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ABSTRACT

Monte Carlo (MC) integration has been employed as the standard approximation
method for the Sliced Wasserstein (SW) distance, whose analytical expression
involves an intractable expectation. However, MC integration is not optimal in
terms of absolute approximation error. To provide a better class of empirical SW,
we propose quasi-sliced Wasserstein (QSW) approximations that rely on Quasi-
Monte Carlo (QMC) methods. For a comprehensive investigation of QMC for SW,
we focus on the 3D setting, specifically computing the SW between probability
measures in three dimensions. In greater detail, we empirically evaluate various
methods to construct QMC point sets on the 3D unit-hypersphere, including the
Gaussian-based and equal area mappings, generalized spiral points, and optimizing
discrepancy energies. Furthermore, to obtain an unbiased estimator for stochastic
optimization, we extend QSW to Randomized Quasi-Sliced Wasserstein (RQSW)
by introducing randomness in the discussed point sets. Theoretically, we prove the
asymptotic convergence of QSW and the unbiasedness of RQSW. Finally, we con-
duct experiments on various 3D tasks, such as point-cloud comparison, point-cloud
interpolation, image style transfer, and training deep point-cloud autoencoders, to
demonstrate the favorable performance of the proposed QSW and RQSW variants1.

1 INTRODUCTION

The Wasserstein (or Earth Mover’s) distance (Peyré & Cuturi, 2020) has been widely recognized
as a geometrically meaningful metric for comparing probability measures. For instance, it has been
successfully employed in various applications such as generative modeling (Salimans et al., 2018),
domain adaptation (Courty et al., 2017), clustering (Ho et al., 2017), and so on. Specifically, the
Wasserstein distance serves as the standard metric for applications involving 3D data, such as point-
cloud reconstruction (Achlioptas et al., 2018), point-cloud registration (Shen et al., 2021), point-cloud
completion (Huang et al., 2023), point-cloud generation (Kim et al., 2020), mesh deformation (Feydy
et al., 2017), image style transfer (Amos et al., 2023), and various other tasks.

Despite its appealing features, the Wasserstein distance exhibits high computational complexity.
When using conventional linear programming solvers, evaluating the Wasserstein distance carries
a O(n3 log n) time complexity (Peyré & Cuturi, 2020), particularly when dealing with discrete
probability measures supported on at most n atoms. Furthermore, computing the Wasserstein distance
has at least O(n2) space complexity, which is related to storing the pairwise transportation cost matrix.
The Sliced Wasserstein (SW) distance (Bonneel et al., 2015) stands as a rapid alternative metric to
the plain Wasserstein distance. Since the SW distance is defined as a sliced probability metric based
on the Wasserstein distance, it is equivalent to the latter while enjoying appealing properties (Nadjahi
et al., 2020). More importantly, the time complexity and space complexity of the SW metric are only
O(n log n) and O(n), respectively. As a result, the SW distance has been successfully adopted in
various applications, including domain adaptation (Lee et al., 2019), generative models (Nguyen
& Ho, 2024; Nguyen et al., 2024), clustering (Kolouri et al., 2018), gradient flows (Bonet et al.,
2022), Bayesian inference (Yi & Liu, 2021), and more. In the context of 3D data analysis, the SW
distance is employed in numerous applications such as point-cloud registration (Lai & Zhao, 2017),

1Code for the paper is published at https://github.com/khainb/Quasi-SW.
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reconstruction, and generation (Nguyen et al., 2023), mesh deformation (Le et al., 2024a), shape
matching (Le et al., 2024b), image style transfer (Li et al., 2022), along with various other tasks.

Formally, the SW distance is defined as the expectation of the Wasserstein distance between two
one-dimensional projected measures under the uniform distribution over projecting directions, i.e.,
the unit hypersphere. Exact computation of the SW distance is well-known to be intractable; hence,
in practice, it is estimated empirically through Monte Carlo (MC) integration. Specifically, (pseudo-
)random samples are drawn from the uniform distribution over the unit hypersphere to approximate
the analytical integral. However, the approximation error of MC integration is suboptimal because
(pseudo-)uniform random samples may not exhibit sufficient “uniformity” over the space (Owen,
2013). Quasi-Monte Carlo (QMC) methods (Keller, 1995) address this issue by building determin-
istic point sets, known as “low-discrepancy sequences”, on which to evaluate the integrand. Low
discrepancy implies that the points are more “uniform” and provide a superior approximation of the
uniform expectation over the domain, compared to randomly drawn points.

Conventional QMC methods primarily focus on integration over the unit hypercube [0, 1]d (for
d ≥ 1). To assess the uniformity of a point set on [0, 1]d, a widely employed metric is the “star-
discrepancy” (Koksma, 1942). A lower star-discrepancy value typically results in reduced approxi-
mation error, as per the Koksma–Hlawka inequality (Koksma, 1942). When a point set exhibits a
sufficiently small star-discrepancy, it is referred to as a “low-discrepancy sequence”. For the unit cube,
several options exist, such as the Halton sequence (Halton & Smith, 1964), the Hammersley point
set (Hammersley, 2013), the Faure sequence (Faure, 1982), the Niederreiter sequence (Niederreiter,
1992), and the widely used Sobol sequence (Sobol, 1967). QMC integration is renowned for its
efficiency and effectiveness, especially in low (e.g., 3) dimensions.

Contribution. In short, we integrate QMC methodologies into the framework for SW distance
computation. Specifically, our contributions are three-fold:

1. As the SW distance involves integration over the unit hypersphere of dimension d− 1, rather than
the well-studied (for QMC purposes) hypercube, we provide an overview of practical methods for
constructing point sets on the unit hypersphere, which can serve as candidates for low-discrepancy
sequences (referred to as QMC point sets). Specifically, our exploration encompasses the following
techniques: (i) mapping a low-discrepancy sequence from the 3D unit cube to the unit sphere using
the normalized inverse Gaussian CDF, (ii) transforming a low-discrepancy sequence from the 2D
unit grid to the unit sphere via the Lambert equal-area mapping, (iii) using generalized spiral points,
(iv) maximizing pairwise absolute discrepancy, (v) minimizing the Coulomb energy. Notably, we
believe that our work is the first to make use of the recent numerical formulation of spherical cap
discrepancy (Heitsch & Henrion, 2021) to assess the uniformity of the aforementioned point sets.

2. We introduce the family of Quasi-Sliced Wasserstein (QSW) deterministic approximations to the
SW distance, based on QMC point sets. Furthermore, we establish the asymptotic convergence of
QSW to the SW distance, as the size of the point set grows to infinity, for nearly all constructions of
QMC point sets. For stochastic optimization, we present Randomized Quasi-Monte Carlo (RMQC)
methods applied to the unit sphere, resulting in Randomized Quasi-Sliced Wasserstein (RQSW)
estimations. In particular, we explore two approaches for generating random point sets on Sd−1:
transforming randomized point sets from the unit cube and random rotation. We prove that nearly all
variants of RQSW provide unbiased estimates of the SW distance.

3. We empirically demonstrate that QSW and RQSW offer better approximations of the SW distance
in 3D applications. Specifically, we first establish that QSW provides a superior approximation to
the population SW distance compared to conventional Monte Carlo (MC) approximations when
comparing 3D empirical measures over point clouds. Then, we conduct experiments involving point-
cloud interpolation, image style transfer, and training deep point-cloud autoencoders to showcase the
superior performance of various QSW and RQSW variants.

Organization. The remainder of the paper is organized as follows. We first provide some background
on the SW distance, MC estimation, and QMC methods in Section 2. Then, we discuss how to
construct QMC point sets on Sd−1, define QSW and RQSW approximations, and discuss some of
their theoretical properties in Section 3. Section 4 contains experiments on point-cloud autoencoders,
image style transfer, and deep point-cloud reconstruction. We conclude the paper in Section 5. Finally,
we defer the proofs of key results, related work, and additional material to the Appendices.
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Notation. For any d ≥ 2, we define the unit hypersphere Sd−1 := {θ ∈ Rd | ||θ||22 = 1}, and
denote the uniform distribution on it as U(Sd−1). For p ≥ 1, Pp(X ) represents the set of all
probability measures on the set X that have finite p-moments. We denote θ♯µ as the push-forward
measure µ ◦ f−1

θ of µ through the function fθ : Rd → R defined as fθ(x) = θ⊤x. For a vector
X = (x1, . . . , xm) ∈ Rm, PX represents the empirical measure 1

m

∑m
i=1 δxi .

2 BACKGROUND

In Section 2.1, we define the SW distance and review the standard MC approach to estimate it. After
that, in Section 2.2, we delve into QMC methods for approximating integrals over the unit hypercube.

2.1 SLICED WASSERSTEIN DISTANCE AND MONTE CARLO ESTIMATION

Definitions. Given p ≥ 1, the Sliced Wasserstein (SW) distance of order p (Bonneel et al., 2015)
between two probability measures µ, ν ∈ Pp(Rd) (i.e., with finite pth moment) is defined as

SWp
p(µ, ν) := Eθ∼U(Sd−1)[W

p
p(θ♯µ, θ♯ν)], (1)

where Wp(θ♯µ, θ♯ν) is the one-dimensional Wasserstein between the projections of µ and ν along
direction θ. As mentioned, one has the closed-form Wp

p(θ♯µ, θ♯ν) =
∫ 1

0
|F−1
θ♯µ(z) − F−1

θ♯ν(z)|pdz,
where F−1

θ♯µ(·) and F−1
θ♯ν(·) are the inverse cumulative distribution functions of θ♯µ and θ♯ν.

Monte Carlo estimation. To approximate the intractable expectation in the SW distance formula,
MC samples are generated and give rise to the following estimate:

ŜW
p

p(µ, ν;L) =
1

L

L∑
l=1

Wp
p(θl♯µ, θl♯ν), (2)

where random samples θ1, . . . , θL (referred to as projecting directions) are drawn i.i.d. from U(Sd−1).
When µ and ν are discrete probability measures that have at most n supports, the time complexity of
to compute ŜWp is O(Ln log n+ Ldn), while the corresponding space complexity is O(Ld+ Ln).
We refer to Algorithm 1 in Appendix B for more details on the computation of (2).

Monte Carlo error. Similar to other usages of MC, the approximation error of the SW decreases at
O(L−1/2) rate. In greater detail, a general upper-bound (Nadjahi et al., 2020) is:

E
θ1,...,θL

iid∼U(Sd−1)

[
|ŜW

p

p(µ, ν;L)− SWp
p(µ, ν)|

]
≤ 1√

L
Varθ∼U(Sd−1)

[
Wp
p(θ♯µ, θ♯ν)

]1/2
.

2.2 QUASI-MONTE CARLO METHODS

Problem. Conventional Quasi-Monte Carlo (QMC) methods focus on approximating an integral
I =

∫
[0,1]d

f(x)dx = Ex∼U([0,1]d)[f(x)] on the unit hypercube [0, 1]d, with U([0, 1]d) denoting the
corresponding uniform distribution. Similarly to MC methods, QMC integration also approximates
the expectation with an equal weight average Î(L) = 1

L

∑L
l=1 f(xl). However, the point set

θ1, . . . , θL is constructed differently.

Low-discrepancy sequences. QMC requires a point set x1, . . . , xL such that Î(L) → I as
L → ∞, and aims to obtain high uniformity. To measure the latter, the star discrepancy (Owen,
2013) has been used: D∗(x1, . . . , xL) = supx∈[0,1)d |FL(x|x1, . . . , xL) − FU([0,1]d)(x)|, where
FL(x|x1, . . . , xL) =

1
L

∑L
l=1 1xl≤x (the empirical CDF) and FU([0,1]d)(x) = Vol([0, x]) is the CDF

of the uniform distribution over the unit hypercube. Since the star discrepancy is the sup-norm
between the empirical CDF and the CDF of the uniform distribution, the points x1, . . . , xL are asymp-
totically uniformly distributed if D∗(x1, . . . , xL) → 0. Moreover, there is a connection between the
star discrepancy and the approximation error (Hlawka, 1961) via the Koksma-Hlawka inequality. In
particular, we have:

|Î(L)− I| ≤ D∗(x1, . . . , xL)VarHK(f), (3)
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where VarHK(f) is the total variation of f in the sense of Hardy and Krause (Niederreiter, 1992).
Formally, x1, . . . , xL is called a low-discrepancy sequence if D∗(x1, . . . , xL) ∈ O(L−1 log(L)d).
Therefore, QMC integration can achieve better approximation than its MC counterpart if L ≥ 2d,
since the error rate of MC is O(L−1/2). In relatively low dimensions, e.g., three dimensions,
QMC gives a better approximation than MC. Several such sequences have been proposed, e.g., the
Halton sequence (Halton & Smith, 1964), the Hammersley point set (Hammersley, 2013), the Faure
sequence (Faure, 1982), the Niederreiter sequence Niederreiter (1992), and the Sobol sequence (Sobol,
1967). We refer the reader to Appendix B for the construction of the Sobol sequence.

3 QUASI-MONTE CARLO FOR 3D SLICED WASSERSTEIN

In Section 3.1, we explore the construction of candidate point sets as low-discrepancy sequences on
the unit hypersphere. Subsequently, we introduce Quasi-Sliced Wasserstein (QSW), Randomized
Quasi-Sliced Wasserstein (RQSW) distance, and discuss their properties in Section 3.2-3.3.

3.1 LOW-DISCREPANCY SEQUENCES ON THE UNIT-HYPERSPHERE

Spherical cap discrepancy. The most used discrepancy to measure the uniformity of a point set
θ1, . . . , θL ∈ Sd−1 is the spherical cap discrepancy (Brauchart & Dick, 2012):

D∗
Sd−1(θ1, . . . , θL) = sup

w∈Sd−1,t∈[−1,1]

∣∣∣∣∣ 1L
L∑
l=1

1θL∈C(w,t) − σ0(C(w, t))

∣∣∣∣∣ , (4)

where C(w, t) = {x ∈ Sd−1|⟨w, x⟩ ≤ t} is a spherical cap, and σ0 is the law of U(Sd−1). It is proven
that θ1, . . . , θL are asymptotically uniformly distributed if D∗

Sd−1(θ1, . . . , θL) → 0 (Brauchart &
Dick, 2012). A point set θ1, . . . , θL is called a low-discrepancy sequence on S2 if D∗

S2(θ1, . . . , θL) ∈
O(L−3/4

√
log(L)). For some functions belonging to suitable Sobolev spaces, a lower spherical cap

discrepancy leads to a better worse-case error (Brauchart & Dick, 2012; Brauchart et al., 2014).

QMC point sets on Sd−1. We explore various methods to construct potentially low-discrepancy
sequences on the unit hypersphere. Some of these constructions are applicable to any dimension,
while others are specifically designed for the 2-dimensional sphere S2 ⊂ R3.

Gaussian-based mapping. Utilizing the connection between Gaussian distribution and the uniform
distribution over the unit hypersphere, i.e., x ∼ N (0, Id) then x/∥x∥2 ∼ U(Sd−1), we can map a
low-discrepancy sequence x1, . . . , xL on [0, 1]d to a potentially low-discrepancy sequence θ1, . . . , θL
on Sd−1 through the mapping θ = f(x) = Φ−1(x)/∥Φ−1(x)∥2, where Φ−1 is the inverse CDF of
N (0, 1) (entry-wise). This technique is mentioned in (Basu, 2016) and can be used in any dimension.

Equal area mapping. Following the same idea of transforming a low-discrepancy sequence on the unit
grid, we can utilize an equal area mapping (projection) to map from [0, 1]2 to S2. For instance, we
use the Lambert cylindrical mapping f(x, y) = (2

√
y − y2 cos(2πx), 2

√
y − y2 sin(2πx), 1− 2y).

This approach generates an asymptotically uniform sequence which is empirically shown to be
low-discrepancy on S2 (Aistleitner et al., 2012).

Generalized Spiral. We can explicitly construct a set of L points that are equally distributed on S2 with
spherical coordinates (ϕ1, ϕ2) (Rakhmanov et al., 1994): zi = 1 − 2i−1

L , ϕi1 = cos−1(zi), ϕi2 =

1.8
√
Lϕ1i mod 2π for i = 1, . . . , L. We can then retrieve Euclidean coordinates through the

mapping (ϕ1, ϕ2) 7→ (sin(ϕ1) cos(ϕ2), sin(ϕ1) sin(ϕ2), cos(ϕ1)). This construction outputs an
asymptotically uniform sequence (Hardin et al., 2016) which is empirically shown to achieve optimal
worst-case integration error Brauchart et al. (2014) for properly defined Sobolev integrands.

Maximizing Distance and minimizing Coulomb energy. Previous work (Brauchart et al., 2014;
Hardin et al., 2016) suggests that choosing a point set θ1, . . . , θL which maximizes the distance∑L
i=1

∑L
j=1 |θi−θj | or minimizes the Coulomb energy

∑L
i=1

∑L
j=1

1
|θi−θj | could create a potentially

low-discrepancy sequence. Such sequences are also shown to achieve optimal worst-case error
by Brauchart et al. (2014), though they might suffer from sub-optimal optimization in practice. Also,
minimizing the Coulomb energy is proven to create an asymptotically uniform sequence (Götz, 2000).
In this work, we use generalized spiral points as initialization points for optimization.
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Empirical comparison. We adopt a recent numerical approximation for the spherical cap discrep-
ancy (Heitsch & Henrion, 2021) to compare the discussed L-point sets. We visualize these sets
and the corresponding discrepancies for L = 10, 50, 100 in Figure 6 in Appendix D.1. Overall,
generalized spiral points and optimization-based points yield the lowest discrepancies, followed by
equal area mapping construction. The Gaussian-based mapping construction performs worst among
QMC methods; however, it still yields much lower spherical cap discrepancies than conventional
random points. Qualitatively, we observe that the spherical cap discrepancy is consistent with the
uniformity of point sets. We also include a comparison with the theoretical line CL−3/4

√
log(L)

for some constant C, in Figure 7 in Appendix D.1. In this case, we observe that the equal area
mapping sequences, generalized spiral sequences, and optimization-based sequences seem to attain
low-discrepancy, as per definition. For convenience, we refer to these sequences as QMC point sets.

3.2 QUASI-SLICED WASSERSTEIN

Quasi-Monte Carlo methods for SW distances. Based on the aforementioned QMC point sets in
Section 3.1, we can define the the QMC approximation of the SW distance as follows.

Definition 1. Given p ≥ 1, d ≥ 2, two probability measures µ, ν ∈ Pp(Rd), and a QMC point set
θ1, . . . , θL ∈ Sd−1, Quasi-Sliced Wasserstein (QSW) approximation of order p between µ and ν is:

Q̂SW
p

p(µ, ν; θ1, . . . , θL) =
1

L

L∑
l=1

Wp
p(θl♯µ, θl♯ν). (5)

We refer to Algorithm 2 in Appendix B for the computational algorithm of the QSW distance.

Quasi-Sliced Wasserstein variants. We refer to (i) QSW with Gaussian-based mapping QMC point
set as GQSW, (ii) QSW with equal area mapping QMC point set as EQSW, (iii) QSW with QMC
generalized spiral points as SQSW, (iv) QSW with maximizing distance QMC point sets as DQSW,
and (v) QSW with minimizing Coulomb energy sequence as CQSW.

Proposition 1. With point sets constructed through the Gaussian-based mapping, the equal
area mapping, the generalized spiral points, and minimizing Coulomb energy, we have
Q̂SW

p

p(µ, ν; θ1, . . . , θL) → SWp
p(µ, ν) as L → ∞.

The proof of Proposition 1 is in Appendix A.1. We now discuss some properties of QSW variants.

Computational complexities. QSW variants are deterministic, which means that the construction
of QMC point sets, which can be reused multiple times, carries a one-time cost. Therefore, the
computation of QSW variants has the same properties as for the SW distance, i.e., the time and space
complexities are O(Ln log n+ Ldn) and O(Ld+ Ln), respectively. Since the QSW distance does
not require resampling the set of projecting directions at each evaluation time, it is faster to compute
than the SW distance if QMC point sets have been constructed in advance.

Gradient Approximation. When dealing with parametric probability measures, e.g., νϕ, we might
be interested in computing the gradient ∇ϕSWp

p(µ, νϕ) for optimization purposes. When using QMC

integration, we obtain the corresponding deterministic approximation ∇ϕQ̂SW
p

p(µ, νϕ; θ1, . . . , θL) =
1
L

∑L
l=1 ∇ϕWp

p(θl♯µ, θl♯νϕ) for a QMC point set θ1, . . . , θL. For a more detailed definition of
the gradient of the SW distance, please refer to Tanguy (2023). Since a deterministic gradient
approximation may not lead to good convergence of optimization algorithms for relatively small L,
we develop an unbiased estimation from QMC point sets in the next Section.

Related works. The SW distance is used as an optimization objective to construct a QMC point
set on the unit cube and the unit ball in Paulin et al. (2020). However, a QMC point set on the
unit-hypersphere is not discussed, and the SW distance is still approximated by conventional Monte
Carlo integration. In contrast to the mentioned work, our focus is on using QMC point sets on the
unit-hypersphere to approximate SW. The usage of heuristic scaled mapping with Halton sequence
for SW distance approximation is briefly mentioned for the comparison between two Gaussians
in (Lin et al., 2020). In this work, we consider a broader class of QMC point sets, assess their quality
with the spherical cap discrepancy, discuss some randomized versions, and compare them in real
applications. For further discussion on related work, please refer to Appendix C.
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Figure 1: The error for approximation SW distances between empirical distributions over point-clouds.

3.3 RANDOMIZED QUASI-SLICED WASSERSTEIN

While QSW approximations could improve approximation error, they are all deterministic. Fur-
thermore, the gradient estimator based on QSW is deterministic, which may not be well-suited for
convergence in optimization with the SW loss function. Moreover, QSW cannot yield any confidence
interval about the SW value. Consequently, we propose Randomized Quasi-Sliced Wasserstein
estimations by introducing randomness into QMC point sets.

Randomized Quasi-Monte Carlo methods. The idea behind the Randomized Quasi-Monte Carlo
(RQMC) approach is to inject randomness into a given QMC point set. For the unit cube, we
can achieve a random QMC point set x1, . . . , xL by shifting (Cranley & Patterson, 1976) i.e.,
y1 = (xi +U) mod 1 for all i = 1, . . . , L and U ∼ U([0, 1]d). In practice, scrambling (Owen, 1995)
is preferable since it gives a uniformly distributed random vector when applied to x ∈ [0, 1]d. In
greater detail, x is rewritten into x =

∑∞
k=1 b

−kak for base b digits and ak ∈ {0, 1, . . . , b−1}. After
that, we permute a1, . . . , ak randomly to obtain the scrambled version of x. Scrambling is applied to
all points in a QMC point set to obtain a randomized QMC point set.

Randomized QMC point sets on Sd−1. To the best of our knowledge, there is no prior work of
randomized QMC point sets on the unit-hypersphere. Therefore, we discuss two practical ways to
obtain random QMC point sets i.e., pushfoward QMC point sets and random rotation.

Pushfoward QMC point sets. Given a randomized QMC point set x′
1, . . . , x

′
L on the unit-cube

(unit-grid), we can use the Gaussian-based mapping (or the equal area mapping) to create a random
QMC point set on the unit hypersphere θ′1, . . . , θ

′
L. As long as the randomized sequence x′

1, . . . , x
′
L

is low-discrepancy on the mapping domain (e.g., as it happens when using scrambling), the spherical
point set θ′1, . . . , θ

′
L will have the same uniformity as the non-randomized construction.

Random rotation. Given a QMC point set θ1, . . . , θL on the unit-hypersphere Sd−1, we can apply
uniform random rotation to achieve a random QMC point set. In particular, we first sample U ∼
U(Vd(Rd)) where Vd(Rd) = {U ∈ Rd×d|U⊤U = Id} is the Stiefel manifold. After that, we form
the new sequence θ′1, . . . , θ

′
L with θ′i = Uθi for all i = 1, . . . , L. Since rotation does not change

the norm of vectors, the randomized QMC point set can be still a low-discrepancy sequence of the
original QMC point set is low-discrepancy. Moreover, sampling uniformly from the Stiefel manifold
is equivalent to applying the Gram-Smith orthogonalization process to z1, . . . , zl

iid∼ N (0, Id) by the
Bartlett decomposition theorem (Muirhead, 2009).

Definition 2. Given p ≥ 1, d ≥ 2, two measures µ, ν ∈ Pp(Rd), and a randomized QMC point set
θ′1, . . . , θ

′
L ∈ Sd−1, Randomized Quasi-Sliced Wasserstein estimation of order p between µ and ν is:

R̂QSW
p

p(µ, ν; θ
′
1, . . . , θ

′
L) =

1

L

L∑
l=1

Wp
p(θ

′
l♯µ, θ

′
l♯ν). (6)

We refer to Algorithms 3 and 4 for more details on the computation of the RQSW approximation.

Randomized Quasi-Sliced Wasserstein variants. For pushfoward QMC point sets, we refer to (i)
RQSW with Gaussian-based mapping as RGQSW, (ii) RQSW with equal area mapping as REQSW.
For random rotation QMC point sets, we refer to (iii) RQSW with Gaussian-based mapping as
RRGQSW, (iv) RQSW with equal area mapping as RREQSW (v) RQSW with generalized spiral
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Table 1: Summary of Wasserstein-2 distances (multiplied by 102) from three different runs.
Estimators Step 100 (W2 ↓) Step 200 (W2 ↓) Step 300 (W2 ↓) Step 400(W2 ↓) Step 500 (W2 ↓) Time (s↓)

SW 5.761± 0.088 0.178± 0.001 0.025± 0.001 0.01± 0.001 0.004± 0.001 8.57

GQSW 6.136± 0.0 0.255± 0.0 0.077± 0.0 0.07± 0.0 0.068± 0.0 8.38
EQSW 5.414± 0.0 0.22± 0.0 0.079± 0.0 0.071± 0.0 0.069± 0.0 8.37
SQSW 5.718± 0.0 0.181± 0.0 0.075± 0.0 0.07± 0.0 0.069± 0.0 8.38
DQSW 5.792± 0.0 0.193± 0.0 0.077± 0.0 0.07± 0.0 0.067± 0.0 8.37
CQSW 5.609± 0.0 0.163± 0.0 0.07± 0.0 0.066± 0.0 0.065± 0.0 8.37

RGQSW 5.727± 0.035 0.169± 0.003 0.022± 0.001 0.007± 0.001 0.003± 0.001 8.75
RRGQSW 5.733± 0.027 0.168± 0.006 0.025± 0.003 0.011± 0.002 0.006± 0.001 8.49
REQSW 5.737± 0.017 0.171± 0.004 0.022± 0.002 0.007± 0.001 0.003± 0.001 8.78
RREQSW 5.704± 0.011 0.165± 0.004 0.021± 0.0 0.007± 0.001 0.003± 0.001 8.41
RSQSW 5.722± 0.0 0.169± 0.001 0.021± 0.001 0.007± 0.001 0.002± 0.0 8.43
RDQSW 5.725± 0.002 0.169± 0.001 0.023± 0.002 0.009± 0.002 0.003± 0.002 8.44
RCQSW 5.721± 0.002 0.167± 0.002 0.02± 0.0 0.007± 0.001 0.003± 0.001 8.45

points as RSQSW, (vi) RQSW with maximizing distance QMC point set as RDQSW, and (vii)
RQSW with minimizing Coulomb energy sequence as RCQSW.

Proposition 2. Gaussian-based mapping and random rotation randomized Quasi-Monte Carlo
point sets are uniformly distributed, and the corresponding estimators RQSWp

p(µ, ν; θ
′
1, . . . , θ

′
L) are

unbiased estimations of SWp
p(µ, ν) i.e., E[R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L)] = SWp

p(µ, ν).

The proof of Proposition 2 is in Appendix A.2. We now discuss some properties of RQSW variants.

Computational complexities. Compared to QSW, RQSW requires additional computation for ran-
domization. For the push-forward approach, scrambling and shifting carry a O(Ld) time complexity.
In addition, mapping the randomized sequence from the unit-cube (unit-grid) to the unit-hypersphere
has time complexity O(Ld). For the random rotation approach, sampling a random rotation matrix
costs O(d3). After that, multiplying the sampled rotation matrix with the precomputed QMC point
set costs O(Ld2) in time complexity and O(Ld) in space complexity. Overall, in the 3D setting
where d = 3 and n >> L > d, the additional computation for RQSW approximations is negligible
compared to the O(n log n) cost from computing one-dimensional Wasserstein distances.

Gradient estimation. In contrast to QSW, RQSW is random and is an unbiased estimation when
combined with the proposed construction of randomized QMC point sets from Proposition 2. There-
fore, it follows directly that E[∇ϕR̂QSW

p

p(µ, νϕ; θ
′
1, . . . , θ

′
L)] = ∇ϕSWp

p(µ, νϕ) due to the Leibniz
rule of differentiation. Therefore, this estimation can lead to better convergence for optimization.

4 EXPERIMENTS

We first demonstrate that QSW variants outperform the conventional Monte Carlo approximation
(referred to as SW) in Section 4.1. We then showcase the advantages of RQSW variants in point-cloud
interpolation and image style transfer, comparing them to both QSW variants and the conventional
SW approximation in Section 4.2 and Section 4.3, respectively. Finally, we present the favorable
performance of QSW and RQSW variants in training a deep point-cloud autoencoder.

4.1 APPROXIMATION ERROR

Setting. We select randomly four point-clouds (1, 2, 3, and 4 with 3 dimensions, 2048 points)
from ShapeNet Core-55 dataset (Chang et al., 2015) as shown in Figure 1. After that, we use
MC estimation with L = 100000 to approximate SW 2

2 between empirical distributions over point-
clouds 1-2, 1-3, 2-3, and 3-4, then treat them as the population value. Next, we vary L in the
set {10, 100, 500, 1000, 2000, 5000, 10000} and compute the corresponding absolute error of the
estimation from MC (SW), and QMC (QSWs).

Results. We illustrate the approximation errors in Figure 1. From the plot, it is evident that QSW
approximations yield lower errors compared to the conventional SW approximation. Among the
QSW approximations, CQSW and DQSW perform the best, followed by SQSW. In this simulation,
the quality of GQSW and EQSW is not comparable to the previously mentioned approximations.
Nevertheless, their errors are at least comparable to SW and are considerably better most of the time.

4.2 POINT-CLOUD INTERPOLATION

Setting. To interpolate between two point-clouds X and Y , we define the curve Ż(t) =
−n∇Z(t)

[
SW2

(
PZ(t), PY

)]
where PX and PY are empirical distributions over X and Y in turn.

Here, the curve starts from Z(0) = X and ends at Y . In this experiment, we set X as point-cloud 1
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Figure 2: Point-cloud interpolation from SW, CQSW, and RCQSW with L = 100.
Source SW, W2 = 458.29 CQSW, W2 = 148.22 RCQSW, W2 = 1.27 Target

Figure 3: Style-transferred images from SW, CQSW, and RCQSW with L = 100.
Table 2: Reconstruction losses (multiplied by 100) from trained by different approximations with L = 100.

Approximation Epoch 100 Epoch 200 Epoch 400

SW2(↓) W2(↓) SW2 (↓) W2(↓) SW2 (↓) W2(↓)

SW 2.25± 0.06 10.58± 0.12 2.11± 0.04 9.92± 0.08 1.94± 0.06 9.21± 0.06

GQSW 11.17± 0.07 32.58± 0.06 11.75± 0.07 33.27± 0.09 14.82± 0.02 37.99± 0.05
EQSW 2.25± 0.02 10.57± 0.02 2.05± 0.02 9.84± 0.07 1.90± 0.04 9.20± 0.07
SQSW 2.25± 0.01 10.57± 0.03 2.08± 0.01 9.90± 0.04 1.90± 0.02 9.17± 0.05
DQSW 2.24± 0.07 10.58± 0.05 2.06± 0.04 9.83± 0.01 1.86± 0.05 9.12± 0.07
CQSW 2.22± 0.02 10.54± 0.02 2.05± 0.06 9.81± 0.04 1.84± 0.02 9.06± 0.02

RGQSW 2.25± 0.02 10.57± 0.01 2.09± 0.03 9.92± 0.01 1.94± 0.02 9.18± 0.02
RRGQSW 2.23± 0.01 10.51± 0.04 2.06± 0.05 9.84± 0.06 1.88± 0.09 9.16± 0.11
REQSW 2.24± 0.04 10.53± 0.04 2.08± 0.04 9.90± 0.08 1.89± 0.04 9.17± 0.06
RREQSW 2.21± 0.04 10.50± 0.04 2.03± 0.02 9.83± 0.02 1.88± 0.05 9.15± 0.06
RSQSW 2.22± 0.05 10.53± 0.01 2.04± 0.06 9.82± 0.06 1.85± 0.05 9.12± 0.02
RDQSW 2.21± 0.03 10.50± 0.02 2.03± 0.04 9.82± 0.04 1.86± 0.03 9.12± 0.02
RCQSW 2.22± 0.03 10.50± 0.05 2.03± 0.02 9.82± 0.03 1.85± 0.06 9.12± 0.03

and Y as point-cloud 3 in Figure 1. After that, we use different gradient approximations from the
conventional SW, QSW variants, and RQSW variants to perform the Euler scheme with 500 iterations,
step size 0.01. To verify which approximation gives the shortest curve in length, we compute the
Wasserstein-2 distance (POT library, Flamary et al. (2021)) between PZ(t) and PY .

Results. We report Wasserstein-2 distances (from three different runs) between PZ(t) and PY at
time step 100, 200, 300, 400, 500 in Table 1 with L = 100. From the table, we observe that QSW
variants do not perform well in this application due to the deterministic approximation of the gradient
with a fixed set of projecting directions. In particular, although EQSW and CQSW perform the best
at time steps 100 and 200, QSW variants cannot make the curves terminate. As expected, RQSW
variants can solve the issue by injecting randomness to create new random projecting directions.
Compared to SW, RQSW variants are all better except RRGQSW. We visualize the interpolation for
SW, CQSW, and RCQSW in Figure 2. The full visualization from all approximations is given in
Figure 8 in Appendix D.2. From the figures, we observe that the qualitative comparison is consistent
with the quantitative comparison in Table 1. In Appendix D.2, we also provide the result for L = 10
in Table 3, and the result for a different pair of point-clouds in Table 4-5 and Figure 9. We refer the
reader to Appendix D.2 for a more detailed discussion.

4.3 IMAGE STYLE TRANSFER

Setting. Given a source image and a target image, we denote the associated color palettes as X and
Y , which are matrices of size n× 3 (n is the number of pixels). Similar to point-cloud interpolation,
we iterate along the curve between PX and PY . However, since the value of the color palette (RGB)
is in the set {0, . . . , 255}, we need to perform an additional rounding step at the final Euler iterations.
Moreover, we use more iterations i.e., 1000, and a bigger step size i.e., 1.

Results. For L = 100, we report the Wasserstein-2 distances at the final time step and the corre-
sponding transferred images from SW, CQSW, and RCQSW in Figure 3. The full results for all
approximations are given in Figure 10 in Appendix D.3. In addition, we provide results for L = 10
in Figure 11 in Appendix D.3. Overall, QSW variants and RQSW perform better than SW in terms
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Figure 4: Reconstructed point-clouds from SW, CQSW, and RCQSW with L = 100.

of both Wasserstein distance and visualization (brighter transferred images). Comparing QSW and
RQSW, the latter yields considerably lower Wasserstein distances. In this task, RQSW variants
display quite similar performance. We refer the reader to Appendix D.3 for more detail.

4.4 DEEP POINT-CLOUD AUTOENCODER

Setting. We follow the experimental setting in (Nguyen et al., 2023) to train deep point-cloud
autoencoders with the SW distance on the ShapeNet Core-55 dataset Chang et al. (2015). We aim
to optimize the following objective minϕ,γ EX∼µ(X)[SWp(PX , Pgγ(fϕ(X)))], where µ(X) is our
data distribution, fϕ and gψ are a deep encoder and a deep decoder with Point-Net Qi et al. (2017)
architecture. To optimize the objective, we use conventional MC estimation, QSW, and RQSW
to approximate the gradient ∇ϕ and ∇ψ. We then utilize the standard SGD optimizer to train the
autoencoder (with an embedding size of 256) for 400 epochs with a learning rate of 1e-3, a batch
size of 128, a momentum of 0.9, and a weight decay of 5e-4. To evaluate the quality of trained
autoencoders, we compute the average reconstruction losses, which are the W2 and SW2 distances
(estimated with 10000 MC samples), on a different dataset i.e., ModelNet40 dataset (Wu et al., 2015).

Results. We report the reconstruction losses with L = 100 in Table 2 (from three different training
times). Interestingly, CQSW performs the best among all approximations i.e., SW, QSW variants,
and RQSW variants at the last epoch. We have an explanation for this phenomenon. In contrast to
point-cloud interpolation which considers only one pair of point-clouds, we estimate an autoencoder
from an entire dataset of point-clouds. Therefore, model misspecification might happen here i.e.,
the family of Point-Net autoencoders may not contain the true data-generating distribution. Hence,
L = 100 might be large enough to approximate well with QSW. When we reduce L to 10 in Table 6
in Appendix 4.4, CQSW and other QSW variants become considerably worse. In this application, we
also observe that GQSW suffers from some numerical issues which leads to a very poor performance.
As a solution, RQSW performs consistently well compared to SW especially random rotation variants.
We present some reconstructed point-clouds from SW, CQSW, and RCQSW in Figure 4 and full
visualization in Figure 12- 13. Overall, we recommend RCQSW for this task as a safe choice. We
refer the reader to Appendix D.4 for more detail.

5 CONCLUSION

We presented Quasi-Sliced Wasserstein (QSW) approximation methods, which give rise to a better
class of numerical estimates for the Sliced Wasserstein (SW) distance based on Quasi-Monte Carlo
(QMC) methods. We discussed various ways to construct QMC point sets on the unit hypersphere,
including the Gaussian-based mapping, the equal area mapping, generalized spiral points, maximizing
distance points, and minimizing Coulomb energy points. Moreover, we proposed Randomized Quasi-
Sliced Wasserstein (RQSW) approximations, which is a family of unbiased estimators of the SW
distance based on injecting randomness into deterministic QMC point sets. We showed that QSW
methods can reduce approximation error in comparing 3D point clouds. In addition, we showed that
QSW variants and RQSW variants provide better gradient approximation for point-cloud interpolation,
image-style transfer, and training point-cloud autoencoders. Overall, we recommend RQSW with
random rotation of QMC point sets minimizing Coulomb energy, since it gives consistent and
stable behavior across tested applications. In the future, we plan on extending QSW and RQSW
approximations to higher dimensions d > 3, and apply QMC to other variants of the SW distance.
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Supplement to “Quasi-Monte Carlo for 3D Sliced Wasserstein”
We first provide proofs for theoretical results in the main text in Appendix A. Next, we offer additional
background information, including the Wasserstein distance, and computational algorithms for SW,
QSW, and RQSW variants in Appendix B. We then discuss related work in Appendix C. Afterward,
we present detailed experimental results, which are mentioned in the main text for point-cloud
interpolation, image style transfer, and deep point-cloud autoencoders in Appendix D. Finally, we
report on the computational infrastructure in Appendix E

A PROOFS

A.1 PROOF OF PROPOSITION 1

We first discuss the asymptotic uniformity of the mentioned QMC point set.

For the Gaussian-based mapping construction, From the construction, we have the function θ =

f(x) = Φ−1(x)
||Φ−1(x)||2 . Given a Sobol sequence x1, . . . , xL, the corresponding spherical vectors are

θ1, . . . , θL with θl = f(xl) for all l = 1, . . . , L. Let XL ∼ 1
L

∑L
l=1 δxl

. From the low-discrepancy
sequence property of Sobol sequences (Sobol, 1967), we have that XL converges to X ∼ U(0, 1)
in distribution as L → ∞. Since our function f(x) is continuous on [0, 1]d, using the continuous
mapping theorem, we have that θL = f(XL) converges to f(X) ∼ U(Sd−1) in distribution as
L → ∞. For the equal area mapping construction, we refer the reader to Aistleitner et al. (2012) for
the proof of uniformity. For the generalized spiral points construction, we refer the reader to Hardin
et al. (2016) for the proof of uniformity of this construction. Minimizing Coulomb energy is proven
to create an asymptotic uniform sequence in Götz (2000).

Now denote γL = 1
L

∑L
i=1 δθi and θ ∼ U(Sd−1). Given an asymptotically uniform point set

θ1, . . . , θL, we have γL
w→ U(Sd−1) as L → ∞, where w→ denotes weak convergence of probability

measures. That is, Eθ∼γL [g(θ)] → Eθ∼U(Sd−1)[g(θ)] for all bounded continuous functions g. Thus,
by the definition of the SW distance and its QSW approximation, one is left to show that θ 7→
Wp
p(θ♯µ, θ♯ν) is bounded and continuous for any two measures µ, ν with finite pth moment. We

show these properties for Wp(θ♯µ, θ♯ν) and then invoke continuity of the real function x 7→ x1/p.

As for boundedness, one can use the Cauchy-Schwartz inequality on Rd to get

Wp(θ♯µ, θ♯ν) =

(
inf

π∈Π(ν,µ)

∫
Rd

|θ⊤x− θ⊤y|pπ(dx, dy)
)1/p

≤
(

inf
π∈Π(ν,µ)

∫
Rd

∥x− y∥pπ(dx, dy)
)1/p

= Wp(µ, ν) < ∞
for all θ ∈ Sd−1. As for continuity, let (θt)t≥1 be a sequence on Sd−1 converging to θ ∈ Sd−1. Then

|Wp(θt♯µ, θt♯ν)− Wp(θ♯µ, θ♯ν)| ≤ |Wp(θt♯µ, θt♯ν)− Wp(θ♯µ, θt♯ν)|
+ |Wp(θ♯µ, θt♯ν)− Wp(θ♯µ, θ♯ν)|
≤ Wp(θ♯µ, θt♯µ) + Wp(θ♯ν, θt♯ν),

where the last inequality is a straightforward consequence of the triangle inequality applied to the
metric Wp. Let λ ∈ {µ, ν}. Then, using again the Cauchy-Schwartz inequality, we obtain

Wp(θ♯λ, θt♯λ) =

(
inf

π∈Π(λ,λ)

∫
Rd

|θ⊤t x− θ⊤y|pπ(dx, dy)
)1/p

≤
(∫

Rd

|θ⊤t x− θ⊤x|pλ(dx)
)1/p

≤
(∫

Rd

∥x∥pλ(dx)
)1/p

︸ ︷︷ ︸
<∞

∥θt − θ∥ → 0 as t → ∞.
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This implies Wp(θt♯µ, θt♯ν) → Wp(θ♯µ, θ♯ν) as t → ∞, proving continuity.

A.2 PROOF OF PROPOSITION 2

For the Gaussian-based mapping construction, given a Sobol sequence x1, . . . , xL ∈ [0, 1]d, ap-
plying scrambling returns x′

1, . . . , x
′
L ∈ U([0, 1]d) (Owen, 1995). Since f(x) = Φ−1(x)

||Φ−1(x)||2 is the
normalized inverse Gaussian CDF, θ′l = f(x′

l) ∼ U(Sd−1) for all l = 1, . . . , L.

For the random rotation construction, given a fixed vector θ ∈ Sd−1 and U = (u1, . . . , ud) ∼
U(Vd(Rd)), we now prove that Uθ ∼ U(Sd−1). For any U1 ∈ Vd(Rd), we have U1U = U2 with
U2 ∼ U(Vd(Rd)). Therefore, we have that Uθ has the same distribution as U1Uθ. Since there is
only one distribution on Sd−1 is invariant to rotation (Theorem 3.7 in (Mattila, 1999)) which is the
uniform distribution, Uθ ∼ U(Sd−1). Therefore, we obtain that θ′1, . . . , θ

′
L, generated by uniform

random rotation of a point set θ1, . . . , θL, are uniformly distributed.

Now, given θ′1, . . . , θ
′
L ∼ U(Sd−1), we have

E[R̂QSW
p

p(µ, ν; θ
′
1, . . . , θ

′
L)] = E

[
1

L

L∑
l=1

Wp
p(θ

′
l♯µ, θ

′
l♯ν)

]

=
1

L

L∑
l=1

E[Wp
p(θ

′
l♯µ, θ

′
l♯ν)]

=
1

L

L∑
l=1

SWp
p(µ, ν) = SWp

p(µ, ν),

which completes the proof.

B ADDITIONAL BACKGROUND

Wasserstein distance. Given two probability measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd), and p ≥ 1,
the Wasserstein distance (Villani, 2008; Peyré & Cuturi, 2019) between µ and ν is

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥ppdπ(x, y)
)1/p

, (7)

where Π(µ, ν) is the set of all couplings whose marginals are µ and ν. Considering the discrete case,
namely, µ =

∑n
i=1 αiδxi

and ν =
∑n
j=1 βjδyj with

∑n
i=1 αi =

∑n
j=1 βj , one obtains:

Wp
p(µ, ν) = min

π∈Π(α,β)

n∑
i=1

n∑
j=1

πij ||xi − yj ||pp, (8)

where Π(µ, ν) = {π ∈ Rn×n+ |π1 = α, π⊤1 = β}. Using linear programming, the computational
complexity and memory complexity of the Wasserstein distance are O(n3 log n) and O(n2).

Algorithms. We first introduce the computational algorithm for Monte Carlo estimation of SW in
Algorithm 1. Next, we provide the algorithm for QMC approximation of SW in Algorithm 2. Finally,
we present the algorithms for Randomized QMC estimation of the SW distance with scrambling and
random rotation in Algorithms 3 and 4, respectively.

Generation of Sobol sequence. From (Joe & Kuo, 2003), for generating a Sobol point set
x1, . . . , xL ∈ [0, 1]d, we need to follow the following procedure. For the j-th point, we need
to choose a primitive polynomial of some degree sl in the field Z2 (set of integer of module 2), that is:

zsj + a1,jz
sj−1 + . . .+ asj−1,jz + 1,

where the coefficients a1,j , . . . , asj−1,j are either 0 or 1. We then use a1,j , . . . , asj−1,j to define a
sequence m1,j ,m2,j , . . .msj ,j such that:

mk,j = 2a1,jmk−1,j ⊕ 22a2,jmk−2,j ⊕ . . .⊕ 2sj−1asj−1,jmk−sj+1,j ⊕ 2sjmk−sj ,1 ⊕mk−sj ,j ,
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Algorithm 1 Monte Carlo estimation of the Sliced Wasserstein distance.

Input: Probability measures µ and ν, p > 1, and the number of projections L.
Set ŜW

p

p(µ, ν;L) = 0
for l = 1 to L do

Sample θl ∼ U(Sd−1)

Compute ŜW
p

p(µ, ν;L) =
1
L

∑L
l=1

∫ 1

0
|F−1
θl♯µ

(z)− F−1
θl♯ν

(z)|pdz
end for
Return: ŜW

p

p(µ, ν;L)

Algorithm 2 Quasi-Monte Carlo approximation of the sliced Wasserstein distance.

Input: Probability measures µ and ν, p > 1, QMC point set θ1, . . . , θL ∈ Sd−1.
Set Q̂SW

p

p(µ, ν; θ1, . . . , θL) = 0
for l = 1 to L do

Compute Q̂SW
p

p(µ, ν; θ1, . . . , θL) = Q̂SW
p

p(µ, ν; θ1, . . . , θL)+
1
L

∫ 1

0
|F−1
θl♯µ

(z)−F−1
θl♯ν

(z)|pdz
end for
Return: Q̂SW

p

p(µ, ν; θ1, . . . , θL)

Algorithm 3 Randomized Quasi-Monte Carlo estimation of the Sliced Wasserstein distance with
scrambling.

Input: Probability measures µ and ν, p > 1, QMC point set x1, . . . , xL ∈ [0, 1]d.
Scramble x1, . . . , xL to obtain x′

1, . . . , x
′
L

Compute θ′1, . . . , θ
′
L = f(x′

1), . . . , f(x
′
L) for f the Gaussian-based mapping or the equal area

mapping.
Set R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L) = 0

for l = 1 to L do
Compute R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L) = R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L) + 1

L

∫ 1

0
|F−1
θ′l♯µ

(z) −
F−1
θ′l♯ν

(z)|pdz
end for
Return: R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L)

Algorithm 4 The Randomized Quasi-Monte Carlo estimation of sliced Wasserstein distance with
random rotation.

Input: Probability measures µ and ν, p ≥ 1, QMC point set θ1, . . . , θL ∈ Sd−1.
Sample U ∼ U(Vd(Rd))
Compute θ′1, . . . , θ

′
L = Uθ1, . . . , UθL

Set R̂QSW
p

p(µ, ν; θ
′
1, . . . , θ

′
L) = 0

for l = 1 to L do
Compute R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L) = R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L) + 1

L

∫ 1

0
|F−1
θ′l♯µ

(z) −
F−1
θ′l♯ν

(z)|pdz
end for
Return: R̂QSW

p

p(µ, ν; θ
′
1, . . . , θ

′
L)

for k > sj + 1 and ⊕ is the bit-by-bit exclusive-OR operator. The initial values of
m1,j ,m2,j , . . .msj ,j are chosen freely such that mk,j , 1 ≤ k ≤ sj is odd and less than 2k. After
that, direction numbers v1,j , v2,j , . . . vsj ,j are defined as:

vk,j =
mk,j

2k
.

Finally, we have:

xl,j = b1v1,j ⊕ b2v2,j ⊕ . . . ,⊕bsjvsj ,j ,
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where bi is the i-th bit from the right when l is written in binary ,i.e, , (. . . b2b1)2 is the binary
representation of l. For greater detail, we refer the reader to (Joe & Kuo, 2003) for more detailed and
practical algorithms.

Confidence Intervals. Using the discussed methodology, one can obtain M i.i.d RQSW estimates,
i.e., R̂QSW

p

p(µ, ν; θ
′
1m, . . . , θ′Lm) for m = 1, . . . ,M . Since RQSW is an unbiased estimate of the

population SW, the central limit theorem ensures the following:

µ̂M − SWp
p(µ, ν)

ŝM/
√
M

d→ N (0, 1)

as M → ∞, where µ̂M and ŝM are the sample mean and standard deviation based on the generated
M -size sample. Therefore, a 1 − α size asymptotic confidence interval for SWp

p(µ, ν) is readily
obtained as

µ̂M ± zα/2ŝM/
√
M.

with zα/2 denoting the α/2 quantile of a standard normal random variable. Alternatively, by sampling
with replacement from the M generated RQSW estimates, one can obtain B bootstrap replications of
µ̂M , say µ̂

(b)
M for b = 1, . . . , B, and construct a 1− α bootstrap confidence interval for SWp

p(µ, ν) as

[q̂α/2, q̂1−α/2], where q̂ω denotes the ω sample quantile of {µ̂(b)
M : b = 1, . . . , B}.

C RELATED WORKS

Beyond the uniform slicing distribution. Recent works have explored non-uniform slicing distri-
butions (Nguyen et al., 2021; Nguyen & Ho, 2023). Nevertheless, the uniform distribution remains
foundational in constructing the pushforward slicing distribution (Nguyen et al., 2021) and the
proposal distribution (Nguyen & Ho, 2023). Consequently, Quasi-Monte Carlo methods can also
enhance the approximation of the uniform distribution.

Beyond 3D. It is worth noting that the Gaussian-based construction, maximizing distance, and
minimizing Coulomb energy can be applied directly in higher dimensions, i.e., d > 3. Similarly, their
randomized versions could also be used directly in higher dimensions. However, the quality of QMC
point sets in high dimensions and their approximation errors are still open questions and require a
detailed investigation. Therefore, we will leave this exploration to future work

Scaled Mapping. Quasi-Monte Carlo is briefly used for SW in (Lin et al., 2020). In particular,
the authors utilize the Halton sequence in the three-dimensional unit cube, then map them to the
unit sphere via the scaled mapping f(x) = x

∥x∥2
. However, this construction is heuristic and lacks

meaningful properties. We visualize point sets of sizes 10, 50, 100 in Figure 5. From the figure, it is
evident that this construction does not exhibit low-discrepancy behavior, as all points are concentrated
in one region of the sphere.

Near Orthogonal Monte Carlo. Motivated by orthogonal Monte Carlo, the authors in (Lin et al.,
2020) propose near-orthogonal Monte Carlo, aiming to make the angles between any two samples
close to orthogonal. We utilized the published code for optimization-based approaches available at
https://github.com/HL-hanlin/OMC to generate point sets of size L in three dimensions,
where L is chosen from the set 10, 50, 100. For our experiments, we generated only one batch of
L points, avoiding the need to specify the second hyperparameter related to the number of batches.
We visualize the resulting point sets and their corresponding spherical cap discrepancies in Figure 5.
From the figure, it is evident that NOMC yields better spherical cap discrepancies compared to
conventional Monte Carlo methods. However, it is important to note that NOMC does not achieve the
same level of performance as the QMC point sets we discuss in this work. In this study, our primary
focus is on QMC methods, and as such, we leave a detailed investigation of the application of OMC
methods for SW to future research.
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Figure 5: Optimization-based Orthogonal Monte Carlo point set and scaled mapping with Halton Sequence
point set.
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Figure 6: point sets on S2 with the size of 10, 50, 100 and the corresponding spherical cap discrepancies.
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Figure 7: Spherical cap discrepancies of different QMC point sets and random point set.
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Table 3: Summary of Wasserstein-2 distances (multiplied by 102) from three different runs.

Estimators Step 100 (W2 ↓) Step 200 (W2 ↓) Step 300 (W2 ↓) Step 400(W2 ↓) Step 500 (W2 ↓) Time (s↓)

SW L=10 5.821± 0.149 0.203± 0.012 0.038± 0.002 0.017± 0.001 0.009± 0.0 2.90

GQSW L=10 9.274± 0.0 3.776± 0.0 2.572± 0.0 2.297± 0.0 2.23± 0.0 2.69
EQSW L=10 4.066± 0.0 0.575± 0.0 0.511± 0.0 0.508± 0.0 0.508± 0.0 2.70
SQSW L=10 6.321± 0.0 1.093± 0.0 0.603± 0.0 0.559± 0.0 0.554± 0.0 2.68
DQSW L=10 5.919± 0.0 0.87± 0.0 0.607± 0.0 0.593± 0.0 0.593± 0.0 2.69
CQSW L=10 5.561± 0.0 0.793± 0.0 0.614± 0.0 0.606± 0.0 0.606± 0.0 2.71

RGQSW L=10 5.863± 0.029 0.188± 0.007 0.035± 0.002 0.018± 0.001 0.01± 0.001 3.23
RRGQSW L=10 5.781± 0.102 0.232± 0.031 0.047± 0.002 0.03± 0.002 0.026± 0.001 3.02
REQSW L=10 5.733± 0.19 0.19± 0.014 0.034± 0.003 0.016± 0.002 0.008± 0.002 3.12
RREQSW L=10 5.857± 0.058 0.219± 0.007 0.042± 0.001 0.022± 0.001 0.014± 0.001 3.01
RSQSW L=10 5.754± 0.028 0.195± 0.004 0.035± 0.002 0.016± 0.002 0.007± 0.001 3.00
RDQSW L=10 5.835± 0.071 0.202± 0.011 0.036± 0.002 0.016± 0.001 0.008± 0.001 3.01
RCQSW L=10 5.794± 0.076 0.196± 0.008 0.037± 0.003 0.017± 0.002 0.008± 0.001 3.02

D DETAILED EXPERIMENTS

D.1 SPHERICAL CAP DISCREPANCY

We plotted the spherical cap discrepancies of the discussed QMC point sets and added hypothetical
lines of CL−3/4

√
log(L) for C = 1.6, C = 1, C = 0.95 in Figure 7. From the figure, it is evident

that QMC point sets derived from generalized spiral points, maximizing distance, and minimizing
Coulomb energy exhibit a faster convergence rate than O(L−3/4

√
log(L)). Consequently, they

can be classified as low-discrepancy sequences. Regarding the equal-area mapping construction,
it demonstrates approximately the same convergence rate as O(L−3/4

√
log(L)), suggesting its

potential as a low-discrepancy sequence. However, Gaussian-based mapping QMC point sets and
random (MC) point sets do not exhibit low-discrepancy behavior. In summary, we recommend
using generalized spiral points, maximizing distance, and minimizing Coulomb energy point sets for
approximating SW when distance values are a critical factor in the application.

D.2 POINT-CLOUD INTERPOLATION

Approximate Euler methods. We want to iterate through the curve Ż(t) =
−n∇Z(t) [SW2 (PZ(t), PY )]. For each iteration with t = 1, . . . , T , we first construct a point
set θ1, . . . , θL based on the discussed approaches using MC, QMC methods, and randomized QMC
methods. After that, with a step size η > 0, we update:

Z(t) = Z(t− 1)− nη∇Z(t−1)

[
1

L

L∑
l=1

W2
2

(
θl♯PZ(t−1), θl♯PY

)]1/2

.

Visualization for L = 100. In addition to the partial visualization in the main text, we provide a full
visualization of point-cloud interpolation from all QSW and RQSW variants in Figure 8. We observe
that QSW variants cannot produce smooth point clouds at the final time step since they use the same
QMC point sets across all time steps. In contrast, RQSW variants expedite the process of achieving a
smooth point cloud that closely resembles the target. When compared to RQSW variants, the point
cloud at the final time step from SW (the conventional MC) still contains some points that deviate
significantly from the main shape.

Results for L = 10. We repeated the same experiments with L = 10. We have reported the
Wasserstein-2 distances for intermediate point-clouds (relative to the target point-cloud) in Table 3.
We observed a similar phenomenon as with L = 100, namely, RQSW outperforms QSW significantly
and also performs better than SW. Compared to L = 100, all approximations from L = 10 yield
higher Wasserstein-2 distances. However, the gaps between QSW variants are wider. Therefore,
RQSW variants are more robust to the choice of L than QSW.

Results for a different pair of point-clouds. We conduct the same experiments with a different pair
of point-clouds, namely, 2 and 3 in Figure 1. We present a summary of Wasserstein-2 distances in
Table 4 for L = 100 and Table 5 for L = 10. We observe the same phenomena as in the previous
experiments. Firstly, RQSW variants produce shorter curves than QSW variants. Secondly, a larger
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Figure 8: Point-cloud interpolation from SW, QSW variants, and RQSW variants with L = 100.
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Table 4: Summary of Wasserstein-2 distances (multiplied by 102) from three different runs.

Estimators Step 100 (W2 ↓) Step 200 (W2 ↓) Step 300 (W2 ↓) Step 400(W2 ↓) Step 500 (W2 ↓)

SW L=100 2.819± 0.044 0.23± 0.002 0.033± 0.002 0.012± 0.002 0.006± 0.001

GQSW L=100 2.868± 0.0 0.281± 0.0 0.107± 0.0 0.093± 0.0 0.091± 0.0
EQSW L=100 2.473± 0.0 0.229± 0.0 0.109± 0.0 0.1± 0.0 0.098± 0.0
SQSW L=100 2.841± 0.0 0.262± 0.0 0.109± 0.0 0.098± 0.0 0.096± 0.0
DQSW L=100 2.883± 0.0 0.262± 0.0 0.101± 0.0 0.093± 0.0 0.091± 0.0
CQSW L=100 2.696± 0.0 0.223± 0.0 0.092± 0.0 0.085± 0.0 0.084± 0.0

RGQSW L=100 2.815± 0.017 0.231± 0.005 0.031± 0.001 0.01± 0.001 0.004± 0.001
RRGQSW L=100 2.82± 0.044 0.233± 0.008 0.034± 0.002 0.013± 0.002 0.006± 0.002
REQSW L=100 2.826± 0.006 0.229± 0.002 0.03± 0.001 0.01± 0.0 0.004± 0.0
RREQSW L=100 2.83± 0.015 0.23± 0.002 0.031± 0.001 0.011± 0.0 0.005± 0.001
RSQSW L=100 2.796± 0.003 0.224± 0.001 0.028± 0.002 0.008± 0.001 0.003± 0.0
RDQSW L=100 2.793± 0.002 0.224± 0.001 0.028± 0.001 0.008± 0.001 0.002± 0.0
RCQSW L=100 2.794± 0.005 0.227± 0.002 0.03± 0.001 0.01± 0.002 0.005± 0.002

Table 5: Summary of Wasserstein-2 distances (multiplied by 102) from three different runs.

Estimators Step 100 (W2 ↓) Step 200 (W2 ↓) Step 300 (W2 ↓) Step 400(W2 ↓) Step 500 (W2 ↓)

SW L=10 2.919± 0.082 0.262± 0.018 0.048± 0.007 0.02± 0.004 0.01± 0.003

GQSW L=10 6.576± 0.0 2.863± 0.0 2.305± 0.0 2.197± 0.0 2.165± 0.0
EQSW L=10 2.391± 0.0 0.789± 0.0 0.617± 0.0 0.6± 0.0 0.6± 0.0
SQSW L=10 3.498± 0.0 1.437± 0.0 0.87± 0.0 0.783± 0.0 0.776± 0.0
DQSW L=10 2.9± 0.0 1.118± 0.0 0.796± 0.0 0.754± 0.0 0.746± 0.0
CQSW L=10 3.465± 0.0 1.596± 0.0 1.129± 0.0 1.035± 0.0 1.027± 0.0

RGQSW L=10 2.979± 0.048 0.266± 0.007 0.045± 0.002 0.019± 0.001 0.009± 0.001
RRGQSW L=10 2.928± 0.056 0.271± 0.021 0.051± 0.003 0.028± 0.002 0.022± 0.001
REQSW L=10 2.891± 0.089 0.25± 0.013 0.045± 0.002 0.02± 0.001 0.01± 0.001
RREQSW L=10 2.907± 0.103 0.268± 0.011 0.055± 0.003 0.027± 0.002 0.017± 0.001
RSQSW L=10 2.747± 0.006 0.24± 0.002 0.047± 0.0 0.02± 0.001 0.01± 0.002
RDQSW L=10 2.769± 0.015 0.239± 0.008 0.044± 0.004 0.019± 0.004 0.009± 0.002
RCQSW L=10 2.761± 0.101 0.241± 0.009 0.043± 0.0 0.018± 0.002 0.009± 0.001

number of projections is better, and RQSW variants are more robust to changes in L than QSW
variants. Additionally, we provide visualizations for L = 100 in Figure 9. From the figure, we can
see consistent qualitative comparisons with the Wasserstein-2 distances reported in the tables.

Recommended variants. Overall, we recommend RSQSW, RDQSW, and RCQSW for the point-
cloud interpolation application since they give consistent performance for L = 100 and L = 10 for
both tried pairs of point-clouds.

D.3 IMAGE STYLE TRANSFER

Detailed settings. We first reduce the number of colors in the images to 3000 using K-means
clustering. Similar to the point-cloud interpolation, we iterate through the curve between the empirical
distribution of colors in the source image and the empirical distribution of colors in the target image
using the approximate Euler method.

Full results for L = 100. We present style-transferred images and their corresponding Wasserstein-2
distances to the target image in terms of color palettes at the last iteration (1000) in Figure 10. From
the figure, it is evident that QSW variants facilitate faster color transfer compared to SW. To elaborate,
SW exhibits a Wasserstein-2 distance of 458.29, while the highest Wasserstein-2 distance among
QSW variants is 158.6, achieved by GQSW. The use of RQSW can further enhance quality; for
instance, the highest Wasserstein-2 distance among RQSW variants is 1.45, achieved by RGQSW.
The best-performing variant in this application is RSQSW; however, other RQSW variants are also
comparable.

Full results for L = 10. We repeat the experiment with L = 10. In all approximations, decreasing L
to 10 results in a higher Wasserstein-2 distance, which is understandable based on the approximation
error analysis. In this scenario, the performance of some QSW variants (GQSW, EBQSW, SQSW)
degrades to the point of being even worse than SW. In contrast, the degradation of RQSW variants is
negligible, particularly for RCQSW.
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Figure 9: Point-cloud interpolation from SW, QSW variants, and RQSW variants with L = 100.
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Source SW, W2 = 458.29 GQSW, W2 = 158.6 RGQSW, W2 = 1.45 RRGQSW, W2 = 1.45

EQSW, W2 = 41.27 REQSW, W2 = 0.85 RREQSW, W2 = 0.85 SQSW, W2 = 86.47 RSQSW, W2 = 0.34

DQSW, W2 = 66.62 RDQSW, W2 = 1.04 CQSW, W2 = 148.22 RCQSW, W2 = 1.27 Target

Figure 10: Style-transferred images from SW, QSW variants, and RQSW variants with L = 100.
Source SW, W2 = 472.2 GQSW, W2 = 1277.11 RGQSW, W2 = 2.09 RRGQSW, W2 = 2.09

EQSW, W2 = 640.17 REQSW, W2 = 1.99 RREQSW, W2 = 1.99 SQSW, W2 = 920.19 RSQSW, W2 = 2.34

DQSW, W2 = 370.61 RDQSW, W2 = 2.49 CQSW, W2 = 412.8 RCQSW, W2 = 1.6 Target

Figure 11: Style-transferred images from SW, QSW variants, and RQSW variants with L = 100.

Recommended variants. Overall, we recommend RCQSW for this application since it performs
consistently for both setting of L = 100 and L = 10.

D.4 DEEP POINT-CLOUD AUTOENCODER

Full visualization for L = 100. We first visualize reconstructed point-clouds from all approximations,
including SW, QSW variants, and RQSW variants in Figure 12. Overall, we observe that the sharpness
of the reconstructed point-clouds aligns with the reconstruction losses presented in Table 2. However,
the point-clouds generated by GQSW lack meaningful structure, likely due to numerical issues
encountered during training. These issues may stem from the numerical computation of the inverse
CDF for specific projecting directions at certain iterations. Randomized versions of GQSW could
potentially mitigate such problems, as stochastic gradient training may help avoid undesirable
configurations in neural networks.

Results for L = 10. We reduce the number of projections L to 10 and subsequently report the
reconstruction losses in Table 6. Similar to other applications, reducing L results in increased
reconstruction losses, particularly for QSW variants. In this specific application, RQSW variants
demonstrate their robustness to the choice of L; the reconstruction losses for L = 10 are comparable
to those for L = 100, as shown in Table 2. Additionally, we provide visualizations of the reconstructed
point-clouds for L = 10 in Figure 13. It is evident from the figure that reconstructed point-clouds
from QSW variants exhibit significant noise.
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Figure 12: Some reconstructed point-clouds from SW, QSW variants, and RQSW variants with L = 100.
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Figure 13: Some reconstructed point-clouds from SW, QSW variants, and RQSW variants with L = 10.
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Table 6: Reconstruction errors (multiplied by 100) from three different runs of autoencoders trained by different
approximations of SW with L=10.

Distance Epoch 100 Epoch 200 Epoch 400

SW2(↓) W2(↓) SW2 (↓) W2(↓) SW2 (↓) W2(↓)

SW L=10 2.27± 0.05 10.60± 0.10 2.12± 0.04 9.93± 0.02 1.95± 0.06 9.24± 0.09

GQSW L=10 11.18± 0.06 32.64± 0.06 11.78± 0.07 33.35± 0.07 14.85± 0.03 38.04± 0.04
EQSW L=10 2.53± 0.07 11.82± 0.12 2.29± 0.02 11.03± 0.05 2.11± 0.03 10.40± 0.03
SQSW L=10 2.46± 0.04 11.55± 0.07 2.23± 0.05 10.82± 0.05 2.05± 0.06 10.15± 0.01
DQSW L=10 3.10± 0.03 12.89± 0.04 2.86± 0.07 12.17± 0.10 2.56± 0.03 11.33± 0.08
CQSW L=10 2.60± 0.04 11.92± 0.02 2.44± 0.03 11.29± 0.07 2.25± 0.10 10.59± 0.13

RGQSW L=10 2.27± 0.05 10.60± 0.06 2.10± 0.05 9.92± 0.09 1.95± 0.03 9.20± 0.03
RRGQSW L=10 2.26± 0.02 10.58± 0.03 2.06± 0.08 9.85± 0.12 1.89± 0.06 9.18± 0.07
REQSW L=10 2.26± 0.06 10.57± 0.05 2.09± 0.05 9.91± 0.05 1.91± 0.01 9.20± 0.03
RREQSW L=10 2.24± 0.03 10.54± 0.06 2.06± 0.03 9.85± 0.04 1.88± 0.07 9.17± 0.10
RSQSW L=10 2.23± 0.05 10.54± 0.08 2.05± 0.03 9.83± 0.03 1.86± 0.03 9.14± 0.02
RDQSW L=10 2.24± 0.03 10.54± 0.06 2.05± 0.03 9.85± 0.04 1.87± 0.03 9.14± 0.02
RCQSW L=10 2.24± 0.04 10.55± 0.03 2.03± 0.03 9.83± 0.03 1.87± 0.02 9.13± 0.06

Recommended variants. Overall, we recommend RCQSW for this application since it performs
well in both settings of L = 100 and L = 10 in terms of both reconstruction losses and qualitative
comparison.

E COMPUTATIONAL INFRASTRUCTURE

We use a single NVIDIA V100 GPU to conduct experiments on training deep point-cloud autoencoder.
Other applications are done on a desktop with an Intel core I5 CPU chip.
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