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Abstract

Table-based reasoning with large language
models (LLMs), which requires reasoning
based on natural language questions and struc-
tured tabular data, has gained widespread at-
tention. However, a series of issues still con-
strain the application of this task. The previ-
ous approaches suffered from significant per-
formance degradation when faced with large
tables due to the difficulty of long text mod-
eling and the limitation of input length for
LLMs. The text-to-SQL approach is used to
efficiently extract key information from tables
and generate smaller sub-tables. However, tab-
ular data, especially web tables, often lack the
necessary structure and consistency, making
them unsuitable for performing mathematical
logic operations using SQL queries. We pro-
pose the ProgramTab framework, which guides
LLMs employing in-context learning to per-
form tabular data preprocessing with Python
code, as well as the momentous contents ex-
traction with row and column extraction and
SQL generation. Data preprocessing includes
defining the data format and type based on the
different questions. The experiment results on
WikiTQ and TabFact datasets demonstrate that
the ProgramTab framework effectively deals
with table-based reasoning tasks and outper-
forms all LLM-based baselines.

1 Introduction

Tables, as a popular form of data representation,
play a significant role in everyday work and life.
Analysis and reasoning based on tabular data have
emerged as a hot topic in natural language process-
ing, attracting wide attention from academia and
industry. The main downstream tasks of tabular rea-
soning include table-based fact verification (Chen
et al., 2020; Aly et al., 2021) and table-based ques-
tion answering (Panupong and Percy, 2015; Cho
et al., 2019). The challenges of these tasks lie
in how to enable language models to comprehend

Title: 1981 Houston Oilers season
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Figure 1: An example of a table in WikiTQ dataset.

table data content, including text, numbers, etc.,
establish their connection with user queries, and ex-
ecute efficient logical reasoning and computations.

Recently, LLMs (Brown et al., 2020; Hoffmann
et al., 2022; OpenAl, 2022; Touvron et al., 2023)
have significantly transformed the landscape of
natural language processing tasks with their im-
pressive understanding and generation capabilities.
Instead of fine-tuning the pre-trained models, suf-
ficiently making use of the in-context learning of
LLMs to solve complex tabular data reasoning has
been a mainstream direction (Chen, 2023; Cheng
et al., 2023; Ye et al., 2023; Wang et al., 2024).
However, current methods still face several limi-
tations. Firstly, most of the work (Cheng et al.,
2023; Ye et al., 2023; Wang et al., 2024) treats
the entire table as an input, which is unsuitable
for tables containing large amounts of data. When
the total number of tokens in a table exceeds the
maximum input limitation of LLMs, the content of
the table will be truncated, leading to information
loss and consequently affecting the performance of
LLMs. This has been verified in the work of (Chen,
2023). To mitigate the length constraint of inputs,
the common approach is to utilize a programmatic
language, such as generating SQL queries to re-
trieve the most relevant rows and column data (Ye
et al., 2023; Nahid and Rafiei, 2024b; Zhang et al.,



2024c,a). Howeyver, table data, especially the web
table is usually provided as strings and often
lacks the necessary structure and consistency,
requiring conversion to the appropriate format
and data types for mathematical logic opera-
tions to avoid calculation errors. It will require
SQL to preprocess the data while extracting the rel-
evant information, which increases the complexity
of generating SQL for LLMs. For example, for the
table shown in Figure 1, when the question is about
the number of games the Houston Oilers won in
the 1981 season, the ‘w’ and ‘I’ symbols from the
result cell aren’t provided as a single column and
need to be extracted, which is defined as the "lack
of necessary structure”. Regarding the absence of
consistency, we can find that the structure at the
"year" column in Figure 2 is inconsistent, such as
"1931" and "spring 1932".

To address the above challenges, with the help of
in-context learning in LLMs, we introduce the Pro-
gramTab framework, which executes with program
languages (Python and SQL) to flexibly handle
the table contents based on the questions. Specifi-
cally, as shown in Figure 2, (1) we utilize the em-
bedding model to compute the relevant scores of
each line of tables with the questions and resort the
lines in descending order. In the following steps,
the top K lines with higher relevant scores are ex-
tracted as instances to replace the complete tables.
With the most relevant lines as input, (2) LLMs are
prompted to select the columns related to the ques-
tions, (3) generate the Python code to preprocess
the table data, including unifying the data format
and defining the data type for each column. After
that, (4) SQL queries are generated using chain-
of-thought (CoT) (Wei et al., 2023) and executed
to obtain the most valuable information. Finally,
(5) LLMs process this information and produce the
final answers.

We validate our ProgramTab framework by con-
ducting experiments on two challenging table rea-
soning datasets: WikiTQ (Panupong and Percy,
2015) and TabFact (Chen et al., 2020). With
three LLM backbones, our evaluation demonstrated
that ProgramTab achieves excellent performance
on table-based reasoning benchmarks, and outper-
forms all the other baselines with different LLM
backbones. Besides, ProgramTab is not limited by
the input length of table data, which obtains a sig-
nificant efficiency and effectiveness improvement
compared with other strong baselines.

2 Related Work

In this section, we introduce the related approaches
of table-based reasoning and divide them into two
categories: fine-tuning-based and prompting-based
table reasoning.

2.1 Fine-tuning-based Table reasoning

Table-based understanding and reasoning tasks are
significant in data analysis systems. Many ap-
proaches focus on constructing pre-trained lan-
guage models and fine-tuning them to address these
tasks (Zhang et al., 2020; Patnaik et al., 2024).
Among them, mask language models (MLM) are
widely adopted. For example, TaPas (Herzig et al.,
2020) acquires BERT (Devlin et al., 2019) to parse
table information via pre-training. PASTA (Gu
et al., 2022) pre-trains DeBERTaV3 (He et al.,
2021) to perform six types of common sen-
tence—table cloze tasks. Besides, TAPEX (Liu
et al., 2022) employs the BART (Lewis et al., 2020)
model to learn the neural SQL executors over a syn-
thetic corpus. OmniTab (Jiang et al., 2022) lever-
ages retrieval to pair relevant natural sentences with
mask-based pre-training and synthesizes natural
language questions by converting sampled SQL
from tables. Inner Table Retrieval (ITR) (Lin et al.,
2023) extracts sub-tables to preserve the most rele-
vant information for the questions.

2.2 Prompting-based Table Reasoning

Recently, LLMs (Hoffmann et al., 2022; OpenAl,
2023; Touvron et al., 2023) have gained widespread
attention due to their powerful understanding and
generation capabilities. Given a few augmenting
few-shot examples relevant to the tasks, the LLMs
can tackle various reasoning tasks (Fu et al., 2023;
Zhang et al., 2023). A few approaches also employ
LLMs to tackle table reasoning tasks with few-shot
prompts. TableCoT (Tai et al., 2023) systemati-
cally explores the performance of LLMs on table
reasoning tasks and finds that LLMs are excellent
at solving such tasks, especially combined with
CoT approach. Besides, rather than generating
general text, additional programmatic text, such
as Python programs (Chen et al., 2022; Gao et al.,
2023), and Text-to-SQL (Rajkumar et al., 2022)
approaches are employed to improve the perfor-
mance further. LEVER (Ni et al., 2023) improves
the performance of code LLMs on language-to-
code tasks by training separate verifiers to validate
the programs generated by LLMs and their exe-



@ Row Retrieval

| Title: New York Americans (soccer)
H

year division playoffs national cup E
'
1936/37 n/a not qualify champion
1931 1 no playoff n/a

E Question(Q): how long did it ... after 1936?

E The 'year' column will help us identify the year
1 after 1936 when they won the National Cup, and the

1
year national cup H

1

I

ivisi i Execute i
year diiicn CEEE patiopalcn i 'national_cup' column will indicate whether they were de30/1927 EhaIBioy
1931 1 no playoff n/a | the champions in that specific year. 1931 n/a
' o .
spring 1932 1 no playoff e E The answer is year, national_cup.
i . id i ?
fall 1932 1 NolRlalett o | Question(Q): how long did it ... after19362 =
1933/34 n/a no playoff ? @ ‘ (@ Data Redefinition with Python Code and Execution
def )
1936/37 n/a not qualify champion | #step 1: standardize the data format
| dfl'year'] = df['year'].str.extract('(\\d{4})") years_to_w E
| #step 2: set the data type for each column

E Question(Q):
i how long did it take for the new york americans to win the
E national cup after 1936?

| return df

1 df = function(df)

| dff'year'] = df['year'].astype(int)

E df['national_cup'] = df['national_cup'].astype(str)
! # step 3 (optional): extract the information

1 df['years_to_win_after_1936'] = df['year'] - 1936

I
E # call the function, don't change df anymore

P year national cup in_after_19 §
E

1936 champion [}

1931 n/a -5

Question(Q): how long did it ... after 19362 |

stepl: select the ‘years_to_win_after_1936" where ‘national_cup’ =
‘champion’
SQL1: SELECT ‘years_to_win_after_1936" FROM test WHERE ‘year™ >

1936 AND “national_cup’ = 'champion’

Figure 2: The overview of ProgramTab for table-based reasoning.

cution results. Binder (Cheng et al., 2023) maps
the task input to a program that allows generat-
ing SQL or Python programs and extending their
functions by calling LLMs in the program. Re-
AcTable (Zhang et al., 2024b) breaks down the
problem into multiple steps and uses LLMs to gen-
erate code programs that are executed through ex-
ternal tools for each step. Finally, it leverages ma-
jority voting to improve overall accuracy. Wang
et al. (2024) proposes a Chain-of-Table framework
that designs a series of table operations and dynam-
ically plans an operation chain based on the inputs.
It’s difficult for LLMs to perform reasoning when
confronted with large tables with multiple rows.
Dater (Ye et al., 2023), TabSQLify (Nahid and
Rafiei, 2024b) and H-STAR (Nikhil et al., 2024)
decompose the original table into the sub-table by
selecting the relevant rows and columns. After that,
Dater and Alter (Zhang et al., 2024a) also propose
the parsing-execution-filling and query augmenta-
tion strategy respectively to decompose a complex
question into simpler step-by-step sub-questions by
generating an intermediate SQL. E° (Zhang et al.,
2024c) presents an algorithm to condense large ta-
bles while maintaining useful information. The
most similar work is NormTab (Nahid and Rafiei,
2024a), which utilizes LLMs to regularize table
content, making it conducive to SQL query gener-
ation. Unlike previous works, which typically ex-

tract information directly using SQL queries to ob-
tain answers—thus increasing the difficulty of SQL
generation, we propose an innovative approach that
leverages LLMs to generate code for data prepro-
cessing. It effectively reduces the difficulty of SQL
generation and improves efficiency compared to
NormTab. Additionally, we present innovative op-
timization methods for SQL generation process.

3 ProgramTab Reasoning

As shown in Figure 2, ProgramTab consists of five
procedures: 1) row retrieval, 2) column extrac-
tion, 3) data definition with code, 4) SQL gener-
ation and 5) answer generation. In this section,
we describe the above procedures in detail. The
original table is denoted as 7.

3.1 Row Retrieval

To alleviate the limitation of the input length of
LLMs, we first execute row retrieval, extracting
the most relevant rows to represent the entire table
content. Specifically, for each row of data in the
table, we concatenate the column name and value
of the cells to form a text segment, and an embed-
ding model GTE-base (Li et al., 2023) is utilized to
calculate the relevance score between the row data
and the question. Ultimately, the top K most rele-
vant rows are selected as instances in the prompt
templates of the following steps, which effectively



! ### Task description: Please select the relevant columns about the
| question from ### Table headers. We also provide a few rows about
I the value of different headers to assist to choose the columns
Please follow the format that describe the reasons of choosing the
column firstly and give the conclusion as ‘The answer is' finally.

###Examplel:

Question: which team won previous to crettyard?

### Table header: team | county | wins | years won

### A few rows:

rowl: Greystones | Wicklow | 1 | 2011

row2: Ballymore Eustace | Kildare | 1 | 2010

row3: Maynooth | Kildare | 1 | 2009

### Answer: To find out which team won before crettyard, we need to
look at the 'years won' column to determine the year crettyard won
and find the team that won the year before. Besides, the 'team’
column is also crucial because it has the names of the teams that
won in those years. The answer is team, years won.

###Example2:

Question: did february 2012 or july 2006 have more total votes?
### Table header: polling_firm | month | link | favor | oppose
### A few rows:

rowl: utgers-eagleton | march 2014 | | 64 | 28
row2: quinnipiac | july 2013 | | 60 | 31
row3: rutgers-eagleton | june 2013 | | 59 | 30

### Answer: To answer the question about whether February 2012 or
July 2006 had more total votes, we need to look at the 'month’
column to find the data for these two specific months. In addition,
the 'favor' and 'oppose' columns are also important because they
contain the number of votes. By adding these two columns together
we can get the total votes for each month. The answer is month,
favor, oppose.

### Problem to be solved:
Question: {}

### Table header: {}

### A few rows:{}

##H# Answer:

Figure 3: Prompt for LLMs to extract columns.

alleviates the whole table as the input context.

3.2 Column Extraction

To minimize the impact of irrelevant data, it is
essential to extract the relevant columns and utilize
them for LLMs to conduct reasoning (Zhang et al.,
2024a). As shown in Figure 3, given the question,
table header, and top K rows as input context, we
prompt LLMs to follow the examples and extract
the related columns with additional explanation.
Based on the LLMs filter columns, we extract them
from 7" and obtain 7.

3.3 Data Redefinition with Code

Specifically, to maintain the flexibility of table data,
the string type is adopted for the table data espe-
cially collected from the web. Besides, the format
of data is not always consistent which causes a
great challenge for SQL generation. For example,
as shown in Figure 2, the values of column year in
T are not rigorous, which conclude three different
formats with string type: ‘1931°, ‘spring 1932°,
and ‘1933/34’. Therefore, it’s necessary to rede-
fine data, including unifying the format, defining
the data type, and extracting additional information
(the detailed discussion about data redefinition is
presented in Section 5.1). The related prompt is
shown in Figure 4, given the current data format
code, we acquire LLLMs to generate Python code

g
| ### Task description: Based on the questions and current data format :
: with python, define a new function to supplement subsequent processing N
| operations with python according to the following steps:
I - step 1 (optional): standardize the data format for each column. :
' step 2: set the data type for each column (the type must be one of int,
float, string and datetime).
- step 3 (optional): extract the useful information by adding new :
columns if needed.
- Note: you just need to output the code, don't answer the questions and :
don't redefine the df.
Here are some examples to help you understand this task.
###Examplel: :
Question: how many people stayed at least 3 years in office? I
### Current code of data format:
data = {'took_office': ['march 4, 1803', 'march 4, 1809', 'march 4, :
1815'], 'left_office': ['march 3, 1809', 'march 3, 1815', 'april 18, 1
1816° ]} !
df = pd.DataFrame(data)
### Answer:
def function(df):
# step 1: standardize the data format: the question only need the
years 1
df[ 'took_office'] = df['took_office'].map(lambda x: x.split(', :
-1 1
df['left_office'] = df['left_office'].map(lambda x: x.split(’, !
DI-10) i
# step 2: set the data type: set the year to int type 1
df[ 'took_office'] = df['took_office'].astype(int)
df['left_office'] = df['left_office'].astype(int)
# step 3: extract the information }
1
df[ 'took_office’]
return df 1
# call the function, don't change df anymore
df = function(df)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

###Example2:
Question: what's the number of parishes founded in the 1800s?
### Current code of data format:
data = {'parish': ['st mary', 'the immaculate conception', ‘st james the
less'], 'founded': ['1852', '1854', '1828°]}
df = pd.DataFrame(data)
### Answer:
def function(df):
# step 1: all data format are the same, there is no need to

# step 2: set the data type
df['parish'] = df['parish'].astype(str)
df['founded'] = df['founded'].astype(int)
# step 3: there is no data need to extract
return df

1 the function, don't change df anymore

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
: df['stayed_years_in_office'] = df['left_office'] -
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
14 ca
| df = function(df)
1
1
1

Figure 4: The prompt for LLMs to perform data redefi-
nition with code.

with the following steps. Firstly, if there is column
data with inconsistent formats, standardize it to
form a unified format. Besides, the data type for
each column must be set to make it suitable for
performing mathematical logical operations, such
as defining the column to the integer type. We re-
quire that the data type must be one of integer, float,
string, and datetime types. Finally, additional infor-
mation could be extracted by adding new columns.
Among them, annotations are added for each step
to benefit LLMs to follow the above steps more
effectively. Besides, steps 1 and 3 are optional,
depending on the specific cases. For instance, the
formats of each column in Figure 4 example 2 are
consistent, there is no need to extract extra infor-
mation. As a result, steps 1 and 3 are unnecessary.

3.4 SQL Generation

The table data after redefining is unified and meets
the requirements for SQL execution. In this step,
we make use of few-shot learning to prompt LLMs



: ### Task description:

1 You are a data scientist specializing in text-to-SQL tasks. Given the
1 Question and Database schema, you should decompose the question into
: multiple steps and generate their SQL. Please add the "~ for every

1 column you select in the SQL. Note: Just output the step and sql. Here
: are some examples to help you understand this task.

: ### Examplel:

: Database title: The table about 2000 Olympic Games.

| Database scheme:

I CREATE TABLE test(

:“race_name" TEXT; VALUES: [vuelta a guatemala, vuelta a colombia],

1 "winner_country" TEXT; VALUES: [usa, aus])

| ### Question: who won more races, the usa or australia?
: ### Sub-step and their SQL:

stepl: obtain the count of usa win.

SQL1: SELECT COUNT( race_name ) FROM test WHERE “winner_country™ = ‘'usa’
step2: obtain the count of aus win.
SQL2: SELECT COUNT( race_name) FROM test WHERE “winner_country™ = ‘'aus’

step3: Compare the count of usa and aus, and select the most

SQL3: SELECT “winner_country”, won_count FROM (SELECT “winner_country”,
COUNT (" race_name”) AS won_count FROM test WHERE “winner_country™ in
('usa', ‘'aus')) ORDER BY won_count DESC LIMIT 1\n\n

### Example2:

Database title: The table about members of Third Incarnation of Lachlan.
Database scheme:

CREATE TABLE test(

"row_id" INTEGER; VALUES: [@, 1],

"member" TEXT; VALUES: [john ryan, james martin],

"term" TEXT; VALUES: [1859-1864, 1864-1869])

### Question: of the members of the third incarnation of the lachlan,
who served the longest?

### Sub-step and their SQL:

stepl: obtain the all “member’ and sorted them based on “term” with DESC
SQL1: SELECT “member’ FROM test ORDER BY “term’ DESC

step2: select the longest “member’ by LIMIT 1

SQL2: SELECT “member® FROM test ORDER BY “term’ DESC LIMIT 1

### Problem to be solved:\n

Figure 5: Prompt for LLMs to generate SQL with CoT.

to perform SQL generation. Specifically, as pre-
sented in Figure 5, the essential information is pro-
vided, such as the database title, schema, and top
K relevant rows. With these contexts, LLMs are
prompted to decompose the question into multi-
ple steps and generate their sub-SQL with the CoT
method. We find that the CoT style is beneficial for
LLMs to generate the final SQL queries, and the
specific analysis is described in Section 5.1.

3.5 Answer Generation

After executing the SQL query obtained from the
previous step, the most relevant information is
gained from the table. As presented in Figure 6,
during this step, based on the results from executing
the SQL query and the question, we utilize LLMs
to reason with the additional explanation and fi-
nally make a conclusion. Consequently, we can
conveniently extract the results from the conclu-
sions as final answers. This approach helps LLMs
concentrate on the relevant parts to understand the
context and answer the questions.

4 Experiments

4.1 Datasets

We design relevant prompts and utilize the pow-
erful in-context learning ability of LLMs to di-
rectly reason on the test set. We evaluate
the proposed ProgramTab on three public table

result of the sql query bellow, find the answer to the given question
correctly. If there are multiple answers, please split them by ' | '
Note: Only choose the answers from SQL Answer.

Table_title: piotr kedzia

Question: in what city did piotr's last 1st place finish occur?

SQL: select “year’, “venus® from test where “position” = '1st' order by
“year® DESC LIMIT 1

SQL Answer:

Table Schema: year | venus

Values: 2007 | bangkok, Thailand

A: The SQL answer contain the year and venus about piotr's last 1st
place, and the question ask about the city which means the venus, and
the city where Piotr's last 1st place finish occurred is Bangkok,
Thailand.

Therefore, the answer is bangkok, thailand.

Table_title: playa de oro international airport

Question: how many more passengers flew to los angeles than to saskatoon
from manzanillo airport in 2013?

SQL: select “city’, “passengers’ from test where “city’ in ('united
states, los angeles', 'canada, saskatoon’);

SQL Answer:

Table Schema: city | passengers

Values: united states, los angeles | 14,749

canada, saskatoon | 2,282

A: The SQL answer contains the number of passengers who flew to los
angeles and saskatoon from manzanillo airport 14,749, 2,282. So, the
difference in the number of passengers between los angeles and saskatoon
is 14,749 - 2,282 = 12,467.

Therefore, the answer is 12,467.

### Problem to be solved:\n

Figure 6: Prompt for LLMs to generate final answers.

reasoning benchmarks: TabFact (Chen et al.,
2020), WikiTQ (Panupong and Percy, 2015) and
HiTab (Cheng et al., 2022). Among them, Tab-
Fact is a table-based binary fact verification bench-
mark. Given a statement, we need to ascertain the
truthfulness of it based on the table. We report
the accuracy of the test set, which contains 2,024
statements and 298 tables. Besides, WikiTQ is
one of the most commonly used and highly com-
plex datasets, collected and annotated based on
Wikipedia tables. The WikiTQ comprises 4,344
question-answer pairs in the test set. HiTab is the
dataset that contains hierarchical tables with com-
plex hierarchical indexing.

4.2 Baselines

We divide the baselines into two categories: (1)
approaches that spend additional computing re-
sources to train proprietary models with custom
training data, such as TaPas (Herzig et al., 2020),
GraPPa (Yu et al., 2021), TAPEX (Liu et al., 2022),
PASTA (Gu et al., 2022), TaCube (Zhou et al.,
2022), OmniTab (Jiang et al., 2022), ITR (Lin
et al., 2023) and CABINET (Patnaik et al., 2024).
(2) without training, approaches that design few
shot prompts and employ the in-context ability of
LLMs, such as TableCoT (Tai et al., 2023), Re-
AcTable (Zhang et al., 2024b), Binder (Cheng
et al., 2023), Dater (Ye et al., 2023), Chain-of-
Table (Wang et al., 2024), Alter (Zhang et al.,
2024a), E5 (Zhang et al., 2024c), NormTab (Nahid
and Rafiei, 2024a), TabSQLify (Nahid and Rafiei,



Methods Backbone Accuracy Methods Backbone Accuracy
Previous Work with Training Previous Work with Training
T TaPas BERT 839 7 TaPas BERT 488
Tapex BART 86.7 GraPPa RoBERTa 52.7
PASTA DeBERTaV3 9.8 Tapex 00T 5715
,,,,,,, - _Previous Work without Training (;F;%{F:b BART 22§
,,,,,, E ... __GPT4 87 ITR 63.4
ReAcTable 73.1 CABINET 69.1
TableCoT 73.1 —
Binder 79.1 Previous Work without Training
Dater 78.0 © " TableCoT o 488
Alter GPT-3.5-Turbo 84.3 Binder Codex 61.9
NormTab 68.9 ReAcTable 65.8
TabSQLify s Dater 659
H-STAR 85.0 E° GPT-4 65.5
ProgramTab (Ours) 85.9 "7 "ReAcTable 7 525
77777 Binder 7781 TableCoT 524
Dater 81.6 Binder 554
Chain-of-Table Llama-3.1-70B-Instruct 85.6 Dater 52.8
TabSQLify 70.7 Alter GPT-3.5-Turbo 67.4
ProgramTab (Ours) 86.8 TabSQLify 64.7
77777 Binder 77777846 NormTab 61.2
Dater 80.9 H-STAR 69.6
Chain-of-Table GPT-40-mini 84.2 ProgramTab (Ours) 70.3
TabSQLify 787 Binder 505
H-STAR 89.4 Dater 43.5
ProgramTab (Ours) 89.6 Chain-of-Table Llama3.1-70B-Instruct 62.2
TabSQLify 55.8
Table 1: Accuracy of ProgramTab compared to the base- - Frogs E‘,}f;‘}:}qw ””””””””””” ZZZ -
lines on TabFact test set. Dater 58.3
Chain-of-Table GPT-40-mini 55.6
TabSQLify 57.0
H-STAR 74.9
2024b) and H-STAR (Nikhil et al., 2024). ProgramTab (Ours) 760

4.3 Implementation Details

In our settings, we conduct experiments by uti-
lizing closed-source LLMs (GPT-3.5-Turbo and
GPT-40-mini') and the open-source LLM Llama-
3.1-70B-Instruct” as the backbones. The prompt
templates for each procedure are described in Sec-
tion 3. Besides, the details of hyper-parameters are
presented in Appendix A.2. Notably, syntax errors
occasionally occurred during data redefinition and
SQL generation, resulting in non-executable code.
To address this issue, we adopted a retry mecha-
nism. Specifically, when a runtime error occurred
during both processes, we attempted to rerun the
process, with a maximum of five attempts. If all
five attempts failed, it was concluded that LLMs
were unable to handle the given table, and no fur-
ther steps were executed. About the evaluation
metrics, we follow Nahid and Rafiei (2024b) to
use the official denotation accuracy and employ
the binary classification accuracy for WikiTQ and
TabFact datasets evaluation respectively.

4.4 Results

As presented in Table 1 and Table 2 (the additional

results on HiTab in Appendix A.4.), (1) the previ-

ous work, training with specific tasks perform well.
"https://openai.com/index/gpt-4o-mini-advancing-cost-

efficient-intelligence/
“https://ai.meta.com/blog/meta-llama-3-1/

Table 2: Performance of ProgramTab compared to the
baselines on WikiTQ test set.

Specifically, PASTA (Gu et al., 2022) achieves
90.8% accuracy on TabFact, while CABINET (Pat-
naik et al., 2024) obtains 69.1% on WikiTQ. Us-
ing GPT-40-mini as the backbone, ProgramTab
achieved performance comparable to PASTA on
the TabFact dataset. Furthermore, on the WikiTQ
dataset, ProgramTab outperformed CABINET re-
gardless of the large model used as its backbone.
Due to unnecessary additional fine-tuning, the gen-
eralization of ProgramTab is better. (2) Compared
to previous work without training, ProgramTab
with different LLM backbones outperforms the
other baselines on all evaluation benchmarks. In ad-
dition, our framework with GPT-40-mini achieves
better performance compared to E° with GPT-4.
(3) With stronger coding and reasoning abilities,
ProgramTab with Llama-3.1-70B-Instruct and GPT-
4o0-mini achieve better performance.

5 Analysis
5.1 Ablation Study Results

To evaluate the effectiveness of each procedure in
the ProgramTab framework, we pay attention to
two important steps: data redefinition (DR) and
SQL generation (SG). Specifically, we remove the



Methods TabFact WikiTQ
Binder 79.1 55.4
Dater 78.0 52.8
TabSQLify 79.5 64.7
ProgramTab 85.9 70.3
w/o DR 81.6(J4.3) 59.4 (] 10.9)
w/o CoT SG  84.1(JL 1.8) 65.0()5.3)

Table 3: Ablation results of GPT-3.5-Turbo-based Pro-
gramTab with and without data redefinition and CoT
SQL generation.

DR procedure described in Section 3.3 and keep
the other steps unchanged. The result in Table 3
shows that without the DR step to preprocess the
tabular data, it will require SQL to preprocess the
data and extract the relevant information, which
increases the complexity of generating SQL for
LLMs. Therefore, the performance significantly
decreases on both datasets, especially on WikiTQ
which is more complex. This conclusion is also ver-
ified by Wang et al. (2024). Besides, we replace the
procedure described in Section 3.4 with the SQL
generation without CoT (denotes as w/o CoT SG).
The special prompt is shown in Appendix A.1. Ta-
ble 3 presents that the performance of ProgramTab
w/o SG CoT drops when discarding question de-
composition. It verifies that compared with direct
SQL generation, decomposing the questions into
multiple steps and generating their sub-SQL is ef-
fective in reducing the difficulty of SQL generation.

5.2 Performance Analysis under Large Tables

As described in Section 1, Chen (2023) and Ye
et al. (2023) have presented that LLMs suffer from
significant performance degeneration when deal-
ing with large tables. To evaluate the effectiveness
of ProgramTab, we extract the large tables from
WikiTQ and TabFact datasets. Specifically, we de-
fine the large tables for WikiTQ when the token
counts are larger than 4000 because 4000 tokens are
the maximum token limitation for GPT-3.5-Turbo.
Besides, We follow Nahid and Rafiei (2024b) to
choose 1200 tokens for TabFact because the ta-
bles almost contain few data. We then compare
ProgramTab with Binder, Dater, Chain-of-Table,
TableCoT, and TabSQLify. As shown in Table 4,
we observe that all strong baselines suffer from a
significant decline in performance on two datasets.
For example, Binder with Codex merely achieves
29.6% accuracy on the WikiTQ dataset and even
can’t be applied when utilizing GPT-3.5-Turbo as

Methods Backbone TabFact WikiTQ
Binder Codex - 29.6
Chain-of-Table ~ GPT-3.5-Turbo-16k-0613 - 44.8
Binder - 0.0
Dater - 34.6
TableCoT GPT-3.5-Turbo 55.5 35.1
TabSQLify 72.8 52.3
ProgramTab 86.6 68.0

Table 4: Performance of ProgramTab and strong base-
lines on large tables from TabFact and WikiTQ.

Cut-off(%)
Method Dataset
ethods A 010%  1025% 25-50%  50%+
TiSQLIEY oo 646 606 63 562
ProgramTab 70.8 62.4 62.6 68.0
TabSQLify o 79 80.8 700 728
ProgramTab 89.0 86.5 71.5 86.4

Table 5: Performance of ProgramTab on the different
cutoff thresholds categories.

the backbone. Besides, TabSQLify obtains subop-
timal performance thanks to its effective extraction
of columns and rows employing the text-to-SQL
method. In contrast, ProgramTab significantly out-
performs all baselines and even improves compared
with performance on the full TabFact dataset. It
could be clarified that the row retrieval and column
extraction procedures in our framework are effec-
tive in providing the relevant rows as the context,
which is beneficial for SQL generation to extract
the final information from the large tables.

5.3 Robustness Analysis

Following Nahid and Rafiei (2024b), we verify the
robustness of ProgramTab based on the different
cutoff thresholds. Specifically, the cutoff thresholds
are established to discard tabular tokens exceeding
these limits. For example, if the original table has
800 tokens and the maximum threshold is set to
600, it means that 200 tokens of the original ta-
ble are truncated, and the percentage is 200/800 =
25.0%. In our experiment, we set the cutoff thresh-
old at 2000 and 600 for WikiTQ and TabFact re-
spectively. Table 5 shows four categories based on
the above thresholds and presents that ProgramTab
with GPT-3.5-Turbo outperforms TabSQLify ex-
cept on the 25%-50% cutoff on WikiTQ. The re-
sults further demonstrate that the ProgramTab can
extract the relevant information under limited token
boundary conditions and is not sensitive to input
length limitations for LLMs.



Methods # of samples / step Total # of samples

Binder Neural SQL: 50 50

Decompose Table: 40
Dater Generate Cloze: 20 100
Generate SQL: 20

Query: 20

Dynamic Plan < 5

Generate Args < 19 <25
Query: 1

Chain-of-Table

Decompose Table: 1

TabSQLify Query: 1

Column Extraction: 1
ProgramTab Data Redefinition with Code: 1 4
Generate SQL: 1

Query: 1

Table 6: The number of samples generated by different
methods adopting LLMs.

5.4 Efficiency Analysis

Following Wang et al. (2024), we analyze the effi-
ciency of ProgramTab by evaluating the number of
samples generated by LLMs. For each reasoning
step, compared to the approaches that apply the
self-consistency (Binder and Dater) strategy to gen-
erate multiple samples or adopt the iterative sam-
ple creation process (Chain-of-Table), ProgramTab
adopts a greedy search strategy to produce a single
response. Specifically, Table 6 shows the number
of samples generated by LLMs for a single question
in different methods on the WikiTQ dataset. We
can find that LLMs are required to generate multi-
ple samples for Binder and Dater, while Chain-of-
Table adopts a more efficient approach to reduce
the number of samples. TabSQLify achieves the
minimum number of samples. Our approach adopts
a greedy search strategy to obtain one response for
each step, for a total of only four samples. Conse-
quently, ProgramTab efficiently reduces computa-
tion time and resource costs and performs better.

5.5 Error Analysis

To systemically analyze the shortcomings of pro-
gramTab with GPT-3.5-Turbo, we select two test
sets (i.e., TabFact, and WikiTQ), and randomly
choose 100 error samples from each dataset. Then,
we manually examine these failures and they are
classified into four error categories: 1) Missing
Columns Error: LLMs don’t select the relevant
columns. 2) SQL Error: the generated SQL queries
incorrectly filter the relevant information or contain
syntax rule errors. 3) Code Error: the generated
Python codes fail to unify the format and type of

TabFact WikiTQ
\ Thissing T !
12% Columns Error
= SQL Error

32%

Code Error

Reasoning

Figure 7: Statistic of different error types on TabFact
and WikiTQ datasets.

data, or introduce irrelevant information. 4) Rea-
soning Error: LLMs fail to generate the correct an-
swers given the extracted relevant information. As
shown in Figure 7, we can observe that the missing
column and reasoning errors respectively account
for a small portion of TabFact and WikiTQ. The
main source of errors focuses on the code and SQL
errors, especially on the WikiTQ. We replaced GPT-
3.5-Turbo with GPT-40-mini for code and SQL
generation, and found that GPT-4o0-mini effectively
avoids the errors encountered with GPT-3.5-Tubo.
The performance of these two LLMs in Table 1 and
2 can also be verified. Consequently, enhancing
the capacity of code generation is effective in im-
proving the performance further. We provide two
suggestions for further exploration: (1) applying
some training strategies, such as pre-training, su-
pervised fine-tuning, reinforcement learning from
human feedback, and so on. (2) Based on the spe-
cific questions, dynamically selecting the few-shot
examples by employing the retrieval-augmented
generation approach is also effective in decreasing
the error ratio of the above problems.

6 Conclusion

In this paper, we illustrate the limitations of cur-
rent table-based reasoning with LLMs approaches,
including suffering from significant performance
degradation when faced with large tables, and
the inconsistent table data structure increases the
difficulty of SQL generation. Consequently, we
propose the ProgramTab framework, which suffi-
ciently implements the strong in-context learning
ability of LLMs to perform tabular data preprocess-
ing with Python code and key information extrac-
tion with SQL generation. It achieves the best per-
formance compared with the baselines and is not
limited by the input length of table data. Hoping
this flexible table-based reasoning framework can
shed new light on the understanding of prompting
LLMs for table understanding.



7 Limitations

In this section, we present several of the limitations
of our approach - ProgramTab. Firstly, the data
redefinition with code can preprocess the table data
well, but more preprocessing for more complex
table structures should be explored further. What’s
more, how to perform row retrieval more efficiently
from tables with large amounts of rows is another
optimization direction.
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A Appendix

A.1 Prompts for SQL Generation without
CoT

!in text-to-SQL tasks. You should write a valid SQLite to
solve the following question based on the database scheme and
'hint. Please add the *° for every column you select in the

1 SQL. Note: Just output the sql. Here are some examples to

1 help you understand this task.

i

i
| ### Examplel:

| Database title: The table about 2000 Olympic Games.

| Database scheme:\nCREATE TABLE test(\n\"race_name\" TEXT;

| VALUES: [vuelta a guatemala, vuelta a

| colombia], \n\"winner_country\" TEXT; VALUES: [usa, aus])\n\n
| H Question:\nwho won more races, the usa or australia?\n\n
E### SQL: SELECT “winner_country”, won_count FROM (SELECT

1 “winner_country’, COUNT( race_name’ ) AS won_count FROM test
EWHERE “winner_country” in ('usa', 'aus')) ORDER BY won_count
:DESC LIMIT 1\n\n

i

E### Example2:

! Database title: The table about members of Third Incarnation
tof Lachlan.

| Database scheme:\nCREATE TABLE test(\n\"row_id\" INTEGER;

| VALUES: [0, 1],\n\"member\" TEXT; VALUES: [john ryan, james
imartin], \n\"term\" TEXT; VALUES: [1859-1864, 1864-1869])\n\n
| ### Question:\nof the members of the third incarnation of the
1 lachlan, who served the longest?\n\n

| ### SQL: SELECT “member’ FROM test ORDER BY “term” DESC LIMIT
11\n\n

i

| ### Example3:

| Database title: The table about different season of giant
i slalom and super g.

iDatabase scheme:\nCREATE TABLE test(\n\"season\" TEXT; VALUES:
:[1986, 1987],\n\"slalom\" TEXT; VALUES: [39,
124],\n\"giant_slalom\" TEXT; VALUES: [23, 9],\n\"super_g\"

' TEXT; VALUES: [19, 18])\n\n

| ### Question:\nwhich super g had a slalom of less than 5 when
! the giant slalom was 1?\n\n

V### SQL: SELECT “super_g® FROM test WHERE “slalom™ < 5 AND

! “giant_slalom™ = 1\n\n

Figure 8: Prompt for LLMs to generate SQL without
CoT.

A.2 LLM Hyper-parameters

For all the procedures described in Section 3, we set
the same hyper-parameters for LLMs. Specifically,
the temperature is set to 0.6 while both top_p and
the sample number are 1.

A.3 Table Size Reduction

We analyze the efficiency of ProgramTab in filter-
ing irrelevant information and extracting the key
tabular data from tables. To accomplish this, we
count the average number of table cells that feed
LLMs to generate the final answers. As presented
in Figure 9, the average number of full table cells
(original) is 183 and 101 respectively. There is
a significant reduction after employing the Tab-
SQLify approach. Our framework ProgramTab
employs SQL generation procedure to effectively
filter much irrelevant information and extract the
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Figure 9: Comparison of the average number of table
cells on two datasets.

Methods Backbone HiTab
ReAct (Yao et al., 2023) GPT-4 81.87
E’ (Zhang et al., 2024c) GPT-4 85.08
ProgramTab GPT-40-mini ~ 83.57

Table 7: Performance of ProgramTab on HiTab dataset.

most related data. It respectively reduces the aver-
age number of table cells to 4 and 15 for WikiTQ
and TabFact datasets. These results also verify that
ProgramTab can perform critical information ex-
traction from amounts of tabular cells, and validly
deal with large tables.

A.4 Experiments on HiTab

To present the effectiveness of ProgramTab when
applied to more complex tabular structures, we
supplemented ProgramTab’s experiments on the
HiTab dataset, which contains hierarchical tables.
To achieve this, we first reconstructed the hierar-
chical tables by merging certain column header in-
formation using a ":" delimiter, making them more
suitable for processing by ProgramTab. The final
experimental results are as follows: ProgramTab
with GPT-40-mini demonstrates promising perfor-
mance, while adopting the E® method to process
hierarchical tables yields even better performance.
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