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ABSTRACT

Word alignment is essential for the down-streaming cross-lingual language un-
derstanding and generation tasks. Recently, the performance of the neural word
alignment models (Zenkel et al., 2020b; Garg et al., 2019; Ding et al., 2019) has
exceeded that of statistical models. However, they heavily rely on sophisticated
translation models. In this study, we propose a super lightweight unsupervised
word alignment model, dubbed MIRRORALIGN, in which a bidirectional symmet-
ric attention trained with a contrastive learning objective is introduced, and an
agreement loss is employed to bind the attention maps, such that the alignments
follow mirror-like symmetry hypothesis. Experimental results on several public
benchmarks demonstrate that our model achieves competitive, if not better, per-
formance compared to the state of the art in word alignment while significantly
reducing the training and decoding time on average. Further ablation analysis
and case studies show the superiority of our proposed MirrorAlign. Notably,
we recognize our model as a pioneer attempt to unify bilingual word embed-
ding and word alignments. Encouragingly, our approach achieves 16.4× speedup
against GIZA++, and 50× parameter compression compared with the Transformer-
based alignment methods. We released our code to facilitate the community:
https://github.com/ICLR20anonymous/mirroralign

1 INTRODUCTION

Word alignment, aiming to find the word-level correspondence between a pair of parallel sentences,
is a core component of the statistical machine translation (SMT, Brown et al. 1993). It also has
benefited several downstream tasks, e.g., named-entity recognition (Che et al., 2013), part-of-speech
tagging (Täckström et al., 2013), semantic role labeling (Kozhevnikov & Titov, 2013), cross-lingual
dataset creation (Yarowsky et al., 2001) and cross-lingual modeling (Ding et al., 2020).

Recently, in the era of neural machine translation (NMT, Kalchbrenner & Blunsom 2013;
Sutskever et al. 2014; Bahdanau et al. 2015; Gehring et al. 2017; Vaswani et al. 2017), the
attention mechanism plays the role of the alignment model in translation system. Unfortu-
nately, Koehn & Knowles (2017) show that attention mechanism may in fact dramatically diverge

Figure 1: Two examples of word alignment.
The upper and bottom cases are the Chinese
and Japanese references, respectively.

with word alignment. The works of (Li et al., 2019;
Ghader & Monz, 2017) also confirm this finding.

Although there are some studies attempt to mitigate this
problem, most of them are either rely on a sophisticated
translation architecture (Zenkel et al., 2020b; Tang et al.,
2019; Garg et al., 2019), or employed too much expen-
sive human-annotated alignments (Stengel-Eskin et al.,
2019b). As a result, statistical alignment tools, e.g.,
FastAlign (Dyer et al., 2013) and GIZA++ (Och & Ney,
2003)1, are still the most representative solutions due to
its efficiency and unsupervised fashion. We argue that
the word alignment task, intuitively, is much simpler
than translation, and thus should be performed before

1GIZA++ employs the IBM Model 4 as default setting.
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translation rather than inducing alignment matrix with heavy neural machine translation models. For
example, The IBM word alignment model, e.g., FastAlign, is the prerequisite of SMT. However,
related research about lightweight neural word alignment without NMT is currently very scarce.

Inspired by cross-lingual word embeddings (CLWEs) (Luong et al., 2015), we propose to implement
a lightweight unsupervised neural word alignment model, named MirrorAlign, which encourages the
embeddings between aligned words to be closer. We also provide the theoretical justification from
mutual information perspective for our proposed contrastive learning objective, demonstrating its
reasonableness. As shown in Figure 1, if the Chinese word “举行” can be aligned to English word
“held”, the reverse mapping should also hold. Specifically, a bidirectional attention mechanism with
contrastive learning objective is proposed to capture the alignment between parallel sentences. In
addition, we employ an agreement loss to constrain the attention maps so that the alignments follow
symmetry hypothesis (Liang et al., 2006).

Our contributions can be summarized as follows:

• We propose a bidirectional symmetric attention with contrastive learning objective for word
alignment, in which we introduce extra loss function to follow the mirror-like symmetry hypothesis.

• We propose a lightweight unsupervised alignment structure, even merely updating the embedding
matrices, achieves better alignment quality on several public benchmark datasets compare to
baseline models while preserving comparable training efficiency with FastAlign.

• Further analysis show that the by-product of our model in training phase has the ability to learn
bilingual word representations, which endows the possibility to unify these two tasks in the future.

2 RELATED WORK

Word alignment studies can be divided into two classes:

Statistical Models Statistical alignment models directly build on the lexical translation models of
Brown et al. (1993), also known as IBM models. The most popular implementation of this statistical
alignment model is FastAlign (Dyer et al., 2013) and GIZA++ (Och & Ney, 2000; 2003). For optimal
performance, the training pipeline of GIZA++ relies on multiple iterations of IBM Model 1, Model
3, Model 4 and the HMM alignment model (Vogel et al., 1996). Initialized with parameters from
previous models, each subsequent model adds more assumptions about word alignments. Model 2
introduces non-uniform distortion, and Model 3 introduces fertility. Model 4 and the HMM alignment
model introduce relative distortion, where the likelihood of the position of each alignment link is
conditioned on the position of the previous alignment link. FastAlign (Dyer et al., 2013), which
is based on a reparametrization of IBM Model 2, is almost the existing fastest word aligner, while
keeping the quality of alignment.

In contrast to GIZA++, our MirrorAlign model achieves nearly 15× speedup during training, while
achieving the comparable performance. Encouragingly, our model is at least 1.5× faster to train than
FastAlign and consistently outperforms it.

Neural Models Most neural alignment approaches in the literature, such as Tamura et al. (2014)
and Alkhouli et al. (2018), rely on alignments generated by statistical systems that are used as
supervision for training the neural systems. These approaches tend to learn to copy the alignment
errors from the supervising statistical models. Zenkel et al. (2019) use attention to extract alignments
from a dedicated alignment layer of a neural model without using any output from a statistical aligner,
but fail to match the quality of GIZA++. Garg et al. (2019) represents the current state of the art in
word alignment, outperforming GIZA++ by training a single model that is able to both translate and
align. This model is supervised with a guided alignment loss, and existing word alignments must be
provided to the model during training. Garg et al. (2019) can produce alignments using an end-to-end
neural training pipeline guided by attention activations, but this approach underperforms GIZA++.
The performance of GIZA++ is only surpassed by training the guided alignment loss using GIZA++
output. Stengel-Eskin et al. (2019a) introduce a discriminative neural alignment model that uses
a dot-product-based distance measure between learned source and target representation to predict
if a given source-target pair should be aligned. Alignment decisions condition on the neighboring
decisions using convolution. The model is trained using gold alignments. Zenkel et al. (2020a) uses
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Figure 2: Illustration of the MirrorAlign, where a pair of sentences are given as example. Each xi and
yj are the representation of words in source and target part respectively. Given yj , we can calculate
context vector in source part. The NCE training objective is encouraging the dot product of this
context vector and yj to be large. The process in the other direction is consistent. By stacking all of
the soft weights, two attention maps As→t and At→s can be produced, which will be bound by an
agreement loss to encourage symmetry.

guided alignment training, but with large number of modules and parameters, they can surpass the
alignment quality of GIZA++.

They either use translation models for alignment task, which introduces a extremely huge number
of parameters (compare to ours), making the training and deployment of the model cumbersome.
Or they train the model with the alignment supervision, however, these alignment data is scarce in
practice especially for low resource languages. These settings make above approaches less versatile.

Instead, our approach is fully unsupervised, that is, it does not require gold alignments generated by
human annotators during training. Moreover, our model achieves comparable performance and is at
least 50 times smaller than them, i.e., #Parameters: 4M (ours) vs. 200M (above).

3 OUR APPROACH

Our model trains in an unsupervised fashion, where the word level alignments are not provided.
Therefore, we need to leverage sentence-level supervision of the parallel corpus. To achieve this, we
introduce negative sampling strategy with contrastive learning to fully exploit the corpus. Besides,
inspired by the concept of cross-lingual word embedding, we design the model under the following
assumption: If a target token can be aligned to a source token, then the dot product of their embedding
vectors should be large. Figure-2 shows the schema of our approach MirrorAlign.

3.1 SENTENCE REPRESENTATION

For a given source-target sentence pair (s, t), si, tj ∈ Rd represent the i-th and j-th word embeddings
for the source and target sentences, respectively. In order to capture the contextualized information of
each word, we perform mean pooling operation with the representations of its surrounding words.
Padding operation is used to ensure the sequence length. As a result, the final representation of
each word can be calculated by element-wisely adding the mean pooling embedding and its original
embedding:

xi =MEANPOOL([si]
win) + si, (1)

where win is the pooling window size. We can therefore derive the sentence level representations
(x1, x2, ..., x|s|), (y1, y2, ..., y|t|) for s and t.
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3.2 BIDIRECTIONAL SYMMETRIC ATTENTION

Bidirectional symmetric attention is the basic component of our proposed model. The aim of this
module is to generate the source-to-target (aka. s2t) and target-to-source (aka. t2s) soft attention
maps. The details of the attention mechanism: given a source side word representation xi as query
qi ∈ Rd and pack all the target tokens together into a matrix Vt ∈ R|t|×d. The attention context can
be calculate as:

ATTENTION (qi, Vt, Vt) = (ait · Vt)ᵀ, (2)

where the vector ait ∈ R1×|t| represents the attention probabilities for qi in source sentence over all
the target tokens, in which each element signifies the relevance to the query, and can be derived from:

ait = SOFTMAX (Vt · qi)ᵀ . (3)

For simplicity, we denote the attention context of qi in the target side as attt(qi). s2t attention map
As,t ∈ R|s|×|t| is constructed by stacking the probability vectors ait corresponding to all the source
tokens.

Reversely, we can obtain t2s attention map At,s in a symmetric way. Then, these two attention
matrices As,t and At,s will be used to decode alignment links. Take s2t for example, given a target
token, the source token with the highest attention weight is viewed as the aligned word.

3.3 AGREEMENT MECHANISM

Intuitively, the two attention matrices As,t and AT
t,s should be very close. However, the attention

mechanism suffers from symmetry error in different direction (Koehn & Knowles, 2017). To bridge
this discrepancy, we introduce agreement mechanism (Liang et al., 2006), acting like a mirror that
precisely reflects the matching degree between As,t and At,s, which is also empirically confirmed in
machine translation (Levinboim et al., 2015; Cohn et al., 2016). In particular, we use an agreement
loss to bind above two matrices:

Lossdisagree =
∑
i

∑
j

(As,t
i,j −A

t,s
j,i )

2. (4)

3.4 TRAINING

Suppose that (qi, attt(qi)) is a pair of s2t word representation and corresponding attention context
sampled from the joint distribution pt(q, attt(q)) (hereinafter we call it a positive pair), the primary
objective of the s2t training is to maximize the alignment degree between the elements within a
positive pair. Thus, we first define an alignment function by using the sigmoid inner product as:

ALIGN(q, attt(q)) = σ(〈q, attt(q)〉), (5)

where σ(·) denotes the sigmoid function and 〈·, ·〉 is the inner product operation. However, merely
optimizing the alignment of positive pairs ignores important positive-negative relation knowl-
edge (Mikolov et al., 2013).

To make the training process more informative, we reform the overall objective in the contrastive
learning manner (Saunshi et al., 2019; Oord et al., 2018; Gutmann & Hyvärinen, 2010) with Noise
Contrastive Estimation (NCE) loss (Mnih & Teh, 2012; Gutmann & Hyvärinen, 2012; Mikolov et al.,
2013). Specifically, we first sample k negative word representations qj2 from the margin pt(q). Then,
we can formulate the overall NCE objective as following:

Lossis→t = − E
{attt(qi),qi,qj}

[log
ALIGN(qi, attt(qi))

ALIGN(qi, attt(qi)) +
∑k

j=1 ALIGN(qj , attt(qi))
], (6)

It is evident that the objective in Eq. (6) explicitly encourages the alignment of positive pair
(qi, attt(qi)) while simultaneously separates the negative pairs (qj , attt(qi)). Moreover, a direct

2In the contrastive learning setting, qj and attt(qi) can be sampled from different sentences. If qj and
attt(qi) are from the same sentence, i 6= j; otherwise, j can be a random index within the sentence length.
For simplicity, in this paper, we use qj where i 6= j to denote the negative samples, although with a little bit
ambiguity.
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Method EN-FR FR-EN sym RO-EN EN-RO sym DE-EN EN-DE sym
NNSA 22.2 24.2 15.7 47.0 45.5 40.3 36.9 36.3 29.5
FastAlign 16.4 15.9 10.5 33.8 35.5 32.1 28.4 32.0 27.0
MirrorAlign 15.3 15.6 9.2 34.3 35.2 31.6 31.1 28.0 24.8

Table 2: AER of each method in different direction. “sym” means grow-diag symmetrization.

consequence of minimizing Eq. (6) is that the optimal estimation of the alignment between the
representation and attention context is proportional to the ratio of joint distribution and the product
of margins pt(q,attt(q))

pt(q)·pt(attt(q))
which is the point-wise mutual information, and we can further have the

following proposition with repect to the mutual information:

Proposition 1. The mutual information between the word representation q and its corresponding
attention context attt(q) is lower-bounded by the negative Lossis→t in Eq. (6) as:

I(q, attt(q)) ≥ log(k)− Lossis→t, (7)

where k is the number of the negative samples.

The detailed proof can be found in Oord et al. (2018) and Tian et al. (2019). Proposition 1 indicates
that the lower bound of the mutual information I(q, attt(q)) can be maximized by achieving the
optimal NCE loss, which provides theoretical guarantee for our proposed method.

Our training schema over parallel sentences is mainly inspired by the bilingual skip-gram model (Lu-
ong et al., 2015) and invertibility modeling (Levinboim et al., 2015; Cohn et al., 2016). Therefore,
the ultimate training objective should consider both forward (s→ t) and backward (t→ s) direction,
combined with the mirror agreement loss. Technically, the final training objective is:

Loss =
|t|∑
i

Lossis→t +

|s|∑
j

Lossjt→s + α · Lossdisagree, (8)

where Losss→t and Losst→s are symmetrical and α is a loss weight to balance the likelihood and
disagreement loss.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Model EN-FR RO-EN DE-EN
Naive Attention 31.4 39.8 50.9
NNSA 15.7 40.3 -
FastAlign 10.5 32.1 27.0
MirrorAlign 9.2 31.6 24.8
Zenkel et al. (2020b) 8.4 24.1 17.9
Garg et al. (2019) 7.7 26.0 20.2
GIZA++ 5.5 26.5 18.7

Table 1: Alignment performance (with grow-
diagonal heuristic) of each model.

We perform our method on three widely used
datasets: English-French (EN-FR), Romanian-
English (RO-EN) and German-English (DE-
EN). Training and test data for EN-FR and RO-
EN are from NAACL 2003 share tasks (Mihal-
cea & Pedersen, 2003). For RO-EN, we merge
Europarl v8 corpus, increasing the amount of
training data from 49K to 0.4M. For DE-EN, we
use the Europarl v7 corpus as training data and
test on the gold alignments (Vilar et al., 2006).
All above data are lowercased and tokenized by
Moses. The evaluation metrics are Precision,
Recall, F-score (F1) and Alignment Error Rate
(AER) (Och & Ney, 2000).

4.2 BASELINE METHODS

FastAlign One of the most popular statistical method which log-linearly reparameterize the IBM
model 2 proposed by Dyer et al. (2013).
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Figure 3: An visualized alignment example. (a-c) illustrate the effects when gradually adding
the symmetric component, (d) shows the result of FastAlign, and (e) is the ground truth. The
more emphasis is placed on the symmetry of the model, the better the alignment results model
achieved. Meanwhile, as depicted, the results of the attention map become more and more diagonally
concentrated.

GIZA++ A statistical generative model (Och & Ney, 2003), in which parameters are estimated
using the Expectation-Maximization (EM) algorithm, allowing it to automatically extract bilingual
lexicon from parallel corpus without any annotated data.

NNSA A unsupervised neural alignment model proposed by Legrand et al. (2016), which applies
an aggregation operation borrowed from the computer vision to design sentence-level matching loss.
In addition to the raw word indices, following three extra features are introduced: distance to the
diagonal, part-of-speech and unigram character position. To make a fair comparison, we report the
result of raw feature in NNSA.

Naive Attention Averaging all attention matrices in the Transformer architecture, and selecting the
source unit with the maximal attention value for each target unit as alignments. We borrow the results
reported in (Zenkel et al., 2019) to highlight the weakness of such naive version, where significant
improvement are achieved after introducing an extra alignment layer.

Others (Garg et al., 2019) and (Zenkel et al., 2020b) represent the current developments in word
alignment, which both outperform GIZA++. However, They both implement the alignment model
based on a sophisticated translation model. Further more, the former uses the output of GIZA++
as supervision, and the latter introduces a pre-trained state-of-the-art neural translation model. It is
unfair to compare our results directly with them. We still report their results in Table 1 as baselines.

4.3 SETUP

For our method (MirrorAlign), all the source and target embeddings are initialized by xavier
method (Glorot & Bengio, 2010). The embedding size d and pooling window size are set to
256 and 3, respectively. The hyper-parameters α is tested by grid search from 0.0 to 1.0 at 0.1
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intervals. For FastAlign, we train it from scratch by the open-source pipeline3. Also, we report the
results of NNSA and machine translation based model(Sec.§4.2). All experiments of MirrorAlign are
run on 1 Nvidia K80 GPU. The CPU model is Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz.
Both FastAlign and MirrorAlign take nearly half a hour to train one million samples.

4.4 MAIN RESULTS

Table 1 summarizes the AER of our method over several language pairs. Our model outperforms all
other baseline models. Comparing to FastAlign, we achieve 1.3, 0.5 and 2.2 AER improvements on
EN-FR, RO-EN, DE-EN respectively.

Notably, our model exceeds the naive attention model in a big margin in terms of AER (ranging
from 8.2 to 26.1) over all language pairs. We attribute the poor performance of the straightforward
attention model (translation model) to its contextualized word representation. For instance, when
translating a verb, contextual information will be paid attention to determine the form (e.g., tense) of
the word, that may interfere the word alignment.

Experiment results in different alignment directions can be found in Table 2. The grow-diag sym-
metrization benifits all the models.

4.5 SPEED COMPARISON

Take the experiment on EN-FR dataset as an example, MirrorAlign converges to the best performance
after running 3 epochs and taking 14 minutes totally, where FastAlign and GIZA++ cost 21 and 230
minutes, respectively, to achieve the best results. Notably, the time consumption will rise dozens of
times in neural translation fashion. All experiments of MirrorAlign are run on a single Nvidia P40
GPU.

4.6 ABLATION STUDY

To further explore the effects of several components (i.e., bidirectional symmetric attention, agreement
loss) in our MirrorAlign, we conduct an ablation study. Table 3 shows the results on EN-FR dataset.
When the model is trained using only Losss→t or Losst→s as loss functions, the AER of them are
quite high (20.9 and 23.3). As expected, combined loss function improves the alignment quality
significantly (14.1 AER). It is noteworthy that with the rectification of agreement mechanism, the
final combination achieves the best result (9.2 AER), indicating that the agreement mechanism is the
most important component in MirrorAlign.

To better present the improvements brought by adding each component, we visualize the align-
ment case in Figure-3. The attention map becomes more diagonally concentrated after adding the
bidirectional symmetric attention and the agreement constraint.

5 ANALYSIS

Setup P R F1 AER
Losss→t 74.9 86.0 80.4 20.9
Losst→s 71.9 85.3 77.3 23.3
Losss↔t 81.5 90.1 86.1 14.1
MirrorAlign 91.8 89.1 90.8 9.2

Table 3: Ablation results on EN-FR dataset.

Alignment Case Study We analyze an alignment
example in Figure- 4. Compared to FastAlign, our
model correctly aligns “do not believe” in English
to “glauben nicht” in German. Our model, based on
word representation, makes better use of semantics
to accomplish alignment such that inverted phrase
like “glauben nicht” can be well handled. Instead,
FastAlign, relied on the positional assumption4,
fails here.

Word Embedding Clustering To further investi-
gate the effectiveness of our model, we also analyze the word embeddings learned by our model. In

3https://github.com/lilt/alignment-scripts
4A feature h of position is introduced in FastAlign to encourage alignments to occur around the diagonal.

h(i, j,m, n) = −
∣∣ i
m
− j

n

∣∣, i and j are source and target indices and m and n are the length of sentences pair.
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china distinctive easily
EN DE EN DE EN DE

china chinas distinctive unverwechselbaren easily unschwer
chinese china distinct besonderheiten easy m‘helos
china’s chinesische peculiar markante readily leichtes
republic chinesischer differences charakteristische starightforward einfacheren

india porzellanladen influential besonderheit lightly leicht
cat love january

EN DE EN DE EN DE
cat hundefelle love liebe january j‘nner
dog katzenfell affection liebt october januar
toys hundefellen loved liebe march januartagen

grandchildren katze fond geliebt june 1.1.2002
cats k‘chen loves lieben july 15.januar

Table 4: Nearest neighbor words - shown are the top 10 nearest English (EN) and German (DE)
words for each of the following words: china, distinctive, easily, cat, love, january.

Figure 4: Example of the DE-EN alignment. (a) is the result of FastAlign, and (b) shows result
of our model, which is closer to the gold alignment. The horizontal axis shows German sentence
“wir glauben nicht , da wir nur rosinen herauspicken sollten .”, and the vertical axis shows English
sentence “we do not believe that we should cherry-pick .”.

particular, following Collobert et al. (2011), we show some words together with its nearest neigh-
bors using the Euclidean distance between their embeddings. Table- 4 shows some examples to
demonstrates that our learned representations possess a clearly clustering structure bilingually and
monolingually.

We attribute the better alignment results to the ability of our model that could learn bilingual word
representation.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel unsupervised neural alignment model with contrastive learning
objective, named MirrorAlign, that has achieved better alignment performance compared to FastAlign
and other neural alignment models while preseving training efficiency. We empirically and theoretical
show its effectiveness and reasonableness over several language pairs.

In future work, we would further explore the relationship between CLWEs and word alignments. A
promising attempt is using our model as a bridge to unify cross-lingual word embeddings and word
alignment tasks.
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