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Abstract

Recent work has discovered similarities between learned representations in large
language models (LLMs) and human brain activity during language processing.
However, it remains unclear what information LLM and brain representations
share. In this work, inspired by a notion that brain data may include information
not captured by LLMs, we apply an information bottleneck method to generate
compressed representations of fMRI data. For certain brain regions in the frontal
cortex, we find that compressing brain representations by a small amount increases
their similarity to both BERT and GPT2 embeddings. Thus, our method not only
improves LLM-brain alignment scores but also suggests important characteristics
about the amount of information captured by each representation scheme.

1 Introduction

Artificial large language models (LLMs) have emerged as the most accurate models of human
language processing. LLMs generate probabilities of upcoming words that predict human reading
patterns [27, 22, 17] and internal LLM representations can predict brain signals of humans reading
or listening at the granularity of fMRI voxels and intracranial recordings [21, 4, 9]. Such LLMs
have fundamentally shifted the neuroscience of language: for the first time, we have models that
are able to predict brain activity to the extent where LLMs are used to simulate experiments in
silico [11], generate sentences for driving or suppressing brain responses [26], or infer the story
content that an individual was listening to [23]. All these studies leverage the predictive power of
LLMs. However, relatively few studies ([1, 8]) investigate the representational alignment between
LLM internal states and human brain units. In our work, we first investigate the representational
similarity between two widely used LLM architectures [6, 20] and human fMRI voxels for a very
large (1,000) set of diverse, naturalistic sentences. Second, we ask whether we can leverage an
information bottleneck (IB) approach [24, 2] to generate compressed representations of brain activity
and, in doing so, increase representational alignment between LLMs and humans. Surprisingly, we
find that, in some frontal regions of the brain, compressing brain data increases alignment with LLM
representations. This finding suggests that brain data encode information that LLM representations
do not contain. More broadly, our work establishes the use of information theoretic tools as a “dial”
to modify representational complexity and to better unify representational spaces, including those
from artificial and biological language processing.

2 Approach

We investigate representational alignment between brain responses during language processing, and
LLM representations. In compressing brain representations, we seek to explore how the two systems
represent linguistic information in a unified manner (Figure 1).
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Figure 1: Overall approach: we measured fMRI brain activations (top) and LLM activations (bottom)
for 1,000 sentences. By compressing brain representations using a variational information bottleneck
method, we sought to improve representational alignment with LLMs.

Human Brain Data We recorded brain activity in event-related 3T fMRI from N=5 participants
(4 female, aged 21-30, native English speakers) during a sentence reading task. Participants read
1,000 6-word, corpus-extracted sentences that were selected to maximize semantic and stylistic
diversity. Participants read each sentence presented on the screen one at a time for 2s with an
inter-stimulus interval of 4s. Blood oxygenation level dependent (BOLD) responses to each sentence
were estimated using GLMsingle [18] (5 noise regressors and a ridge regression fraction of 0.05).
To mitigate the effect of collecting data across two separate scan sessions, the estimates from each
session were z-scored for each voxel in each participant. We were interested in brain responses from
language-selective areas of the brain, so we identified the language network functionally in each
participant using an extensively validated language localizer task contrasting reading of sentences
with non-words strings [7, 15]). We identified the top 10% language-selective voxels in 5 broad
anatomical parcels in the left hemisphere: three frontal parcels (inferior frontal gyrus [IFG], its
orbital portion [IFGorb], and middle frontal gyrus [MFG]) and two temporal ones (anterior temporal
[AntTemp], posterior temporal [PostTemp]). In addition, we included a language network [netw]
region, which consisted of all voxels in these 5 regions, yielding a total of 6 regions of interest (ROIs)
in our study. All participants gave informed written consent in accordance with the requirements of
an institutional review board. Further information can be found in Appendix 5 and [26].

Large Language Model Representations We obtained sentence representations, for each of the
1,000 sentences, from the pre-trained BERT-large-cased model [5] (24 layers, embedding dimension
of 768). To obtain a summary representation of each sentence, we used the classification token,
[CLS]. In the main paper, we focused on results using BERT representations, but we also conducted
experiments using GPT2-XL embeddings (further details in Appendix 6).

Information Bottleneck In our approach, we use Information Bottleneck (IB) methods to generate
compressed representations of brain data. In classic IB literature, one considers a stochastic encoder
q(z|x) and decoder p(x̂|z) that seek to reconstruct an input, x, via a lossy representation, z [24]. IB
systems weigh a trade-off between competing terms: maximizing informativeness – I(X; X̂), how
well an input can be reconstructed from z – and minimizing complexity – I(X;Z), how many bits
about an input are contained in z. This tradeoff is expressed more formally via the optimization

max I(X; X̂)− βI(X;Z) (1)

where X is an input, Z is a representation of X , and X̂ is a reconstruction of the input, given Z. By
varying the scalar weight, β, one can control representational complexity.

Substantial prior work establishes exact and approximate methods for solving Equation 1 for varying
β, generating encoders across a spectrum of complexity values [24, 2, 10, 25]. Similar to such work,
we propose a neural network architecture that supports variational bounds on complexity, which we
use to generate compressed representations of brain data for improved representational alignment.

Neural Compression Model: Fixed Variance VAE We adopted a variational approach to the IB
optimization, trading off informativeness and complexity, using a neural architecture based upon
Variational Autoencoders (VAE) [12]. In a VAE, given an input, x, a deterministic encoder outputs
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parameters to a Gaussian distribution (a mean, µ, and a diagonal standard deviation matrix, Σ),
from which a latent variable, z, is sampled: z ∼ qθ(z|x) = N (µ(x),Σ(x)) [12, 10]. This Gaussian
parametrization of the encoder supports a variational bound on complexity (see details in Appendix 7.

In our work, we propose a novel neural network method, the fixed-variance VAE (fv-VAE), that
makes a simple modification to existing VAE architectures to set Σ(x) = I , where I is the identity
matrix. Using this constant variance, the bound on complexity in Equation 3 is easily updated to
remove terms dependent upon Σ(x) and yield the overall fv-VAE training loss:

L(x, x̂) = ||x− x̂2||+ βµ(x)2 (2)

where the first term represents the mean squared error (MSE) of a reconstruction, and the second
term is the simplified bound on complexity, weighted by a scalar β. By varying β, one may limit the
amount of information about x encoded in z.

The small difference between VAE and fv-VAE affords important benefits for Representational
Similarity Analysis (RSA; [14]). In a standard VAE, Σ(x) can vary by dimension in the latent
space, leading to some dimensions appearing more “stretched” than others. The relative scales of
such dimensions are ignored in RSA using similarity metrics such as Euclidean distance or Pearson
correlation, as these metrics weigh each feature dimension equally. Thus, in our work, we used
fv-VAE to fix a constant scale across dimensions.

3 Experiments

Training We trained fv-VAE models with latent dimension 128 to reconstruct the fMRI data
described in Section 2: for five participants and each of the six brain ROIs, we minimized the
reconstruction MSE of the 1,000 sentences (with the additional complexity loss). Models were trained
for 5,000 epochs to first converge to low MSE; after epoch 5,000, β increased every epoch to penalize
representation complexity, which in turn increased MSE. By saving checkpoints as β increased,
and by replicating training across five random seeds, we generated a suite of compressed brain
representations at different complexity levels. Implementation details are included in Appendix 6.

Evaluation We used Representational Similarity Analysis (RSA; [13]) to evaluate representational
similarity between brain and LLM representations. RSA characterizes the similarities for all pairs of
sentences across all features in either the brain or the LLM representation space. Intuitively, RSA
assesses the correspondence between human and LLM representations under the assumption that all
features contribute equally to capture the population-level representation-space geometry.

To evaluate RSA, we first generated compressed fMRI representations for each of the 1,000 sentences
in our dataset (generated as µ(x) using a trained fv-VAE). Next, we computed the Pearson similarity
of all sentence pairs of the compressed representations, yielding a square similarity matrix. Lastly, we
calculated the RSA metric via the Spearman correlation coefficient between the upper triangulars of
the brain similarity matrix and the LLM similarity matrix at a given layer. Overall, this RSA metric
corresponded to the notion of “are sentences that are similar in the compressed brain representation
space similar in the LLM embedding space.” Figure 1 depicts this overall process.

Inferior Frontal Gyrus (IFG) Results Figure 2 depicts the similarity between LLM representations
and compressed brain responses (the frontal IFG language region), demonstrating how compressing
representations increased RSA scores for some participants. Figure 2 a shows the RSA scores
vs. MSE of the compressed brain representations for BERT Layer 6. The MSE value captures
the reconstruction error of the trained fv-VAE model used to generate the representations; greater
MSE corresponds to greater compression. At a high level, RSA scores for all participants (different
colors) decrease at the highest MSE values. However, critically, for low MSE values, RSA scores for
participants B, C, and D increase as MSE increases. That is, compressing the fMRI data to a certain
extent increases similarity to BERT representations.

Figure 2 b shows systematic improvements across all BERT layers, for participants B, C, and D. Each
faded line represents RSA scores for non-compressed fMRI data from each participant; bold lines
represent RSA scores using compressed fMRI representations (RSA scores were highly significant
(Appendix 9)). We chose the optimal level of compression via 5-way cross-validation, selecting
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Figure 2: RSA scores between the inferior frontal gyrus (IFG) and BERT embeddings. a) For BERT
representations from one layer, we calculated the RSA for compressed brain data (increased MSE
reflects increased compression). For some subjects, like B and D, small increases in compression
improved RSA. b) Using the optimal MSE for each layer, we compared compressed RSA scores
(bold) to uncompressed (faded) across BERT layers. Subjects B, C, and D had improved alignment.
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Figure 3: RSA for frontal (a, b) and temporal (c) regions, as a function of BERT embedding layer. In
frontal regions, compressing fMRI data improved alignment, particularly for participants B and D.

the optimal MSE for a single fv-VAE model and averaging the corresponding RSA values for other
models at that MSE. For participants for whom the bold lines are above the faded lines (B, C, and D),
we find a consistent benefit in compressing brain representations.

Frontal Brain Region Results We performed similar RSA analyses for compressed representations
for frontal (IFG, IFGorb, and MFG) and temporal (AntTemp and PostTemp) brain regions of interest.
Compressing frontal region representations increased alignment for participants B, C, and D, but
we found no such benefit for temporal regions. For example, for BERT layers < 10, compressed
scores for participant C improved over the uncompressed RSA scores in regions IFGorb and MFG
(Figures 3 a and b, respectively), but RSA scores for AntTemp were largely unchanged for compressed
data (Figure 3 c). Further experiments, computing RSA scores between GPT2 embeddings and
compressed brain representations corroborate this trend: frontal regions showed some improvements
from compression whereas temporal regions did not. Notably, the lack of increased alignment for all
brain regions highlights that the positive results for frontal brain regions cannot be solely attributed
to simple explanations such as all compressed brain representations being more similar to LLM
representations. Results for all regions, for both BERT and GPT2 RSA scores, are included in
Appendix 8. Most scores were highly significant (Appendix 9).

4 Contributions

In this work, we proposed an information bottleneck method to generate compressed representations of
brain activity during sentence processing and showed that, for some brain regions, such compression
increased alignment with LLM representations. These early findings suggest that traditional fMRI
methods employed during language experiments capture data that LLMs do not represent; future
work may improve LLMs or seek to better understand sources of variation in brain activity. Our work
hints at ideas that warrant further investigation such as 1) characterizing differences between brain
regions that have previously been treated as a single language network, and 2) understanding what
information remains in optimally-compressed brain representations. Ultimately, we advocate for an
information-theoretic approach to understand and align representation spaces.
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5 Human Brain Data

5.1 Participants and Acquisition

We recorded brain responses using fMRI from N=5 participants during a sentence reading task (see
[26]). The participants were neurotypical native speakers of English (4 female), aged 21 to 30 (mean
25; std 3.5), all right-handed. Participants completed two scanning sessions where each session
consisted of 10 runs of the sentence reading experiment (sentences presented on the screen one at a
time for 2s with an inter-stimulus interval of 4s, 50 sentences per run) along with additional tasks.
Participants were exposed to the same set of 1,000 sentences (no repetitions), but in fully randomized
order. Structural and functional data were collected on the whole-body, 3 Tesla, Siemens Prisma
scanner with a 32-channel head coil. T1-weighted, Magnetization Prepared RApid Gradient Echo
(MP-RAGE) structural images were collected in 176 sagittal slices with 1 mm isotropic voxels (TR
= 2,530 ms, TE = 3.48 ms, TI = 1100 ms, flip = 8 degrees). Functional, blood oxygenation level
dependent (BOLD) were acquired using an SMS EPI sequence (with a 90 degree flip angle and using
a slice acceleration factor of 2), with the following acquisition parameters: fifty-two 2 mm thick
near-axial slices acquired in the interleaved order (with 10% distance factor) 2 mm × 2 mm in-plane
resolution, FoV in the phase encoding (A ≪ P) direction 208 mm and matrix size 104 × 104, TR =
2,000 ms and TE = 30 ms, and partial Fourier of 7/8. All participants gave informed written consent
in accordance with the requirements of an institutional review board.

5.2 Data Preprocessing and First-Level Modeling

fMRI data were preprocessed using SPM12 (release 7487), and custom CONN/MATLAB scripts.
Each participant’s functional and structural data were converted from DICOM to NIfTI format. All
functional scans were coregistered and resampled using B-spline interpolation to the first scan of the
first session. Potential outlier scans were identified from the resulting participant-motion estimates
as well as from BOLD signal indicators using default thresholds in CONN preprocessing pipeline
(5 standard deviations above the mean in global BOLD signal change, or framewise displacement
values above 0.9 mm; [16]). Functional and structural data were independently normalized into a
common space (the Montreal Neurological Institute [MNI] template; IXI549Space) using SPM12
unified segmentation and normalization procedure [3] with a reference functional image computed
as the mean functional data after realignment across all timepoints omitting outlier scans. The
output data were resampled to a common bounding box between MNI-space coordinates (-90, -
126, -72) and (90, 90, 108), using 2 mm isotropic voxels and 4th order spline interpolation for the
functional data, and 1 mm isotropic voxels and trilinear interpolation for the structural data. Last, the
functional data were smoothed spatially using spatial convolution with a 4 mm FWHM Gaussian
kernel. A General Linear Model (GLM) was used to estimate the beta weights that represent the blood
oxygenation level dependent (BOLD) response amplitude evoked by each individual sentence trial
using GLMsingle [18]. Within the GLMsingle framework, the HRF which provided the best fit to the
data was identified for each voxel (based on the amount of variance explained). Data were modeled
using 5 noise regressors and a ridge regression fraction of 0.05. The ‘sessionindicator’ option in
GLMsingle was used to specify how different input runs were grouped into sessions. By default,
GLMsingle returns beta weights in units of percent signal change by dividing by the mean signal
intensity observed at each voxel and multiplying by 100. Hence, the beta weight for each voxel can
be interpreted as a change in BOLD signal for a given sentence trial relative to the fixation baseline.

After first-level modeling, we extracted voxels from language-selective regions in the brain. Language
selectivity was defined based on an extensively validated language localizer task contrasting reading
of sentences with non-words strings [7, 15]). We identified the top 10% language-selective voxels in 5
broad anatomical parcels in the left hemisphere: three frontal parcels (inferior frontal gyrus [IFG], its
orbital portion [IFGorb], and middle frontal gyrus [MFG]) and two temporal ones (anterior temporal
[AntTemp], posterior temporal [PostTemp]). These parcels delineate the expected gross locations
of language-selective brain regions but are sufficiently large to encompass individual variability.
The number of voxels in region of interest (ROI) was 75 for IFG, 37 for IFGorb, 47 for MFG, 163
for AntTemp, and 295 for PostTemp. In addition, we included a language network [netw] region
(617 voxels), which consisted of all voxels in the aforementioned five regions, yielding a total of six
regions of interest (ROIs) in our study.
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Figure 4: Training curves for a particular fv-VAE model, compressing IFG data for participant B. For
the first 5,000 epochs, the model converged to high complexity (left axis) and low MSE (right axis).
After epoch 5,000, we increased β, which decreased complexity and increased MSE.

6 Implementation Details

Here, we include further details about the fv-VAE model architecture, training process, and data
sources used in our experiments.

Neural Architectures We used the same feedforward neural architecture for the fv-VAE models
in all experiments. Code for replicating our experiments is included at https://github.com/mycal-
tucker/brain-compression, although given the sensitive nature of fMRI scans, we have not included
the brain data in the repository.

A deterministic, feedforward encoder model mapped from an input, x, to a continuous hidden
representation, h, via three fully-connected layers ReLU layers of size 1024, 512, and 64. We passed
h through a single fully-connected 128-unit layer to generate µ, according to which we sampled a
continuous latent representation z ∼ N (µ, I). Recall that this is similar to a standard VAE, but with
a fixed unit variance.

The decoder mirrored the encoder model architecture: three fully-connected layers of size 512, 1024,
and a final layer of the input size’s dimension (which varied according to brain region). The first and
second decoder layers used ReLU activations; the last layer used a sigmoid activation, as all fMRI
data were normalized to be between 0 and 1.

Training fv-VAE Figure 4 depicts a typical training run, plotted here for the IFG region of
participant B. Overall, the model was trained for 9,000 epochs, using batch size 250, using a default
Adam optimizer with learning rate 0.001. For the first 5,000 epochs, we fixed β = 1e − 07; this
small but positive value allowed models to converge to low MSE values and mitigated numerical
stability issues that arose if we set β = 0. As shown in Figure 4, for the first 5,000 epochs, the
models converged to low MSE and high complexity. (Directly measuring the exact complexity is
challenging, so we plotted the variational bound on complexity, computed via the KL divergence
of two Gaussians.) After epoch 5,000, we increased β by 1e− 08 log(epoch − 5000) at each epoch.
One could use a different annealing rate for β but, as evidenced by Figure 4, our chosen values tended
to increase MSE and decrease complexity.

To extract brain data at varying levels of compression, we saved checkpoints of fv-VAE models
during training, after epoch 5,000. Specifically, we used checkpoints every 100 epochs from epoch
5,000 to 6,000, and every 500 epochs from epoch 6,500 to 9,000 (all ranges inclusive). We used
more frequent sampling in the earlier epochs, as MSE tended to increase more quickly in that region.
Lastly, for each checkpoint, we computed the actual compressed representation for each sentence
by passing it through the fv-VAE model and recording the output, µ. By recording µ, rather than
sampling from a Gaussian centered at µ, we reduced noise in subsequent RSA analysis.
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GPT2-XL data In the main paper, we described how we generated BERT embeddings using
the [CLS] token. In additional experiments, we compared brain data to representations from the
unidirectional-attention Transformer GPT2-XL model [19] (48 layers, embedding dimension of
1, 600), available via the HuggingFace library (Wolf et al. [28], Transformers version 4.11.3) To
generate a single representation for an entire sentence, we used the representation of the last token in
the GPT model.

7 Variational Autoencoders

Here, we include an extended discussion of variational autoencoders (VAEs) [12] and our extension
to fixed-variance VAEs. In a traditional VAE, an encoder is characterized a deterministic feedforward
network that maps from an input, x, to parameters of a Gaussian distribution: µ(x),Σ(x). Using the
“reparametrization trick,” one samples a latent representation, z, from the Gaussian distribution, and z
is used to generate a reconstruction of x via a decoder network.

Overall, the VAE training loss comprises a reconstruction loss (e.g., MSE) and a bound on the
complexity of representations: I(X;Z). Equation 3 establishes this complexity loss.

I(X;Z)VAE = DKL[P(X,Z)∥P(X)P(Z)]

= DKL[P(Z|X)P(X)∥P(X)P(Z)]

= DKL[N (µ(x),Σ(x))∥P(Z)]

≤ Σ(x)2 + µ(x)2 − log(Σ(x))− 1

2

(3)

The first two lines include definitions of complexity, using the KL divergence of the joint distribution
from the product of its marginals. The third line follows from the nature of the VAE architecture,
wherein we sample z from a Gaussian distribution. Lastly, the fourth line sets an upper bound on the
complexity of representations by assuming that P(Z) is a unit Normal distribution, centered at the
origin.

In our fixed-variance VAE (fv-VAE), we set the variance of a traditional VAE encoder as the identity
matrix, but otherwise follow the normal sampling mechanism and training loss. The training loss,
in particular, simplifies when replacing Σ(x) and removing constant terms, to only include µ(x)2.
We note, however, that the fv-VAE method is not simply an L2-regularized model; it samples latent
representations, which is a necessary component for establishing complexity bounds.
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Figure 5: RSA scores comparing compressed (bold) and uncompressed (faded) brain representations,
across BERT layers. As a further baseline, we include RSA scores using the averaged similarity
matrix across participants. Compression increased RSA scores for some frontal regions, but not
temporal regions.
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Figure 6: RSA scores between participant fMRI data and GPT2-XL embeddings. As in Figure 5,
bold colors represent RSA scores for compressed data; faded colors represent uncompressed data.
Trends largely mirror results from BERT: we observed some increases in RSA for participants B, C,
and D in frontal regions.

8 Additional Results

In the main paper, we included some of the key results from our approach, highlighting RSA scores
for particular regions of interest. Here, we present more complete results, including RSA scores using
BERT and GPT2 embeddings, for all five regions of interest, as well as the overall language network
(netw). Results for BERT and GPT2 are included in Figures 5 and 6, respectively.

As in the main paper, each colorful line represents the RSA scores for a particular participant using
compressed (bold) or uncompressed (faded) fMRI data. In addition to such analysis, we included a
“averaged” baseline, for which we computed the average similarity matrix across all participants before
calculating the RSA score. For example, for the AntTemp region, we computed the (1000× 1000)
Pearson similarity matrix for each of the five participants, averaged the five matrices, and computed
the RSA score between the BERT similarity matrix and the averaged participant similarity matrix.
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Figure 7: RSA vs. MSE using BERT Layer 6 embeddings. In several brain regions, small increases
in MSE led to increases in RSA, suggesting benefits to compressing brain data.

Figures 5 and 6 jointly speak to the robustness of our results by displaying similar trends for different
LLM embeddings. That is, for both BERT and GPT embeddings, we observed increased RSA scores
for compressed brain representations in frontal regions, for participants B, C, and D, but not in
temporal regions.

Figure 7 provides a snapshot of the benefits conferred by compressing brain data. Each figure mirrors
Figure 2 a in plotting RSA vs. MSE, for embeddings from BERT layer 6. Increases in RSA as
MSE increases indicates that compressing brain data increases alignment with LLM representations.
Several brain regions, including, interestingly, temporal regions, produce such curves. For example,
considering the full language network (Figure 7 a), RSA for participant B peaks for an MSE of
approximately 0.004 – greater than the minimum MSE of 0.002. These results offer tantalizing but
incomplete evidence that compressing brain data could improve alignment for all brain regions. We
hope to continue to investigate such effects in future work.
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9 Statistical Analysis

We provide statistical significance values associated with the brain-LLM RSA scores (obtained via the
Spearman correlation coefficient) for the main BERT analyses (Figures 2, 3, and 5). Each heatmap in
Figure 8 shows the log p-value for each ROI (columns) for each participant (rows). Each heatmap has
two rows, corresponding to the p-values for the compressed and uncompressed RSA scores, across
all BERT layers. Lighter values indicate less significant RSA scores. The upper bound (yellow) of
the color scale is log(0.05/25) which corresponds to a Bonferroni corrected p-value (correction for
number of layers); the lower bound (dark purple) is fixed at log(0.000001). Blank areas correspond
to non-significant scores. Most scores were highly significant, as evident from the dark panels.

(a) Log of p-values associated with RSA scores for the Netw, AntTemp, and IFG ROIs (columns) for all
participants (rows), across all BERT layers.

(b) Log of p-values associated with RSA scores for the IFGorb, MFG, PostTemp ROIs (columns) for all
participants (rows), across all BERT layers.
Figure 8: P-values associated with RSA scores for all ROIs and all participants across BERT layers.
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