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Abstract
Sharding blockchain networks face significant scalability challenges

due to high frequencies of cross-shard transactions and uneven

workload distributions among shards. To address these scalability

issues, account migration offers a promising solution. However,

existing migration solutions struggle with the high computational

overhead and insufficient capture of complex transaction patterns.

We propose AERO, a deep reinforcement learning framework to

facilitate efficient account migration in sharding blockchains. AERO

employs a prefix-based grouping strategy to enable group-level

migration decisions and capture complex transaction patterns and

relationships between accounts. We also implement a sharding

blockchain system called AEROChain, which integrates AERO and

aligns with the blockchain decentralization principle. Extensive

evaluation with real Ethereum transaction data demonstrates that

AERO improves the system throughput by 31.77% compared to

existing solutions, effectively reducing cross-shard transactions

and balancing shard workloads.

CCS Concepts
• Theory of computation → Algorithmic mechanism design;
• Computing methodologies → Reinforcement learning; •
Computer systems organization → Peer-to-peer architec-
tures.
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1 Introduction
Blockchain technology has rapidly evolved as a cornerstone of

the emerging Web 3.0 [30]. By maintaining immutable transaction

records and ensuring trustless interactions, blockchain is vital for

creating a transparent and secure decentralized web [12]. However,

despite its revolutionary, blockchain faces significant scalability

challenges [36]. Conventional blockchain networks are limited in

transaction processing capacity [10]. As they grow with more users
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and applications, scalability bottlenecks hinder their widespread

adoption and the full potential of Web 3.0 [21].

To address the blockchain scalability issue, sharding has been

proposed as a promising solution [20]. Sharding partitions the

blockchain network into multiple smaller, manageable segments

called shards. Each shard simultaneously processes a subset of

blockchain transactions and smart contracts, while periodically

reassigning and maintaining shard nodes to ensure security. This

parallel processing approach theoretically increases the network’s

overall capacity proportionally to the number of shards, thereby

enhancing blockchain scalability.

Nevertheless, sharding introduces its own series of challenges [16].

One of the primary issues is the high frequency of Cross-Shard

transactions (CSTXs), which occur when transaction accounts are

located on different shards [10, 18]. Processing CSTXs is more time-

consuming and resource-intensive than intra-shard transactions,

because it requires coordination between shards and can lead to

increased latency [32]. Moreover, the uneven workload distribution

across shards is also a significant concern [17]. Due to the power-

law distribution often observed in transactions [14], some shards

may become overloaded while others remain underutilized, leading

to inefficiencies and potential bottlenecks within the network.

Substantial research focuses on account migration mechanisms

to mitigate the challenges of CSTXs and workload imbalance in

sharding blockchain systems [9, 10, 16, 17]. The account migration

involves periodically redistributing user accounts across shards to

reduce CSTXs and balance the workload. Some work utilizes graph

partitioning and account segmentation strategy to optimize the

assignment of accounts [10]. However, the computational overhead

of graph partitioning algorithms leads to performance degradation,

and this work introduces significant complexity in maintaining

sub-accounts by account segmentation.

Motivated by the need for an efficient and decentralized account

migration mechanism, we explore applying deep reinforcement

learning (DRL) [27] to this problem. DRL is highly effective in

handling sequential decision-making tasks and has demonstrated

significant potential in optimizing complex systems with expansive

state and action spaces [24]. In the context of account migration,

the account migration sequence can be treated as a decision-making

process where the objective is to assign accounts to shards in a

manner that minimizes CSTXs and balances the workload. Existing

DRL-based sharding solutions, such as SPRING[18], process one

account at a time, which leads to an enormous action space due

to the vast number of accounts and shards. This approach can be

inefficient and may not scale well with larger blockchain networks.

However, without careful design, the DRL agent is likely to struggle

with the vast action space due to the large number of account

addresses, which in turn limits its effectiveness.

Based on the above analysis, we propose AERO, a novel DRL
framework for efficient account migration in sharding blockchain
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networks. AERO introduces a prefix-based granularity approach,

grouping accounts based on common prefixes to not only reduce

the action space significantly but also enable efficient migration of

a large number of accounts. With this approach, AERO can make

group-level migration decisions, rather than handling each account

individually. To demonstrate the feasibility and effectiveness of

integrating AERO into a sharding blockchain system, we design and

develop AEROChain. AEROChain ensures the decentralization

of AERO’s operation through its consensus mechanism. Extensive

experiments using real Ethereum transaction data are conducted to

evaluate the performance of AERO. The results indicate that AERO

significantly reduces the number of CSTXs and achieves a more

balanced workload distribution among shards compared to existing

state-of-the-art algorithms. Specifically, AERO improves system

throughput by 31.77% compared to other strategies, showing its

effectiveness in enhancing blockchain system overall performance.

In summary, our contributions are as follows:

• We propose AERO, a DRL framework designed to efficiently

generate account migration plans by reducing the action

space through a prefix-based granularity approach. AERO

aims to reduce CSTXs and achieve balancedworkloads across

shards in the sharding blockchain system.

• We implement a sharding blockchain called AEROChain,
integrating AERO and detailing the complete workflow to

demonstrate the feasibility and adherence of the framework

to blockchain decentralization principles.

• We perform extensive experiments using real transaction

data, showing that AERO outperforms existing solutions

by improving throughput by 31.77%, reducing CSTXs and

improving workload balance.

2 Background and Related Work
2.1 Sharding Blockchain with Deep

Reinforcement Learning Approaches
Sharding technology has become a crucial solution for improving

blockchain scalability by partitioning the blockchain network into

smaller shards that process transactions in parallel [22]. With the

adoption of Practical Byzantine Fault Tolerance (PBFT) for intra-

shard consensus, the performance of sharding blockchains has

steadily improved, achieving near-linear throughput scalability as

the network grows [5, 18, 23, 26]. In recent years, sharding has

already become a core component of the mainstream blockchain

to enhance blockchain scalability and throughput by splitting the

blockchain network into multiple interconnected shards [28].

Deep reinforcement learning (DRL) [1] integrates reinforcement

learning with deep learning to address complex sequential decision-

making problems. DRL operates within the framework of a Markov

Decision Process (MDP), defined by a 4-element tuple: a set of

states, actions, transition probabilities, and rewards. The agent

interacts with the environment by selecting actions, transitioning

between states, and receiving feedback in the form of rewards. The

primary objective of reinforcement learning is to train a policy

that maximizes cumulative rewards over time. Through iterative

interactions, the agent learns to refine its policy, improving its

decision-making by either exploring the environment or exploiting

past knowledge. DRL further enhances this process by utilizing

deep neural networks to model the policy, enabling the agent to

identify complex patterns and relationships in the environment,

making it well-suited for dynamic and intricate tasks.

DRL has already found applications in the sharding blockchain

network, addressing challenges such as address placement, resource

allocation, and transaction processing [18, 19, 31, 34]. SPRING[18]

applies DRL to improve address placement strategies, enabling

more efficient transaction processing by learning policies over time.

SkyChain[34] utilizes DRL to optimize resource allocation, aiming

to enhance transaction throughput and reduce latency. Additionally,

Lin[19] introduces DRL to enhance dynamic shard formation and

improve communication efficiency in the federated learning context.

However, these approaches do not specifically address account

migration, which is crucial for minimizing CSTXs and balancing

workloads among shards.

2.2 Account Migration
Account migration protocols in sharding blockchains are essential

for maintaining scalability by redistributing account states across

different shards [22]. Early approaches rely on constructing and

analyzing transaction graphs [2, 15]. Among these related works,

transactions are represented as edges connecting account nodes,

and the corresponding transaction graphs are partitioned using

graph partitioning or community detection methods to determine

optimal shard allocations for accounts. However, maintaining and

processing transaction graphs on a blockchain presents significant

challenges. The vast number of transactions generates enormous

graphs, requiring substantial storage and computational resources.

Notably, previous work [16] utilizes a community-aware account

partition algorithm to balance the shard workload and reduce CSTX

ratios but struggles to maintain the trade-off between each other.

BrokerChain [10] offers a broker-based account migration approach

to reduce CSTXs. Nonetheless, BrokerChain’s reliance on a broker

network raises concerns about centralization and bottlenecks, as

the system becomes dependent on the availability of these brokers.

Apart from graph partitioning algorithms, several advanced

techniques have been applied to the account migration problem.

Monoxide [29] employs asynchronous consensus zones to scale out

blockchains, improving throughput and capacity. Another method

introduces locking schemes to prevent double-spending and race

conditions during the migration [9]. Although these approaches

can ensure security during the transfer process, their reliance on

locks increases complexity, reducing system throughput. Moreover,

they do not fundamentally resolve the issues of uneven shard load

and high CSTX volumes. LB-Chain [17] introduces a load-balancing

mechanism that uses LSTM network predictions [8] to distribute

accounts across shards. While it effectively reduces the uneven

shard workload, it focuses solely on workload balance and fails to

reduce CSTXs. Spring [18] presents a DRL-based address placement

approach to reduce CSTXs while balancing the shard workloads.

Nevertheless, Spring only addresses the new address placement

problem and lacks the ability to adjust in real-time based on the

temporary characteristics of transactions, limiting its effectiveness

in improving overall system performance. There is still a lack of

effective account migration algorithms that both reduce CSTXs and

balance shard workloads.
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Figure 1: The reconfiguration phase workflow in AEROChain. After epoch randomness and node assignment, AEROChain
goes into account migration. The account migration process adheres to PBFT, with the AERO handling proposal creation and
validation. Nodes eventually update their respective Physical Shard Data (PSD) by the Cross-shard Transaction Module (CSTM).

3 AEROChain Design
To validate the feasibility of integrating AERO into a sharding

blockchain system, we have developed a prototype system called

AEROChain. The design of AEROChain is in the following sections,

detailing the structure and functionality of its various components.

3.1 Basic System Design
The AEROChain operates on an account-based transaction model.

Following the mainstream sharding blockchain design [12, 18, 33],

AEROChain assumes a partially asynchronous network [6], where

message delays are unbounded but eventual delivery is guaranteed.

This assumption aligns with real-world network conditions where

latency can vary, but messages are delivered finally. AEROChain

is designed with Byzantine Fault Tolerance (BFT), allowing it to

tolerate up to 𝑓 faulty or malicious nodes in a network of 3𝑓 + 1

nodes. AEROChain also resilient an adaptive adversarial model,

where an adversary can corrupt nodes dynamically during protocol

execution. However, the adaptive adversary is assumed unable to

forge or tamper with the signatures of honest nodes, ensuring the

integrity of authenticated communications within the network.

3.2 Architecture of AEROChain
AEROChain introduces a novel sharding architecture consisting

of two types of shards: the physical shard and the logical shard.
Both types utilize the PBFT protocol [3] for achieving consensus.

These shards are detailed in the following sections, and the specific

components of AEROChain are further explained in Section 3.2.3.

3.2.1 Physical Shard. The physical shard is tasked with transaction
processing and ledger maintenance. To enhance the parallelism and

scalability of AEROChain, the network is partitioned into multiple

physical shards, each comprising a subset of nodes. Every node is

assigned to one physical shard, where it participates in transaction

validation and block creation using the consensus mechanism.

3.2.2 Logical Shard. The logical shard is essential for facilitating

the migration of account states across physical shards. The logical

shard encompasses all nodes in the network, ensuring a low CSTX

ratio and a balanced workload between shards. Specifically, it is

responsible for generating and executing migration transactions,

which are essential for transferring account states between physical

shards, thereby supporting efficient load balancing and maintaining

the overall system’s performance and scalability.

3.2.3 Components.

• Epoch Randomness: The same random seed is used in

each node, and consensus is reached on the same initial

trained model parameters. Since subsequent transactions

and the state are deterministic, the AEROmodel updates that

follow are also deterministic. This ensures that the nodes in

each logical shard can validate the results of the generated

migration transactions, guaranteeing consistency across the

AEROChain. Moreover, the safety and liveness analysis can

be found in Appendix A.

• Node Assignment: The random seed is used to periodically

reassign and maintain shard nodes, ensuring system security

against adaptive adversaries.

• Physical Shard Data(PSD): PSD refers to the information

managed and processed within each physical shard. Each

physical shard is responsible for transaction validation, block

creation, and ledger maintenance. The PSD includes details

such as validated transactions, block records, and the current

state of accounts within the shard.

• Cross-shard Transaction Module (CSTM): CSTM is to

process CSTXs. It employs a relay-based approach based
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Figure 3: The AERO workflow.

on the algorithm proposed in Monoxide [29], to coordinate

between source and target shards.

• AERO: AERO is a DRL-based framework designed to output

account migration plans. AERO introduces a prefix-based

granularity approach to migrate accounts with the same

prefixes, reducing the action space and facilitating efficient

migration decisions at group level, rather than for individual

accounts. The AERO is described in Section 4.

3.3 Workflow of AEROChain
AEROChain operates in time intervals known as epochs, where

each epoch is structured into two key phases: the reconfiguration

phase and multiple consensus phases.

3.3.1 Reconfiguration Phase. At the beginning of each epoch, an

epoch randomness is generated to produce a random seed. This seed

is then used in the node assignment process to redistribute nodes

among physical shards, as well as in the account migration process

to ensure a consistent result. By utilizing this randomness in both

node assignment and account migration, AEROChain enhances

security against adaptive adversaries, making it more difficult for

them to predict or target specific shards. Following this, the system

proceeds into the Account Migration process.

As shown in Figure 1, the account migration process strictly

follows the PBFT protocol during the reconfiguration phase. In the

pre-prepare phase, the logical shard leader uses AERO to create

a proposal with a migration transaction list M, which contains a

series of migration transactions. The leader then broadcasts it to all

other nodes in the logical shard. Upon receiving the proposal, each

node leverages its AERO to validate the correctness and integrity

of the proposal, ensuring the legitimacy of migration transactions.

Once the consensus node has validated the proposal using the

AERO, it votes by broadcasting a prepared message to all other

nodes during the prepare phase. Subsequently, each node collects

prepared messages from others, and when a node has successfully

received 2𝑓 + 1 prepare votes, it considers that the proposal has

garnered enough votes to proceed to the next phase. This prepare

stage ensures that at least 𝑓 + 1 honest nodes are synchronized and

have reached an agreement on the proposal.

In the commit phase, after collecting the required 2𝑓 + 1 commit

messages, nodes finalize the agreement and proceed to execute the

transactions fromM in proposal. Each node processes the migration

transactions related to its physical shard through CSTM. After the

execution of the relevant transactions, the node updates the PSD,

completing the consensus process.

3.3.2 Consensus Phase. Physical shards operate in parallel during

the consensus phase, efficiently processing transactions. During

this phase, nodes gather and analyze transaction data from each

physical shard, summarizing the transaction details between shards

in preparation for the account migration process. Transactions

processed during this phase fall into two categories: intra-shard

transactions and CSTXs, where:

• Intra-shard Transactions: Intra-shard transactions involve
only sender and receiver accounts within the same shard,

allowing them to be processed entirely within that shard

without external communication. These transactions benefit

from lower latency, as they do not need shard coordination.

• CSTXs: CSTXs involving parties from different physical

shards. Due to cross-shard communication, CSTXs incur

higher overhead compared to intra-shard transactions.

3.4 Migration Transactions
Migration transactions are a crucial part of the reconfiguration

mechanism, ensuring the secure and efficient migration of account

states between physical shards in AEROChain. These specialized

CSTXs are triggered by the logical shard to facilitate the transfer of

account states from source physical shards to target physical shards.

Each migration transaction includes a field p, corresponding to the

account prefix of the migrating accounts. The migration transaction

structure is as shown below:

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = {𝑠𝑒𝑛𝑑𝑒𝑟, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑝}, (1)

where the 𝑠𝑒𝑛𝑑𝑒𝑟 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 fields represent the source and target

shards index of the migration account with the prefix 𝑝 . As shown
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in Figure 2, the migration transaction is executed by the prefix p,
from the physical shard sender to the physical shard receiver. In the

example provided in the figure, accounts have the prefix 𝑝 = 0𝑥1𝑎

migrates from physical shard 1 to physical shard 2. Initially, both

physical shards maintain separate hash roots representing their

respective data partitions. After the migration, the account with

prefix 0𝑥1𝑎 resides in physical shard 1. With the account prefixed

with 0𝑥1𝑎merging from physical shard 1 into physical shard 2, there

is no risk of conflict during the migration process. This is because

no identical public chain account exists in the shard chain with the

same address. Moreover, AERO enables the simultaneous initiation

of multiple migration transactions during the reconfiguration phase.

Consequently, the migration is guaranteed to be conflict-free. The

process of migrating account states involves several steps:

(1) Nodes in the logical shard execute the PBFT to agree on the

migration transaction list generated by the leader node.

(2) Once consensus is achieved, the migration transactions are

executed in CSTM. Nodes involved in both the source and

target shards relay the account states from the source shard

to the target shard.

(3) The target shard integrates themigrated account states. After

all physical shards have completed this process, AEROChain

transitions to the consensus phase, during which the nodes

maintaining the target shard update their PSD.

4 AERO Design
When the account migration process begins, the policy must assess

the current state of each account and shard, reviewing them group

by group to determine whether migration is necessary and decide

the target destination for the migration. Therefore, the account

migration is a standard sequential decision-making process, which

can be effectively modeled as a Markov Decision Process (MDP). By

framing it as an MDP, AERO can capture the transaction temporal

characteristics in sharding blockchain and optimize its policy 𝜋𝜃
with the Proximal Policy Optimization [25], where 𝜃 denotes the

parameters of the agent in AERO. Figure 3 is the workflow of AERO.

The overall objective of AERO is to reassign accounts to new shards

to enhance the overall performance of the sharding blockchain.

Specifically, the overall objective function 𝐽 (𝜃 ) is to minimize the

CSTX ratio and shard load variances, which is expressed as:

𝐽 (𝜃 ) = E𝜋𝜃

[ ∞∑︁
𝑡=1

𝛾𝑡 (𝑤1𝑢𝑡 +𝑤2𝑣𝑡 )
]
, (2)

where 𝛾 ∈ [0, 1) is a discount factor, 𝑤1 and 𝑤2 are weighting

coefficients, 𝑢𝑡 is the average CSTX ratio in epoch t, and 𝑣𝑡 is the

average shard workload variances in epoch t. To achieve 𝐽 (𝜃 ), the
optimal policy 𝜋𝜃 is found by:

𝜋𝜃 = argmax

𝜃
𝐽 (𝜃 ) (3)

= argmax

𝜃
E𝜋𝜃

[ ∞∑︁
𝑡=0

𝛾𝑡 (𝑤1𝑢𝑡 +𝑤2𝑣𝑡 )
]
. (4)

By optimizing 𝜃 , the agent can derive a policy that maximizes

throughput and minimizes latency. In the following sections, we

will provide detailed explanations of the state design, the action

representation, the reward function, and the transition dynamics.

4.1 State Design
To optimize the account migration strategy, it is crucial to fully

analyze how transactions are distributed across the physical shards

in the network. By incorporating state variables such as the number

of CSTXs and variances in the total transaction volume, we canmore

precisely capture which shards are experiencing higher loads and

denser transaction activity. Importantly, the state from the previous

epoch must also be considered to better evaluate the temporal

characteristics of transactions over time and assess the effectiveness

of the previous migration. This allows for more informed account

migration decisions, ultimately improving sharding blockchain

performance. The state s ∈ R𝑑𝑠 encapsulates the current status

of the physical shards, where 𝑑𝑠 is the state dimension. s includes
critical features that influence the account migration decision, such

as network load metrics and shard statistics. Specifically, the state

𝑠 in epoch 𝑡 is as follows:

𝑠𝑡 = {T𝑡 ,C𝑡 ,V𝑡 ,TX𝑐
𝑡 ,TX

𝑖
𝑡 ,TX

𝑐
𝑡−1,TX

𝑖
𝑡−1}, (5)

where the list T𝑡 represents the throughput of physical shards, the
list C≈ denotes the overall CSTX ratio of physical shards in epoch

𝑡 , and the list V≈ is the variance corresponding to these physical

shards. The term TX𝑐
𝑡 refers to the CSTX volumes for each account

prefix p within each physical shard, and TX𝑖
𝑡 represents the intra-

shard transaction volumes. Specially, for the initial state 𝑠0, it is

defined as 𝑠0 = {T0,C0,V0,TX𝑐
0
,TX𝑖

0
, {0}, {0}}.

4.2 Action Representation
Accurately defining actions that represent the possible migration

operations is essential for effectively modeling account migration

in an RL framework. Instead of migrating individual accounts one

by one, we adopt a prefix-based grouping strategy for account

migration in batch. This approach allows RL to better regulate shard

states from a macro perspective, significantly simplifying the action

space. By mapping each prefix to a corresponding dimension, we

facilitate the policy network 𝜋𝜃 in selecting the appropriate prefix

𝑝 for migration. Incorporating variables that specify which account

prefixes to move and between which shards enables the model

to capture the flexibility and complexity of migration decisions

that directly impact network performance. This strategy allows

the model to explore different migration paths, optimize shard

utilization, and reduce transaction latency.

Each action involves moving accounts with the specific address

prefix to new shards, and the action a𝑡 ∈ R𝑛𝑡×3
defines migration

operations to be performed at epoch 𝑡 . Here, 𝑛𝑡 varies depending

on the current state and context, allowing for variable-length action

sequences. Consequently, the action a𝑡 is defined as:

a𝑡 = [a(1)𝑡 , a(2)𝑡 , . . . , a(𝑖 )𝑡 , . . . , a(𝑛𝑡 )𝑡 ], (6)

a(𝑖 )𝑡 = (𝐴(𝑖1)
𝑡 , 𝐴

(𝑖2)
𝑡 , 𝑝), (7)

where 𝐴1 and 𝐴2 refers to the source and target shard index.

The neural network is utilized to capture complex temporal

transaction dependencies in the sharding blockchain. Moreover,

AERO also employs a sliding window mechanism that captures the

most recent migration transactions, ensuring that the model focuses

on the most relevant information without being overwhelmed by



WWW ’25, April 28–May 2, 2025, Sydney, Australia Anonymous authors

the entire history. We consider the state s and the action history

list a as the input.
In each node participating in the logical shard, the same random

seed is used, and consensus is reached on the same initial trained

model parameters. Since subsequent transactions and the state

are deterministic, the AERO model updates that follow are also

deterministic. This ensures that the nodes in each logical shard

can validate the results of the generated migration transactions,

guaranteeing consistency across the sharding blockchain. Moreover,

the safety and liveness analysis can be found in Appendix A.

4.3 Reward Function
The reward function aims to lead AERO optimizing throughout

by balancing CSTX ratio and the shard workload variances. The

reward at epoch 𝑡 is defined as:

𝑅𝑡 = 𝑤1𝑢𝑡 +𝑤2𝑣𝑡 , (8)

where 𝑤1 and 𝑤2 are weighting coefficients. The term 𝑢𝑡 is the

average CSTX ratio in epoch 𝑡 :

𝑢𝑡 =
𝑐

𝑏𝑡 + 𝑐𝑡
, (9)

𝑐𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

CST
𝑖
𝑡 , (10)

𝑏𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

IST
𝑖
𝑡 , (11)

and 𝑣𝑡 is the negative variance of CSTX ratio in epoch 𝑡 :

𝑣𝑡 = −𝜎2 = − 1

𝑁

𝑁∑︁
𝑖=1

(CST𝑖 − 𝑐𝑡 )2, (12)

here, CST𝑖 is the number of CSTXs in shard 𝑖 , IST𝑖 is the number

of intra-shard transactions in shard 𝑖 , and 𝑁 is the total number of

shards. By maximizing 𝑅𝑡 , the agent is encouraged to reduce 𝑢𝑡 and

minimize 𝑣𝑡 , leading to balanced and efficient system performance.

4.4 Transition Dynamics
The state transition functionmodels how the environment responds

to the actions and the inherent temporal characteristics of incoming

transactions. The next state is influenced by both the current state

and upcoming transactions, which cannot be directly measured or

predicted. However, transactions exhibit temporal patterns, and the

actions taken by the agent can affect these patterns. Therefore, the

next state is given by:

s𝑡+1 = 𝑓 (s𝑡 , a𝑡 ,w𝑡 ), (13)

wherew𝑡 represents stochastic factors such as network fluctuations

and unobservable upcoming transactions. The function 𝑓 captures

the complex interactions between the current state, the action taken,

and the stochastic elements of the sharding blockchain.

Understanding the transition dynamics is challenging due to the

unobservable nature of future transactions and their dependency

on both temporal patterns and the agent’s actions. Despite this,

the agent can learn these dynamics through observed state, action,

and reward sequences. By capturing the temporal dependencies

and learning from the environment, the agent optimizes long-term

rewards. It adapts its strategy to the temporal characteristics of

transaction flows and the stochastic nature of the environment,

enhancing the overall efficiency and robustness of the system.

5 Evaluation
5.1 Experimental Settings
AEROChain is developed in Golang and the AERO is implemented

in Python, with a total codebase exceeding 4,000 lines. AEROChain’s

implementation is based on BlockEmulator [11], which provides

a scalable sharding blockchain environment. The AERO is built

upon the cleanrl framework[13], facilitating the development of

RL with a focus on clarity and simplicity. The experimental setup

consists of 16 physical shards, each containing 8 nodes, amounting

to a total of 128 nodes in the total network. During each epoch,

the consensus phase is composed of 100 blocks, with each block

containing a maximum of 1,000 transactions.

To ensure our experiments reflect actual network conditions

and transaction patterns, we utilized real transaction data from

Ethereum in 2024 [35]. We employed 1 million transactions to

test performance in a real-world environment, providing insights

into AERO’s effectiveness in optimizing CSTXs and load balancing

compared to other algorithms. Additionally, 10 million transactions

are used to train the AERO model, enabling it to learn and adapt

to the complex transaction patterns inherent in blockchain. The

hyperparameters are detailed in Appendix B.

5.2 Baselines
To comprehensively assess the performance of AERO, we have

selected five algorithms for comparison:

(1) AERO-S. AERO-S is an implementation with individual-

by-individual migration of AERO, designed to explore the

efficiency of the group migration mechanism on capturing

complex transaction patterns.

(2) Spring [18]. SPRING uses DRL to optimize state placement

in the sharding blockchain, reducing CSTXs and improving

the blockchain throughput. We choose SPRING to compare

the effectiveness of account migration and account allocation

in improving CSTXs and load balance.

(3) BrokerChain [10]. BrokerChain uses graph partitioning to

optimize state partitioning and account segmentation, with

the goal of balancing transaction workloads and minimizing

CSTXs. We leverage Broker to evaluate graph partitioning.

(4) LB-Chain [17]. LB-Chain uses a load-balancing approach

to dynamically balance transaction workloads across shards.

We use LB-Chain to compare the effectiveness of strategies

focused on optimizing transaction workloads.

(5) Monoxide [29]. Monoxide improves transaction processing

by using asynchronous consensus zones to handle CSTXs

efficiently. We use this algorithm to evaluate AEROChain

without introducing any account migration strategies.

5.3 Overhead Analysis
Integrating AERO into AEROChain introduces both computational

and storage overheads, which we analyze in this section.

Storage Overheads. The AERO model in AEROChain occupies

approximately 90KB of disk. This compact size ensures that the
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storage requirements do not impose significant burdens on the

nodes, allowing for efficient deployment across the network.

Computational Overheads. The computational overhead of

AERO involves two key components: (1) the time spend generating

and validating migration transactions, which includes the duration

the AERO agent takes to decide which accounts to move between

shards, and (2) the time required to update the training model,

which occurs once per reconfiguration phase.

In our experiments, migration decisions take approximately 0.06

seconds per decision, while updating the training model required

around 0.9 seconds on the hardware used. These times are notably

faster than those observed with graph partitioning-based methods,

highlighting the efficiency of AERO.

5.4 Cross-Shard Transaction Ratio
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Figure 4: The CSTX ratio over 1000 block.
The purpose of this experiment is to evaluate the effectiveness

of different migration strategies in reducing CSTX ratio, which is

crucial for improving overall blockchain performance and efficiency.

As shown in Figure 4, the performance in reducing CSTX ratios is

largely influenced by strategies for account management. AERO

demonstrates a relatively low CSTX ratio. The DRL architecture

enables AERO to effectively capture patterns in account activities,

allowing for the dynamic accounts migration to shards where they

engage in frequent transactions. By allocating these accounts within

the same shard, AERO successfully reduces CSTXs. AERO-S shows

low effectiveness, as its simpler migration mechanism struggles

to fully capture the intricate and dynamic dependencies between

accounts. This limitation diminishes its overall efficiency.

Spring shows a higher CSTX ratio compared to AERO, primarily

because its approach focuses more on optimizing state placement

rather than account migration. While optimizing state placement

can reduce some cross-shard interactions, it lacks the dynamic

adaptability to handle the complex and changing relationships

between accounts. As a result, Spring’s higher ratio suggests that

static or less adaptive methods are not as effective in managing

CSTXs in a highly dynamic blockchain environment. Broker and

LB-Chain are not very effective and have quite high CSTX ratios,

which can be attributed to their focus on balancingworkloads across

shards. Broker uses graph partitioning techniques to optimize the

state partitioning, which may still have limitations when handling

dynamic account migration issues. LB-Chain effectively prevents

shard overload but struggles with reducing CSTX. Monoxide is

not able to reduce CSTX as effectively as other algorithms, which

highlights the importance of efficient transaction processing and a

well-designed account management strategy.

5.5 Shard Load Variance
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(a) The EWMA shard load variance.
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(b) Box plot of shard load variance.

Figure 6: Shard load variance for different algorithms.

This experiment aims to evaluate the effectiveness of different

algorithms in balancing shard workloads, as measured by shard load

variance. Specifically, we investigate how timelymigrating accounts

from heavily loaded shards to less loaded ones can reduce load

imbalances. Figure 6a presents the exponentially weighted moving

average (EWMA) variance of shard load balance. EWMA is adopted

to smooth the data and highlight trends in load variation over time.

As illustrated in Figure 6, the shard load variance highlights distinct

patterns driven by the underlying mechanisms for balancing shard

workloads. AERO maintains a low load variance by dynamically

migrating accounts based on interaction patterns, ensuring a more

balanced distribution of shard workloads. By effectively managing

these migrations, AERO reduces imbalances and keeps the variance

in shard load relatively low compared to other algorithms. AERO-S

shows higher variance than AERO due to its simpler mechanism,

which limits its ability to balance workload across shards.

Spring exhibits a high shard load variance, stemming from its

strategy of optimizing state placement. Although this approach can

mitigate some types of imbalances, it lacks the flexibility to adapt to

shifting transaction patterns, leading to a more uneven distribution

of transactions across shards over time. Broker performs slightly
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Figure 5: The comparison of transaction distribution for different algorithms during 1,000 block numbers.

better than Spring as it addresses migration issues rather than

account allocation. However, it remains focused on reducing CSTX,

which limits its ability to dynamically adapt to transaction behavior

changes, resulting in only moderate improvements in shard load

variance. LB-Chain demonstrates stronger performance in load

balancing, with its mechanism effectively preventing significant

overloads. Monoxide has a strong performance in minimizing shard

load variance, primarily because the absence of account migration

results in a more even distribution of accounts across shards.

5.6 Shard Transaction Distribution
The purpose of this experiment is to investigate how the internal

distribution of shard workload affects the external performance of

different blockchain protocols. This can also provide insights into

the protocols’ overall efficiency and ability to manage imbalances.

The heatmaps in Figure 5 illustrate the transaction distribution

across shards for three representative algorithms over 1,000 blocks.

The figure highlights eight shards with distinct transaction patterns,

while the complete shard distribution can be found in Appendix D.

Starting with AERO, the heatmap reveals a strong concentration of

intra-shard transactions, as indicated by the dark diagonal line that

runs from the top left to the bottom right of the chart. This suggests

that AERO is highly effective in grouping frequently interacting

accounts within the same shard, thereby significantly reducing

the need for CSTXs. The lighter shades in the off-diagonal regions

shows that AERO minimizes cross-shard interactions.

In contrast, Spring shows a less concentrated distribution of

intra-shard transactions, with more noticeable imbalances across

shards. Certain shards exhibit significantly higher CSTX volumes,

and this uneven distribution of CSTXs implies that Spring struggles

to maintain a balanced workload distribution and reduces overall

system performance due to increased CSTX load. Monoxide exhibits

the weakest performance among the three algorithms, though it

shows a more balanced distribution of cross-shard transactions.

The heatmap reflects a relatively uniform spread of transactions

across both diagonal and off-diagonal regions, whichmeans that the

algorithm generates the most CSTXs, negatively impacting system

throughput. Although the transaction distribution is more balanced

compared to Spring, the overall CSTX burden is significantly higher,

leading to inefficiencies in handling workloads.
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Figure 7: Comparison of overall TPS.

5.7 Overall Throughput Analysis
Finally, we assessed the overall throughput of AEROChain in terms

of TPS. Figure 7, which compares the average TPS across different

algorithms, highlights AERO’s performance over the state-of-the-

art algorithm by 31.77%. When compared to AERO-S, AERO shows

a clear improvement, indicating that group migration mechanism

plays a crucial role in enhancing throughput. Spring and Broker

perform less efficiently than AERO, primarily due to their reliance

on less adaptive strategies that struggle with fluctuating transaction

patterns. Their higher CSTX ratios and uneven load balance further

reduce the overall throughput. Monoxide, which has the lowest TPS,

is constrained by its lack of account migration strategies. While its

asynchronous consensus zones allow for efficient CSTX processing,

Monoxide struggles at reducing the CSTX number, leading to lower

throughput in sharding blockchain.

6 Conclusion
We proposed AERO, an attention-based DRL framework designed

for efficient account migration in sharding blockchain networks. By

employing a prefix-based granularity approach to reduce the action

space and integrating attention mechanisms to capture temporal

characteristics, AERO effectively minimizes CSTXs and balances

workload across shards. Our implementation of sharding blockchain

system, AEROChain, demonstrates the feasibility and adherence

to blockchain decentralization principles of the AERO. Extensive

evaluation with real Ethereum data show that AERO outperforms

existing solutions, improving system throughput by 31.77%.
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A Safety and Liveness of AERO
The account migration process emphasizes decentralization and

security, leveraging the byzantine fault tolerance guaranteed by the

PBFT protocol. Additionally, in the case of a leader failure or other

disruptions, the view-change phase is handled in accordance with

PBFT’s specifications, ensuring that a new leader is selected and the

process can continue without compromising the safety and liveness

of the network. Through the cooperation of various components,

AEROChain realizes a decentralized and secure account migration

process, ensuring consistency and integrity across the network.

This section analyses the safety and liveness properties specific to

generating and executing the account migration plan.

Lemma 1. Assuming that malicious nodes constitute less than one-
third of all consensus nodes within the logical shard, the account
migration plan can ensure safety.

Proof. In AERO, all consensus nodes are required to serve as

consensus nodes for both the logical and physical shards. We as-

sume that malicious nodes constitute less than one-third of the

nodes in each shard. Consequently, the number of malicious nodes

within the logical shard remains under one-third of the total.

The account migration plan is generated through a consensus

phase, ensuring that the honest nodes can accept no malicious or

flawed migration plan. Therefore, AERO can guarantee safety if

fewer than one-third of the consensus nodes are malicious. □

Lemma 2. Assuming that malicious nodes constitute less than one-
third of all consensus nodes within the logical shard, the account
migration plan can ensure liveness.

https://doi.org/10.1109/OJCS.2020.2990458
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Proof. In the AERO design, we operate under the assumption

of a partially synchronous network model, where message delays

are bounded by an unknown time parameter, denoted as 𝛿 . This

model implies that while network delays may be unpredictable, all

messages are guaranteed to be delivered within a finite, uncertain

time frame. Under these conditions, themigration plan generated by

the logical shard will eventually be transmitted to the target shard.

Once received, the account migration process will be completed,

ensuring both liveness and eventual consistency in the system. □

B Hyper-parameters Settings

Table 1: Hyperparameters and their values

Hyperparameter Value
Discount factor, 𝛾 0.99

Numbers of heads in transformer, ℎ 6

Batch size 128

Mini batch size 4

Learning rate 1e-5

Number of neurons in each layer 256

C Neural Network Design
Incorporating attention mechanisms into DRL models can help

the agent gain a deeper understanding of the global state of the

shards, enabling it to capture transaction patterns and relationships

between accounts [4, 7]. AERO generates the queries, keys, and

values by utilizing the a and s. Specifically, the query vector Q is

derived from s, while the key and value matrices, K and V, are
obtained from the encoded action history Henc. It is represented as

follows:

Q𝑖 = W𝑞𝑖 a,
K𝑖 = W𝑘𝑖 s,
V𝑖 = W𝑣𝑖 s,

(14)

where W𝑞𝑖 ∈ R𝑑ℎ×𝑑𝑠 is the query projection matrix, W𝑘𝑖 ,W𝑣𝑖 ∈
R𝑑ℎ×𝑑model

are the key and value projection matrices, and Henc ∈
R𝐿×𝑑model

is the encoded representation of the action history, with

𝐿 being the sequence length after encoding. Here, 𝑑ℎ denotes the

dimension of the hidden layer in the attention mechanism. By using

these attention weights to the value vectors, AERO aggregates from

the action history and state to form a context vector h:

h𝑖 = softmax

(
Q𝑖K⊤

𝑖√︁
𝑑ℎ

)
V𝑖 , (15)

h = [h1, h2, . . . , hℎ]W𝑂 , (16)

where W𝑂 ∈ Rℎ ·𝑑ℎ×𝑑model
is the output projection matrix that

combines the outputs from all attention heads into a single context

vector h. h encapsulates the most pertinent information needed to

make informed migration decisions. The decoder then generates

variable-length action sequences in an autoregressive manner. At

each decoding step 𝑘 , the model produces an action using:

a(𝑘 )𝑡 = Wouth(𝑘 ) + bout, (17)

whereWout ∈ R3×𝑑model
is the action projection matrix, bout ∈ R3

is the bias term, h(𝑘 ) is the context vector h at step 𝑘 , and a(𝑘 )𝑡 ∈ R3

is the predicted action at step 𝑘 . The decoder continues to generate

actions until an end-of-sequence token is produced or a maximum

sequence length is reached.
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15602 2578 1308 823 970 1026 2921 2154 1464 3844 1314 1816 806 4170 2378 6842

6032 42623 2621 1402 1513 1862 4325 3141 3114 9945 1986 3459 1220 4208 4015 10990
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4889 4113 2111 1079 1120 16460 2979 2624 2158 5033 1502 2140 860 3526 3425 7621

4672 4145 1617 1010 1431 1659 27365 2935 2116 5337 1520 2462 965 3668 3632 8922
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6006 8322 2181 1518 1271 1806 4573 3238 2517 31560 1822 3227 1106 5322 3684 9934
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Figure 8: The transaction distribution of AERO.
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Figure 9: The transaction distribution of Spring.
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Figure 10: The transaction distribution of Monoxide.
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