

old at 2000 and 600 for WikiTQ and TabFact re- 442

spectively. Table 5 shows four categories based on 443

the above thresholds and presents that ProgramTab 444

with GPT-3.5-Turbo outperforms TabSQLify ex- 445

cept on the 25%-50% cutoff on WikiTQ. The re- 446

sults further demonstrate that the ProgramTab can 447

extract the relevant information under limited token 448

boundary conditions and is not sensitive to input 449

length limitations for LLMs. 450

7

Methods # of samples / step Total # of samples

Binder Neural SQL: 50 50

Dater

Decompose Table: 40

100
Generate Cloze: 20
Generate SQL: 20

Query: 20

Chain-of-Table
Dynamic Plan ≤ 5

≤ 25Generate Args ≤ 19
Query: 1

TabSQLify
Decompose Table: 1

2
Query: 1

ProgramTab

Column Extraction: 1

4
Data Redefinition with Code: 1

Generate SQL: 1
Query: 1

Table 6: The number of samples generated by different
methods adopting LLMs.

5.4 Efficiency Analysis451

Following Wang et al. (2024), we analyze the effi-452

ciency of ProgramTab by evaluating the number of453

samples generated by LLMs. For each reasoning454

step, compared to the approaches that apply the455

self-consistency (Binder and Dater) strategy to gen-456

erate multiple samples or adopt the iterative sam-457

ple creation process (Chain-of-Table), ProgramTab458

adopts a greedy search strategy to produce a single459

response. Specifically, Table 6 shows the number460

of samples generated by LLMs for a single question461

in different methods on the WikiTQ dataset. We462

can find that LLMs are required to generate multi-463

ple samples for Binder and Dater, while Chain-of-464

Table adopts a more efficient approach to reduce465

the number of samples. TabSQLify achieves the466

minimum number of samples. Our approach adopts467

a greedy search strategy to obtain one response for468

each step, for a total of only four samples. Conse-469

quently, ProgramTab efficiently reduces computa-470

tion time and resource costs and performs better.471

5.5 Error Analysis472

To systemically analyze the shortcomings of pro-473

gramTab with GPT-3.5-Turbo, we select two test474

sets (i.e., TabFact, and WikiTQ), and randomly475

choose 100 error samples from each dataset. Then,476

we manually examine these failures and they are477

classified into four error categories: 1) Missing478

Columns Error: LLMs don’t select the relevant479

columns. 2) SQL Error: the generated SQL queries480

incorrectly filter the relevant information or contain481

syntax rule errors. 3) Code Error: the generated482

Python codes fail to unify the format and type of483

16%

31%
22%

31%

TabFact

Missing Columns Error

12%

52%

32%

4%

WikiTQ

Missing
Columns Error
SQL Error

Code Error

Reasoning
Error

Figure 7: Statistic of different error types on TabFact
and WikiTQ datasets.

data, or introduce irrelevant information. 4) Rea- 484

soning Error: LLMs fail to generate the correct an- 485

swers given the extracted relevant information. As 486

shown in Figure 7, we can observe that the missing 487

column and reasoning errors respectively account 488

for a small portion of TabFact and WikiTQ. The 489

main source of errors focuses on the code and SQL 490

errors, especially on the WikiTQ. We replaced GPT- 491

3.5-Turbo with GPT-4o-mini for code and SQL 492

generation, and found that GPT-4o-mini effectively 493

avoids the errors encountered with GPT-3.5-Tubo. 494

The performance of these two LLMs in Table 1 and 495

2 can also be verified. Consequently, enhancing 496

the capacity of code generation is effective in im- 497

proving the performance further. We provide two 498

suggestions for further exploration: (1) applying 499

some training strategies, such as pre-training, su- 500

pervised fine-tuning, reinforcement learning from 501

human feedback, and so on. (2) Based on the spe- 502

cific questions, dynamically selecting the few-shot 503

examples by employing the retrieval-augmented 504

generation approach is also effective in decreasing 505

the error ratio of the above problems. 506

6 Conclusion 507

In this paper, we illustrate the limitations of cur- 508

rent table-based reasoning with LLMs approaches, 509

including suffering from significant performance 510

degradation when faced with large tables, and 511

the inconsistent table data structure increases the 512

difficulty of SQL generation. Consequently, we 513

propose the ProgramTab framework, which suffi- 514

ciently implements the strong in-context learning 515

ability of LLMs to perform tabular data preprocess- 516

ing with Python code and key information extrac- 517

tion with SQL generation. It achieves the best per- 518

formance compared with the baselines and is not 519

limited by the input length of table data. Hoping 520

this flexible table-based reasoning framework can 521

shed new light on the understanding of prompting 522

LLMs for table understanding. 523

8

7 Limitations524

In this section, we present several of the limitations525

of our approach - ProgramTab. Firstly, the data526

redefinition with code can preprocess the table data527

well, but more preprocessing for more complex528

table structures should be explored further. What’s529

more, how to perform row retrieval more efficiently530

from tables with large amounts of rows is another531

optimization direction.532

References533

Rami Aly, Zhijiang Guo, Michael Schlichtkrull, James534
Thorne, Andreas Vlachos, Christos Christodoulopou-535
los, Oana Cocarascu, and Arpit Mittal. 2021. Fever-536
ous: Fact extraction and verification over un-537
structured and structured information. Preprint538
arXiv:2106.05707.539

Tom Brown, Benjamin Mann, Nick Ryder, Melanie540
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind541
Neelakantan, Pranav Shyam, Girish Sastry, Amanda542
Askell, and et al. 2020. Language models are few-543
shot learners. In Advances in neural information544
processing systems, pages 33:1877–1901.545

Wenhu Chen. 2023. Large language models are few(1)-546
shot table reasoners. In Findings of the Association547
for Computational Linguistics: EACL 2023, pages548
1120–1130. Association for Computational Linguis-549
tics.550

Wenhu Chen, Xueguang Ma, Xinyi Wang, and551
William W Cohen. 2022. Program of thoughts552
prompting: Disentangling computation from rea-553
soning for numerical reasoning tasks. Preprint554
arXiv:2211.12588.555

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai556
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,557
and William Yang Wang. 2020. Tabfact: A558
large-scale dataset for table-based fact verifica-559
tion. In International Conference on Learning560
Representations (ICLR).561

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran562
Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang563
Lou, and Dongmei Zhang. 2022. HiTab: A564
hierarchical table dataset for question answering565
and natural language generation. In Proceedings566
of the 60th Annual Meeting of the Association567
for Computational Linguistics (Volume 1: Long568
Papers), pages 1094–1110. Association for Compu-569
tational Linguistics.570

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu571
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,572
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,573
Noah A. Smith, and Tao Yu. 2023. Binding language574
models in symbolic languages. In International575
Conference on Learning Representations (ICLR).576

Minseok Cho, Gyeongbok Lee, and Seung won 577
Hwang. 2019. Explanatory and actionable debug- 578
ging for machine learning: A tableqa demonstra- 579
tion. In Proceedings of the 42nd International ACM 580
SIGIR Conference on Research and Development in 581
Information Retrieval, page 1333–1336. ACM. 582

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 583
Kristina Toutanova. 2019. BERT: Pre-training of 584
deep bidirectional transformers for language under- 585
standing. In Proceedings of the 2019 Conference 586
of the North American Chapter of the Association 587
for Computational Linguistics: Human Language 588
Technologies, Volume 1 (Long and Short Papers), 589
pages 4171–4186. Association for Computational 590
Linguistics. 591

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and 592
Tushar Khot. 2023. Complexity-based prompting for 593
multi-step reasoning. In Advances in International 594
Conference on Learning Representations. 595

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 596
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 597
ham Neubig. 2023. Pal: Program-aided language 598
models. In In International Conference on Machine 599
Learning, pages 10764–10799. 600

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xi- 601
aoman Zhao, and Xiaoyong Du. 2022. PASTA: 602
Table-operations aware fact verification via sentence- 603
table cloze pre-training. In Proceedings of the 604
2022 Conference on Empirical Methods in Natural 605
Language Processing, pages 4971–4983. Association 606
for Computational Linguistics. 607

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021. 608
DeBERTav3: Improving deBERTa using ELECTRA- 609
style pre-training with gradient-disentangled embed- 610
ding sharing. Preprint arXiv:2111.09543. 611

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas 612
Müller, Francesco Piccinno, and Julian Eisen- 613
schlos. 2020. TaPas: Weakly supervised ta- 614
ble parsing via pre-training. In Proceedings of 615
the 58th Annual Meeting of the Association for 616
Computational Linguistics, pages 4320–4333. Asso- 617
ciation for Computational Linguistics. 618

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men- 619
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther- 620
ford, Diego De, Las Casas, Lisa Hendricks, Johannes 621
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 622
Katie Millican, GeorgeVanDen Driessche, Bogdan 623
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 624
monyan, Erich Elsen, Jack Rae, Oriol Vinyals, and 625
Laurent Sifre. 2022. Training compute-optimal large 626
language models. Preprint arXiv:2203.15556. 627

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu- 628
big, and Weizhu Chen. 2022. OmniTab: Pretraining 629
with natural and synthetic data for few-shot table- 630
based question answering. In Proceedings of the 631
2022 Conference of the North American Chapter 632
of the Association for Computational Linguistics: 633

9

https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83

Human Language Technologies, pages 932–942. As-634
sociation for Computational Linguistics.635

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan636
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,637
Veselin Stoyanov, and Luke Zettlemoyer. 2020.638
BART: Denoising sequence-to-sequence pre-training639
for natural language generation, translation, and640
comprehension. In Proceedings of the 58th Annual641
Meeting of the Association for Computational642
Linguistics, pages 7871–7880. Association for Com-643
putational Linguistics.644

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,645
Pengjun Xie, and Meishan Zhang. 2023. Towards646
general text embeddings with multi-stage contrastive647
learning. Preprint arXiv:2308.03281.648

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adria649
de Gispert, and Gonzalo Iglesias. 2023. An inner650
table retriever for robust table question answering.651
In Proceedings of the 61st Annual Meeting of the652
Association for Computational Linguistics (Volume653
1: Long Papers), pages 9909–9926. Association for654
Computational Linguistics.655

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi656
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.657
Tapex: Table pre-training via learning a neural sql ex-658
ecutor. In In International Conference on Learning659
Representations.660

Md Mahadi Hasan Nahid and Davood Rafiei. 2024a.661
NormTab: Improving symbolic reasoning in LLMs662
through tabular data normalization. In Findings663
of the Association for Computational Linguistics:664
EMNLP 2024, pages 3569–3585. Association for665
Computational Linguistics.666

Md Mahadi Hasan Nahid and Davood Rafiei. 2024b.667
TabSQLify: Enhancing reasoning capabilities of668
LLMs through table decomposition. In 2024 Annual669
Conference of the North American Chapter of the670
Association for Computational Linguistics.671

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,672
Wen tau Yih, Sida I Wang, and Xi Victoria Lin.673
2023. Lever: Learning to verify language-to-code674
generation with execution. In Proceedings of the675
40th International Conference on Machine Learning676
(ICML’23).677

Abhyankar Nikhil, Gupta Vivek, Roth Dan, and678
Reddy Chandan K. 2024. H-star: Llm-driven hy-679
brid sql-text adaptive reasoning on tables. Preprint680
arXiv:2407.05952.681

OpenAI. 2022. Gpt-3.5-turbo. Technical Report.682

OpenAI. 2023. Gpt-4. Technical Report.683

Pasupat Panupong and Liang Percy. 2015. Com-684
positional semantic parsing on semi-structured ta-685
bles. In Proceedings of the 53rd Annual Meeting of686
the Association for Computational Linguistics and687
the 7th International Joint Conference on Natural688

Language Processing (Volume 1: Long Papers), 689
pages 1470–1480. Association for Computational 690
Linguistics. 691

Sohan Patnaik, Heril Changwal, Milan Aggarwal, 692
Sumit Bhatia, Yaman Kumar, and Balaji Krishna- 693
murthy. 2024. Cabinet: Content relevance-based 694
noise reduction for table question answering. In 695
The Twelfth International Conference on Learning 696
Representations. 697

Nitarshan Rajkumar, Raymond Li, and Dzmitry 698
Bahdanau. 2022. Evaluating the text-to-sql ca- 699
pabilities of large language models. Preprint 700
arXiv:2204.00498. 701

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, 702
and Huan Sun. 2023. Exploring chain of thought 703
style prompting for text-to-SQL. In Proceedings 704
of the 2023 Conference on Empirical Methods in 705
Natural Language Processing, pages 5376–5393. As- 706
sociation for Computational Linguistics. 707

Touvron, Hugo, Lavril, Thibaut, Izacard, Gautier, Mar- 708
tinet, Xavier, Lachaux, Marie-Anne, Lacroix, Tim- 709
oth’ee, Rozi‘ere, Baptiste, Goyal, Naman, Hambro, 710
Eric, Azhar, Faisal, Rodriguez, Aurelien, Joulin, 711
Armand, Grave, Edouard, Lample, and Guillaume. 712
2023. Llama: Open and efficient foundation lan- 713
guage models. Preprint arXiv:2302.13971. 714

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar- 715
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly 716
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu 717
Lee, and Tomas Pfister. 2024. Chain-of-table: Evolv- 718
ing tables in the reasoning chain for table under- 719
standing. In International Conference on Learning 720
Representations (ICLR). 721

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 722
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, 723
and Denny Zhou. 2023. Chain-of-thought prompt- 724
ing elicits reasoning in large language models. In 725
Proceedings of the 36th International Conference 726
on Neural Information Processing Systems, pages 727
24824–24837. 728

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 729
Shafran, Karthik Narasimhan, and Yuan Cao. 2023. 730
ReAct: Synergizing reasoning and acting in language 731
models. In International Conference on Learning 732
Representations (ICLR). 733

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, 734
Fei Huang, and Yongbin Li. 2023. Large lan- 735
guage models are versatile decomposers: Decom- 736
pose evidence and questions for table-based reason- 737
ing. In Proceedings of the 46th International ACM 738
SIGIR Conference on Research and Development in 739
Information Retrieval, pages 174–184. 740

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, bailin 741
wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev, 742
richard socher, and Caiming Xiong. 2021. Gra{pp}a: 743
Grammar-augmented pre-training for table seman- 744
tic parsing. In International Conference on Learning 745
Representations. 746

10

Han Zhang, Yuheng Ma, and Hanfang Yang. 2024a.747
Alter: Augmentation for large-table-based reasoning.748
Preprint arXiv:2407.03061.749

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi750
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.751
Table fact verification with structure-aware trans-752
former. In Proceedings of the 2020 Conference on753
Empirical Methods in Natural Language Processing754
(EMNLP), pages 1624–1629. Association for Com-755
putational Linguistics.756

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, and757
Joyce Cahoon. 2024b. Reactable: Enhancing react758
for table question answering. In Proceedings of the759
VLDB Endowment 17(8), pages 1981–1994.760

Zhehao Zhang, Yan Gao, and Jian-Guang Lou. 2024c.761
e5: Zero-shot hierarchical table analysis using aug-762
mented LLMs via explain, extract, execute, ex-763
hibit and extrapolate. In Proceedings of the 2024764
Conference of the North American Chapter of the765
Association for Computational Linguistics: Human766
Language Technologies (Volume 1: Long Papers),767
pages 1244–1258. Association for Computational768
Linguistics.769

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex770
Smola. 2023. Automatic chain of thought771
prompting in large language models. In772
Advances in International Conference on Learning773
Representations.774

Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng,775
Fan Cheng, Shi Han, and Dongmei Zhang. 2022.776
TaCube: Pre-computing data cubes for answering777
numerical-reasoning questions over tabular data. In778
Proceedings of the 2022 Conference on Empirical779
Methods in Natural Language Processing, pages780
2278–2291. Association for Computational Linguis-781
tics.782

11

A Appendix783

A.1 Prompts for SQL Generation without784

CoT785

Task description: You are a data scientist specializing
in text-to-SQL tasks. You should write a valid SQLite to
solve the following question based on the database scheme and
hint. Please add the `` for every column you select in the
SQL. Note: Just output the sql. Here are some examples to
help you understand this task.

Example1:
Database title: The table about 2000 Olympic Games.
Database scheme:\nCREATE TABLE test(\n\"race_name\" TEXT;
VALUES: [vuelta a guatemala, vuelta a
colombia],\n\"winner_country\" TEXT; VALUES: [usa, aus])\n\n
Question:\nwho won more races, the usa or australia?\n\n
SQL: SELECT `winner_country`, won_count FROM (SELECT
`winner_country`, COUNT(`race_name`) AS won_count FROM test
WHERE `winner_country` in ('usa', 'aus')) ORDER BY won_count
DESC LIMIT 1\n\n

Example2:
Database title: The table about members of Third Incarnation
of Lachlan.
Database scheme:\nCREATE TABLE test(\n\"row_id\" INTEGER;
VALUES: [0, 1],\n\"member\" TEXT; VALUES: [john ryan, james
martin],\n\"term\" TEXT; VALUES: [1859-1864, 1864-1869])\n\n
Question:\nof the members of the third incarnation of the
lachlan, who served the longest?\n\n
SQL: SELECT `member` FROM test ORDER BY `term` DESC LIMIT
1\n\n

Example3:
Database title: The table about different season of giant
slalom and super g.
Database scheme:\nCREATE TABLE test(\n\"season\" TEXT; VALUES:
[1986, 1987],\n\"slalom\" TEXT; VALUES: [39,
24],\n\"giant_slalom\" TEXT; VALUES: [23, 9],\n\"super_g\"
TEXT; VALUES: [19, 18])\n\n
Question:\nwhich super g had a slalom of less than 5 when
the giant slalom was 1?\n\n
SQL: SELECT `super_g` FROM test WHERE `slalom` < 5 AND
`giant_slalom` = 1\n\n

Problem to be solved:\n

Figure 8: Prompt for LLMs to generate SQL without
CoT.

A.2 LLM Hyper-parameters786

For all the procedures described in Section 3, we set787

the same hyper-parameters for LLMs. Specifically,788

the temperature is set to 0.6 while both top_p and789

the sample number are 1.790

A.3 Table Size Reduction791

We analyze the efficiency of ProgramTab in filter-792

ing irrelevant information and extracting the key793

tabular data from tables. To accomplish this, we794

count the average number of table cells that feed795

LLMs to generate the final answers. As presented796

in Figure 9, the average number of full table cells797

(original) is 183 and 101 respectively. There is798

a significant reduction after employing the Tab-799

SQLify approach. Our framework ProgramTab800

employs SQL generation procedure to effectively801

filter much irrelevant information and extract the802

183

101

32

45

4
15

0

20

40

60

80

100

120

140

160

180

200

WikiTQ TabFact

Original TabSQLify ProgramTab

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

T
a
b
l
e

C
e
l
l
s

Figure 9: Comparison of the average number of table
cells on two datasets.

Methods Backbone HiTab

ReAct (Yao et al., 2023) GPT-4 81.87
E5 (Zhang et al., 2024c) GPT-4 85.08
ProgramTab GPT-4o-mini 83.57

Table 7: Performance of ProgramTab on HiTab dataset.

most related data. It respectively reduces the aver- 803

age number of table cells to 4 and 15 for WikiTQ 804

and TabFact datasets. These results also verify that 805

ProgramTab can perform critical information ex- 806

traction from amounts of tabular cells, and validly 807

deal with large tables. 808

A.4 Experiments on HiTab 809

To present the effectiveness of ProgramTab when 810

applied to more complex tabular structures, we 811

supplemented ProgramTab’s experiments on the 812

HiTab dataset, which contains hierarchical tables. 813

To achieve this, we first reconstructed the hierar- 814

chical tables by merging certain column header in- 815

formation using a ":" delimiter, making them more 816

suitable for processing by ProgramTab. The final 817

experimental results are as follows: ProgramTab 818

with GPT-4o-mini demonstrates promising perfor- 819

mance, while adopting the E5 method to process 820

hierarchical tables yields even better performance. 821

12

	Introduction
	Related Work
	Fine-tuning-based Table reasoning
	Prompting-based Table Reasoning

	ProgramTab Reasoning
	Row Retrieval
	Column Extraction
	Data Redefinition with Code
	SQL Generation
	Answer Generation

	Experiments
	Datasets
	Baselines
	Implementation Details
	Results

	Analysis
	Ablation Study Results
	Performance Analysis under Large Tables
	Robustness Analysis
	Efficiency Analysis
	Error Analysis

	Conclusion
	Limitations
	Appendix
	Prompts for SQL Generation without CoT
	LLM Hyper-parameters
	Table Size Reduction
	Experiments on HiTab

