
Dual-Resolution Fusion Modeling for Unsupervised
Cross-Resolution Person Re-Identification

Zhiqi Pang
Faculty of Computing

Harbin Institute of Technology
Harbin, China

22b903055@stu.hit.edu.cn

Lingling Zhao
Faculty of Computing

Harbin Institute of Technology
Harbin, China

zhaoll@hit.edu.cn

Chunyu Wang∗
Faculty of Computing

Harbin Institute of Technology
Harbin, China

chunyu@hit.edu.cn

Abstract
Cross-resolution person re-identification (CR-ReID) aims to match
images of the same person with different resolutions in different
scenarios. Existing CR-ReID methods achieve promising perfor-
mance by relying on large-scale manually annotated identity labels.
However, acquiring manual labels requires considerable human
effort, greatly limiting the flexibility of existing CR-ReID methods.
To address this issue, we propose a dual-resolution fusion modeling
(DRFM) framework to tackle the CR-ReID problem in an unsuper-
vised manner. Firstly, we design a cross-resolution pseudo-label
generation (CPG) method, which initially clusters high-resolution
images and then obtains reliable identity pseudo-labels by fusing
class vectors in both resolution spaces. Subsequently, we develop a
cross-resolution feature fusion (CRFF) module to fuse features from
both high-resolution and low-resolution spaces. The fusion features
have the potential to serve as a new form of resolution-invariant
features. Finally, we introduce cross-resolution contrastive loss
and probability sharpening loss in DRFM to facilitate resolution-
invariant learning and effectively utilize ambiguous samples for
optimization. Experimental results on multiple CR-ReID datasets
demonstrate that the proposed DRFM not only outperforms exist-
ing unsupervised methods but also approaches the performance of
early supervised methods.

CCS Concepts
• Information systems→ Information retrieval.
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1 Introduction
Person re-identification (ReID) [44, 45, 53] targets matching images
of individuals captured by multiple cameras with the same identity.
Benefiting from deep models [37, 42] and optimization methods
[20, 36], existing ReIDmethods have achieved exciting performance
in simple scenarios. However, their performance can be influenced
by various factors in complex scenarios [4, 41, 52]. For instance,
due to the impact of camera specifications and shooting distances,
there is often a significant disparity in the underlying resolution
(clarity) among different images. Matching low-resolution (LR) im-
ages directly with high-resolution (HR) images can lead to perfor-
mance degradation. To address this issue, some researchers have
turned their attention to cross-resolution person re-identification
(CR-ReID) [41, 52]. Existing CR-ReID methods [16, 48] typically
begin by utilizing super-resolution (SR) models [23, 50] to enhance
the underlying resolution of LR images, thereby obtaining synthetic
HR (SHR) images. Subsequently, matching is performed between
SHR and HR images.

While existing CR-ReID methods have achieved promising per-
formance, they still rely on manually annotated identity labels
[41, 52]. However, annotating datasets for image retrieval tasks is
a time-consuming process [33], and currently, there are no unsu-
pervised CR-ReID methods available. Therefore, in this paper, we
attempt to address the CR-ReID problem in an unsupervised man-
ner. In this new scenario, we face two key challenges: (1) How to
obtain reliable identity pseudo-labels. Unsupervised general ReID
methods [27, 38] often use clustering algorithms [11] to generate
pseudo-labels. However, in CR-ReID, due to significant appearance
differences between LR and HR images, directly applying clustering
algorithms between them can result in a large number of noisy la-
bels. Noisy labels canmisleadmodel optimization and hinder perfor-
mance improvement [15, 32]. (2) How to obtain resolution-invariant
features. On one hand, SHR images generated by SR models [23, 50]
may contain artifacts, which could alter the original identity fea-
tures. Therefore, using SHR features as resolution-invariant features
for image matching is suboptimal. On the other hand, unsupervised
methods often struggle to incorporate unlabeled ambiguous sam-
ples into the optimization process [15, 32], leading to lower sample
utilization compared to supervised methods. This further increases
the difficulty of resolution-invariant feature learning. For smooth
and concise description, in the subsequent sections, we will also
refer to the person images interchangeably as samples, based on
which term fits best in the context.

In this paper, we propose a novel unsupervised CR-ReID method:
dual-resolution fusion modeling (DRFM). As illustrated in Figure 1,
on one hand, SHR images contain clearer details compared to LR
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SHR images:

LR explanations:

SHR explanations:

LR images:

Figure 1: Examples of LR images, SHR images, LR explana-
tions, and SHR explanations. Artifacts in SHR images are
highlighted with red circles.

images but inevitably include some artifacts. On the other hand,
the model exhibits significant differences in visual explanations
[35] between LR and SHR images. Therefore, the complementary
nature between SHR and LR images holds the potential to improve
the performance of CR-ReID [52]. Unlike supervised CR-ReID [52],
the unsupervised CR-ReID problem we face is more complex and
requires deeper fusion. Therefore, DRFM fuses the semantic in-
formation of LR and SHR images at both the class and feature
levels, thereby simultaneously addressing the aforementioned two
challenges. To obtain reliable pseudo-labels, we introduce the cross-
resolution pseudo-label generation (CPG) method for class-level
fusion. CPG initially clusters HR images and passes pseudo-labels
to synthetic LR (SLR) images. Then, it estimates class vectors for
SHR and LR images based on the pseudo-labels from HR and SLR
images, respectively. Finally, it fuses the class vectors from both
spaces to assign pseudo-labels to LR and SHR images. To obtain
resolution-invariant features, we first design the cross-resolution
feature fusion (CRFF) module in DRFM. The fusion of features
from two different spaces has the potential to serve as a novel
form of resolution-invariant feature. Subsequently, we introduce
the cross-resolution contrastive loss and probability sharpening
loss to optimize the entire framework. The former aims to facili-
tate resolution-invariant feature learning, while the latter aims to
further enhance model performance by fully utilizing unlabeled
ambiguous samples.

The main contributions are summarized as follows:

• Wepropose a dual-resolution fusionmodeling (DRFM) frame-
work, which integrates semantic information at both the
class and feature levels to address the unsupervised CR-ReID
problem. To the best of our knowledge, this is the first at-
tempt in the field of unsupervised CR-ReID.
• We design a cross-resolution pseudo-label generation (CPG)
method, which acquires reliable pseudo-labels by fusing class
vectors of LR and SHR images, instead of directly applying
clustering algorithms between HR and LR images.

• We develop a cross-resolution feature fusion (CRFF) mod-
ule to obtain resolution-invariant features. Additionally, we
introduce a cross-resolution contrastive loss and probabil-
ity sharpening loss to facilitate resolution-invariant feature
learning.
• Extensive experimental results on multiple datasets demon-
strate that our method not only surpasses existing unsu-
pervised methods but also approaches the performance of
certain supervised methods.

2 Related Work
2.1 Unsupervised general ReID
Existing unsupervised general ReIDmethods can be roughly divided
into unsupervised domain adaptation (UDA) methods [21, 26, 31]
and fully unsupervised (FU) methods [1, 30, 46]. The former relies
on labeled source domain data and unlabeled target domain data
for training, aiming to improve the recognition performance on the
target domain. The latter no longer rely on labeled source domain
data, making them more flexible and challenging. FU method typi-
cally iterates between sample clustering and model optimization.
For instance, in earlier approaches, BUC [30] utilizes a hierarchical
clustering algorithm to generate pseudo-labels, followed by the
introduction of softmax classification loss to optimize the model.
Building upon BUC [30], HCT [47] incorporates batch hard triplet
loss [20] to address hard samples.

Subsequent research often focuses on addressing camera gap
[34, 43] and noisy labels [7, 49]. For instance, during the clustering
stage, IICS [43] amplifies inter-camera similarity by concatenat-
ing scores of the same image across different classifiers. CIFL [34]
achieves a similar objective by introducing the concept of ensemble
learning. In the optimization stage, both ICE [1] and O2CAP [39]
introduce optimization methods tailored to camera gap to align
distributions across cameras. To address noisy labels, RLCC [49]
refines pseudo-labels using the concept of temporal ensembling.
Both PPLR [7] and SECRET [18] leverage the complementary re-
lationship between global and local features to eliminate noisy
labels. RMCL [32] evaluates the reliability of pseudo-labels from
the perspectives of certainty and stability, assigning lower weights
to noisy labels. To mitigate the impact of noisy labels, Purification
[25] initially trains a teacher model from the original pseudo-labels.
The teacher model is then employed to guide the learning of a
student model. The student model can converge rapidly under the
supervision of the teacher model, thereby reducing the interference
of noisy labels. While the aforementioned methods have shown
promising performance in simple scenarios, they often face signifi-
cant performance degradation in cross-resolution settings.

2.2 Cross-resolution ReID
CR-ReID aims to address the issue of resolution mismatch between
images [6, 22]. Existing CR-ReID methods typically employ SR
models [23, 50] to enhance the LR images’ underlying resolution,
thereby restoring missing fine-grained information. For instance,
SING [22] performs joint training by connecting an SR model and
a ReID model, facilitating representation learning while generating
high-resolution images. PRI [16] incorporates a scale predictor
module designed for the SR model, thereby providing appropriate
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scales for the super-resolution process. INTACT [6] utilizes the
underlying association knowledge between SR and ReID as an
additional learning constraint, thereby enhancing the compatibility
between SR and ReID models. While SR models have the potential
to restore missing fine-grained information in LR images, they
inevitably introduce artifacts. These artifacts often interfere with
the extraction of identity-related features.

In addition to utilizing SR models for cross-resolution alignment,
Chen et al. [3] introduce the concept of adversarial training [13]
during the representation learning process, aiming to align the
feature distributions of LR and HR images. Similarly, CAD-Net
[29] also incorporates adversarial training to obtain resolution-
invariant features. However, since HR images contain fine-grained
discriminative information not present in LR images, directly align-
ing the feature distributions of HR and LR images often results in
the loss of such information. To address this issue, LRAR [41] em-
beds resolution information into features to obtain varying-length
representations. The HR features are composed of shared compo-
nents and HR-specific components, thereby preserving fine-grained
information exclusive to HR while learning resolution-invariant
feature representations. While the aforementioned methods have
shown promising performance, they all rely on manually anno-
tated identity labels. In contrast to these approaches, we propose
an unsupervised CR-ReID method with the aim of reducing the
dependence on manually annotated labels.

3 Proposed Framework
3.1 Overview
During the training phase, we are provided with a set of HR images
{𝑥ℎ

𝑖
}𝑁1
𝑖=1 and a set of LR images {𝑥𝑙

𝑖
}𝑁2
𝑖=1, where 𝑁1 and 𝑁2 represent

the numbers of HR and LR images, respectively. Our objective is to
optimize the CR-ReIDmodel without accessing manually annotated
identity labels. During the testing phase, relying on the feature
extraction capability of the model, we search for images in the HR
image gallery that share the same identity as a given LR query
image based on feature similarity.

To achieve the aforementioned objectives, we propose the dual-
resolution fusionmodeling (DRFM) framework. As illustrated in Fig-
ure 2, in the preprocessing (Preproc) stage, DRFM performs down-
sampling (DS) on {𝑥ℎ

𝑖
}𝑁1
𝑖=1 and super-resolution (SR) on {𝑥𝑙

𝑖
}𝑁2
𝑖=1 to

generate SLR image set {𝑥𝑠𝑙
𝑖
}𝑁1
𝑖=1 and SHR image set {𝑥𝑠ℎ

𝑖
}𝑁2
𝑖=1, re-

spectively. In the optimization stage, DRFM initially employs the HR
encoder 𝐸ℎ to extract features from {𝑥ℎ

𝑖
}𝑁1
𝑖=1 and {𝑥

𝑠ℎ
𝑖
}𝑁2
𝑖=1, obtain-

ing HR features {𝑓 ℎ
𝑖
}𝑁1
𝑖=1 and SHR features {𝑓 𝑠ℎ

𝑖
}𝑁2
𝑖=1. It then utilizes

the LR encoder 𝐸𝑙 to extract features from {𝑥𝑙
𝑖
}𝑁2
𝑖=1 and {𝑥𝑠𝑙

𝑖
}𝑁1
𝑖=1,

resulting in LR features {𝑓 𝑙
𝑖
}𝑁2
𝑖=1 and SLR features {𝑓 𝑠𝑙

𝑖
}𝑁1
𝑖=1. The

predictor 𝑃𝑟𝑒𝑑 is used to map SHR features. Subsequently, DRFM
utilizes the cross-resolution pseudo-label generation (CPG) to ob-
tain pseudo-labels, and employs the cross-resolution feature fusion
(CRFF) module to generate fusion features {𝑓 ℎ𝑠𝑙

𝑖
}𝑁1
𝑖=1 and {𝑓

𝑙𝑠ℎ
𝑖
}𝑁2
𝑖=1.

It utilizes memory 𝑀ℎℎ = {𝑣ℎℎ
𝑖
}𝑁
𝑖=1, memory 𝑀𝑙𝑙 = {𝑣𝑙𝑙

𝑖
}𝑁
𝑖=1, and

memory 𝑀𝑓 𝑢 = {𝑣 𝑓 𝑢
𝑖
}𝑁
𝑖=1 to store features with pseudo-labels in

the HR space, LR space, and fusion space, respectively. Here, 𝑁
(𝑁 < 𝑁1+𝑁2) represents the number of features with pseudo-labels.

Table 1: Key notations used in the paper.

Notation Meaning
𝑓 ℎ
𝑖

the feature of HR image 𝑥ℎ
𝑖

𝑓 𝑙
𝑖

the feature of LR image 𝑥𝑙
𝑖

𝑓 𝑠ℎ
𝑖

the feature of SHR image 𝑥𝑠ℎ
𝑖

𝑓 𝑠𝑙
𝑖

the feature of SLR image 𝑥𝑠𝑙
𝑖

𝑓 ℎ𝑠𝑙
𝑖

the fusion feature of 𝑓 ℎ
𝑖
and 𝑓 𝑠𝑙

𝑖

𝑓 𝑙𝑠ℎ
𝑖

the fusion feature of 𝑓 𝑙
𝑖
and 𝑓 𝑠ℎ

𝑖

𝑓 ℎℎ
𝑖

the collective term for 𝑓 ℎ
𝑖
and 𝑓 𝑠ℎ

𝑖
with pseudo-labels

𝑓 𝑙𝑙
𝑖

the collective term for 𝑓 𝑙
𝑖
and 𝑓 𝑠𝑙

𝑖
with pseudo-labels

𝑓
𝑓 𝑢

𝑖
the collective term for 𝑓 ℎ𝑠𝑙

𝑖
and 𝑓 𝑙𝑠ℎ

𝑖
with pseudo-labels

𝑣ℎ𝑠𝑙
𝑖

the offline 𝑓 ℎ𝑠𝑙
𝑖

stored in𝑀𝑓 𝑢

𝑣𝑙𝑠ℎ
𝑖

the offline 𝑓 𝑙𝑠ℎ
𝑖

stored in𝑀𝑓 𝑢

𝑣
𝑓 𝑢

𝑖
the collective term for 𝑣ℎ𝑠𝑙

𝑖
and 𝑣𝑙𝑠ℎ

𝑖

Finally, DRFM optimizes using cross-resolution contrastive loss 𝐿𝑐𝑐 ,
probability sharpening loss 𝐿𝑝𝑠 , and identity consistency loss 𝐿𝑖𝑐 .

In the optimization stage, we update the memory separately:

𝑣ℎℎ𝑖 ← 𝛼𝑣ℎℎ𝑖 + (1 − 𝛼) 𝑓
ℎℎ
𝑖 , (1)

𝑣𝑙𝑙𝑖 ← 𝛼𝑣𝑙𝑙𝑖 + (1 − 𝛼) 𝑓
𝑙𝑙
𝑖 , (2)

𝑣
𝑓 𝑢

𝑖
← 𝛼𝑣

𝑓 𝑢

𝑖
+ (1 − 𝛼) 𝑓 𝑓 𝑢

𝑖
, (3)

where 𝑓 ℎℎ
𝑖

, 𝑓 𝑙𝑙
𝑖
, and 𝑓 𝑓 𝑢

𝑖
represent features with pseudo-labels in the

HR space, LR space, and fusion space, respectively, which are output
by the encoder or CRFF. {𝑓 ℎℎ

𝑖
}𝑁
𝑖=1 ⊆ {𝑓

ℎ
𝑖
}𝑁1
𝑖=1∪{𝑓

𝑠ℎ
𝑖
}𝑁2
𝑖=1, {𝑓

𝑙𝑙
𝑖
}𝑁
𝑖=1 ⊆

{𝑓 𝑙
𝑖
}𝑁2
𝑖=1 ∪ {𝑓

𝑠𝑙
𝑖
}𝑁1
𝑖=1, {𝑓

𝑓 𝑢

𝑖
}𝑁
𝑖=1 ⊆ {𝑓

ℎ𝑠𝑙
𝑖
}𝑁1
𝑖=1 ∪ {𝑓

𝑙𝑠ℎ
𝑖
}𝑁2
𝑖=1, and 𝛼 is the

update rate. As shown in Table 1, for ease of understanding, we
have provided a summary and explanation of the key notations
used in this paper.

3.2 Cross-resolution pseudo-label generation
In cross-resolution scenarios, the resolution disparity between LR
and HR images significantly increases feature discrepancies. Di-
rectly applying clustering algorithms between them can result in
a large number of noisy labels. Intuitively, it seems reasonable to
reduce the resolution disparity between images before applying
clustering algorithms. However, this may not be straightforward.
On one hand, down-sampling HR images can mitigate resolution
disparity but results in the loss of fine-grained discriminative in-
formation. On the other hand, super-resolution generation for LR
images can also reduce resolution disparity but inevitably intro-
duces artifacts, which may alter the original identity features.

To address the aforementioned issues, we have designed the
cross-resolution pseudo-label generation (CPG) method, which
aims to integrate semantic information from both HR and LR spaces
to generate reliable pseudo-labels. Specifically, since HR images
contain unique and reliable fine-grained discriminative informa-
tion, CPG initially performs clustering on HR images to generate
pseudo-labels. For any 𝑥𝑠𝑙

𝑖
, CPG assigns it the same pseudo-label

as its corresponding 𝑥ℎ
𝑖
. Subsequently, CPG estimates class vectors
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Figure 2: The overview of our proposed DRFM framework. DRFM comprises four trainable modules: the HR encoder 𝐸ℎ , LR
encoder 𝐸𝑙 , predictor 𝑃𝑟𝑒𝑑 , and CRFF module. Memory𝑀ℎℎ , memory𝑀𝑙𝑙 , and memory𝑀𝑓 𝑢 store features with pseudo-labels
in the HR space, LR space, and fusion space, respectively. 𝐿𝑐𝑐 , 𝐿𝑝𝑠 , and 𝐿𝑖𝑐 are loss functions. In CPG, the connecting lines
between features indicate that the connected features share the same pseudo-label. The black connecting lines are generated by
clustering algorithm, while the red connecting lines are generated by the fusion of class vectors.

for SHR and LR images separately in both HR and LR spaces. For
example, in LR space, the class vector of LR image 𝑥𝑙

𝑖
is defined as:

𝑠𝑙𝑖 = Softmax(𝑓 𝑙𝑖 ·𝐶
𝑇
𝑠𝑙
/𝜏𝑙 ), (4)

where 𝑓 𝑙
𝑖
represents the feature extracted by encoder 𝐸𝑙 from 𝑥𝑙

𝑖
, 𝜏𝑙

is the temperature hyperparameter, and𝐶𝑠𝑙 is the matrix composed
of SLR centroids. For example, the 𝑗-th SLR centroid 𝑐𝑠𝑙

𝑗
in 𝐶𝑠𝑙 is

defined as:

𝑐𝑠𝑙𝑗 =
1
𝑛𝑠𝑙
𝑗

𝑛𝑠𝑙
𝑗∑︁

𝑖=1
𝑓 𝑠𝑙𝑖 , (5)

where 𝑓 𝑠𝑙
𝑖

represents the feature extracted by encoder 𝐸𝑙 from 𝑥𝑠𝑙
𝑖
,

and 𝑛𝑠𝑙
𝑗
is the number of SLR features in the 𝑗-th cluster. Similarly,

the class vector of SHR image 𝑥𝑠ℎ
𝑖

is defined as:

𝑠𝑠ℎ𝑖 = Softmax(𝑓 𝑠ℎ𝑖 ·𝐶
𝑇
ℎ
/𝜏ℎ), (6)

where 𝑓 𝑠ℎ
𝑖

represents the feature extracted by encoder 𝐸ℎ from
𝑥𝑠ℎ
𝑖
, 𝜏ℎ is the temperature hyperparameter, and 𝐶ℎ is the matrix

composed of HR centroids. For example, the 𝑗-th HR centroid 𝑐ℎ
𝑗
in

𝐶ℎ is defined as:

𝑐ℎ𝑗 =
1
𝑛ℎ
𝑗

𝑛ℎ
𝑗∑︁

𝑖=1
𝑓 ℎ𝑖 , (7)

where 𝑓 ℎ
𝑖
represents the feature extracted by encoder 𝐸ℎ from 𝑥ℎ

𝑖
,

and 𝑛ℎ
𝑗
is the number of HR features in the 𝑗-th cluster. As 𝑥𝑙

𝑖
and

𝑥𝑠ℎ
𝑖

share the same identity information, we calculate the fused

class vectors for them:

𝑠𝑙𝑠ℎ𝑖 =
𝑠𝑙
𝑖
⊙ 𝑠𝑠ℎ

𝑖

| |𝑠𝑙
𝑖
⊙ 𝑠𝑠ℎ

𝑖
| |1

, (8)

where | | · | |1 represents ℓ1−norm, and ⊙ denotes the Hadamard
product. Subsequently, we focus on the maximum term max(𝑠𝑙𝑠ℎ

𝑖
)

within 𝑠𝑙𝑠ℎ
𝑖

. When max(𝑠𝑙𝑠ℎ
𝑖
) is relatively large, it indicates that 𝑠𝑙

𝑖

and 𝑠𝑠ℎ
𝑖

both exhibit high probability values for a certain class. The
model typically has high confidence in the class corresponding to
max(𝑠𝑙𝑠ℎ

𝑖
), meaning that samples 𝑥𝑙

𝑖
and 𝑥𝑠ℎ

𝑖
are high-confidence

samples for the model. Conversely, when max(𝑠𝑙𝑠ℎ
𝑖
) is small, it

suggests that 𝑠𝑙
𝑖
and 𝑠𝑠ℎ

𝑖
show high probability values for different

classes, indicating that samples 𝑥𝑙
𝑖
and 𝑥𝑠ℎ

𝑖
are ambiguous samples

for the model. Therefore, based on max(𝑠𝑙𝑠ℎ
𝑖
), we independently

sort SHR images and LR images in descending order and assign
pseudo-labels corresponding to max(𝑠𝑙𝑠ℎ

𝑖
) to images in the top 𝑇

proportion of each sequence. Here, 𝑇 is defined as:

𝑇=
𝑁𝑐
1

𝑁1
· 𝑡, (9)

where 𝑁𝑐
1 represents the number of HR images assigned pseudo-

labels by the clustering algorithm in the current stage, and 𝑡 is the
proportional hyperparameter. We consider images with the same
pseudo-labels in each resolution space as belonging to the same
cluster.

The above process reveals that CPG possesses dual advantages.
On one hand, CPG achieves semantic complementarity by fusing
class vectors from both spaces, thereby obtaining reliable pseudo-
labels. On the other hand, CPG provides abundant cross-resolution
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Figure 3: Illustration of the cross-resolution feature fusion
module.

positive pairs for model optimization by forcibly grouping SHR
images and LR images into HR and SLR clusters, respectively.

3.3 Cross-resolution feature fusion
Existing methods [6, 22] typically focus on aligning the SHR fea-
tures with HR features to learn resolution-invariant feature rep-
resentations. However, the SHR images generated by SR models
[23, 50] may contain artifacts, which could alter the original iden-
tity features. Therefore, considering SHR features as resolution-
invariant features for image matching is suboptimal. In response
to the aforementioned issue, we have developed a cross-resolution
feature fusion (CRFF) module to achieve the complementary nature
between SHR and LR images. Subsequent matching will be based
on the fusion features generated by CRFF. The detailed structure of
CRFF is illustrated in Figure 3.

We illustrate the detailed processing steps of the CRFF module
using SHR feature 𝑓 𝑠ℎ

𝑖
and LR feature 𝑓 𝑙

𝑖
as examples. Similar pro-

cedures are followed for HR feature 𝑓 ℎ
𝑖

and SLR feature 𝑓 𝑠𝑙
𝑖
. We

first calculate the similarity between 𝑓 𝑠ℎ
𝑖

and 𝑓 𝑙
𝑖
:

𝑓 𝑙𝑠ℎ𝑖 = Softmax[𝐹1 (𝑓 𝑠ℎ𝑖 ) ⊙ 𝐹2 (𝑓 𝑙𝑖 )], (10)

where 𝐹1 and 𝐹2 represent fully connected (FC) layers, and ⊙ de-
notes the Hadamard product. Subsequently, we perform feature
enhancement based on similarity:

𝑓 𝑠ℎ𝑖 = 𝑓 𝑠ℎ𝑖 + 𝑓
𝑠ℎ
𝑖 ⊙ 𝑓 𝑙𝑠ℎ𝑖 , (11)

𝑓 𝑙𝑖 = 𝑓 𝑙𝑖 + 𝑓
𝑙
𝑖 ⊙ 𝑓 𝑙𝑠ℎ𝑖 , (12)

Finally, feature fusion is accomplished based on feature concatena-
tion (Cat) and FC layer 𝐹3:

𝑓 𝑙𝑠ℎ𝑖 = 𝐹3 [Cat(𝑓 𝑠ℎ𝑖 , 𝑓 𝑙𝑖 )], (13)

𝑓 𝑙𝑠ℎ
𝑖

shares the same pseudo-label with 𝑓 𝑙
𝑖
, and similarly, 𝑓 ℎ𝑠𝑙

𝑖
shares

the same pseudo-label with 𝑓 ℎ
𝑖
. We introduce memory𝑀ℎℎ , mem-

ory𝑀𝑙𝑙 , and memory𝑀𝑓 𝑢 to store features with pseudo-labels in
the HR space, LR space, and fusion space, respectively.

From the above process, it is evident that since 𝑓 𝑙𝑠ℎ
𝑖

and 𝑓 ℎ𝑠𝑙
𝑖

achieve semantic complementarity between two spaces, they have
the potential to become a new form of resolution-invariant feature
representation.

3.4 Resolution-invariant feature learning
During the optimization stage, existing supervised CR-ReID meth-
ods [6, 16, 22] typically utilize identity classification loss to guide
model optimization. While this encourages the model to extract
identity-related features, it does not prioritize resolution-invariance
learning. Consequently, we have developed a cross-resolution con-
trastive loss aiming to simultaneously enhance identity-relevant
and resolution-invariant feature learning. For simplicity, we illus-
trate this using the example of the fusion space. Based on the pseudo-
labels provided by CPG and the offline features stored in memory
𝑀𝑓 𝑢 = {𝑣 𝑓 𝑢

𝑖
}𝑁
𝑖=1, we initially compute resolution centroids. For

example, the resolution centroid 𝑐ℎ𝑠𝑙
𝑗

is defined as:

𝑐ℎ𝑠𝑙𝑗 =
1

𝑛ℎ𝑠𝑙
𝑗

𝑛ℎ𝑠𝑙
𝑗∑︁
𝑖=1

𝑣ℎ𝑠𝑙𝑖 , (14)

where 𝑣ℎ𝑠𝑙
𝑖

represents the fusion feature of HR and SLR features
stored in 𝑀𝑓 𝑢 , and 𝑛ℎ𝑠𝑙𝑗

represents the number of 𝑣ℎ𝑠𝑙
𝑖

in the 𝑗-th
cluster. Similarly, the resolution centroid 𝑐𝑙𝑠ℎ

𝑘
is defined as:

𝑐𝑙𝑠ℎ
𝑘

=
1

𝑛𝑙𝑠ℎ
𝑘

𝑛𝑙𝑠ℎ
𝑘∑︁
𝑖=1

𝑣𝑙𝑠ℎ𝑖 , (15)

where 𝑣𝑙𝑠ℎ
𝑖

represents the fusion feature of LR and SHR features
stored in𝑀𝑓 𝑢 , and 𝑛𝑙𝑠ℎ𝑘

represents the number of 𝑣𝑙𝑠ℎ
𝑖

in the 𝑘-th
cluster. It is possible for a cluster to contain two resolution centroids
simultaneously. For any feature 𝑓 𝑓 𝑢

𝑖
with pseudo-label in the fusion

space, we define the set of all resolution centroids in its cluster as
its positive centroid set 𝑃 𝑓 𝑢

𝑖
, and we define the set of |𝑄 | nearest

resolution centroids in other clusters to 𝑓
𝑓 𝑢

𝑖
as its negative centroid

set 𝑄 𝑓 𝑢

𝑖
. We increase the similarity of 𝑓 𝑓 𝑢

𝑖
to the positive centroid

and decrease the similarity of 𝑓 𝑓 𝑢
𝑖

to the negative centroid:

𝐿𝑐𝑐 (𝑓 𝑓 𝑢𝑖
, 𝑃

𝑓 𝑢

𝑖
, 𝑄

𝑓 𝑢

𝑖
) = − 1

|𝑃 𝑓 𝑢

𝑖
|

∑
𝑐𝑝 ∈𝑃 𝑓 𝑢

𝑖

log
exp(𝑓 𝑓 𝑢

𝑖
·𝑐𝑇𝑝 /𝜏𝑐 )∑

𝑐𝑞 ∈𝑃
𝑓 𝑢
𝑖
∪𝑄𝑓 𝑢

𝑖

exp(𝑓𝑖 ·𝑐𝑇𝑞 /𝜏𝑐 )
, (16)

where |𝑃 𝑓 𝑢

𝑖
| ∈ {1, 2} represents the number of centroids in set 𝑃 𝑓 𝑢

𝑖
,

and 𝜏𝑐 is the temperature hyperparameter. We perform a similar
optimization process for the HR space and LR space, where the
cross-resolution contrastive loss is defined as:

𝐿𝑐𝑐 = 𝐿𝑐𝑐 (𝑓 𝑓 𝑢𝑖
, 𝑃

𝑓 𝑢

𝑖
, 𝑄

𝑓 𝑢

𝑖
) + 𝐿𝑐𝑐 (𝑓 ℎℎ𝑖

, 𝑃ℎℎ
𝑖

, 𝑄ℎℎ
𝑖
) + 𝐿𝑐𝑐 (𝑓 𝑙𝑙𝑖 , 𝑃𝑙𝑙

𝑖
, 𝑄𝑙𝑙

𝑖
), (17)

where 𝐿𝑐𝑐 (𝑓 ℎℎ𝑖
, 𝑃ℎℎ

𝑖
, 𝑄ℎℎ

𝑖
) and 𝐿𝑐𝑐 (𝑓 𝑙𝑙𝑖 , 𝑃𝑙𝑙

𝑖
, 𝑄𝑙𝑙

𝑖
) represent the objec-

tive functions for the HR space and LR space, respectively.
To encourage the HR encoder to focus on identity-relevant in-

formation in SHR images rather than artifacts, we introduce the
identity consistency loss:

𝐿𝑖𝑐 = −
𝑃𝑟𝑒𝑑 (𝑓 𝑠ℎ

𝑖
)

| |𝑃𝑟𝑒𝑑 (𝑓 𝑠ℎ
𝑖
) | |2
· Stopgrad

(
𝑓 𝑙
𝑖

| |𝑓 𝑙
𝑖
| |2

)
, (18)

where | | · | |2 represents ℓ2−norm, 𝑃𝑟𝑒𝑑 (·) represents the processing
of the predictor, and Stopgrad( · ) denotes the stop-gradient opera-
tion. The LR encoder cannot receive gradients from 𝐿𝑖𝑐 , which has
been proven to effectively prevent model collapse [2].
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While CPG can cluster high-confidence samples into existing
clusters based on the fusion of class vectors, it inevitably reduces
the utilization of ambiguous samples. To fully leverage ambiguous
samples for model optimization, we have designed a probability
sharpening loss. The distinction between high-confidence samples
and ambiguous samples lies in the fact that the former exhibits
extremely high probability values in only one class, while the latter
typically shows relatively high probability values in several classes.
However, they share a common characteristic of displaying low
probability values in most classes. We refer to these classes with
low probability values as reliable negative classes. In other words,
while we cannot determine the unique positive class for ambiguous
samples, we can confidently identify themajority of negative classes
with high confidence. Therefore, the probability sharpening loss
aims to reduce the predicted probabilities of ambiguous samples in
the negative classes:

𝐿𝑝𝑠= − Stopgrad(Softmax(𝑓 𝑙𝑠ℎ
𝑖
·𝐶𝑇

ℎ𝑠𝑙
/𝜏𝑠 )) · log(Softmax(𝑓 𝑙𝑠ℎ

𝑖
·𝐶𝑇

ℎ𝑠𝑙
/𝜏𝑐 )), (19)

where 𝜏𝑠 and 𝜏𝑐 are temperature hyperparameters, with 𝜏𝑠 < 𝜏𝑐 ,
and 𝐶ℎ𝑠𝑙 is the matrix composed of centroids 𝑐ℎ𝑠𝑙

𝑗
.

In summary, the overall objective function of DRFM is defined
as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑐 + 𝐿𝑖𝑐 + 𝜆𝐿𝑝𝑠 , (20)
where 𝜆 is the weight coefficient of 𝐿𝑝𝑠 . The aforementioned opti-
mizationmethods promote identity-relevant and resolution-invariant
feature learning, forming a mutually reinforcing solution with CPG.

4 Experiment
4.1 Datasets and Evaluation Metrics
We evaluate existing methods and the proposed method on three
multiple low-resolution (MLR) datasets. The details of each dataset
are described as follows.

CAVIAR [5] is a real CR-ReID dataset, consisting of 1,220 images
from 72 identities captured by two cameras. The resolution of the
images captured by one camera is much lower than that of the
images captured by the other camera. Following existing works
[6, 29], we only use images from 50 identities. We split the dataset
in half, utilizing images from 25 identities for training and images
from the remaining 25 identities for testing.

MLR-CUHK03 is a synthetic CR-ReID dataset based on CUHK03
[28], containing images from 1,467 identities. Following existing
works [6, 29], we use the benchmarking 1,367/100 training/test
identity split. Both manually cropped and automatically detected
images are used in our evaluations. To simulate resolution changes,
we down-sample the resolution of images captured by one cam-
era based on a random down-sampling rate 𝑟 ∈ {2, 3, 4}, while
the resolution of images captured by the other camera remains
unchanged.

MLR-Market-1501 is a synthetic CR-ReID dataset based onMarket-
1501 [51]. It contains 32,668 images from 1,501 identities captured by
six cameras, with 751 identities for training and 750 for testing. Fol-
lowing existing works [6, 29], we process the Market-1501 dataset
in a similar manner to MLR-CUHK03 to obtain MLR-Market-1501.

During the testing phase, we construct the query set with all LR
images per person, and the gallery set with one randomly selected
HR image per person. We use cumulative matching characteristic
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Figure 4: Impact of hyperparameter 𝜆 on performance.

(CMC) to evaluate model performance and report Rank-1, Rank-5,
and Rank-10.

4.2 Implementation Details
In the data preprocessing stage, we employ Swin2SR [8] to perform
super-resolution (SR) on LR images to obtain SHR images. Addi-
tionally, we perform down-sampling (DS) on HR images to acquire
SLR images. The scaling factors for both SR and DS are set to 4.
Both random horizontal flipping and random cropping are adopted
for data augmentation. We employ DBSCAN [11] for clustering
the samples, and the minimum number of samples is set to 4. In
DRFM, both encoders 𝐸ℎ and 𝐸𝑙 utilize ResNet-50 [17], pre-trained
on ImageNet [10]. The 𝑃𝑟𝑒𝑑 , 𝐹1 and 𝐹2 all use a 2048×2048 full
connection layer, and 𝐹3 use a 4096×2048 full connection layer. For
the temperature hyperparameters, we set 𝜏𝑐=0.04, 𝜏𝑙=0.04, 𝜏ℎ=0.05,
and 𝜏𝑠=0.02. We optimize the DRFM through Adam optimizer [24]
with a weight decay of 0.0005 and train the network with 40 epochs
in total. The update rate 𝛼 is set to 0.2 and the learning rate is set
to 0.00035. For 𝐿𝑐𝑐 and 𝐿𝑖𝑐 , we set the batch size to 64. For 𝐿𝑝𝑠 , the
batch size is set to 16. For 𝐿𝑐𝑐 , we set |𝑄 | = 20. In the initial training
phase, only 𝐿𝑐𝑐 and 𝐿𝑖𝑐 are introduced. After the 10th epoch, 𝐿𝑝𝑠
starts being used for model optimization.

4.3 Parameter Analysis
In this section, we conduct a detailed analysis of the key hyper-
parameters of DRFM on MLR-CUHK03 and MLR-Market-1501, in-
cluding 𝜆 and 𝑡 .

4.3.1 𝜆 of 𝐿𝑝𝑠 . Figure 4 shows plots of the performance on the
two datasets as function of the hyperparameter 𝜆. Note that 𝜆 = 0.0
corresponds to the situation where the probability sharpening loss
has no contribution to the overall training loss. We find that on
MLR-CUHK03 and MLR-Market-1501, the model obtains the best
performance when 𝜆 = 1.5. The results verify the generalization
of the hyperparameter. The worst performance is achieved when
𝜆 = 0.0, which preliminarily verifies the effectiveness of 𝐿𝑝𝑠 .

4.3.2 𝑡 of CPG. In Figure 5, we explore the optimal value of 𝑡 for
CPG. On MLR-CUHK03, the model achieves the best performance
when 𝑡 = 0.7. On MLR-Market-1501, the model achieves the best
performance when 𝑡 = 0.8. When 𝑡 is too large or too small, the
performance is poor. This is because when 𝑡 takes a small value,
only a small number of samples are used for training, reducing
the contribution of 𝐿𝑐𝑐 to optimization. On the other hand, when 𝑡
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Table 2: Comparison of the proposed method with state-of-the-art methods on CAVIAR, MLR-CUHK03 and MLR-Market-1501.
In the unsupervised setting, the top two performances are highlighted with bold and underline, respectively.

Method Reference CAVIAR MLR-CUHK03 MLR-Market-1501
Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

U
ns
up

er
vi
se
d

SpCL NeurIPS20 10.4 33.6 54.6 25.6 58.9 75.1 56.7 80.6 87.9
ICE ICCV21 9.8 32.1 55.1 27.9 67.1 81.0 62.4 84.4 89.9
CC ACCV22 10.0 33.5 55.0 32.0 67.1 80.9 62.7 84.3 89.9
PPLR CVPR22 8.3 31.6 53.6 23.7 56.0 72.9 61.9 84.3 90.0

Purification TIP23 11.6 38.8 58.5 27.3 61.9 77.0 63.0 84.7 90.3
DCCC arXiv23 10.1 36.6 59.1 24.2 55.7 72.0 56.2 79.1 86.2
DRFM Ours 12.8 39.1 59.9 35.8 72.2 83.6 69.8 88.5 92.5

Su
pe
rv
is
ed

SING AAAI18 33.5 72.7 89.0 67.7 90.7 97.7 74.4 87.8 91.6
CSR-GAN IJCAI18 34.7 72.5 87.4 71.3 92.1 97.4 76.4 88.5 91.9
CAD-Net ICCV19 42.8 76.2 91.5 82.1 97.4 98.8 83.7 92.7 95.8
INTACT CVPR20 44.0 81.8 93.9 86.4 97.4 98.5 88.1 95.0 96.9

PRI ECCV20 43.2 78.5 91.9 85.2 97.5 98.8 84.9 93.5 96.1
PS-HRNet TIP21 - - - 92.6 98.3 99.4 91.5 96.7 97.9

JBIM IJCV22 52.0 83.1 94.4 88.3 97.2 98.7 88.1 95.1 96.9
LRAR TIP23 63.6 79.2 96.6 89.2 98.9 99.8 90.1 96.2 97.7
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Figure 5: Impact of hyperparameter 𝑡 on performance.

takes a large value, too many noisy samples are used for training,
misleading the optimization direction of the model.

4.4 Comparison with State-of-the-Arts
In Table 2, we compare DRFM with the state-of-the-art methods
on CAVIAR, MLR-CUHK03 and MLR-Market-1501.

As there are no existing unsupervised CR-ReID methods, we re-
produce six unsupervised general ReID methods on the mentioned
datasets. These methods include SpCL [12], ICE [1], CC [9], PPLR
[7], Purification [25], and DCCC [19]. As shown in Table 2, Purifica-
tion [25] achieves superior overall performance among the existing
methods. Notably, DRFM significantly surpasses all these unsuper-
vised methods. Specifically, compared to Purification [25], DRFM
achieves improvements of 1.2%, 8.5%, and 6.8% in the Rank-1 ac-
curacy on CAVIAR, MLR-CUHK03, and MLR-Market-1501, respec-
tively. The acquisition of this advantage can be attributed to three
main factors: (1) DRFM employs a pseudo-label generation method
that is better suited for cross-resolution scenarios; (2) DRFM attains
a potentially resolution-invariant feature representation through
feature fusion; (3) the introduction of multiple optimization meth-
ods further enhances the advantages of DRFM compared to existing
approaches.

Additionally, we compare DRFM with existing supervised CR-
ReID methods, including SING [22], CSR-GAN [40], CAD-Net [29],
INTACT [6], PRI [16], PS-HRNet [48], JBIM [52], and LRAR [41]. En-
couragingly, despite exhibiting some performance gaps compared
to advanced supervised methods (such as JBIM [52] and LRAR [41]),
DRFM demonstrates competitive performance when compared to
the early methods (such as SING [22] and CSR-GAN [40]) on MLR-
Market-1501. This not only validates the superiority of DRFM but
also underscores the research potential of unsupervised CR-ReID.

4.5 Ablation Study
In this section, we conduct a series of ablation experiments to
empirically evaluate the effectiveness of the key components of
DRFM.

In Table 3, A1 directly employs the DBSCAN algorithm [11] to
generate pseudo-labels between LR and HR images and optimizes
using softmax classification loss 𝐿𝑠𝑐 [30]. A2 first applies super-
resolution (SR) to LR images and then utilizes DBSCAN to generate
pseudo-labels. A3 utilizes CPG to generate pseudo-labels. A4 intro-
duces 𝐿𝑖𝑐 based on A3. Following existing feature fusion methods
[52], A5 incorporates a fully connected (FC) layer to fuse features
from HR and LR spaces. A6 employs the CRFF to generate fusion
features. A7 and A8 replace 𝐿𝑠𝑐 in A2 and A6 with 𝐿𝑐𝑐 , respectively.
DRFM introduces 𝐿𝑝𝑠 based on A8.

4.5.1 Effectiveness of CPG and 𝐿𝑖𝑐 . In Table 3, A2 exhibits a slight
improvement compared to A1 on all three datasets, indicating
the beneficial effect of SR on unsupervised methods. A3 achieves
higher performance on all three datasets compared to A1 and A2
by introducing CPG. Specifically, compared to A2, A3 shows im-
provements of 1.1%, 1.4%, and 2.2% in Rank-1 accuracy on CAVIAR,
MLR-CUHK03, and MLR-Market1501, respectively. Furthermore,
A4 achieves higher performance by introducing 𝐿𝑖𝑐 into A3.

To further investigate the effectiveness of CPG and 𝐿𝑖𝑐 in enhanc-
ing the reliability of pseudo-labels, we conduct statistical analysis
on the F-score [14] of pseudo-labels generated by A1, A2, A3, and A4
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Table 3: Results of the ablation study where the alternative methods drop or replace alternative components of the proposed
DRFM. The main components include CPG, 𝐿𝑖𝑐 , CRFF, 𝐿𝑐𝑐 and 𝐿𝑝𝑠 .

Method Pseudo-labels 𝐿𝑖𝑐 Fusion 𝐿𝑠𝑐 /𝐿𝑐𝑐 𝐿𝑝𝑠
CAVIAR MLR-CUHK03 MLR-Market-1501

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5
A1 DBSCAN × × 𝐿𝑠𝑐 × 8.3 32.1 25.3 58.2 60.3 81.7
A2 SR+ DBSCAN × × 𝐿𝑠𝑐 × 8.5 32.3 26.8 62.6 61.7 82.9
A3 CPG × × 𝐿𝑠𝑐 × 9.6 33.2 28.2 65.5 63.9 85.2
A4 CPG ✓ × 𝐿𝑠𝑐 × 9.7 33.5 29.8 66.2 64.9 85.8
A5 CPG ✓ FC 𝐿𝑠𝑐 × 10.1 35.7 30.9 67.3 65.7 86.2
A6 CPG ✓ CRFF 𝐿𝑠𝑐 × 10.6 36.2 31.9 67.8 66.8 86.5
A7 SR+ DBSCAN × × 𝐿𝑐𝑐 × 9.5 33.4 30.2 68.3 65.0 86.2
A8 CPG ✓ CRFF 𝐿𝑐𝑐 × 11.6 37.9 33.6 70.6 68.5 87.3

DRFM CPG ✓ CRFF 𝐿𝑐𝑐 ✓ 12.8 39.1 35.8 72.2 69.8 88.5
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Figure 6: F-score for A1, A2, A3 and A4.

during the training phase. A higher F-score indicates higher accu-
racy of pseudo-labels. As shown in Figure 6, on MLR-CUHK03 and
MLR-Market-1501, A3 consistently exhibits higher F-score through-
out the training compared to A2 and A1. This validates that CPG
can generate reliable pseudo-labels in cross-resolution scenarios
by integrating semantic information at different resolution levels.
Moreover, A4 demonstrates higher F-score in the later stages of
training compared to A3. This is because 𝐿𝑖𝑐 focuses on enhanc-
ing the model’s attention to identity information in SHR images,
thereby encouraging potentially high-confidence samples to attain
higher max(𝑠𝑙𝑠ℎ

𝑖
).

4.5.2 Effectiveness of CRFF. As shown in Table 3, A5, which intro-
duces FC on top of A4, demonstrates improved overall performance
on all three datasets. This confirms that fusion features are more
suitable for cross-resolution scenarios compared to single features.
A6, which incorporates CRFF, achieves higher performance than
A5. Specifically, compared to A5, A6 shows improvements of 0.5%,
1.0%, and 1.1% in Rank-1 accuracy on CAVIAR, MLR-CUHK03,
and MLR-Market1501, respectively. This validates that CRFF can
generate fusion features that are more beneficial for performance
improvement compared to FC.

To further explore the contribution of CRFF to resolution-invariant
feature learning, we visualize the feature distance distributions of
same-resolution positive pairs and cross-resolution positive pairs on
MLR-CUHK03. As shown in Figure 7, compared to A5, A6 further
reduces the difference between the two distributions. This indi-
cates that CRFF is more suitable than FC for generating resolution-
invariant features.
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Figure 7: Feature distance distributions of same-resolution
positive pairs and cross-resolution positive pairs for A5 and
A6.

4.5.3 Effectiveness of𝐿𝑐𝑐 and𝐿𝑝𝑠 . Benefiting from the cross-resolution
contrastive loss 𝐿𝑐𝑐 , we observe that A7 significantly outperforms
A2, and A8 outperforms A6, validating that 𝐿𝑐𝑐 can further enhance
the model’s performance in cross-resolution scenarios compared to
𝐿𝑠𝑐 . We find that DRFM, when introducing the probability sharp-
ening loss 𝐿𝑝𝑠 on top of A8, further improves model performance,
demonstrating the feasibility of leveraging ambiguous samples
for optimization. Furthermore, DRFM outperforms all the relevant
methods mentioned above, confirming the effectiveness of the com-
bination of all components in DRFM.

5 Conclusion
In this paper, we focus on a novel problem: unsupervised cross-
resolution person re-identification, and propose the dual-resolution
fusion modeling (DRFM) framework to address this problem. In
DRFM,we introduce cross-resolution pseudo-label generation (CPG),
cross-resolution feature fusion (CRFF), and multiple optimization
methods. We conduct an ablation study on these components,
validating that CPG can generate reliable pseudo-labels in cross-
resolution scenarios, while CRFF and multiple optimization meth-
ods effectively facilitate resolution-invariant feature learning, thereby
enhancing model performance. Extensive experiments conducted
on three datasets demonstrate the effectiveness and superiority of
DRFM, which not only outperforms existing unsupervised meth-
ods but also exhibits promising performance competitiveness with
certain supervised methods.
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