
AERO: Enhancing Sharding Blockchain via Deep Reinforcement
Learning for Account Migration

Anonymous authors

Abstract
Sharding blockchain networks face significant scalability challenges

due to high frequencies of cross-shard transactions and uneven

workload distributions among shards. To address these scalability

issues, account migration offers a promising solution. However,

existing migration solutions struggle with the high computational

overhead and insufficient capture of complex transaction patterns.

We propose AERO, a deep reinforcement learning framework to

facilitate efficient account migration in sharding blockchains. AERO

employs a prefix-based grouping strategy to enable group-level

migration decisions and capture complex transaction patterns and

relationships between accounts. We also implement a sharding

blockchain system called AEROChain, which integrates AERO and

aligns with the blockchain decentralization principle. Extensive

evaluation with real Ethereum transaction data demonstrates that

AERO improves the system throughput by 31.77% compared to

existing solutions, effectively reducing cross-shard transactions

and balancing shard workloads.

CCS Concepts
• Theory of computation → Algorithmic mechanism design;
• Computing methodologies → Reinforcement learning; •
Computer systems organization → Peer-to-peer architec-
tures.

Keywords
Blockchain, Sharding, Account migration, Reinforcement learning

ACM Reference Format:
Anonymous authors. 2025. AERO: Enhancing Sharding Blockchain via Deep

Reinforcement Learning for Account Migration. In Proceedings of the ACM
Web Conference 2025 (WWW ’25). ACM, New York, NY, USA, 11 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Blockchain technology has rapidly evolved as a cornerstone of

the emerging Web 3.0 [30]. By maintaining immutable transaction

records and ensuring trustless interactions, blockchain is vital for

creating a transparent and secure decentralized web [12]. However,

despite its revolutionary, blockchain faces significant scalability

challenges [36]. Conventional blockchain networks are limited in

transaction processing capacity [10]. As they grow with more users

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, April 28–May 2, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

and applications, scalability bottlenecks hinder their widespread

adoption and the full potential of Web 3.0 [21].

To address the blockchain scalability issue, sharding has been

proposed as a promising solution [20]. Sharding partitions the

blockchain network into multiple smaller, manageable segments

called shards. Each shard simultaneously processes a subset of

blockchain transactions and smart contracts, while periodically

reassigning and maintaining shard nodes to ensure security. This

parallel processing approach theoretically increases the network’s

overall capacity proportionally to the number of shards, thereby

enhancing blockchain scalability.

Nevertheless, sharding introduces its own series of challenges [16].

One of the primary issues is the high frequency of Cross-Shard

transactions (CSTXs), which occur when transaction accounts are

located on different shards [10, 18]. Processing CSTXs is more time-

consuming and resource-intensive than intra-shard transactions,

because it requires coordination between shards and can lead to

increased latency [32]. Moreover, the uneven workload distribution

across shards is also a significant concern [17]. Due to the power-

law distribution often observed in transactions [14], some shards

may become overloaded while others remain underutilized, leading

to inefficiencies and potential bottlenecks within the network.

Substantial research focuses on account migration mechanisms

to mitigate the challenges of CSTXs and workload imbalance in

sharding blockchain systems [9, 10, 16, 17]. The account migration

involves periodically redistributing user accounts across shards to

reduce CSTXs and balance the workload. Some work utilizes graph

partitioning and account segmentation strategy to optimize the

assignment of accounts [10]. However, the computational overhead

of graph partitioning algorithms leads to performance degradation,

and this work introduces significant complexity in maintaining

sub-accounts by account segmentation.

Motivated by the need for an efficient and decentralized account

migration mechanism, we explore applying deep reinforcement

learning (DRL) [27] to this problem. DRL is highly effective in

handling sequential decision-making tasks and has demonstrated

significant potential in optimizing complex systems with expansive

state and action spaces [24]. In the context of account migration,

the account migration sequence can be treated as a decision-making

process where the objective is to assign accounts to shards in a

manner that minimizes CSTXs and balances the workload. Existing

DRL-based sharding solutions, such as SPRING[18], process one

account at a time, which leads to an enormous action space due

to the vast number of accounts and shards. This approach can be

inefficient and may not scale well with larger blockchain networks.

However, without careful design, the DRL agent is likely to struggle

with the vast action space due to the large number of account

addresses, which in turn limits its effectiveness.

Based on the above analysis, we propose AERO, a novel DRL
framework for efficient account migration in sharding blockchain

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anonymous authors

networks. AERO introduces a prefix-based granularity approach,

grouping accounts based on common prefixes to not only reduce

the action space significantly but also enable efficient migration of

a large number of accounts. With this approach, AERO can make

group-level migration decisions, rather than handling each account

individually. To demonstrate the feasibility and effectiveness of

integrating AERO into a sharding blockchain system, we design and

develop AEROChain. AEROChain ensures the decentralization

of AERO’s operation through its consensus mechanism. Extensive

experiments using real Ethereum transaction data are conducted to

evaluate the performance of AERO. The results indicate that AERO

significantly reduces the number of CSTXs and achieves a more

balanced workload distribution among shards compared to existing

state-of-the-art algorithms. Specifically, AERO improves system

throughput by 31.77% compared to other strategies, showing its

effectiveness in enhancing blockchain system overall performance.

In summary, our contributions are as follows:

• We propose AERO, a DRL framework designed to efficiently

generate account migration plans by reducing the action

space through a prefix-based granularity approach. AERO

aims to reduce CSTXs and achieve balancedworkloads across

shards in the sharding blockchain system.

• We implement a sharding blockchain called AEROChain,
integrating AERO and detailing the complete workflow to

demonstrate the feasibility and adherence of the framework

to blockchain decentralization principles.

• We perform extensive experiments using real transaction

data, showing that AERO outperforms existing solutions

by improving throughput by 31.77%, reducing CSTXs and

improving workload balance.

2 Background and Related Work
2.1 Sharding Blockchain with Deep

Reinforcement Learning Approaches
Sharding technology has become a crucial solution for improving

blockchain scalability by partitioning the blockchain network into

smaller shards that process transactions in parallel [22]. With the

adoption of Practical Byzantine Fault Tolerance (PBFT) for intra-

shard consensus, the performance of sharding blockchains has

steadily improved, achieving near-linear throughput scalability as

the network grows [5, 18, 23, 26]. In recent years, sharding has

already become a core component of the mainstream blockchain

to enhance blockchain scalability and throughput by splitting the

blockchain network into multiple interconnected shards [28].

Deep reinforcement learning (DRL) [1] integrates reinforcement

learning with deep learning to address complex sequential decision-

making problems. DRL operates within the framework of a Markov

Decision Process (MDP), defined by a 4-element tuple: a set of

states, actions, transition probabilities, and rewards. The agent

interacts with the environment by selecting actions, transitioning

between states, and receiving feedback in the form of rewards. The

primary objective of reinforcement learning is to train a policy

that maximizes cumulative rewards over time. Through iterative

interactions, the agent learns to refine its policy, improving its

decision-making by either exploring the environment or exploiting

past knowledge. DRL further enhances this process by utilizing

deep neural networks to model the policy, enabling the agent to

identify complex patterns and relationships in the environment,

making it well-suited for dynamic and intricate tasks.

DRL has already found applications in the sharding blockchain

network, addressing challenges such as address placement, resource

allocation, and transaction processing [18, 19, 31, 34]. SPRING[18]

applies DRL to improve address placement strategies, enabling

more efficient transaction processing by learning policies over time.

SkyChain[34] utilizes DRL to optimize resource allocation, aiming

to enhance transaction throughput and reduce latency. Additionally,

Lin[19] introduces DRL to enhance dynamic shard formation and

improve communication efficiency in the federated learning context.

However, these approaches do not specifically address account

migration, which is crucial for minimizing CSTXs and balancing

workloads among shards.

2.2 Account Migration
Account migration protocols in sharding blockchains are essential

for maintaining scalability by redistributing account states across

different shards [22]. Early approaches rely on constructing and

analyzing transaction graphs [2, 15]. Among these related works,

transactions are represented as edges connecting account nodes,

and the corresponding transaction graphs are partitioned using

graph partitioning or community detection methods to determine

optimal shard allocations for accounts. However, maintaining and

processing transaction graphs on a blockchain presents significant

challenges. The vast number of transactions generates enormous

graphs, requiring substantial storage and computational resources.

Notably, previous work [16] utilizes a community-aware account

partition algorithm to balance the shard workload and reduce CSTX

ratios but struggles to maintain the trade-off between each other.

BrokerChain [10] offers a broker-based account migration approach

to reduce CSTXs. Nonetheless, BrokerChain’s reliance on a broker

network raises concerns about centralization and bottlenecks, as

the system becomes dependent on the availability of these brokers.

Apart from graph partitioning algorithms, several advanced

techniques have been applied to the account migration problem.

Monoxide [29] employs asynchronous consensus zones to scale out

blockchains, improving throughput and capacity. Another method

introduces locking schemes to prevent double-spending and race

conditions during the migration [9]. Although these approaches

can ensure security during the transfer process, their reliance on

locks increases complexity, reducing system throughput. Moreover,

they do not fundamentally resolve the issues of uneven shard load

and high CSTX volumes. LB-Chain [17] introduces a load-balancing

mechanism that uses LSTM network predictions [8] to distribute

accounts across shards. While it effectively reduces the uneven

shard workload, it focuses solely on workload balance and fails to

reduce CSTXs. Spring [18] presents a DRL-based address placement

approach to reduce CSTXs while balancing the shard workloads.

Nevertheless, Spring only addresses the new address placement

problem and lacks the ability to adjust in real-time based on the

temporary characteristics of transactions, limiting its effectiveness

in improving overall system performance. There is still a lack of

effective account migration algorithms that both reduce CSTXs and

balance shard workloads.

AERO: Enhancing Sharding Blockchain via Deep Reinforcement Learning for Account Migration WWW ’25, April 28–May 2, 2025, Sydney, Australia

AERO

PSDCSTM

AERO

PSDCSTM

AERO

PSDCSTM

PSD

Node 1

CSTM

AERO

PSDCSTM PSDCSTM

AERO

PSDCSTM

AERO

Node 2

PSDCSTM

AERO

PSDCSTM PSDCSTM

AERO

PSDCSTM

AERO

Prepare Commit

Node 3

PSDCSTM

AERO

CSTM PSDCSTM

AERO

PSD

AERO

CSTMPSD

PSD

Leader 0

CSTM

Pre-prepare

AERO

PSD

Account Migration

random seed

nodes in blockchain

Epoch
 Randomness

Node
Assignment

physical shard

AERO

AERO

AERO

Figure 1: The reconfiguration phase workflow in AEROChain. After epoch randomness and node assignment, AEROChain
goes into account migration. The account migration process adheres to PBFT, with the AERO handling proposal creation and
validation. Nodes eventually update their respective Physical Shard Data (PSD) by the Cross-shard Transaction Module (CSTM).

3 AEROChain Design
To validate the feasibility of integrating AERO into a sharding

blockchain system, we have developed a prototype system called

AEROChain. The design of AEROChain is in the following sections,

detailing the structure and functionality of its various components.

3.1 Basic System Design
The AEROChain operates on an account-based transaction model.

Following the mainstream sharding blockchain design [12, 18, 33],

AEROChain assumes a partially asynchronous network [6], where

message delays are unbounded but eventual delivery is guaranteed.

This assumption aligns with real-world network conditions where

latency can vary, but messages are delivered finally. AEROChain

is designed with Byzantine Fault Tolerance (BFT), allowing it to

tolerate up to 𝑓 faulty or malicious nodes in a network of 3𝑓 + 1

nodes. AEROChain also resilient an adaptive adversarial model,

where an adversary can corrupt nodes dynamically during protocol

execution. However, the adaptive adversary is assumed unable to

forge or tamper with the signatures of honest nodes, ensuring the

integrity of authenticated communications within the network.

3.2 Architecture of AEROChain
AEROChain introduces a novel sharding architecture consisting

of two types of shards: the physical shard and the logical shard.
Both types utilize the PBFT protocol [3] for achieving consensus.

These shards are detailed in the following sections, and the specific

components of AEROChain are further explained in Section 3.2.3.

3.2.1 Physical Shard. The physical shard is tasked with transaction
processing and ledger maintenance. To enhance the parallelism and

scalability of AEROChain, the network is partitioned into multiple

physical shards, each comprising a subset of nodes. Every node is

assigned to one physical shard, where it participates in transaction

validation and block creation using the consensus mechanism.

3.2.2 Logical Shard. The logical shard is essential for facilitating

the migration of account states across physical shards. The logical

shard encompasses all nodes in the network, ensuring a low CSTX

ratio and a balanced workload between shards. Specifically, it is

responsible for generating and executing migration transactions,

which are essential for transferring account states between physical

shards, thereby supporting efficient load balancing and maintaining

the overall system’s performance and scalability.

3.2.3 Components.

• Epoch Randomness: The same random seed is used in

each node, and consensus is reached on the same initial

trained model parameters. Since subsequent transactions

and the state are deterministic, the AEROmodel updates that

follow are also deterministic. This ensures that the nodes in

each logical shard can validate the results of the generated

migration transactions, guaranteeing consistency across the

AEROChain. Moreover, the safety and liveness analysis can

be found in Appendix A.

• Node Assignment: The random seed is used to periodically

reassign and maintain shard nodes, ensuring system security

against adaptive adversaries.

• Physical Shard Data(PSD): PSD refers to the information

managed and processed within each physical shard. Each

physical shard is responsible for transaction validation, block

creation, and ledger maintenance. The PSD includes details

such as validated transactions, block records, and the current

state of accounts within the shard.

• Cross-shard Transaction Module (CSTM): CSTM is to

process CSTXs. It employs a relay-based approach based

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anonymous authors

0 1 … 𝑎 … 𝑒
… … … … …

0 1 2 3 … 𝑒
… … … … …

0 1 … 𝑎 … 𝑒
… … … … …

0 1 2 3 … 𝑒
… … … … …

0 1 … 𝑎 … 𝑒
… … … … …

0 1 2 3 … 𝑒
… … … … …

0 1 … 𝑎 … 𝑒
… … … … …

0 1 2 3 … 𝑒
… … … … …

Migrate

Before Migration After Migration

physical shard 1
Hash Root 1 Hash Root 1’Hash Root 2 Hash Root 2’

physical shard 2

p = 0x1a

Figure 2: The execution of a migration transaction {1,2,"0x1a"}.

Physical Shard

State 𝑠!

observe

Action 𝑎!Reward 𝑟!

update decision-
making

Last Action

Policy 𝝅𝜽

observe iterate

Figure 3: The AERO workflow.

on the algorithm proposed in Monoxide [29], to coordinate

between source and target shards.

• AERO: AERO is a DRL-based framework designed to output

account migration plans. AERO introduces a prefix-based

granularity approach to migrate accounts with the same

prefixes, reducing the action space and facilitating efficient

migration decisions at group level, rather than for individual

accounts. The AERO is described in Section 4.

3.3 Workflow of AEROChain
AEROChain operates in time intervals known as epochs, where

each epoch is structured into two key phases: the reconfiguration

phase and multiple consensus phases.

3.3.1 Reconfiguration Phase. At the beginning of each epoch, an

epoch randomness is generated to produce a random seed. This seed

is then used in the node assignment process to redistribute nodes

among physical shards, as well as in the account migration process

to ensure a consistent result. By utilizing this randomness in both

node assignment and account migration, AEROChain enhances

security against adaptive adversaries, making it more difficult for

them to predict or target specific shards. Following this, the system

proceeds into the Account Migration process.

As shown in Figure 1, the account migration process strictly

follows the PBFT protocol during the reconfiguration phase. In the

pre-prepare phase, the logical shard leader uses AERO to create

a proposal with a migration transaction list M, which contains a

series of migration transactions. The leader then broadcasts it to all

other nodes in the logical shard. Upon receiving the proposal, each

node leverages its AERO to validate the correctness and integrity

of the proposal, ensuring the legitimacy of migration transactions.

Once the consensus node has validated the proposal using the

AERO, it votes by broadcasting a prepared message to all other

nodes during the prepare phase. Subsequently, each node collects

prepared messages from others, and when a node has successfully

received 2𝑓 + 1 prepare votes, it considers that the proposal has

garnered enough votes to proceed to the next phase. This prepare

stage ensures that at least 𝑓 + 1 honest nodes are synchronized and

have reached an agreement on the proposal.

In the commit phase, after collecting the required 2𝑓 + 1 commit

messages, nodes finalize the agreement and proceed to execute the

transactions fromM in proposal. Each node processes the migration

transactions related to its physical shard through CSTM. After the

execution of the relevant transactions, the node updates the PSD,

completing the consensus process.

3.3.2 Consensus Phase. Physical shards operate in parallel during

the consensus phase, efficiently processing transactions. During

this phase, nodes gather and analyze transaction data from each

physical shard, summarizing the transaction details between shards

in preparation for the account migration process. Transactions

processed during this phase fall into two categories: intra-shard

transactions and CSTXs, where:

• Intra-shard Transactions: Intra-shard transactions involve
only sender and receiver accounts within the same shard,

allowing them to be processed entirely within that shard

without external communication. These transactions benefit

from lower latency, as they do not need shard coordination.

• CSTXs: CSTXs involving parties from different physical

shards. Due to cross-shard communication, CSTXs incur

higher overhead compared to intra-shard transactions.

3.4 Migration Transactions
Migration transactions are a crucial part of the reconfiguration

mechanism, ensuring the secure and efficient migration of account

states between physical shards in AEROChain. These specialized

CSTXs are triggered by the logical shard to facilitate the transfer of

account states from source physical shards to target physical shards.

Each migration transaction includes a field p, corresponding to the

account prefix of the migrating accounts. The migration transaction

structure is as shown below:

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = {𝑠𝑒𝑛𝑑𝑒𝑟, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑝}, (1)

where the 𝑠𝑒𝑛𝑑𝑒𝑟 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 fields represent the source and target

shards index of the migration account with the prefix 𝑝 . As shown

AERO: Enhancing Sharding Blockchain via Deep Reinforcement Learning for Account Migration WWW ’25, April 28–May 2, 2025, Sydney, Australia

in Figure 2, the migration transaction is executed by the prefix p,
from the physical shard sender to the physical shard receiver. In the

example provided in the figure, accounts have the prefix 𝑝 = 0𝑥1𝑎

migrates from physical shard 1 to physical shard 2. Initially, both

physical shards maintain separate hash roots representing their

respective data partitions. After the migration, the account with

prefix 0𝑥1𝑎 resides in physical shard 1. With the account prefixed

with 0𝑥1𝑎merging from physical shard 1 into physical shard 2, there

is no risk of conflict during the migration process. This is because

no identical public chain account exists in the shard chain with the

same address. Moreover, AERO enables the simultaneous initiation

of multiple migration transactions during the reconfiguration phase.

Consequently, the migration is guaranteed to be conflict-free. The

process of migrating account states involves several steps:

(1) Nodes in the logical shard execute the PBFT to agree on the

migration transaction list generated by the leader node.

(2) Once consensus is achieved, the migration transactions are

executed in CSTM. Nodes involved in both the source and

target shards relay the account states from the source shard

to the target shard.

(3) The target shard integrates themigrated account states. After

all physical shards have completed this process, AEROChain

transitions to the consensus phase, during which the nodes

maintaining the target shard update their PSD.

4 AERO Design
When the account migration process begins, the policy must assess

the current state of each account and shard, reviewing them group

by group to determine whether migration is necessary and decide

the target destination for the migration. Therefore, the account

migration is a standard sequential decision-making process, which

can be effectively modeled as a Markov Decision Process (MDP). By

framing it as an MDP, AERO can capture the transaction temporal

characteristics in sharding blockchain and optimize its policy 𝜋𝜃
with the Proximal Policy Optimization [25], where 𝜃 denotes the

parameters of the agent in AERO. Figure 3 is the workflow of AERO.

The overall objective of AERO is to reassign accounts to new shards

to enhance the overall performance of the sharding blockchain.

Specifically, the overall objective function 𝐽 (𝜃) is to minimize the

CSTX ratio and shard load variances, which is expressed as:

𝐽 (𝜃) = E𝜋𝜃

[∞∑︁
𝑡=1

𝛾𝑡 (𝑤1𝑢𝑡 +𝑤2𝑣𝑡)
]
, (2)

where 𝛾 ∈ [0, 1) is a discount factor, 𝑤1 and 𝑤2 are weighting

coefficients, 𝑢𝑡 is the average CSTX ratio in epoch t, and 𝑣𝑡 is the

average shard workload variances in epoch t. To achieve 𝐽 (𝜃), the
optimal policy 𝜋𝜃 is found by:

𝜋𝜃 = argmax

𝜃
𝐽 (𝜃) (3)

= argmax

𝜃
E𝜋𝜃

[∞∑︁
𝑡=0

𝛾𝑡 (𝑤1𝑢𝑡 +𝑤2𝑣𝑡)
]
. (4)

By optimizing 𝜃 , the agent can derive a policy that maximizes

throughput and minimizes latency. In the following sections, we

will provide detailed explanations of the state design, the action

representation, the reward function, and the transition dynamics.

4.1 State Design
To optimize the account migration strategy, it is crucial to fully

analyze how transactions are distributed across the physical shards

in the network. By incorporating state variables such as the number

of CSTXs and variances in the total transaction volume, we canmore

precisely capture which shards are experiencing higher loads and

denser transaction activity. Importantly, the state from the previous

epoch must also be considered to better evaluate the temporal

characteristics of transactions over time and assess the effectiveness

of the previous migration. This allows for more informed account

migration decisions, ultimately improving sharding blockchain

performance. The state s ∈ R𝑑𝑠 encapsulates the current status

of the physical shards, where 𝑑𝑠 is the state dimension. s includes
critical features that influence the account migration decision, such

as network load metrics and shard statistics. Specifically, the state

𝑠 in epoch 𝑡 is as follows:

𝑠𝑡 = {T𝑡 ,C𝑡 ,V𝑡 ,TX𝑐
𝑡 ,TX

𝑖
𝑡 ,TX

𝑐
𝑡−1,TX

𝑖
𝑡−1}, (5)

where the list T𝑡 represents the throughput of physical shards, the
list C≈ denotes the overall CSTX ratio of physical shards in epoch

𝑡 , and the list V≈ is the variance corresponding to these physical

shards. The term TX𝑐
𝑡 refers to the CSTX volumes for each account

prefix p within each physical shard, and TX𝑖
𝑡 represents the intra-

shard transaction volumes. Specially, for the initial state 𝑠0, it is

defined as 𝑠0 = {T0,C0,V0,TX𝑐
0
,TX𝑖

0
, {0}, {0}}.

4.2 Action Representation
Accurately defining actions that represent the possible migration

operations is essential for effectively modeling account migration

in an RL framework. Instead of migrating individual accounts one

by one, we adopt a prefix-based grouping strategy for account

migration in batch. This approach allows RL to better regulate shard

states from a macro perspective, significantly simplifying the action

space. By mapping each prefix to a corresponding dimension, we

facilitate the policy network 𝜋𝜃 in selecting the appropriate prefix

𝑝 for migration. Incorporating variables that specify which account

prefixes to move and between which shards enables the model

to capture the flexibility and complexity of migration decisions

that directly impact network performance. This strategy allows

the model to explore different migration paths, optimize shard

utilization, and reduce transaction latency.

Each action involves moving accounts with the specific address

prefix to new shards, and the action a𝑡 ∈ R𝑛𝑡×3
defines migration

operations to be performed at epoch 𝑡 . Here, 𝑛𝑡 varies depending

on the current state and context, allowing for variable-length action

sequences. Consequently, the action a𝑡 is defined as:

a𝑡 = [a(1)𝑡 , a(2)𝑡 , . . . , a(𝑖)𝑡 , . . . , a(𝑛𝑡)𝑡], (6)

a(𝑖)𝑡 = (𝐴(𝑖1)
𝑡 , 𝐴

(𝑖2)
𝑡 , 𝑝), (7)

where 𝐴1 and 𝐴2 refers to the source and target shard index.

The neural network is utilized to capture complex temporal

transaction dependencies in the sharding blockchain. Moreover,

AERO also employs a sliding window mechanism that captures the

most recent migration transactions, ensuring that the model focuses

on the most relevant information without being overwhelmed by

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anonymous authors

the entire history. We consider the state s and the action history

list a as the input.
In each node participating in the logical shard, the same random

seed is used, and consensus is reached on the same initial trained

model parameters. Since subsequent transactions and the state

are deterministic, the AERO model updates that follow are also

deterministic. This ensures that the nodes in each logical shard

can validate the results of the generated migration transactions,

guaranteeing consistency across the sharding blockchain. Moreover,

the safety and liveness analysis can be found in Appendix A.

4.3 Reward Function
The reward function aims to lead AERO optimizing throughout

by balancing CSTX ratio and the shard workload variances. The

reward at epoch 𝑡 is defined as:

𝑅𝑡 = 𝑤1𝑢𝑡 +𝑤2𝑣𝑡 , (8)

where 𝑤1 and 𝑤2 are weighting coefficients. The term 𝑢𝑡 is the

average CSTX ratio in epoch 𝑡 :

𝑢𝑡 =
𝑐

𝑏𝑡 + 𝑐𝑡
, (9)

𝑐𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

CST
𝑖
𝑡 , (10)

𝑏𝑡 =
1

𝑁

𝑁∑︁
𝑖=1

IST
𝑖
𝑡 , (11)

and 𝑣𝑡 is the negative variance of CSTX ratio in epoch 𝑡 :

𝑣𝑡 = −𝜎2 = − 1

𝑁

𝑁∑︁
𝑖=1

(CST𝑖 − 𝑐𝑡)2, (12)

here, CST𝑖 is the number of CSTXs in shard 𝑖 , IST𝑖 is the number

of intra-shard transactions in shard 𝑖 , and 𝑁 is the total number of

shards. By maximizing 𝑅𝑡 , the agent is encouraged to reduce 𝑢𝑡 and

minimize 𝑣𝑡 , leading to balanced and efficient system performance.

4.4 Transition Dynamics
The state transition functionmodels how the environment responds

to the actions and the inherent temporal characteristics of incoming

transactions. The next state is influenced by both the current state

and upcoming transactions, which cannot be directly measured or

predicted. However, transactions exhibit temporal patterns, and the

actions taken by the agent can affect these patterns. Therefore, the

next state is given by:

s𝑡+1 = 𝑓 (s𝑡 , a𝑡 ,w𝑡), (13)

wherew𝑡 represents stochastic factors such as network fluctuations

and unobservable upcoming transactions. The function 𝑓 captures

the complex interactions between the current state, the action taken,

and the stochastic elements of the sharding blockchain.

Understanding the transition dynamics is challenging due to the

unobservable nature of future transactions and their dependency

on both temporal patterns and the agent’s actions. Despite this,

the agent can learn these dynamics through observed state, action,

and reward sequences. By capturing the temporal dependencies

and learning from the environment, the agent optimizes long-term

rewards. It adapts its strategy to the temporal characteristics of

transaction flows and the stochastic nature of the environment,

enhancing the overall efficiency and robustness of the system.

5 Evaluation
5.1 Experimental Settings
AEROChain is developed in Golang and the AERO is implemented

in Python, with a total codebase exceeding 4,000 lines. AEROChain’s

implementation is based on BlockEmulator [11], which provides

a scalable sharding blockchain environment. The AERO is built

upon the cleanrl framework[13], facilitating the development of

RL with a focus on clarity and simplicity. The experimental setup

consists of 16 physical shards, each containing 8 nodes, amounting

to a total of 128 nodes in the total network. During each epoch,

the consensus phase is composed of 100 blocks, with each block

containing a maximum of 1,000 transactions.

To ensure our experiments reflect actual network conditions

and transaction patterns, we utilized real transaction data from

Ethereum in 2024 [35]. We employed 1 million transactions to

test performance in a real-world environment, providing insights

into AERO’s effectiveness in optimizing CSTXs and load balancing

compared to other algorithms. Additionally, 10 million transactions

are used to train the AERO model, enabling it to learn and adapt

to the complex transaction patterns inherent in blockchain. The

hyperparameters are detailed in Appendix B.

5.2 Baselines
To comprehensively assess the performance of AERO, we have

selected five algorithms for comparison:

(1) AERO-S. AERO-S is an implementation with individual-

by-individual migration of AERO, designed to explore the

efficiency of the group migration mechanism on capturing

complex transaction patterns.

(2) Spring [18]. SPRING uses DRL to optimize state placement

in the sharding blockchain, reducing CSTXs and improving

the blockchain throughput. We choose SPRING to compare

the effectiveness of account migration and account allocation

in improving CSTXs and load balance.

(3) BrokerChain [10]. BrokerChain uses graph partitioning to

optimize state partitioning and account segmentation, with

the goal of balancing transaction workloads and minimizing

CSTXs. We leverage Broker to evaluate graph partitioning.

(4) LB-Chain [17]. LB-Chain uses a load-balancing approach

to dynamically balance transaction workloads across shards.

We use LB-Chain to compare the effectiveness of strategies

focused on optimizing transaction workloads.

(5) Monoxide [29]. Monoxide improves transaction processing

by using asynchronous consensus zones to handle CSTXs

efficiently. We use this algorithm to evaluate AEROChain

without introducing any account migration strategies.

5.3 Overhead Analysis
Integrating AERO into AEROChain introduces both computational

and storage overheads, which we analyze in this section.

Storage Overheads. The AERO model in AEROChain occupies

approximately 90KB of disk. This compact size ensures that the

AERO: Enhancing Sharding Blockchain via Deep Reinforcement Learning for Account Migration WWW ’25, April 28–May 2, 2025, Sydney, Australia

storage requirements do not impose significant burdens on the

nodes, allowing for efficient deployment across the network.

Computational Overheads. The computational overhead of

AERO involves two key components: (1) the time spend generating

and validating migration transactions, which includes the duration

the AERO agent takes to decide which accounts to move between

shards, and (2) the time required to update the training model,

which occurs once per reconfiguration phase.

In our experiments, migration decisions take approximately 0.06

seconds per decision, while updating the training model required

around 0.9 seconds on the hardware used. These times are notably

faster than those observed with graph partitioning-based methods,

highlighting the efficiency of AERO.

5.4 Cross-Shard Transaction Ratio

0 200 400 600 800 1000
Block Number

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CS
TX

 R
at

io

AERO
AERO-S
Spring
Broker
LB-Chain
Monoxide

Figure 4: The CSTX ratio over 1000 block.
The purpose of this experiment is to evaluate the effectiveness

of different migration strategies in reducing CSTX ratio, which is

crucial for improving overall blockchain performance and efficiency.

As shown in Figure 4, the performance in reducing CSTX ratios is

largely influenced by strategies for account management. AERO

demonstrates a relatively low CSTX ratio. The DRL architecture

enables AERO to effectively capture patterns in account activities,

allowing for the dynamic accounts migration to shards where they

engage in frequent transactions. By allocating these accounts within

the same shard, AERO successfully reduces CSTXs. AERO-S shows

low effectiveness, as its simpler migration mechanism struggles

to fully capture the intricate and dynamic dependencies between

accounts. This limitation diminishes its overall efficiency.

Spring shows a higher CSTX ratio compared to AERO, primarily

because its approach focuses more on optimizing state placement

rather than account migration. While optimizing state placement

can reduce some cross-shard interactions, it lacks the dynamic

adaptability to handle the complex and changing relationships

between accounts. As a result, Spring’s higher ratio suggests that

static or less adaptive methods are not as effective in managing

CSTXs in a highly dynamic blockchain environment. Broker and

LB-Chain are not very effective and have quite high CSTX ratios,

which can be attributed to their focus on balancingworkloads across

shards. Broker uses graph partitioning techniques to optimize the

state partitioning, which may still have limitations when handling

dynamic account migration issues. LB-Chain effectively prevents

shard overload but struggles with reducing CSTX. Monoxide is

not able to reduce CSTX as effectively as other algorithms, which

highlights the importance of efficient transaction processing and a

well-designed account management strategy.

5.5 Shard Load Variance

0 200 400 600 800 1000
Block Number

250

500

750

1000

1250

1500

1750

2000

EW
M

A
Sh

ar
d

Lo
ad

 V
ar

ia
nc

e

AERO
AERO-S
Spring
Broker
LB-Chain
Monoxide

(a) The EWMA shard load variance.

AERO AERO-S Spring Broker LB-Chain Monoxide0

500

1000

1500

2000

2500

3000

Sh
ar

d
Lo

ad
 V

ar
ia

nc
e

(b) Box plot of shard load variance.

Figure 6: Shard load variance for different algorithms.

This experiment aims to evaluate the effectiveness of different

algorithms in balancing shard workloads, as measured by shard load

variance. Specifically, we investigate how timelymigrating accounts

from heavily loaded shards to less loaded ones can reduce load

imbalances. Figure 6a presents the exponentially weighted moving

average (EWMA) variance of shard load balance. EWMA is adopted

to smooth the data and highlight trends in load variation over time.

As illustrated in Figure 6, the shard load variance highlights distinct

patterns driven by the underlying mechanisms for balancing shard

workloads. AERO maintains a low load variance by dynamically

migrating accounts based on interaction patterns, ensuring a more

balanced distribution of shard workloads. By effectively managing

these migrations, AERO reduces imbalances and keeps the variance

in shard load relatively low compared to other algorithms. AERO-S

shows higher variance than AERO due to its simpler mechanism,

which limits its ability to balance workload across shards.

Spring exhibits a high shard load variance, stemming from its

strategy of optimizing state placement. Although this approach can

mitigate some types of imbalances, it lacks the flexibility to adapt to

shifting transaction patterns, leading to a more uneven distribution

of transactions across shards over time. Broker performs slightly

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anonymous authors

1 2 7 8 9 10 14 15
Receiver Shard

1

2

7

8

9

10

14

15

Sum

Se
nd

er
 S

ha
rd

15602 2578 2921 2154 1464 3844 4170 2378

6032 42623 4325 3141 3114 9945 4208 4015

4672 4145 27365 2935 2116 5337 3668 3632

4051 3280 3912 16091 1719 4683 2763 2998

4873 3754 3677 2524 20656 4738 4245 3285

6006 8322 4573 3238 2517 31560 5322 3684

5400 3189 2952 2076 1934 4458 20250 2971

3930 3329 2961 2415 1648 4567 3727 17508

50566 71220 52686 34574 35168 69132 48353 40471
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

(a) AERO.

1 2 3 4 13 14 15 16
Receiver Shard

1

2

3

4

13

14

15

16

Sum

Se
nd

er
 S

ha
rd

24967 4180 3974 5809 2499 1036 3927 1065

1198 16073 4096 6825 2670 1050 4313 1209

909 4263 17045 5606 2857 1217 4149 1150

1677 6465 6066 39273 4530 1847 15967 1906

1025 3923 3647 6191 16853 980 4131 1012

871 3789 3755 5169 2201 12480 3771 1103

2012 6222 7853 19513 5518 2300 44327 2135

828 3672 4182 5056 2681 1076 3832 11309

33487 48587 50618 93442 39809 21986 84417 20889
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

(b) Spring.

7 8 10 11 13 14 15 16
Receiver Shard

7

8

10

11

13

14

15

16

Sum

Se
nd

er
 S

ha
rd

11860 4643 5566 4650 2191 5731 2297 7616

2088 5277 5710 4835 2153 5783 2231 8142

3762 6533 8356 6242 3600 7716 3811 17645

2012 4950 5555 5758 2027 7936 2231 7947

1914 4914 5275 4401 2354 5952 1964 6932

1870 4640 5700 6178 2462 6477 1966 8940

2375 5154 5565 4775 2229 6382 2422 8155

3581 6674 13964 6893 3681 8470 4005 10279

29462 42785 55691 43732 20697 54447 20927 75656
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Tr
an

sa
ct

io
n

Co
un

t

(c) Monoxide.

Figure 5: The comparison of transaction distribution for different algorithms during 1,000 block numbers.

better than Spring as it addresses migration issues rather than

account allocation. However, it remains focused on reducing CSTX,

which limits its ability to dynamically adapt to transaction behavior

changes, resulting in only moderate improvements in shard load

variance. LB-Chain demonstrates stronger performance in load

balancing, with its mechanism effectively preventing significant

overloads. Monoxide has a strong performance in minimizing shard

load variance, primarily because the absence of account migration

results in a more even distribution of accounts across shards.

5.6 Shard Transaction Distribution
The purpose of this experiment is to investigate how the internal

distribution of shard workload affects the external performance of

different blockchain protocols. This can also provide insights into

the protocols’ overall efficiency and ability to manage imbalances.

The heatmaps in Figure 5 illustrate the transaction distribution

across shards for three representative algorithms over 1,000 blocks.

The figure highlights eight shards with distinct transaction patterns,

while the complete shard distribution can be found in Appendix D.

Starting with AERO, the heatmap reveals a strong concentration of

intra-shard transactions, as indicated by the dark diagonal line that

runs from the top left to the bottom right of the chart. This suggests

that AERO is highly effective in grouping frequently interacting

accounts within the same shard, thereby significantly reducing

the need for CSTXs. The lighter shades in the off-diagonal regions

shows that AERO minimizes cross-shard interactions.

In contrast, Spring shows a less concentrated distribution of

intra-shard transactions, with more noticeable imbalances across

shards. Certain shards exhibit significantly higher CSTX volumes,

and this uneven distribution of CSTXs implies that Spring struggles

to maintain a balanced workload distribution and reduces overall

system performance due to increased CSTX load. Monoxide exhibits

the weakest performance among the three algorithms, though it

shows a more balanced distribution of cross-shard transactions.

The heatmap reflects a relatively uniform spread of transactions

across both diagonal and off-diagonal regions, whichmeans that the

algorithm generates the most CSTXs, negatively impacting system

throughput. Although the transaction distribution is more balanced

compared to Spring, the overall CSTX burden is significantly higher,

leading to inefficiencies in handling workloads.

AERO AERO-S Spring Broker LB-Chain Monoxide
0

50

100

150

200

250

300

350

400

Av
er

ag
e

TP
S(

Tx
/s

)

Figure 7: Comparison of overall TPS.

5.7 Overall Throughput Analysis
Finally, we assessed the overall throughput of AEROChain in terms

of TPS. Figure 7, which compares the average TPS across different

algorithms, highlights AERO’s performance over the state-of-the-

art algorithm by 31.77%. When compared to AERO-S, AERO shows

a clear improvement, indicating that group migration mechanism

plays a crucial role in enhancing throughput. Spring and Broker

perform less efficiently than AERO, primarily due to their reliance

on less adaptive strategies that struggle with fluctuating transaction

patterns. Their higher CSTX ratios and uneven load balance further

reduce the overall throughput. Monoxide, which has the lowest TPS,

is constrained by its lack of account migration strategies. While its

asynchronous consensus zones allow for efficient CSTX processing,

Monoxide struggles at reducing the CSTX number, leading to lower

throughput in sharding blockchain.

6 Conclusion
We proposed AERO, an attention-based DRL framework designed

for efficient account migration in sharding blockchain networks. By

employing a prefix-based granularity approach to reduce the action

space and integrating attention mechanisms to capture temporal

characteristics, AERO effectively minimizes CSTXs and balances

workload across shards. Our implementation of sharding blockchain

system, AEROChain, demonstrates the feasibility and adherence

to blockchain decentralization principles of the AERO. Extensive

evaluation with real Ethereum data show that AERO outperforms

existing solutions, improving system throughput by 31.77%.

AERO: Enhancing Sharding Blockchain via Deep Reinforcement Learning for Account Migration WWW ’25, April 28–May 2, 2025, Sydney, Australia

References
[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine 34, 6 (2017), 26–38.

[2] Charles-Edmond Bichot and Patrick Siarry. 2013. Graph partitioning. John Wiley

& Sons.

[3] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In

OsDI, Vol. 99. 173–186.
[4] Yilun Chen, Chiyu Dong, Praveen Palanisamy, Priyantha Mudalige, Katharina

Muelling, and John M Dolan. 2019. Attention-based hierarchical deep reinforce-

ment learning for lane change behaviors in autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
0–0.

[5] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards scaling blockchain systems via sharding. In

Proceedings of the 2019 international conference on management of data. 123–140.
[6] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.
[7] Nan He, Song Yang, Fan Li, Stojan Trajanovski, Liehuang Zhu, Yu Wang, and

Xiaoming Fu. 2023. Leveraging deep reinforcement learning with attention

mechanism for virtual network function placement and routing. IEEE Transactions
on Parallel and Distributed Systems 34, 4 (2023), 1186–1201.

[8] S Hochreiter. 1997. Long Short-term Memory. Neural Computation MIT-Press
(1997).

[9] Huawei Huang, Yue Lin, and Zibin Zheng. 2024. Account Migration across

Blockchain Shards using Fine-tuned Lock Mechanism. In IEEE International
Conference on Computer Communications (INFOCOM). Vancouver, Canada, 20–23.
*Corresponding author.

[10] Huawei Huang, Xiaowen Peng, Jianzhou Zhan, Shenyang Zhang, Yue Lin, Zibin

Zheng, and Song Guo. 2022. Brokerchain: A cross-shard blockchain protocol for

account/balance-based state sharding. In IEEE INFOCOM 2022-IEEE Conference
on Computer Communications. IEEE, 1968–1977.

[11] Huawei Huang, Guang Ye, Qinde Chen, Zhaokang Yin, Xiaofei Luo, Jianru Lin,

Taotao Li, Qinglin Yang, and Zibin Zheng. 2023. BlockEmulator: An Emulator

Enabling to Test Blockchain Sharding Protocols. arXiv preprint arXiv:2311.03612
(2023).

[12] Huawei Huang, Yetong Zhao, and Zibin Zheng. 2023. tMPT: Reconfiguration

across Blockchain Shards via Trimmed Merkle Patricia Trie. In 2023 IEEE/ACM
31st International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[13] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam

Chakraborty, Kinal Mehta, and JoÃG, o GM AraÃšjo. 2022. Cleanrl: High-quality

single-file implementations of deep reinforcement learning algorithms. Journal
of Machine Learning Research 23, 274 (2022), 1–18.

[14] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. 591–600.

[15] Andrea Lancichinetti and Santo Fortunato. 2009. Community detection algo-

rithms: a comparative analysis. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics 80, 5 (2009), 056117.

[16] Canlin Li, Huawei Huang, Yetong Zhao, Xiaowen Peng, Ruijie Yang, Zibin Zheng,

and Song Guo. 2022. Achieving scalability and load balance across blockchain

shards for state sharding. In 2022 41st International Symposium on Reliable Dis-
tributed Systems (SRDS). IEEE, 284–294.

[17] Mingzhe Li, Wei Wang, and Jin Zhang. 2023. LB-Chain: Load-balanced and

low-latency blockchain sharding via account migration. IEEE Transactions on
Parallel and Distributed Systems 34, 10 (2023), 2797–2810.

[18] Pengze Li, Mingxuan Song,Mingzhe Xing, Zhen Xiao, QiuyuDing, Shengjie Guan,

and Jieyi Long. 2024. SPRING: Improving the Throughput of Sharding Blockchain

via Deep Reinforcement Learning Based State Placement. In Proceedings of the
ACM on Web Conference 2024. 2836–2846.

[19] Yijing Lin, Zhipeng Gao, Hongyang Du, Jiawen Kang, Dusit Niyato, Qian Wang,

Jingqing Ruan, and Shaohua Wan. 2023. DRL-based adaptive sharding for

blockchain-based federated learning. IEEE Transactions on Communications
(2023).

[20] Xinmeng Liu, Haomeng Xie, Zheng Yan, and Xueqin Liang. 2023. A survey on

blockchain sharding. ISA transactions 141 (2023), 30–43.
[21] Yizhong Liu, Jianwei Liu, Yiming Hei, Wei Tan, and Qianhong Wu. 2020. A

secure shard reconfiguration protocol for sharding blockchains without a ran-

domness. In 2020 IEEE 19th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). IEEE, 1012–1019.

[22] Yizhong Liu, Jianwei Liu, Marcos Antonio Vaz Salles, Zongyang Zhang, Tong

Li, Bin Hu, Fritz Henglein, and Rongxing Lu. 2022. Building blocks of sharding

blockchain systems: Concepts, approaches, and open problems. Computer Science
Review 46 (2022), 100513.

[23] Haoxiang Luo, Gang Sun, Hongfang Yu, Bo Lei, and Mohsen Guizani. 2024. An

Energy-Efficient Wireless Blockchain Sharding Scheme for PBFT Consensus.

IEEE Transactions on Network Science and Engineering (2024).

[24] Timothy Rupprecht and Yanzhi Wang. 2022. A survey for deep reinforcement

learning in markovian cyber–physical systems: Common problems and solutions.

Neural Networks 153 (2022), 13–36.
[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[26] A Secure. 2018. The zilliqa project: A secure, scalable blockchain platform. (2018).

[27] Richard S Sutton, Andrew G Barto, et al. 1999. Reinforcement learning. Journal
of Cognitive Neuroscience 11, 1 (1999), 126–134.

[28] Deepal Tennakoon and Vincent Gramoli. 2022. Dynamic blockchain sharding. In

5th International Symposium on Foundations and Applications of Blockchain 2022
(FAB 2022). Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[29] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out blockchains with

asynchronous consensus zones. In 16th USENIX symposium on networked systems
design and implementation (NSDI 19). 95–112.

[30] E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. 2022. Decentralized Society:

Finding Web3’s Soul. Available at SSRN 4105763 (2022).
[31] Feng Xu, Zitong Zhao, Lei Liu, Xiaoming Yuan, and Qingqi Pei. 2024. Scalable

Blockchain-empowered Distributed Computation Offloading: A Deep Reinforce-

ment Learning Approach. In IEEE INFOCOM 2024-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 1–6.

[32] Shijing Yuan, Jie Li, Jinghao Liang, Yuxuan Zhu, Xiang Yu, Jianping Chen, and

ChentaoWu. 2021. Sharding for blockchain based mobile edge computing system:

A deep reinforcement learning approach. In 2021 IEEE Global Communications
Conference (GLOBECOM). IEEE, 1–6.

[33] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain:

Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security. 931–948.

[34] Jianting Zhang, Zicong Hong, Xiaoyu Qiu, Yufeng Zhan, Song Guo, and Wuhui

Chen. 2020. Skychain: A deep reinforcement learning-empowered dynamic

blockchain sharding system. In Proceedings of the 49th International Conference
on Parallel Processing. 1–11.

[35] Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hong-Ning Dai. 2020. XBlock-ETH:

Extracting and exploring blockchain data from Ethereum. IEEE Open J. Comput.
Soc. 1 (May 2020), 95–106. https://doi.org/10.1109/OJCS.2020.2990458

[36] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. 2020. Solutions to

scalability of blockchain: A survey. Ieee Access 8 (2020), 16440–16455.

A Safety and Liveness of AERO
The account migration process emphasizes decentralization and

security, leveraging the byzantine fault tolerance guaranteed by the

PBFT protocol. Additionally, in the case of a leader failure or other

disruptions, the view-change phase is handled in accordance with

PBFT’s specifications, ensuring that a new leader is selected and the

process can continue without compromising the safety and liveness

of the network. Through the cooperation of various components,

AEROChain realizes a decentralized and secure account migration

process, ensuring consistency and integrity across the network.

This section analyses the safety and liveness properties specific to

generating and executing the account migration plan.

Lemma 1. Assuming that malicious nodes constitute less than one-
third of all consensus nodes within the logical shard, the account
migration plan can ensure safety.

Proof. In AERO, all consensus nodes are required to serve as

consensus nodes for both the logical and physical shards. We as-

sume that malicious nodes constitute less than one-third of the

nodes in each shard. Consequently, the number of malicious nodes

within the logical shard remains under one-third of the total.

The account migration plan is generated through a consensus

phase, ensuring that the honest nodes can accept no malicious or

flawed migration plan. Therefore, AERO can guarantee safety if

fewer than one-third of the consensus nodes are malicious. □

Lemma 2. Assuming that malicious nodes constitute less than one-
third of all consensus nodes within the logical shard, the account
migration plan can ensure liveness.

https://doi.org/10.1109/OJCS.2020.2990458

WWW ’25, April 28–May 2, 2025, Sydney, Australia Anonymous authors

Proof. In the AERO design, we operate under the assumption

of a partially synchronous network model, where message delays

are bounded by an unknown time parameter, denoted as 𝛿 . This

model implies that while network delays may be unpredictable, all

messages are guaranteed to be delivered within a finite, uncertain

time frame. Under these conditions, themigration plan generated by

the logical shard will eventually be transmitted to the target shard.

Once received, the account migration process will be completed,

ensuring both liveness and eventual consistency in the system. □

B Hyper-parameters Settings

Table 1: Hyperparameters and their values

Hyperparameter Value
Discount factor, 𝛾 0.99

Numbers of heads in transformer, ℎ 6

Batch size 128

Mini batch size 4

Learning rate 1e-5

Number of neurons in each layer 256

C Neural Network Design
Incorporating attention mechanisms into DRL models can help

the agent gain a deeper understanding of the global state of the

shards, enabling it to capture transaction patterns and relationships

between accounts [4, 7]. AERO generates the queries, keys, and

values by utilizing the a and s. Specifically, the query vector Q is

derived from s, while the key and value matrices, K and V, are
obtained from the encoded action history Henc. It is represented as

follows:

Q𝑖 = W𝑞𝑖 a,
K𝑖 = W𝑘𝑖 s,
V𝑖 = W𝑣𝑖 s,

(14)

where W𝑞𝑖 ∈ R𝑑ℎ×𝑑𝑠 is the query projection matrix, W𝑘𝑖 ,W𝑣𝑖 ∈
R𝑑ℎ×𝑑model

are the key and value projection matrices, and Henc ∈
R𝐿×𝑑model

is the encoded representation of the action history, with

𝐿 being the sequence length after encoding. Here, 𝑑ℎ denotes the

dimension of the hidden layer in the attention mechanism. By using

these attention weights to the value vectors, AERO aggregates from

the action history and state to form a context vector h:

h𝑖 = softmax

(
Q𝑖K⊤

𝑖√︁
𝑑ℎ

)
V𝑖 , (15)

h = [h1, h2, . . . , hℎ]W𝑂 , (16)

where W𝑂 ∈ Rℎ ·𝑑ℎ×𝑑model
is the output projection matrix that

combines the outputs from all attention heads into a single context

vector h. h encapsulates the most pertinent information needed to

make informed migration decisions. The decoder then generates

variable-length action sequences in an autoregressive manner. At

each decoding step 𝑘 , the model produces an action using:

a(𝑘)𝑡 = Wouth(𝑘) + bout, (17)

whereWout ∈ R3×𝑑model
is the action projection matrix, bout ∈ R3

is the bias term, h(𝑘) is the context vector h at step 𝑘 , and a(𝑘)𝑡 ∈ R3

is the predicted action at step 𝑘 . The decoder continues to generate

actions until an end-of-sequence token is produced or a maximum

sequence length is reached.

D Full Shard Transaction Distriction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Receiver Shard

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Sum

Se
nd

er
 S

ha
rd

15602 2578 1308 823 970 1026 2921 2154 1464 3844 1314 1816 806 4170 2378 6842

6032 42623 2621 1402 1513 1862 4325 3141 3114 9945 1986 3459 1220 4208 4015 10990

4742 3200 16417 1038 1190 1445 2573 2712 1770 4579 1392 2086 933 3333 2875 8801

4404 3286 1365 13590 831 1070 2576 2194 1630 4521 1220 1826 782 2954 2861 6979

3850 3142 1123 788 10944 1104 2500 1990 1525 3954 1248 1747 755 3045 2375 6794

4889 4113 2111 1079 1120 16460 2979 2624 2158 5033 1502 2140 860 3526 3425 7621

4672 4145 1617 1010 1431 1659 27365 2935 2116 5337 1520 2462 965 3668 3632 8922

4051 3280 1382 875 869 1236 3912 16091 1719 4683 1657 2066 838 2763 2998 7838

4873 3754 1652 1522 1115 1629 3677 2524 20656 4738 1498 2496 997 4245 3285 9032

6006 8322 2181 1518 1271 1806 4573 3238 2517 31560 1822 3227 1106 5322 3684 9934

4203 5354 1406 1143 1069 1210 3336 2641 1981 4910 17587 2519 877 4147 2845 7564

3814 3901 1256 890 1125 1219 3463 2240 1548 4922 1609 22264 836 3376 2702 7646

3486 2967 1181 808 774 957 2688 1790 1525 3866 1092 1719 9505 2862 2508 6946

5400 3189 1351 1030 926 1257 2952 2076 1934 4458 1341 2566 928 20250 2971 8042

3930 3329 1341 903 882 1318 2961 2415 1648 4567 1312 2157 838 3727 17508 8167

4363 3066 1533 934 913 1084 2970 2164 1588 4654 1276 2275 750 3382 2811 19131

84317 100249 39845 29353 26943 36342 75771 52929 48893 105571 39376 56825 22996 74978 62873 141249

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Tr
an

sa
ct

io
n

Co
un

t

Figure 8: The transaction distribution of AERO.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Receiver Shard

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Sum

Se
nd

er
 S

ha
rd

24967 4180 3974 5809 1602 3665 1194 956 1583 2243 1320 3429 2499 1036 3927 1065

1198 16073 4096 6825 1506 7381 1353 968 1675 2253 1549 4959 2670 1050 4313 1209

909 4263 17045 5606 1789 3845 2938 1052 1548 2544 1633 4059 2857 1217 4149 1150

1677 6465 6066 39273 2719 6718 2549 1644 2533 3786 2318 5298 4530 1847 15967 1906

792 3415 3885 5249 13965 3049 1095 705 1468 1896 1307 3012 2088 865 3721 916

973 6996 4288 6615 1606 17342 1526 1066 1943 2257 1603 4132 2872 1396 5038 1088

880 3786 5388 6020 1596 3897 14660 868 1980 2103 1445 3506 2794 1228 5061 1213

831 3457 3807 5219 1431 3447 1316 10699 1622 2041 1346 3317 3412 1241 4388 937

962 3386 3719 6495 1519 3416 1527 1164 17962 2095 1512 3343 2813 1138 5318 1176

1421 4119 4528 6080 1497 3986 1385 925 1693 18090 2430 3566 2717 1178 4480 1162

1057 4055 4145 6173 1512 3837 1319 1154 1622 3451 17487 3482 2868 1154 4443 1078

928 4853 3749 5441 1440 3403 1265 863 1235 2336 1482 13185 2078 2016 4145 1106

1025 3923 3647 6191 1393 3847 1659 2271 2082 2033 1491 3259 16853 980 4131 1012

871 3789 3755 5169 1585 3503 1386 913 1360 1948 1331 4299 2201 12480 3771 1103

2012 6222 7853 19513 2794 6772 3367 2679 3081 4146 2740 6883 5518 2300 44327 2135

828 3672 4182 5056 1545 3574 1203 825 1389 2070 1571 3398 2681 1076 3832 11309

41331 82654 84127 140734 39499 81682 39742 28752 44776 55292 42565 73127 61451 32202 121011 29565

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Tr
an

sa
ct

io
n

Co
un

t

Figure 9: The transaction distribution of Spring.

AERO: Enhancing Sharding Blockchain via Deep Reinforcement Learning for Account Migration WWW ’25, April 28–May 2, 2025, Sydney, Australia

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Receiver Shard

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Sum

Se
nd

er
 S

ha
rd

3069 2333 2874 2160 2107 3530 1994 4885 1970 5662 4690 2232 2202 5978 2092 8487

2984 2672 2830 3272 1940 3643 2008 4785 3207 6575 4701 2476 2571 5854 2195 7541

3043 2348 2943 2249 1838 3638 1997 5439 1889 5486 5068 2058 2138 5745 3308 7264

2876 3196 2548 2592 1848 3287 1938 5124 1866 5376 4699 1814 2133 6185 2101 7278

2917 2110 2422 2136 2541 3526 1777 4625 1675 5372 4986 1791 1848 5773 2288 8727

3231 2986 3117 2577 2366 4187 2414 5196 2163 6290 5065 2246 2536 6473 2488 8146

2939 2145 2530 2248 2029 3645 11860 4643 2006 5566 4650 1933 2191 5731 2297 7616

3274 2392 3360 2509 1994 3608 2088 5277 1930 5710 4835 2074 2153 5783 2231 8142

2809 3556 2814 2415 2102 3583 1955 4685 2936 6023 5407 2051 2700 6281 2254 7595

4995 5244 4120 3920 3397 5707 3762 6533 4033 8356 6242 5343 3600 7716 3811 17645

3014 2265 3283 2479 2614 3572 2012 4950 2381 5555 5758 2051 2027 7936 2231 7947

3054 2508 2877 2372 1796 3455 1968 4600 1936 7013 4297 2261 1945 6101 2328 7504

2860 2274 2520 2054 1908 3389 1914 4914 2262 5275 4401 2013 2354 5952 1964 6932

2931 2219 2824 2502 1934 4471 1870 4640 2092 5700 6178 2086 2462 6477 1966 8940

3092 2525 3888 2561 2279 3891 2375 5154 2131 5565 4775 1977 2229 6382 2422 8155

5597 3968 4199 3835 4932 5847 3581 6674 3402 13964 6893 3609 3681 8470 4005 10279

52685 44741 49149 41881 37625 62979 45513 82124 37879 103488 82645 38015 38770 102837 39981 138198

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Tr
an

sa
ct

io
n

Co
un

t

Figure 10: The transaction distribution of Monoxide.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Sharding Blockchain with Deep Reinforcement Learning Approaches
	2.2 Account Migration

	3 AEROChain Design
	3.1 Basic System Design
	3.2 Architecture of AEROChain
	3.3 Workflow of AEROChain
	3.4 Migration Transactions

	4 AERO Design
	4.1 State Design
	4.2 Action Representation
	4.3 Reward Function
	4.4 Transition Dynamics

	5 Evaluation
	5.1 Experimental Settings
	5.2 Baselines
	5.3 Overhead Analysis
	5.4 Cross-Shard Transaction Ratio
	5.5 Shard Load Variance
	5.6 Shard Transaction Distribution
	5.7 Overall Throughput Analysis

	6 Conclusion
	References
	A Safety and Liveness of AERO
	B Hyper-parameters Settings
	C Neural Network Design
	D Full Shard Transaction Distriction

