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Abstract

Clinical machine learning models are typically
trained on highly structured and consistent
datasets but deployed in real-world settings domi-
nated by unstructured clinical text, creating a fun-
damental challenge for practical adoption. In this
work, we investigate whether large language mod-
els (LLMs), fine-tuned on structured patient data,
can generalize effectively to unstructured clinical
notes at inference time. Using the UK Biobank
dataset for cardiovascular disease (CVD) risk pre-
diction, we demonstrate that LLMs trained on
structured representations achieve performance
comparable to specialized tabular machine learn-
ing models. More importantly, we show that these
models maintain strong predictive accuracy when
applied to unstructured inputs, such as clinical
notes, in both zero-shot and few-shot scenarios.

1. Introduction
Clinical decision-support systems powered by machine
learning hold significant promise for improving clinical pro-
cesses and patient outcomes, yet there is a stark mismatch
between the nature of data used for model training and the
data available during model deployment in real-world clini-
cal practice. Large-scale biomedical databases such as the
UK Biobank (Sudlow et al., 2015) and the All of US Re-
search Program (All of Us Research Program Investigators
et al., 2019) provide rich, structured datasets collected under
controlled conditions. These datasets are ideally suited for
the development of machine learning (ML) models due to
their completeness, consistency, and standardized format.
In contrast, the data available at the point of care in clinical
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settings presents a different picture: In the clinic, natural
language text is the dominant form of documentation and
information exchange. Clinical notes offer rich and nuanced
patient information but pose challenges to traditional ma-
chine learning models as they depart from the regime of
complete, structured, and standardized data assumed dur-
ing training. This mismatch raises an important question:
Can we leverage structured data during training and yet gen-
eralize to unstructured data inputs, such as clinical notes,
during inference? To investigate this, we fine-tune large
language models (LLMs) on structured clinical data from
the UK Biobank, one of the largest biomedical databases
containing detailed health information on over half a million
individuals. We then evaluate these models in the challeng-
ing setting where the input format shifts to free-text clinical
notes. We assess performance in a zero-shot scenario and
explore adaptation using limited data from the target domain.
We use cardiovascular disease (CVD) risk prediction as a
test case—a task highly relevant for the clinic, as CVD re-
mains a leading global cause of mortality (WHO, 2024) and
early identification of high-risk individuals is an important
step for effective prevention.

Our key contributions are: (i) We show that LLMs fine-tuned
on structured data perform competitively with standard ML
models in structured-data settings; (ii) We demonstrate
that these models generalize well to unstructured inputs
such as clinical notes in zero-shot and few-shot settings;
(iii) We introduce a controlled testbed for studying struc-
tured-to-unstructured input shifts in clinical prediction tasks.
Our findings suggest that LLMs, when fine-tuned on rel-
evant clinical data, can provide a foundation for flexible,
robust decision support—even when faced with the com-
plex, unstructured data that dominates real-world clinical
practice.

2. Method
We assess whether LLMs fine-tuned on structured clinical
data can generalize to unstructured text for CVD risk pre-
diction. Models are trained on structured inputs and tested
on both structured and unstructured formats.
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The patient is a 56-year-old non-smoking male. 
He is severely obese. His systolic blood 
pressure is 166.5 mmHg. He has a history of 
high blood pressure, diagnosed at the age of 40, 
and is currently taking medication for both high 
blood pressure and cholesterol. He has a family 
history of high blood pressure and heart 
disease. His physical activity levels are low.

Patient Description:
Age: 41years;
Gender: Female;
Cholesterol: 5.2 mmol/L;
Cholesterol lowering medication: No;
Smoking status: Previous;
Body mass index (BMI): 24.8 Kg/m2;
… UKB-structured UKB-notes

Structured Patient Representations Clinical Notes

Format Shift

large-scale biomedical databases limited data available from real-life clinical practice

TRAINING REGIME DEPLOYMENT IN REAL-LIFE CLINICAL PRACTICE

Figure 1. Illustration of the format shift from structured patient data to unstructured clinical notes, highlighting the discrepancy between
training and deployment environments in clinical machine learning.

Task Definition We define our task to predict a patient’s
10-year risk of developing CVD based on detailed health
information available at a baseline assessment.

2.1. Data and Patient Representations

Our primary data source is the UK Biobank (Sudlow et al.,
2015; UKB, 2025), a comprehensive biomedical database
containing detailed health information from over 500,000
individuals. Beyond base cardiovascular risk factors, we
defined nine information categories that capture broader
aspects of patient health: Lifestyle & Environment, So-
ciodemographic factors, Physical Measures, Urine Assays,
Blood Samples, Family History, Polygenic Risk Scores,
ICD Codes, and Medical History.

We create two distinct types of patient representations on
separate, non-overlapping splits of the dataset:

Structured Representations To create structured text
representations (UKB-structured), we serialize patient
data into detailed textual descriptions (see Fig. 1). Each
patient profile is represented as a formatted, readable de-
scription that includes numeric values, categorical labels,
and short textual items extracted from questionnaires. Fea-
ture names are expressed using medical terminology and
descriptive labels to maximize informativeness. These struc-
tured descriptions serve as training inputs for our model.

Unstructured Clinical Notes In the absence of publicly
available real-world datasets containing unstructured textual
descriptions of patients with subsequent CVD outcomes, we
leveraged LLMs to synthesize a corpus of free-text patient
descriptions that mimic clinical notes (UKB-notes; see
Fig. 1). Specifically, we prompt a separate LLM to pro-
duce clinical summaries based on each patient’s structured
features. This approach is informed by prior work on LLM-
generated medical text (Agrawal et al., 2022; Van Veen et al.,
2024). The resulting texts are diverse and significantly less
structured. Overall, these summaries mostly preserved key
clinical information, but they often expressed it in a more

abstract or inferred form. For example, exact BMI values
were sometimes replaced with phrases such as the patient is
obese, and detailed physical activity metrics were summa-
rized as the patient is very active. The focus of this work
does not lie in evaluating these summaries. Instead, we treat
them as given and assess how efficiently our model trained
on structured representations can adapt to this unstructured
input format. Examples and prompt templates are provided
in Appendix §A.1.2 and §A.2.3.

2.2. Model Architecture and Training

Our approach follows the well-established pre-training and
fine-tuning paradigm, utilizing a pre-trained transformer-
based LLM with general language understanding capabil-
ities as a foundation and tailoring it to the specific task
of CVD risk prediction. We employ parameter-efficient
fine-tuning using Low-Rank Adaptation (LoRA; Hu et al.
(2022)) on the Mistral-7B-Instruct model (Jiang
et al., 2023). We fine-tune the model to predict a patient’s
CVD risk by framing the task as a binary classification prob-
lem in the token space (similar to Hegselmann et al. (2023);
Belyaeva et al. (2023)). Instead of producing a numeric risk
prediction in text form, we retrieve the likelihood of the
model answering Yes or No to a question posed in binary
form: Will this patient experience a major cardiovascular
event in the next ten years? We extracted the logits and sub-
sequently normalized them to generate the final CVD risk
prediction. During training, we minimize the cross-entropy
loss between predicted probabilities and observed outcomes.
All fine-tuning is conducted on a cluster of NVIDIA A100
and H100 GPUs. This setup ensures that sensitive health
data remains on-premise, fully preserving patient privacy.
Moreover, because the UK Biobank dataset is not publicly
available, we can be confident that there are no issues of data
leakage and contamination, as this data was not used dur-
ing the model’s pre-training. Further details on the training
process are provided in Appendix §A.1.
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3. Experiments & Results
We evaluate our model under two complementary set-
tings. First, we benchmark performance in an ideal-
ized setting using structured and complete patient data
(UKB-structured), which mirrors the training distri-
bution on a hold-out set and aligns with standard ML prac-
tice. Second, we evaluate the model on unstructured patient
representations (UKB-notes), simulating the format shift
encountered in real-world clinical deployment.

3.1. Idealized Setting: Structured & Complete Data

Baselines We compare our LLM-based model to two
classes of baselines. The first group comprises established
CVD risk models. These models were derived using Cox
Proportional Hazards (CPH) models on large population co-
horts across various geographic regions. These models use
only a small set of risk factors as inputs, which we refer to
as the base risk factors. The second group of baseline mod-
els comprises standard supervised ML models using tabular
inputs. This group includes the CPH model (to parallel the
methodology of the clinical scores), Logistic Regression (as
a simple baseline), and Gradient Boosted Trees (instantiated
by LGBM), which are widely used and known to perform
strongly on tabular data. See Appendix §A.4.2 for details.

Using Only Base Risk Factors Figure 2 shows the per-
formance using only the base risk factors as inputs. Both
the LLM-based model and LGBM achieved state-of-the-art
performance for CVD risk prediction, with an area under the
receiver operating characteristic curve (AUROC) of 0.738.
Performance was superior to simpler ML models, including
logistic regression and the CPH model. Notably, all ML
models surpassed established medical risk scores, which
showed great variability in performance.

Incorporating Detailed Patient Information Figure 3
expands the input to include a broader range of patient
information across the above-defined nine categories. Per-
formance improves for both LGBM and LLM-based models
as additional patient information is considered. The fine-
tuned LLM performs on par with LGBM, which is notable
given that LGBM is specifically designed and optimized
for structured inputs, while the LLM operates on serial-
ized text. Two feature categories reveal interesting differ-
ences. For blood sample data, which consists of continuous
numerical measurements, LGBM slightly outperforms the
LLM. In contrast, for ICD codes, which are sparsely occur-
ring standardized codes for previous clinical conditions, the
LLM performs better, likely due to its ability to leverage
relationships between different diagnoses learned during
pre-training.

Risk Scores ML Models Fine-Tuned LLM

Figure 2. Comparison of CVD risk prediction models using only a
limited set of base risk factors as inputs, across clinical risk scores,
standard ML models, and the fine-tuned LLM using structured pa-
tient inputs. Predictive performance is measured by the area under
the receiver operating characteristic curve (AUROC), reflecting
the models’ ability to distinguish between individuals who develop
CVD and those who do not.

Simulating Incomplete Patient Records To assess ro-
bustness to missing data, we simulate incomplete patient
records by selectively omitting all but one feature group at
inference time while using the model trained on complete
information for prediction. This allows us to examine how
well the model performs under partial information, a com-
mon scenario in real-world clinical settings. As shown in
Figure 3, the LLM-based model demonstrates greater re-
silience to missing inputs compared to LGBM. Note that
since the LLM processes patients as textual descriptions, the
absence of specific information simply results in a shorter
prompt—there is no need for explicit imputation or place-
holder values.

Overall, these results show that fine-tuned LLMs can accu-
rately predict CVD risk using structured inputs, achieving
similar performance to state-of-the-art tabular ML models,
while demonstrating increased robustness to incomplete in-
formation.

3.2. Realistic Setting: Unstructured Clinical Notes

We evaluate the model under a realistic format shift: from
structured patient descriptions to unstructured clinical notes.
We compare the zero-shot performance and performance
after adaptation via further fine-tuning. While structured
datasets are typically large, real-world datasets with clinical
notes are rare, making data efficiency a key consideration.
We compare our approach to fine-tuning a pre-trained LLM
from scratch only on the clinical notes.

As shown in Figure 4, the model fine-tuned on structured
data performs well even in the zero-shot setting (AUROC
0.685) and improves further with minimal adaptation (0.697

3



From Structured Data to Clinical Notes: Robust Clinical Decision Support with Fine-Tuned LLMs

numeric values
sparse categorical

Figure 3. Predictive performance of the fine-tuned LLM and LGBM improves as additional patient information is incorporated. Acronyms:
Urine Assays (UA), Sociodemographic factors (SD), Physical Measures (PM), Family History (FH), Blood Samples (BS), Lifestyle &
Environment (LE), Polygenic Risk Scores (PRS), ICD Codes (ICD), and Medical History (MH). Each feature group includes the base risk
factors. The All setting integrates all feature categories. Performance between the fine-tuned LLM and LGBM is competitive, with two
exceptions (BS; ICD). Models denoted with Incomplete Data are trained using all features, but evaluated by omitting all but one feature
group. The fine-tuned LLM shows more robust performance when confronted with missing values compared to LGBM.

with just 10 examples). In contrast, the model trained from
scratch requires over 100 times more data (> 1000 points) to
reach comparable performance. These findings demonstrate
the strong generalization capabilities of the fine-tuned LLM
and its ability to data-efficiently adapt to changed patient
representations.

Adapting LLM Fine-Tuned on Structured Data
Fine-Tuning LLM from Scratch 

Figure 4. Evaluation of the fine-tuned LLM under a format shift to
unstructured clinical notes, compared to an LLM fine-tuned only
on clinical notes. The LLM fine-tuned on structured data achieves
strong zero-shot performance and adapts efficiently with minimal
additional data.

4. Discussion
Accurate disease risk estimation is central to preventive
healthcare, yet the tools that clinicians rely on often fall short
when confronted with the complexities of real-world clinical
practice. These models are typically designed for clean,
complete, and structured inputs—conditions that rarely hold
outside of controlled research settings. Instead, natural
language free-text is the dominant form of documentation
in the clinic.

Our findings show that LLMs fine-tuned on structured pa-
tient data not only outperform established medical risk
scores but also match the performance of specialized ML
models optimized for tabular inputs. More importantly, we
demonstrate that these models retain strong performance
when confronted with real-world challenges, including miss-
ing data and unstructured input formats. We show that fine-
tuning LLMs on structured representations enables robust
generalization to free-text inputs, such as clinical notes,
without requiring architectural changes or feature-specific
engineering. Especially when considering comprehensive
patient information—which we have shown to significantly
improve performance—consistency in patient records is dif-
ficult to ensure. By describing patients in natural language,
our approach moves beyond the rigidity of conventional
methods that require fixed input features.

The results of this study suggest promising directions for
further research, though several limitations should be noted.
First, all training and evaluation was conducted on data
from a UK-based research cohort that may not fully capture
global demographic or clinical diversity. As such, this work
should be viewed as a methodological proof of concept and
is not intended for direct clinical use. Second, due to a lack
of real-world datasets linking clinical notes to outcomes,
we synthetically generated clinical notes. While prior work
supports their validity, public datasets with authentic clinical
text are needed to further advance this line of research.

In summary, our work presents a compelling pathway for
using LLM-based models to bridge the gap between struc-
tured training data and the unstructured realities of everyday
healthcare.
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A. Supplementary Material
Real-world clinical settings pose challenges to CVD risk prediction models, requiring them to handle diverse input
information in varying formats and to adapt quickly to different healthcare environments. To address these requirements,
we adopt the paradigm of task-specific fine-tuning of a pre-trained, general-purpose large language model (LLM). This
paradigm has demonstrated key properties relevant to our setting: (i) transformer-based architectures enable flexible input
representations via text prompts and depart from fixed, pre-defined input features; (ii) strong language understanding
capabilities allow the incorporation of textual information; and (iii) efficient adaptation capabilities, e.g., through few-shot
learning or fine-tuning.

We use a pre-trained LLM as a starting point and adjust it to the task of CVD risk prediction via supervised, parameter-
efficient fine-tuning on real-world data.

A.1. Model Architecture and Fine-Tuning

Given a patient with individual-specific information, our model predicts the risk of developing CVD within the next 10
years. To achieve this, we fine-tuned LLMs for this specific task in a supervised manner using real-world data. This involves
several key components: the choice of base LLM (see Section A.1.1), the construction of patient prompts (see Section
A.1.2), the extraction of risk predictions (see Section A.1.3), and the supervised training process using parameter-efficient
fine-tuning (see Section A.1.4).

A.1.1. SELECTING PRE-TRAINED LLMS AS STRONG STARTING POINTS

The LLMs we used are all autoregressive, decoder-only transformer models. We concentrated on open-access LLMs that we
can deploy and fine-tune locally to ensure that no sensitive patient data leaves our servers. We focused on two classes of
leading open-access LLMs for their balance between performance and computational efficiency during fine-tuning: small
models (2-3 billion parameters) and medium-sized models (7-8 billion parameters). Specifically, we used Mistral (7B)
(Jiang et al., 2023), Llama (3B, 8B) (Grattafiori et al., 2024), Phi (3B) (Abdin et al., 2024), and Gemma (2B) (Team et al.,
2024). We use the instruction-tuned versions of these models. Since we observed similar performance after fine-tuning
within each model class (see Fig. 5a), we continued with the Mistral-7B-Instruct model.

a. b. 

Figure 5. Evaluation of risk prediction models using the base risk factors. a. Comparison of different LLMs of small and medium size,
both zero-shot and fine-tuned. LLMs not shown in the zero-shot group did not comply with the instructions. b. Correlation between
predictions of different risk prediction models, as measured by the Kendall rank correlation coefficient.
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A.1.2. GENERATING PATIENT REPRESENTATIONS

We create two different types of natural language prompts for describing patients: a highly structured one (for
UKB-structured) and an unstructured text that simulates clinical notes (for UKB-notes). Here, we describe how we
generated the prompts that we used as input to our model. The data sources used for this process are described in Section
A.3.

Structured Representations To create structured text representations, we serialize data on patients into a detailed textual
description, as shown below.

Structured patient representations

Patient description:
Gender: Male;
Age: 41 years;
<Feature Name>: <Feature Value>;
...

For all features, we use descriptive and precise names. Depending on the type of feature, the value can be a number (rounded
to 1 digit), a short text snippet derived from questionnaire-type information, or a list thereof for questions that allow multiple
answers.

Textual Representations In the absence of real-world datasets containing unstructured textual descriptions of patients
with corresponding 10-year CVD outcomes, we leveraged LLMs to generate patient descriptions that mimic realistic clinical
notes. For this, we followed prior work demonstrating LLMs’ effectiveness in generating realistic medical summaries
(Agrawal et al., 2022; Van Veen et al., 2024). We used structured patient information as the input and instructed the model
to produce a free-text summary of each patient. For the generation, we used two different system prompts, shown below:

Prompt I for generating patient summaries

You are a medical doctor writing detailed clinical notes.

Patient description:
<Feature Name>: <Feature Value>;
...

Based on this information, generate a concise and natural clinical summary
describing the patient in a few sentences.

Prompt II for generating patient summaries

You are a medical doctor writing detailed clinical notes.

Patient description:
<Feature Name>: <Feature Value>;
...

Based on this information, generate a brief summary of the patient with an
emphasis on relevant cardiovascular-related information. Do not provide
risk evaluation or any clinical judgment.

A.1.3. BINARY CLASSIFICATION IN THE TOKEN SPACE

To fine-tune LLMs for CVD risk prediction, we framed the problem as a binary classification task in the token space (similar
to (Hegselmann et al., 2023; Belyaeva et al., 2023)). Instead of producing a numeric risk prediction in text form, we retrieved
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the likelihood of the model answering Yes or No to a question posed in binary form: Will this patient experience a major
cardiovascular event in the next ten years? We extracted the logits and subsequently normalized them to generate the final
CVD risk prediction. During training, we completed the prompt with a binary label based on the true observed 10-year
CVD outcome of each patient and learned the parameters to minimize the cross-entropy loss between predicted probabilities
and observed outcomes.

A.1.4. EFFICIENT FINE-TUNING VIA LOW-RANK ADAPTATION (LORA)

Given the high computational cost of fully training such large models, we employed parameter-efficient fine-tuning (PEFT;
(Ding et al., 2023)), namely Low-Rank Adaptation (LoRA; (Hu et al., 2022)). LoRA introduces lightweight adapter modules
to the attention blocks of the transformer model while keeping the original pre-trained parameters frozen. Specifically, we
targeted the query, key, and value projection layers, with a rank value of 16. With this approach, we updated only around
0.13% of the model parameters during fine-tuning and thereby significantly reduced computational demands. The training
was done on a cluster of NVIDIA H100 and A100 GPUs.

A.2. Base Model and Model Adaptation

A.2.1. FINE-TUNING ON STRUCTURED DATA

Following the fine-tuning process outlined in Section A.1.4, we developed our base model using structured representations
of patients from the UK Biobank (UKB-structured). We train the model for two epochs on all patients from the training
dataset (n = 467k), using mini-batches of size 8-161. The hyperparameters were chosen based on the model’s performance
on the validation set.

To assess the importance of different patient information for risk assessment, we trained expert models for each of the
10 information groups defined below (see Section A.3 for details), each focusing on a different aspect of health-related
patient information. For this, we generated patient descriptions solely using the information contained in the specific feature
group and the base risk factors. Hence, this process resulted in 11 different expert models: BASE, using only the base risk
factors; BASE+X for the 9 different feature groups; and ALLPATIENTINFO, which uses information from all feature groups
simultaneously. Each model was specifically designed to deal with a fixed feature group at inference time.

A.2.2. HANDLING INCOMPLETE AND VARIABLE PATIENT INFORMATION

To evaluate the model under incomplete data, we used the ALLPATIENTINFO, i.e., the model trained on complete information
of all feature groups, and provided incomplete information during inference. Note, however, that missing values are not
explicit null values that require imputation, e.g., with the population median. Instead, incomplete information is only
implicit and is simply left out of the patient descriptions.

A.2.3. ADAPTING TO TEXTUAL PATIENT REPRESENTATIONS

Our initial model was fine-tuned at scale on structured patient representations. Even though these representations were
encoded in text format, they followed a highly standardized and consistent structure. In contrast, real-world clinical settings
rarely provide such uniformity. Patient information is often documented in unstructured formats, such as clinical notes,
physician reports, or discharge summaries, making free-text one of the most prevalent data modalities in practice. A key
challenge for CVD risk prediction models is thus the ability to process and reason over unstructured text inputs. Therefore,
we conducted an experiment in which we evaluate how well the model trained exclusively on structured inputs generalizes
to unstructured text representations in a zero-shot setting. Additionally, we examine how efficiently it can be adapted to this
new input format via further fine-tuning. For comparison, we also fine-tune the base LLM directly on the textual patient
descriptions from scratch, without any prior fine-tuning on structured data.

We perform this experiment on our generated dataset of clinical notes (UKB-notes). For some prompts, we provided
only the base risk factors as inputs (using Prompt I), and for others, we provided more detailed patient information (all
feature groups except lab values, i.e., UA and BS; using Prompt II). We generate this dataset for a subset (n = 40 000) of
the UK Biobank cohort. Importantly, we use data from patients not seen during the first fine-tuning stage. To assess the data
efficiency, we randomly select subsets for training using different random seeds.

1The batch size varied depending on the length of the patient descriptions across different settings.

11



From Structured Data to Clinical Notes: Robust Clinical Decision Support with Fine-Tuned LLMs

The generated patient summaries averaged 135 tokens with base risk factors and 248 tokens with additional patient
information. We capped the lengths at 200 tokens (cropping 3% of cases) for base summaries and 400 tokens (cropping 11%
of cases) for detailed ones.

Manual inspection of a subset of the generated summaries confirmed that relevant clinical information was generally
preserved, though often rephrased. For example, numerical values were replaced with qualitative descriptors (e.g., elevated
cholesterol levels), and some features were inferred indirectly (e.g., mentioning obesity instead of stating the BMI value).
Summaries based on base risk factors retained nearly all original information, while those including more granular inputs
(e.g., physical activity broken down by type and duration) tended to be abstracted (e.g., the patient is very active). Our focus
in this work does not lie in evaluating these summaries. Instead, we treat them as given and examine how effectively LLMs
can learn from such text-based inputs and how efficiently a model trained on structured data adapts to this unstructured
format. Examples of such patient summaries can be found below.

A.2.4. EXAMPLES OF TEXTUAL PATIENT REPRESENTATIONS

The patient is a 41-year-old non-smoking, non-diabetic female of white ethnicity with a BMI of 23.1 Kg/m2. She
has a cholesterol level of 4.9 mmol/L and an HDL cholesterol level of 1.9 mmol/L. Her blood pressure, as measured
automatically, is 108.5 mmHg. She is not currently taking any cholesterol-lowering medication or blood pressure
medication. Her eGFR is 120.37, indicating normal kidney function.

The patient is a 61-year-old male with a BMI of 24.9 Kg/m2, previously a smoker but not currently. He has a
cholesterol level of 4.8 mmol/L and a low HDL cholesterol level of 1.1 mmol/L. His systolic blood pressure is 133
mmHg. He does not have diabetes, is not on blood pressure medication, and does not take cholesterol-lowering
medication. His estimated glomerular filtration rate (eGFR) is 77.55, indicating good kidney function.

The patient is a 48-year-old non-smoking, non-diabetic female of white ethnicity with a normal body mass index
(BMI) of 21.9 Kg/m2. She has a borderline high cholesterol level, with a low HDL cholesterol level. Her blood
pressure, as measured automatically, is slightly elevated at 134.5 mmHg. She is not currently on any cholesterol-
lowering medication or blood pressure medication. Her estimated glomerular filtration rate (eGFR) is within the
normal range at 96.05.

The patient is a 41-year-old female with a BMI of 23.1 Kg/m2, who has never smoked and has no history of diabetes
or hypertension. Her cholesterol level is 4.9 mmol/L, with an HDL cholesterol of 1.9 mmol/L. She is currently not
on any cholesterol-lowering medication. Her systolic blood pressure, as measured automatically, is 108.5 mmHg.
She has a family history of non-accidental death in close genetic family members. Her PRS for cardiovascular
disease (CVD) is 2.3 relative risk, and her PRS for venous thromboembolic disease (VTE) is 2.2 relative risk. She
engages in regular walking and light DIY, and her sleep duration is 8 hours/day. She consumes alcohol three or four
times a week, with an average weekly spirits intake of 4 measures. Her maximum workload during a fitness test was
80 Watts, and her maximum heart rate during the test was 139 bpm. She lives in a house or bungalow with 2 people
and has a college or university degree as her highest qualification.

The patient is a 65-year-old female with a BMI of 22.9 Kg/m2. She is a current smoker and has a systolic blood
pressure of 122 mmHg. Her cholesterol level is 6.1 mmol/L, with an HDL cholesterol of 1.3 mmol/L. She is not
taking any cholesterol-lowering medication. Her estimated glomerular filtration rate (eGFR) is 89.92. She has a
standard polygenic risk score (PRS) for coronary artery disease (CAD) of 1.1 relative risk. She has no history of
diabetes, hypertension, or cardiovascular disease. She is physically active, walking 7 days a week and engaging in
moderate physical activity for 300 minutes a day. She has no known vascular or heart problems diagnosed by a
doctor. Her sleep duration is 6 hours a day, and she does not snore or daytime doze. She has a standard PRS for
hypertension of 0.3 relative risk.
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A.3. Data Sources and Cohort Descriptions

The UK Biobank (UKB, 2025; Sudlow et al., 2015) (n = 467 063) serves as the main dataset for training, adaptation, and
evaluation.

The UK Biobank is a large-scale longitudinal biomedical database containing detailed health information of over approxi-
mately half a million individuals across the UK. It offers a comprehensive repository of patient characteristics, encompassing
sociodemographic information, physical measures, lab values, genetic data, lifestyle factors, medical history, and more.
Information was collected at a baseline assessment, and after that, disease outcomes and mortality were continuously
recorded in a follow-up period of up to 19 years.

Task & Outcome Definition We define our task as predicting the risk of developing a fatal or non-fatal CVD event within
10 years of the baseline assessment. Hereby, a CVD event is defined as the first occurrence of any of the following ICD-9
and ICD-10 diagnosis codes:

• ICD-9: 410–414 (ischemic heart diseases), 430–434 (hemorrhagic and ischemic stroke), and 436–438 (cerebrovascular
diseases)

• ICD-10: F01 (vascular dementia), I20–I25 (ischemic heart diseases), I50 (heart failure), and I60–I69 (cerebrovascular
diseases)

This aligns with definitions used in prior studies (Alaa et al., 2019; D’Agostino et al., 2008). We combined information
from three sources: hospital in-patient admissions, self-reported data, and death registries. Participants with a history of
CVD prior to the baseline assessment (n = 35 070) were excluded, applying the same definition for CVD as used for the
outcome variable.

Cohort The final cohort comprised 467 063 participants aged 37–73 years at baseline. The cohort was randomly split
into a training (75%), test (20%), and validation set (5%). All reported results are computed on the test set unless stated
otherwise. Over the 10-year follow-up period, 7.5% (n = 34 983) of the participants developed CVD. Table 1 shows the
baseline characteristics of the study population.

Comprehensive Health Information We incorporate comprehensive health-related information on individuals and have
defined ten distinct information categories designed to reflect realistic clinical scenarios.

• Base Risk Factors (Base): This set of features is commonly used by established CVD risk scores. It consists of age,
gender, smoking status, diabetes, total cholesterol, HDL cholesterol, cholesterol medication use, blood pressure, blood
pressure medication use, body mass index (BMI), ethnic background, and estimated glomerular filtration rate (eGFR).

• Polygenic Risk Scores (PRS): These values quantify the genetic susceptibility of an individual to a broad range of
diseases and traits by aggregating the effects of multiple genetic variants. It covers conditions such as cardiovascular
diseases, different cancer types, autoimmune disorders, metabolic traits, and neurological and psychiatric disorders.
We include 36 scores.

• Medical History (MH): Self-reported health information collected through questionnaires, encompassing diagnosed
conditions with the individual’s age at diagnosis, past medical procedures, medication use, and screening history.

• Blood Samples (BS): 43 laboratory-analyzed biomarkers measured in the blood sample collected at recruitment,
including 26 biochemistry markers and 17 haematological assays.

• Family History (FH): Questionnaire-based information on health conditions of biological and adopted family members,
offering insights into hereditary health risks.

• Lifestyle and Environment (LE): Self-reported data on physical activity, sleep habits, smoking behavior, and alcohol
consumption, providing a comprehensive view of daily routines, health behaviors, and environmental exposures.

• Physical Measures (PM): Measurements of body size, body composition by impedance, electrocardiogram (ECG)
during exercise, arterial stiffness, and spirometry.
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• Sociodemographics (SD): Information on living arrangements, household composition, income, education level,
employment status, and work conditions.

• Urine Assays: Biochemical measurements of urinary components, including creatinine, microalbumin, potassium, and
sodium.

• ICD Codes (ICD): A record of all past diagnoses using ICD-9 and ICD-10 codes.

We provide the exact list of field IDs and features used per category in Table 2.

Table 1. Characteristics of the UK Biobank Cohort, excluding participants with CVD prior to the baseline assessment. We report median
values and their standard deviation.

Female (n = 261 030) Male (n = 206 033)

Age (years) 57.00 (7.99) 57.00 (8.21)
BMI (kg/m²) 26.03 (5.14) 27.18 (4.17)
Total Cholesterol 225.99 (43.09) 214.66 (42.13)
HDL Cholesterol 60.33 (14.58) 48.26 (12.03)
Systolic Blood Pressure 133.00 (19.23) 139.50 (17.38)
Blood Pressure Medication 15.80% 19.76%
eGFR 97.60 (13.01) 97.53 (12.69)
Smoker 8.78% 12.39%
Diabetic 3.37% 5.74%

Table 2. List of field IDs used for the information categories in the UK Biobank. IDs marked with an asterisk are further processed into
features. Information on the field can be found on the UK Biobank Showcase Webpage.

Field IDs

Base 31, 93, 2443, 4080, 6153∗, 6177∗, 20116, 21000, 21001, 21003, 30690, 30700∗, 30760

PRS 26202, 26204, 26206, 26210, 26212, 26214, 26216, 26218, 26220, 26223, 26225, 26227, 26229, 26232, 26234,
26238, 26240, 26242, 26244, 26246, 26248, 26250, 26252, 26254, 26258, 26260, 26265, 26267, 26269, 26273,
26275, 26278, 26283, 26285, 26287, 26289

MH 2178, 2188, 2296, 2306, 2316, 2345, 2355, 2365, 2415, 2443, 2453, 2463, 2473, 2492, 2844, 2966, 2976, 3005,
3761, 3786, 3809, 3992, 4012, 4022, 4041, 4717, 6150, 6151, 6152, 6153, 6154, 6155, 6177, 6179

BS 23000, 30000, 30010, 30020, 30030, 30040, 30050, 30060, 30070, 30080, 30090, 30100, 30110, 30120, 30130,
30140, 30150, 30160, 30600, 30610, 30620, 30630, 30640, 30650, 30660, 30670, 30680, 30690, 30700, 30710,
30720, 30730, 30740, 30750, 30760, 30770, 30780, 30790, 30810, 30840, 30860, 30870, 30880, 30890

ICD 41280∗, 41270∗, 41281∗, 41271∗

FH 1807, 1845, 3526, 4501, 20107, 20110, 20111, 20112, 20113, 20114

SD 670, 709, 728, 738, 767, 777, 796, 806, 816, 826, 845, 3426, 4674, 6138∗, 6143, 20119

LE 864, 874, 884, 894, 904, 914, 924, 943, 971, 981, 991, 1001, 1011, 1021, 1070, 1080, 1090, 1160, 1190, 1200,
1210, 1220, 1239, 1249, 1259, 1269, 1279, 1558, 1568, 1578, 1588, 1598, 1608, 1618, 1628, 2624, 2634, 3637,
3647, 20116, 20117, 20160, 20161, 20162, 22035, 22036, 22037, 22038, 22039

PM 3062, 3063, 3064, 4194, 4195, 4196, 4198, 4199, 4200, 4204, 4207, 5983, 6015, 6016, 6017, 6032, 6033, 6034,
6039, 20150, 20151, 20256, 20257, 20258, 21001, 21021, 23098, 23099, 23100, 23101, 23102

UA 30500, 30505, 30510, 30520, 30525, 30530, 30535
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A.4. Evaluation

A.4.1. METRICS

We evaluated the models using standard metrics suitable for unbalanced binary classification tasks. Specifically, we used
the area under the receiver operator curve (AUROC) to assess the model’s ability to differentiate between individuals who
develop the disease and those who do not. For all metrics, we report the median value and their 95% spread across 5000
bootstrapping rounds. The observed large spreads are a result of high sample dependence, which is likely due to class
imbalance. We decided not to measure randomness across different training runs (e.g., different seeds or initialization
parameters) due to the high computational cost. However, we observed very stable results with respect to such randomness.

A.4.2. COMPARISONS & BASELINES

For all experiments using tabular input features, we compared our method with various baseline methods, including medical
risk scores, standard machine learning methods, and LLMs (zero-shot).

Medical Risk Scores We implemented medical risk scores derived from different geographic cohorts. We list all risk
scores and their geographic regions in Table 3.

Table 3. Medical Risk Scores
Risk Score Derivation Cohort

Framingham (D’Agostino et al., 2008) US
PREVENT (Khan et al., 2024) US
ASCVD (AHA/ACC) (Arnett et al., 2019) US
SCORE2 (SCORE2 working group and ESC Cardiovascular risk collaboration, 2021) Europe
QRISK (Hippisley-Cox et al., 2007) UK

Machine Learning Baselines The second group of baseline models comprises standard supervised machine learning
methods, including the Cox Proportional Hazards model, logistic regression, and gradient-boosted trees. We used the
following software packages for the implementations: lifelines for the Cox PH model, sklearn for logistic regression,
and lightgbm for gradient-boosted trees.

LLMs (Zero-Shot) To assess the zero-shot predictions of different pre-trained LLMs, we provided a patient description,
gave precise instructions, and extracted the prediction from the response, similar to (Han et al., 2024). We instructed
the models to utilize a JSON format within their responses to ensure straightforward extraction of the numeric risk
prediction. Specifically, our instruction was: Based on the provided patient description, what is the estimated 10-year risk of
cardiovascular disease (CVD)? Please provide your answer solely as a numeric percentage in a machine-readable JSON
format. We generated 100 new tokens and extracted the risk prediction from the response. If no valid JSON was provided,
we set the prediction to nan. When a model did not comply with the instructions, all predictions were invalid and hence, we
were not able to compute any evaluation metrics.
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