
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCOVERING SYMBOLIC DIFFERENTIAL EQUATIONS
WITH SYMMETRY INVARIANTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Discovering symbolic differential equations from data uncovers fundamental dy-
namical laws underlying complex systems. However, existing methods often
struggle with the vast search space of equations and may produce equations that
violate known physical laws. In this work, we address these problems by intro-
ducing the concept of symmetry invariants in equation discovery. We leverage
the fact that differential equations admitting a symmetry group can be expressed
in terms of differential invariants of symmetry transformations. Thus, we pro-
pose using these invariants as atomic entities in equation discovery, ensuring the
discovered equations satisfy the specified symmetry. Our approach integrates
seamlessly with existing equation discovery methods such as sparse regression and
genetic programming, improving their accuracy and efficiency. We validate the
proposed method through applications to various physical systems, such as Darcy
flow and reaction-diffusion, demonstrating its ability to recover parsimonious and
interpretable equations that respect the laws of physics.

1 INTRODUCTION

Differential equations describe relationships between functions representing physical quantities and
their derivatives. They are crucial in modeling a wide range of phenomena, from fluid dynamics and
electromagnetic fields to chemical reactions and biological processes, as they succinctly capture the
underlying principles governing the behavior of complex systems. The discovery of governing equa-
tions in symbolic forms from observational data bridges the gap between raw data and fundamental
understanding of physical systems. Unlike black-box machine learning models, symbolic equations
provide interpretable insights into the structure and dynamics of the systems of interest. In this paper,
we aim to discover symbolic partial differential equations (PDEs) in the form

F (x, u(n)) = 0, (1)

where x denotes the independent variables, u(n) consists of the dependent variable u and all of its
up-to-nth order partial derivatives.

While it has long been an exclusive task for human experts to identify governing equations, symbolic
regression (SR) has emerged as an increasingly popular approach to automate the discovery.1 SR
constructs expressions from a predefined set of atomic entities, such as variables, constants, and
mathematical operators, and fits the expressions to data by numerical optimization. Common methods
include sparse regression (Brunton et al., 2016; Champion et al., 2019), genetic programming
(Cranmer et al., 2019; 2020; Cranmer, 2023), neural networks (Kamienny et al., 2022), etc.

However, symbolic regression algorithms may fail due to the vastness of the search space or produce
more complex, less interpretable equations that overfit the data. A widely adopted remedy to these
challenges is to incorporate inductive biases derived from physical laws, such as symmetry and
conserved quantities, into equation discovery algorithms. Implementing these physical constraints
narrows the space for equations and expedites the search process, and it also rules out physically
invalid or unnecessarily complex equations.

1While some literature uses symbolic regression specifically for GP-based methods, we use the term inter-
changeably with equation discovery to refer to all algorithms for learning symbolic equations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Our framework enforces symmetry in equation discovery by using symmetry invariants.
We highlight three discovery algorithms in their original form (bottom row) and when constrained to
only use symmetry invariants (top row). The colored circles visualize the predicted functions on a
circular domain and demonstrate that using symmetry invariants guarantees a symmetric output.

Among the various physical constraints, symmetry plays a fundamental role in physical systems,
governing their invariances under transformations such as rotations, translations, and scaling. Previous
research has shown the benefit of incorporating symmetry in equation discovery, such as reducing the
dimensionality of the search space and promoting parsimony in the discovered equation (Yang et al.,
2024). However, the scopes of existing works exploiting symmetry are limited in terms of the types
of equations they can handle, the compatible base algorithms, etc. For example, Udrescu & Tegmark
(2020) deals with algebraic equations; Otto et al. (2023) deals with ODE systems; Yang et al. (2024)
applies to sparse regression but not other SR algorithms.

In this paper, we propose a general procedure based on symmetry invariants to enforce the inductive
bias of symmetry with minimal restrictions in the types of equations and SR algorithms. Specifically,
we leverage the fact that a differential equation can be written in terms of the invariants of symmetry
transformations if it admits a certain symmetry group. Thus, instead of operating on the original
variables, our method uses the symmetry invariants as the atomic entities in symbolic regression,
as depicted in Figure 1. These invariants encapsulate the essential information while automatically
satisfying the symmetry constraints. Consequently, the discovered equations are guaranteed to
preserve the specified symmetry. In summary, our main contributions are listed as follows:

• We propose a general framework to enforce symmetry in differential equation discovery
based on the theory of differential invariants.

• Our approach can be easily integrated with existing symbolic regression methods, such as
sparse regression and genetic programming, and improves their accuracy and efficiency for
differential equation discovery.

• We show that our symmetry-based approach is robust in challenging setups in equation
discovery, such as noisy data and imperfect symmetry.

Notations. Throughout the paper, subscripts are usually reserved for partial derivatives, e.g. ut :=
∂u/∂t, and uxx := ∂2u/∂x2. Superscripts are used for indexing vector components or list elements.
We use Einstein notation, where repeated indices are summed over. Matrices, vectors and scalars are
denoted by capital, bold and regular letters, respectively, e.g. W,w, w. These conventions may admit
exceptions for clarity or context. See Table 2 for a full description of notations.

2 BACKGROUND

2.1 PDE SYMMETRY

This section introduces the basic concepts about partial differential equations and their symmetry. For
a more thorough understanding of Lie point symmetry of PDEs, we refer the readers to Olver (1993).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Partial Differential Equations. We consider PDEs in the form F (x, u(n)) = 0, as given in (1). We
restrict ourselves to a single equation and a single dependent variable, unless otherwise stated. We use
x ∈ X ⊂ Rp to denote all independent variables. For example, x = (t, x) for a system evolving in
1D space. Note that the bold x refers to the collection of all independent variables while the regular x
denotes the spatial variable. Then, u = u(x) ∈ U ⊂ R is the dependent variable; u(n) = (u, ux, ...)
denotes all up to nth-order partial derivatives of u; (x, u(n)) ∈ M (n) ⊂ X × U (n), where M (n) is
the nth order jet space of the total space X × U . M (n) and u(n) are also known as the nth-order
prolongation of X × U and u, respectively.

Symmetry of a PDE. A point symmetry g is a local diffeomorphism on the total space E = X×U :

g · (x, u) = (x̃(x, u), ũ(x, u)), (2)

where x̃ and ũ are functions of E. The action of g on the function u(x) is induced from (2)
by applying it to the graph of u : X → U . Specifically, denote the domain of u as Ω ⊂ X
and its graph as Γu = {(x, u(x)) : x ∈ Ω}. The group element g transforms the graph Γu as
Γ̃u := g · Γu = {(x̃, ũ) = g · (x, u) : (x, u) ∈ Γu}.

Since g transforms both independent and dependent variables, Γ̃u does not necessarily correspond to
the graph of any single-valued function. Nevertheless, by suitably shrinking the domain ΩX , we can
ensure that the transformations close to the identity transform Γu to the graph of another function.
This function with the transformed graph Γ̃u is then defined to be the transformed function of the
original solution u, i.e. g · u = ũ s.t. Γũ = Γ̃u. The symmetry of the PDE (1) is then defined:

Definition 2.1. A symmetry group of F (x, u(n)) = 0 is a local group of transformations G acting
on an open subset of the total space X × U such that, for any solution u to F = 0 and any g ∈ G,
the function ũ = (g · u)(x) is also a solution of F = 0 wherever it is defined.

Infinitesimal Generators. Often, the symmetry group of a PDE is a continuous Lie group. In
practice, one needs to compute with infinitesimal generators of continuous symmetries, i.e., vector
fields. In more detail, we will write vector fields v : E → TE on E = X × U as

v = ξj(x, u)
∂

∂xj
+ ϕ(x, u)

∂

∂u
. (3)

Any such vector field generates a one-parameter group of symmetries of the total space {exp(ϵv) :
ϵ ∈ R}. The symmetries arising from the exponentiation of a vector field moves a point in the total
space along the directions given by the vector field. We will specify symmetries by vector fields in
the following sections. For instance, v = x∂y − y∂x represents the rotation in (x, y)-plane; v = ∂t
corresponds to time translation.

To analyze the symmetry of PDEs, we must know how it transforms not only the variables, but also
their derivatives accordingly. The group transformations on derivatives are formalized by prolonged
group actions and infinitesimal actions on the nth-order jet space, denoted g(n) and v(n), respectively.
More details on prolonged group actions are discussed in Appendix B.2, with Figure 4 visualizing a
simple example. To introduce our method, it suffices to note that the prolongation of the vector field
(3) can be described explicitly by ξj and ϕ and their derivatives via the prolongation formula (9).

2.2 SYMBOLIC REGRESSION ALGORITHMS

Given the data {(xi, yi)} ⊂ X × Y , the objective of symbolic regression is to find a symbolic
expression for the function y = f(x). Although this original formulation is for algebraic equations,
it can be generalized to differential equations like (1). To discover a PDE from the dataset of its
observed solutions on a grid Ω, i.e. {(x, u(x)) : x ∈ Ω}, we estimate the partial derivative terms
and add them to the dataset: {(x, u(n)) : x ∈ Ω}. One of the variables in the variable set (x, u(n))
is used as the LHS of the equation, i.e. the role of the label y in symbolic regression, while other
variables serve as features. The precise set of derivatives added to symbolic regression and the choice
of the equation LHS requires prior knowledge or speculations about the underlying system.

We briefly review two classes of symbolic regression algorithms: sparse regression (SINDy) and
genetic programming (GP). A more detailed discussion of related works is found in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Sparse regression (Brunton et al., 2016) is specifically designed for discovering differential equations.
It assumes the LHS ℓ of the equation is a fixed term, e.g. ℓ = ut, and the RHS of the equation can be
written as a linear combination of m predefined functions θj with trainable coefficients w ∈ Rm, i.e.,

ℓ(x, u(n)) = wjθj(x, u(n)), θj : M (n) → R. (4)

The equation is found by solving for w that minimizes the objective ∥L−R∥22 + λ∥w∥0, where L
and R are obtained by evaluating ℓ and wjθj on all data points and concatenating them into column
vectors, and ∥w∥0 regularizes the number of nonzero terms. This formulation can be easily extended
to q equations and dependent variables (q > 1): ℓi(x,u(n)) = W ijθj(x,u(n)), W ∈ Rq×m.

One problem with sparse regression is its restrictive assumptions about the form of equations. Many
equations cannot be expressed in the form of (4), e.g. y = 1

x+a where a could be any constant. Also,
the success of sparse regression relies on the proper choice of the function library {θj}. If any term
in the true equation were not included, sparse regression would fail to identify the correct equation.

Genetic programming (GP) offers an alternative solution for equation discovery (Cranmer, 2023),
which can learn equations in more general forms. It represents each expression as a tree and
instantiates a population of individual expressions. At each iteration, it samples a subset of expressions
and selects one of them that best fits the data; the selected expression is then mutated by a random
mutation, a crossover with another expression, or a constant optimization; the mutated expression
replaces an expression in the population that does not fit the data well. The algorithm repeats this
process to search for different combinations of variables, constants, and operators, and finally returns
the “fittest” expression. GP can be less efficient than sparse regression when the equation can be
expressed in the form (4) due to its larger search space. However, we will show that it is a promising
alternative to discover PDEs of generic forms, and our approach further boosts its efficiency.

3 SYMBOLIC REGRESSION WITH SYMMETRY INVARIANTS

Symmetry offers a natural inductive bias for the search space of symbolic regression in differential
equations. It reduces the dimensionality of the space and encourages parsimony of the resulting
equations. To enforce symmetry in PDE discovery, we aim to find the maximal set of equations
admitting a given symmetry and search in that set with symbolic regression (SR) methods.

3.1 DIFFERENTIAL INVARIANTS AND SYMMETRY CONDITIONS

To achieve this, our general strategy is to replace the original variable set with a complete set
of invariant functions of the given symmetry group. Since we consider PDEs containing partial
derivatives, the invariant functions refer to the differential invariants defined as follows.
Definition 3.1 (Def. 2.51, Olver (1993)). Let G be a local group of transformations acting on X ×U .
Any g ∈ G gives a prolonged group action pr(n)g on the jet space M (n) ⊂ X × U (n). An nth
order differential invariant of G is a smooth function η : M (n) → R, such that for all g ∈ G and all
(x, u(n)) ∈ M (n), η(g(n) · (x, u(n))) = η(x, u(n)) whenever g(n) · (x, u(n)) is defined.

In other words, differential invariants are functions of all variables and partial derivatives that remain
invariant under prolonged group actions. Equivalently, if G is generated by a set of infinitesimal
generators B = {va}, then a function η is a differential invariant of G iff v(n)

a (η) = 0 for all va ∈ B.
The following theorem guarantees that any differential equation admitting a symmetry group can be
expressed solely in terms of the group invariants.
Theorem 3.2 (Prop. 2.56, Olver (1993)). Let G be a local group of transformations acting on X×U .
Let {η1(x, u(n)), ..., ηk(x, u(n))} be a complete set of functionally independent nth-order differential
invariants of G. An nth-order differential equation (1) admits G as a symmetry group if and only if it
is equivalent to an equation of the form F̃ (η1, ..., ηk) = 0.

Consequently, SR with a complete set of invariants precisely searches within the space of all symmet-
ric differential equations and automatically excludes equations violating the specified symmetry.

Our strategy of using differential invariants applies broadly to various equation discovery algorithms.
For instance, in sparse regression, we can construct the function library using invariants rather than

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

raw variables and derivatives. Similarly, in genetic programming, the variable set can be redefined
to include only invariant functions. In each case, the key benefit is the same: the search space is
restricted to symmetry-respecting equations by construction. The reduced complexity of the equation
search also leads to increased accuracy and efficiency.

Next, we describe how to construct a complete set of differential invariants (Section 3.2), and how to
incorporate them into specific SR algorithms (Section 3.3).

3.2 CONSTRUCTING A COMPLETE SET OF INVARIANTS

Despite the simplicity of our strategy, we still need a concrete method for computing the invariants.
In this subsection, we provide a general guideline to construct a complete set of differential invariants
up to a required order given the group action.

By definition of differential invariants, we look for functions η(x, u(n)) satisfying v(n)(η) = 0 given
a prolonged vector field v(n). This is a first-order linear PDE that can be solved by the method of
characteristics. However, in practice, if E = X×U ≃ Rp×R, there are

(
p+n−1

n

)
partial derivatives of

the independent variable u of order exactly n. Therefore, as n grows, it quickly becomes impractical
to solve directly for nth-order differential invariants. The higher-order differential invariants, if
necessary, can be computed recursively from lower-order ones by the following result:
Proposition 3.3. Let G be a local group of transformations acting on X × U ≃ Rp × R. Let
η1, η2, · · · , ηp be any p differential invariants of G whose horizontal Jacobian J = [Diη

j] is non-
degenerate on an open subset Ω ⊂ M (n). If there are a maximal number of independent, strictly
nth-order differential invariants ζ1, · · · , ζqn , qn =

(
p+n−1

n

)
, then the following set contains a

complete set of independent, strictly (n+ 1)th-order differential invariants defined on Ω:
det(Diη̃

j
(k,k′))

/
det(Diη

j), ∀k ∈ [p], k′ ∈ [qn], (5)

where i, j ∈ [p] are matrix indices, Di denotes the total derivative w.r.t i-th independent variable
and η̃j(k,k′) = [η1, ..., ηk−1, ζk

′
, ηk+1, ..., ηp].

In practice, we first solve for pr v(η) = 0 to obtain a sufficient number of lower-order invariants
as required in Proposition 3.3, and then construct complete sets of invariants of arbitrary orders.
Notably, while in theory our framework operates on any complete set of differential invariants,
the invariants computed this way may be algebraically complicated and poorly scaled, leading to
difficulties in SR optimization. In practice, we start from such a complete set of differential invariants
and then deliberately convert them into simpler, physically interpretable invariant functions (such as
Laplacians for rotational symmetry) as the feature set for SR. We evaluate invariants on the dataset
only where they are well-defined. If necessary, we shrink the domain and filter out data points that
cause singularity (e.g., where the denominator of an invariant function vanishes). In Appendix B.4,
we provide two examples of different symmetry groups and their differential invariants. Those results
will also be used in our experiments.

3.3 IMPLEMENTATION IN SR ALGORITHMS

All equations: F(x, u(n)) = 0
SR: zj = F(z−j)

SINDy:
zj = WΘ(z−j) Equations w/

symmetry:

F(η1, η2, . . .) = 0

Symmetry SINDy∩ Symmetry SR∩
Figure 2: Venn diagram of hypoth-
esis spaces from base SR methods
and our symmetry principle.

Our symmetry principle characterizes a subspace of all equa-
tions with a given symmetry. Generally, this subspace partially
overlaps with the hypothesis spaces of SR algorithms, con-
ceptually visualized in Figure 2. As in Theorem 3.2, PDEs
with symmetry can be expressed as implicit functions of all
differential invariants. However, symbolic regression methods
typically learn explicit functions mapping features to labels.
Some algorithms, such as SINDy, impose even stronger con-
straints on equation forms. Therefore, adaptation is needed
to implement our strategy of using differential invariants in
specific symbolic regression algorithms, as detailed below.

General explicit SR We start with general SR methods that learn an explicit function y = f(x)
without additional assumptions about the form of f , e.g., genetic programming and symbolic trans-
former. When learning the equation with differential invariants, we do not know which one of them

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

should be used as the LHS of the equation, i.e. the label y in symbolic regression. Thus, we fit an
equation for each invariant as LHS and choose the equation with the lowest data error, as described in
Algorithm 1. We use relative error to select the best equation since the scales of LHS terms differ.

Algorithm 1 General explicit SR for differential equations with symmetry invariants

Require: PDE order n, dataset {zi = (xi, (u(n))i) ∈ M (n)}ND
i=1, base SR algorithm S : (X,y) 7→

y = f(x), infinitesimal generators of the symmetry group B = {va}.
Ensure: A PDE admitting the given symmetry group.

Compute the symmetry invariants of B up to nth-order: η1, · · · , ηK . {Prop. 3.3}
Evaluate the invariant functions on the dataset: ηk,i = ηk(zi), for k ∈ [K], i ∈ [ND].
Initialize a list of candidate equations and their risks: E = [].
for k in 1 : K do

Use the kth invariant as label and the rest as features: y = ηk,:, X = η−k,:.
Run S(X,y) and get a candidate equation ηk = fk(η−k).
Evaluate Lk = ∥y − fk(X)∥1/∥y∥1 and set E[k] = (fk,Lk).

end for
Choose the equation in E with the lowest error: k = argminj E[j][2].
return ηk = fk(η−k). {Optionally, expand all ηj in terms of original variables z.}

Sparse regression SINDy assumes a linear equation form (4). Generally, its function library differs
from the set of differential invariants. Also, SINDy fixes a LHS term, while we do not single out an
invariant as the LHS of the equation when constructing the set of invariants.

Assume we are provided the SINDy configuration, i.e. the LHS term ℓ and the function library {θj}.
To implement sparse regression with symmetry invariants, we assign an invariant ηk that symbolically
depends on ℓ, i.e. ∂ηk/∂ℓ ̸= 0, as the LHS for the equation in terms of symmetry invariants. The
remaining invariants are included on the RHS, where they serve as inputs of the original SINDy
library functions. In other words, the equation form is ηk = w̃jθj(η−k). Similar to Algorithm 1, we
can expand all η variables to obtain the equation in original jet variables.

The above approach optimizes an unconstrained coefficient vector w̃ for functions of symmetry
invariants. Alternatively, we can use the original SINDy equation form (4) and implement the
symmetry constraint as a constraint on the coefficient w, as demonstrated in the following theorem.
Here, we generalize the setup to multiple dependent variables and equations.

Proposition 3.4. Let ℓ(x,u(n)) = Wθ(x,u(n)) be a system of q differential equations admitting a
symmetry group G, where x ∈ Rp, u ∈ Rq, θ ∈ Rm. Assume there exist some nth-order invariants
of G, η1:q0 and η1:K , s.t. (1) the system of equations can be expressed as η0 = W ′θ′(η), where
η0 = [η1:q0] and η = [η1:K], and (2) ηi0 = T ijkθkℓj and (θ′)i = Sijθj , for some functions θ′(η)
and constant tensors W ′, T and S. Then, the space of all possible W is a linear subspace of Rq×m.

Intuitively, the conditions above state that the equations can be expressed as a linear combination of
invariant terms, similar to the form in (4) w.r.t original jet variables. Also, every invariant term in
η0 and θ′(η) is already encoded in the original library θ. In practice, we need to choose a suitable
set of invariants according to the SINDy configuration to meet these conditions. For example, when
θ contains all monomials on M (n) up to degree d, any set of invariants where each invariant is
a polynomial on M (n) up to degree d satisfies these conditions. The proof of Proposition 3.4 is
provided in Appendix B, where we explicitly identify the basis of the linear subspace for W .

Proposition 3.4 allows us to keep track of the original SINDy parameters W during optimization.
This enables straightforward integration of symmetry constraints to variants of SINDy, e.g. Weak
SINDy (Messenger & Bortz, 2021a;b) for noisy data. For example, if the constrained subspace has a
basis Q ∈ Rr×q×m, where r is the subspace dimension, we write W jk = Qijkβi. While we directly
optimize β, we can still easily compute the objective of Weak SINDy which explicitly depends on
W . In comparison, if we use the raw invariant terms for regression, e.g. the equations take the form
η0 = W ′θ′(η), it is challenging to formulate the objective of Weak SINDy w.r.t W ′.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4 CONSTRAINT RELAXATION FOR SYSTEMS WITH IMPERFECT SYMMETRY

Our approach discovers PDEs assuming perfect symmetry. However, it is common in reality that
a system shows imperfect symmetry due to external forces, boundary conditions, etc. (Wang et al.,
2022). In such cases, the previous method cannot identify any symmetry-breaking factors.

To address this, we propose to relax the symmetry constraints by allowing symmetry-breaking terms
to appear in the equation, but at a higher “cost”. We implement this idea in sparse regression, where
the equation has a linear structure ℓ = Wθ. We adopt the technique from Residual Pathway Prior
(RPP) (Finzi et al., 2021), which is originally developed for equivariant linear layers in neural nets.
Specifically, let Q be the basis of the parameter subspace that preserves symmetry and P be the
orthogonal complement of Q. Instead of parameterizing W in this subspace, we define W = A+B
where Ajk = Qijkβi and Bjk = P ijkγi and place a stronger regularization on γ than on β. While the
model still favors equations in the symmetry subspace spanned by Q, symmetry-breaking components
in P can appear if it fits the data well.

More implementation details related to Section 3.3 and 3.4 can be found in Appendix C.

4 EXPERIMENTS

4.1 DATASETS AND THEIR SYMMETRIES

We consider the following PDE systems, which cover different challenges in PDE discovery, such
as high-order derivatives, generic equation form, multiple dependent variables and equations, noisy
dataset, and imperfect symmetry. The datasets are generated by simulating the ground truth equation
from specified initial conditions, with detailed procedures described in Appendix E.1.
Boussinesq Equation. Consider the Boussinesq equation describing the unidirectional propagation
of a solitary wave in shallow water (Newell, 1985):

utt + uuxx + u2
x + uxxxx = 0 (6)

This equation has a scaling symmetry v1 = 2t∂t + x∂x − 2u∂u and the translation symmetries in
space and time. The differential invariants are given by η(α,β) = ux(α)t(β)u

−(2+α+2β)/3
x where α

and β are the orders of partial derivatives in x and t, respectively. To discover the 4th-order equation,
we compute all η(α,β) for 0 ≤ α+ β ≤ 4, except for η(1,0) = 1 which is a constant.

Darcy Flow. The following PDE describes the steady state of a 2D Darcy flow (Takamoto et al.,
2022) with spatially varying viscosity a(x, y) = e−4(x2+y2) and a constant force term f(x) = 1:

−∇(e−4(x2+y2)∇u) = 1 (7)

This equation admits an SO(2) rotation symmetry v = y∂x − x∂y. A detailed calculation of
the differential invariants of this group can be found in Example B.5. In our experiment, we use
the following complete set of 2nd-order invariants: { 1

2 (x
2 + y2), u, xuy − yux, xux + yuy, uxx +

uyy, u
2
xx + 2u2

xy + u2
yy, x

2uxx + y2uyy + 2xyuxy}.

Reaction-Diffusion. We consider the following system of PDEs from Champion et al. (2019):

ut = d1∇2u+ (1− u2 − v2)u+ (u2 + v2)v

vt = d2∇2v − (u2 + v2)u+ (1− u2 − v2)v (8)

In the default setup, we use d1 = d2 = 0.1. The system then exhibits rotational symmetry in the
phase space: v = u∂v − v∂u. The ordinary invariants (functions of variables, not derivatives) are
{t, x, y, u2 + v2}. The higher-order invariants are {u · uµ,u

⊥ · uµ}, where u = (u, v)T and µ is
any multi-index of t, x and y.

We also consider the following cases where the rotation symmetry is broken due to different factors:

• Unequal diffusivities We use different diffusion coefficients for the two components: d1 =
0.1, d2 = 0.1 + ϵ. This can happen, for example, when two chemical species described by the
equation diffuse at different rates due to molecular size, charge, or solvent interactions.

• External forcing The ground truth equation (8) is modified by adding −ϵv to the RHS of
ut and −ϵu to the RHS of vt. This can reflect a weak parametric forcing on the system.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 METHODS AND EVALUATION CRITERIA

We consider three classes of algorithms for equation discovery: sparse regression (PySINDy, de Silva
et al. (2020); Kaptanoglu et al. (2022)), genetic programming (PySR, Cranmer (2023)), and a
pretrained symbolic transformer (E2E, Kamienny et al. (2022)). For each class, we compare the
original algorithm using the regular jet space variables (i.e. (x, u(n))) and our method using symmetry
invariants. Our method will be referenced as SI (Symmetry Invariants) in the results.

To evaluate an equation discovery algorithm, we run it 100 times with randomly sampled data subsets
and randomly initialized models if applicable. We record its success probability (SP) of discovering
the correct equation. Specifically, we expand the ground truth equation into

∑
i c

if i(z) = 0, where
ci are nonzero coefficients, z denotes the variables involved in the algorithm, i.e., original jet variables
(x, u(n)) for baselines and symmetry invariants for our method, and f i are functions of z. Also,
the discovered equation is expanded as

∑
i ĉ

if̂ i(z) = 0, where ĉi ̸= 0. The discovered equation is
considered correct if all the terms with nonzero coefficients match the ground truth, i.e., {f i} = {f̂ i}.
We also report the prediction error (PE), which measures how well the discovered equation fits
the data. For evolution equations with time derivatives on the LHS, we simulate each discovered
equation from an initial condition and measure its difference from the ground truth solution at a
specific timestep in terms of root mean square error (RMSE). Otherwise, we just report the RMSE of
the discovered equation evaluated on all test data points.

4.3 RESULTS ON CLEAN DATA WITH PERFECT SYMMETRY

Table 1: Equation discovery results on clean data. C, standing for complexity, refers to the effective
parameter space dimension in sparse regression and the number of variables in GP/Transformer. SP
and PE stands for success probability and prediction error, as explained in Section 4.2. The entries
"-" suggest that the method does not apply to the specific PDE system, or the result is not meaningful.
The arrows ↑ / ↓ mean higher/lower metrics are better.

Method Boussinesq (6) Darcy flow (7) Reaction-diffusion (8)
C ↓ SP ↑ PE ↓ C ↓ SP ↑ PE ↓ C ↓ SP ↑ PE ↓

Sparse
Regression

PySINDy 15 0.00 0.373 - - - 38 0.53 0.021
SI 13 1.00 0.098 - - - 28 0.54 0.008

Genetic
Programming

PySR 17 0.90 0.098 8 0.00 0.114 17 0.00 -
SI 14 1.00 0.098 7 0.79 0.051 16 0.81 0.023

Transformer E2E 10 0.53 0.132 8 0.00 - 17 0.00 -
SI 7 0.85 0.104 7 0.00 - 16 0.00 -

Table 1 summarizes the performance of all methods on the three PDE systems. For prediction errors
(PE), we report the median, instead of the average, of 100 runs for each algorithm, because some
incorrectly discovered equations yield tremendous prediction errors. Comparisons are made within
each class of methods. Generally, using symmetry invariants reduces the complexity of equation
discovery and improves the chance of finding the correct equations compared to the baselines.

Specifically, in sparse regression, our method using symmetry invariants is only slightly better than
PySINDy in the reaction-diffusion system, but constantly succeeds in the Boussinesq equation where
PySINDy fails. The failure of PySINDy is because the u2

x term in (6) is not supported by its function
library, showing that SINDy’s success relies heavily on the choice of function library. On the other
hand, by enforcing the equation to be expressed in invariants, our method automatically identifies the
proper function library. Appendix D.2 provides results for other variants of sparse regression.

For GP-based methods, Table 1 displays the results with a fixed number of GP iterations for each
dataset. We also include results with different numbers of iterations in Appendix D.3. Generally,
GP with invariants can identify the correct equation with fewer iterations and is considered more
efficient. On the other hand, the pretrained symbolic transformer fails on two of the three datasets. We
conjecture this is because the data distribution from PDE solutions greatly differs from its pretraining
dataset. However, the symbolic transformer can discover the Boussinesq equation correctly, where
using symmetry invariants leads to much higher success probability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 RESULTS ON NOISY DATA AND IMPERFECT SYMMETRY

We test the robustness of our method under two challenging scenarios: (1) noise in observed data,
and (2) PDE with imperfect symmetry.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Noise Level (%)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

R-D w/ noisy data
SI (K=1000)
SI (K=100)
SINDy (K=1000)
SINDy (K=100)

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
Symmetry breaking parameter

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s p

ro
ba

bi
lit

y

R-D w/ unequal diffusivities

SI-relaxed
SI
SINDy
Perfect symmetry

0 0.1 0.15 0.2
Symmetry breaking parameter

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s p

ro
ba

bi
lit

y

R-D w/ external forcing

SI-relaxed
SI
SINDy
Perfect symmetry

Figure 3: Success probabilities of sparse regression methods on the reaction-diffusion system with
noisy data (left), unequal diffusivities (center) and external forcing (right). Under noisy data, our
method (SI) consistently outperforms SINDy under the same number of test functions. For systems
with imperfect symmetry, strictly enforcing symmetry (SI) hurts performance, but a relaxed symmetry
constraint (SI-relaxed, introduced in Section 3.4) is still better than no inductive bias (SINDy).

In the first experiment, we add different levels of white noise to the simulated solution of the reaction-
diffusion system. Since the derivatives estimated by finite difference is inaccurate with the noisy
solution, we use the weak formulation of SINDy (Messenger & Bortz, 2021a), which does not require
derivative estimation. The success probabilities of our method (SI) and SINDy are shown in Figure 3
(left), where K is the number of test functions in weak SINDy. With the same K, our method
consistently achieves higher success probability at different noise levels. Notably, when the noise
level is high, our symmetry-constrained model performs better with fewer test functions (K = 100).
We comment that choosing test functions and related hyperparameters is known to be a challenging
problem (Tran & Bortz, 2025), and we leave further investigation of this phenomenon to future work.

In the second experiment, we simulate the two variants of (8) (unequal diffusivities and external
forcing) with different values for the symmetry-breaking parameter ϵ and add 2% noise to the
numerical solutions. We compare three models: (1) our model with strictly enforced symmetry (SI),
(2) our model with relaxed symmetry (SI-relaxed) introduced in Section 3.4, and (3) weak SINDy as
the baseline. The results for the two systems with symmetry breaking are shown in Figure 3 (center
& right). As expected, SI has a much lower success probability when the symmetry-breaking factor
becomes significant. Meanwhile, SI-relaxed remains highly competitive. It also has a clear advantage
over baseline SINDy, showing that even if the inductive bias of symmetry is slightly inaccurate, our
model with relaxed constraints is still better than a model without any knowledge of symmetry.

More comprehensive results, e.g. variant sparse regression models, comparison with D-CIPHER
(Kacprzyk et al., 2023) baseline, discovered equation samples, are provided in Appendix D.

5 DISCUSSION

We propose to enforce symmetry in symbolic regression algorithms for discovering PDEs by using
differential invariants of the symmetry group as the variable set. We implement this general strategy in
different classes of algorithms and observe improved accuracy, efficiency and robustness of equation
discovery, especially in challenging scenarios such as noisy data and imperfect symmetry.

It should be noted that our method assumes the symmetry group is already given. This assumption
aligns with common practice: physicists often begin by hypothesizing the symmetries of a system and
seek governing equations allowed by those symmetries. However, our current framework cannot be
applied if symmetry is unknown, and will produce incorrect results with misspecified symmetry. This
can be potentially addressed by incorporating automated symmetry discovery methods for differential
equations (Yang et al., 2024; Ko et al., 2024), which we leave for future work.

Another caveat of our method is the calculation of differential invariants. While solving for v(n)(η) =
0 and applying the formula (5) is easy with any symbolic computation package, the resulting
differential invariants may be complicated and require ad-hoc adjustment for better interpretability

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and compatibility with specific algorithm implementations (e.g. conditions in Proposition 3.4).
Fortunately, this only requires a one-time effort. Once we have derived the invariants for a symmetry
group, the results can be reused for any equation admitting the same symmetry.

ETHICS STATEMENT

All authors of this paper have read and agreed to adhere to the ICLR Code of Ethics. We believe that
this paper does not pose any significant ethical concerns that need to be highlighted here.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the experiments in this paper, we have provided detailed experimental
instructions for both data generation and symbolic regression methods in Appendix E. Also, we have
provided the codebase to run the experiments in the supplementary material of this submission.

REFERENCES

Tara Akhound-Sadegh, Laurence Perreault-Levasseur, Johannes Brandstetter, Max Welling, and
Siamak Ravanbakhsh. Lie point symmetry and physics informed networks. arXiv preprint
arXiv:2311.04293, 2023.

Joseph Bakarji, Jared Callaham, Steven L. Brunton, and J. Nathan Kutz. Dimensionally consistent
learning with buckingham pi. Nature Computational Science, 2:834–844, 12 2022. ISSN 2662-
8457. doi: 10.1038/s43588-022-00355-5.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 936–945. PMLR, 18–24 Jul 2021.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. In International Conference on Machine Learning, pp. 2241–2256. PMLR,
2022.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113.

Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery
of coordinates and governing equations. Proceedings of the National Academy of Sciences, 116
(45):22445–22451, 2019. doi: 10.1073/pnas.1906995116.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl, 2023.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 17429–17442. Curran Associates, Inc., 2020.

Miles D. Cranmer, Rui Xu, Peter Battaglia, and Shirley Ho. Learning symbolic physics with graph
networks, 2019.

David Dalton, Dirk Husmeier, and Hao Gao. Physics and lie symmetry informed gaussian processes.
In Forty-first International Conference on Machine Learning, 2024.

Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Kutz, and Steven
Brunton. Pysindy: A python package for the sparse identification of nonlinear dynamical systems
from data. Journal of Open Source Software, 5(49):2104, 2020. doi: 10.21105/joss.02104. URL
https://doi.org/10.21105/joss.02104.

Renáta Dubčáková. Eureqa: software review, 2011.

10

https://doi.org/10.21105/joss.02104

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance
constraints. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 30037–30049. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf.

Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto Tonda. Learning dynamical systems
using standard symbolic regression. In Miguel Nicolau, Krzysztof Krawiec, Malcolm I. Heywood,
Mauro Castelli, Pablo García-Sánchez, Juan J. Merelo, Victor M. Rivas Santos, and Kevin Sim
(eds.), Genetic Programming, pp. 25–36, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
regression with a learned concept library. Advances in Neural Information Processing Systems, 37:
44678–44709, 2024.

Arthur Grundner, Tom Beucler, Pierre Gentine, and Veronika Eyring. Data-driven equation discovery
of a cloud cover parameterization. arXiv preprint arXiv:2304.08063, 2023.

Daniel R Gurevich, Matthew R Golden, Patrick AK Reinbold, and Roman O Grigoriev. Learning
fluid physics from highly turbulent data using sparse physics-informed discovery of empirical
relations (spider). Journal of Fluid Mechanics, 996:A25, 2024.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. arXiv
preprint arXiv:2401.00282, 2023.

Krzysztof Kacprzyk, Zhaozhi Qian, and Mihaela van der Schaar. D-cipher: discovery of closed-
form partial differential equations. Advances in Neural Information Processing Systems, 36:
27609–27644, 2023.

Kadierdan Kaheman, J Nathan Kutz, and Steven L Brunton. Sindy-pi: a robust algorithm for parallel
implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A, 476
(2242):20200279, 2020.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt,
Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe
Loiseau, J. Nathan Kutz, and Steven L. Brunton. Pysindy: A comprehensive python package for
robust sparse system identification. Journal of Open Source Software, 7(69):3994, 2022. doi:
10.21105/joss.03994. URL https://doi.org/10.21105/joss.03994.

Gyeonghoon Ko, Hyunsu Kim, and Juho Lee. Learning infinitesimal generators of continuous
symmetries from data. arXiv preprint arXiv:2410.21853, 2024.

Kookjin Lee, Nathaniel Trask, and Panos Stinis. Structure-preserving sparse identification of nonlinear
dynamics for data-driven modeling. In Bin Dong, Qianxiao Li, Lei Wang, and Zhi-Qin John Xu
(eds.), Proceedings of Mathematical and Scientific Machine Learning, volume 190 of Proceedings
of Machine Learning Research, pp. 65–80. PMLR, 15–17 Aug 2022.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Matteo Merler, Katsiaryna Haitsiukevich, Nicola Dainese, and Pekka Marttinen. In-context sym-
bolic regression: Leveraging large language models for function discovery. arXiv preprint
arXiv:2404.19094, 2024.

Daniel A Messenger and David M Bortz. Weak sindy for partial differential equations. Journal of
Computational Physics, 443:110525, 2021a.

Daniel A Messenger and David M Bortz. Weak sindy: Galerkin-based data-driven model selection.
Multiscale Modeling & Simulation, 19(3):1474–1497, 2021b.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf
https://doi.org/10.21105/joss.03994

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daniel A Messenger, Joshua W Burby, and David M Bortz. Coarse-graining hamiltonian systems
using wsindy. Scientific Reports, 14(1):14457, 2024.

Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, and Bobak
Kiani. Self-supervised learning with lie symmetries for partial differential equations. Advances in
Neural Information Processing Systems, 36:28973–29004, 2023.

Alan C Newell. Solitons in mathematics and physics. SIAM, 1985.

Peter J Olver. Applications of Lie groups to differential equations, volume 107. Springer Science &
Business Media, 1993.

Peter J Olver. Equivalence, invariants and symmetry. Cambridge University Press, 1995.

Samuel E. Otto, Nicholas Zolman, J. Nathan Kutz, and Steven L. Brunton. A unified framework to
enforce, discover, and promote symmetry in machine learning, 2023.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2022.

Chengping Rao, Pu Ren, Yang Liu, and Hao Sun. Discovering nonlinear pdes from scarce data with
physics-encoded learning. arXiv preprint arXiv:2201.12354, 2022.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science advances, 3(4):e1602614, 2017.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450. PMLR, 2018.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models. arXiv preprint
arXiv:2404.18400, 2024.

Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
Chandan K Reddy. Llm-srbench: A new benchmark for scientific equation discovery with large
language models. arXiv preprint arXiv:2504.10415, 2025.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

April Tran and David Bortz. Weak form scientific machine learning: Test function construction for
system identification. arXiv preprint arXiv:2507.03206, 2025.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. Ai
feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural
Information Processing Systems, 33:4860–4871, 2020.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. In International Conference on Learning Representations, 2021.

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. In International Conference on Machine Learning. PMLR, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science.
MRS Communications, 9(3):793–805, 2019.

Xiaoyu Xie, Arash Samaei, Jiachen Guo, Wing Kam Liu, and Zhengtao Gan. Data-driven discovery
of dimensionless numbers and governing laws from scarce measurements. Nature Communications,
13(1):7562, 2022. doi: 10.1038/s41467-022-35084-w.

Jianke Yang, Wang Rao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry-informed
governing equation discovery. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

Zhi-Yong Zhang, Hui Zhang, Li-Sheng Zhang, and Lei-Lei Guo. Enforcing continuous symmetries
in physics-informed neural network for solving forward and inverse problems of partial differential
equations. Journal of Computational Physics, 492:112415, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Symbolic Regression. Given the dataset {(xi, yi)} ⊂ X × Y , symbolic regression (SR) aims to
model the function y = f(x) by a symbolic equation. A popular method for symbolic regression
is genetic programming (GP) (Schmidt & Lipson, 2009; Gaucel et al., 2014), which leverages
evolutionary algorithms to explore the space of possible equations and has demonstrated success in
uncovering governing laws in various scientific domains such as material science (Wang et al., 2019),
climate modeling (Grundner et al., 2023), cosmology (Cranmer et al., 2020), etc. Various software
have been developed for GP-based symbolic regression, e.g. Eureqa (Dubčáková, 2011) and PySR
(Cranmer, 2023).

Another class of methods is sparse regression (Brunton et al., 2016), which assumes the function to
be discovered can be written as a linear combination of predefined candidate functions and solves
for the coefficient matrix. It has also been extended to discover more general equations, such as
equations in latent variables (Champion et al., 2019) and PDEs (Rudy et al., 2017).

Neural networks have also shown their potential in symbolic regression. Martius & Lampert (2016);
Sahoo et al. (2018) represents a few earliest attempts, where they replace the activation functions
in fully connected networks with math operators and functions, so the network itself translates to
a symbolic formula. Other works represent mathematical expressions as sequences of tokens and
train neural networks to predict the sequence given a dataset of input-output pairs. For example,
Petersen et al. (2019) trains an RNN with policy gradients to minimize the regression error. Biggio
et al. (2021), Kamienny et al. (2022) and Holt et al. (2023) pre-train an encoder-decoder network
over a large amount of procedurally generated equations and query the pretrained model on a new
dataset of input-output pairs at test time.

The aforementioned symbolic regression methods can be improved by incorporating specific domain
knowledge. For example, AI Feynman (Udrescu & Tegmark, 2020; Udrescu et al., 2020) uses
properties like separability and compositionality to simplify the data. Cranmer et al. (2020) specifies
the overall skeleton of the equation and fits each part with genetic programming independently. The
goal of this paper falls into this category – to use the knowledge of symmetry to reduce the search
space of symbolic regression and improve its accuracy and efficiency.

Recently, Large Language Models (LLMs) have emerged as an alternative for SR, using pre-trained
scientific priors to propose sequential hypothesis (Merler et al., 2024) or to guide genetic program-
ming (Shojaee et al., 2024), balancing the efficiency of domain knowledge with the robustness of
evolutionary search. However, current LLM-based methods often rely on memorizing known equa-
tions rather than facilitating genuine discovery, and their guidance lacks interpretability, specifically,
the reasoning behind their suggestions, evidenced by a recent benchmark specially designed for
LLM-SR (Shojaee et al., 2025). A recent effort sought to improve interpretability by binding symbolic
evolution with natural language explanations (Grayeli et al., 2024). However, this method relies on
frontier LLMs to conduct the evolution of the natural language components, rendering the process
itself opaque. These limitations highlight the need for approaches that enhance the controllability and
explainability of the prior knowledge injected, ensuring more transparent and trustworthy discovery.

Discovering Differential Equations. While it remains in the scope of symbolic regression, the
discovery of differential equations poses additional challenges because the derivatives are not directly
observed from data. Building upon the aforementioned SINDy sparse regression (Brunton et al.,
2016), Messenger & Bortz (2021a;b) formulates an alternative optimization problem based on the
variational form of differential equations and bypasses the need for derivative estimation. A similar
variational approach is also applied to genetic programming (Qian et al., 2022). Various other
improvements have been made, including refined training procedure (Rao et al., 2022), relaxed
assumptions about the form of the equation (Kaheman et al., 2020), and the incorporation of physical
priors (Xie et al., 2022; Bakarji et al., 2022; Lee et al., 2022; Messenger et al., 2024).

PDE Symmetry in Machine Learning. Symmetry is an important inductive bias in machine
learning. In the context of learning differential equation systems, many works encourage symmetry
in their models through data augmentation (Brandstetter et al., 2022), regularization terms (Akhound-
Sadegh et al., 2023; Zhang et al., 2023; Dalton et al., 2024), and self-supervised learning (Mialon
et al., 2023). Strictly enforcing symmetry is also possible, but is often restricted to specific symmetries

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

and systems (Wang et al., 2021; Gurevich et al., 2024). For more general symmetries and physical
systems, enforcing symmetry often requires additional assumptions on the form of equations, such as
the linear combination form in sparse regression (Otto et al., 2023; Yang et al., 2024). EquivSINDy
(Yang et al., 2024) has a similar goal to ours: to enforce symmetry when discovering differential
equations. However, they addressed the discovery of first-order autonomous ODE systems, where
they only considered the time-independent symmetries of ODEs (represented in vector fields by∑

i ϕi(u)∂i). In comparison, we deal with PDEs that contain partial derivatives and possibly higher-
order derivatives, and possibly have no “linear form” assumed by SINDy. In this context, we consider
the general Lie point symmetries of PDEs, which could act on the independent variables nontrivially
(represented in vector fields by

∑
i ξi(x,u)∂xi +

∑
j ϕj(x,u)∂uj). To the best of our knowledge,

our work is the first attempt to strictly enforce general symmetries of differential equations for general
symbolic regression methods.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B MATH

B.1 NOTATIONS

Table 2: Descriptions of symbols used throughout the paper. The three blocks include (1) basic
notations for PDEs, (2) notations for Lie symmetry of PDEs, and (3) notations for symbolic regression
algorithms and miscellaneous.

Symbols Descriptions
p Number of independent variables of a PDE.
q Number of dependent variables of a PDE.
X Space of independent variables of a PDE: X ⊂ Rp. Also used to denote the feature

space of SR algorithms.
U Space of dependent variables of a PDE: U ⊂ Rq. Assumed to be 1-dimensional

unless otherwise stated.
E Total space of all variables of a PDE: E = X × U .
Uk Space of strictly kth-order partial derivatives of variables in U w.r.t variables in X .
U (n) Space of all partial derivatives up to nth order (including the original variables in U):

U (n) = U × U1 × · · · × Un.
M (n) nth-order jet space: M (n) ⊂ X × U (n).
TM The tangent bundle of a manifold M.
x Independent variables of a PDE: x ∈ Rp.
t Time variable.

x, y Spatial variables in PDE contexts. Also used to denote the features and labels of SR
algorithms, where x can denote multi-dimensional features.

u,u Dependent variable(s) of a PDE: u ∈ R and u ∈ Rq .
u(n),u(n) The collection of all up to n-th order partial derivatives of u or u.

df The (ordinary) differential of a function. For a differential function f : M (n) → R,
df =

∑
j

∂f
∂xj dx

j +
∑

α
∂f
∂uα

duα.
Dif The total derivative of a differential function f : M (n) → R w.r.t the ith independent

variable. For example, if p = q = 1, D1f = ∂f
∂x +

∑∞
k=0 uk+1

∂f
∂uk

, where uk :=

∂ku/∂xk.
Df The total differential of a differential function f : M (n) → R, i.e. Df = Dif dxi.
g A group element with an action on E (2).
v A vector field on the total space E (3), representing an infinitesimal transformation.

A list of multiple vector fields are indexed by subscripts.
pr(n)g nth-order prolongation of g acting on M (n).
pr(n)v nth-order prolongation of v acting on M (n).

g(n),v(n) Equivalent to pr(n)g and pr(n)v, respectively.
pr v The (infinite) prolongation of v. For an nth-order differential function f(x,u(n)),

pr v(f) = pr(n)v(f).
η, ζ, ϑ Differential invariants of a symmetry group. η is used by default. The other letters

are used to distinguish between invariants of different orders.
ℓ, ℓ The LHS of SINDy equation (4). Often assumed to be time derivatives.
θ A column vector containing all SINDy library functions: θ = [θ1, · · · , θm]

w,W The SINDy parameters. For only one equation, w = [w1, · · · , wm] is a row vector.
For multiple equations, W = [wij] is a q ×m matrix.

X,y Concatenated matrix/vector of features/labels of all datapoints for symbolic regres-
sion.

[N] List of positive integers up to N , i.e. [1, 2, · · · , N] for any N ∈ Z+.
1 : N Equivalent to [N].

LHS, RHS Left- and Right-hand side of an equation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 EXTENDED BACKGROUND ON PDE SYMMETRY

References for the below material include Olver (1993), Olver (1995).

Prolonged group actions Let E = X×U ≃ Rp×Rq be endowed with the action of a group G via
point transformations. Then group elements g ∈ G act locally on functions u = f(x), therefore also
on derivatives of these functions. This in turn induces, at least pointwise, “prolonged" transformations
on jet spaces: (x̃, ũ(n)) = pr(n)g · (x,u(n)).

Let J = (j1, . . . , jn), 1 ≤ jν ≤ p be an n-tuple of indices of independent variables and 1 ≤ α ≤ q.
We will use the shorthand

uα
J :=

∂Juα

∂xJ
:=

∂|J|uα

∂xj1 · · · ∂xjn

and
DJ := Dj1 · · ·Djn .

It is not practical to work explicitly with prolonged group transformations. Therefore one linearizes
and considers the prolonged action of the infinitesimal generators of G. Explicitly, given a vector
field

v =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

φα(x,u)
∂

∂uα
,

its characteristic is a q-tuple Q = (Q1, . . . , Qq) of functions with

Qα(x,u(1)) = φα(x,u)−
p∑

i=1

ξi(x,u)
∂uα

∂xi
.

Now the prolongation of v to order n is defined by

pr(n)v =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

∑
#J=n

φα
J (x,u

(n))
∂

∂uα
J

. (9)

Here J ranges over all n-tuples J = (j1, . . . , jn), 1 ≤ jν ≤ p and the φα
J are given by

φα
J = DJQ

α +

p∑
i=1

ξiuα
J,i.

We remark that the prolongation of v has been described explicitly in terms of the coefficients of v
and their derivatives.

x

u,
u x

Rotation (g) of u(x) and its prolongation to ux(x)
Curves

u(x)
u(x) = (g u)(x)
ux(x)
ux(x) = (g(1) ux)(x)

Vector fields
v1 = u x + x u

v2 = u x + (1 + u2
x) ux

x

u

u x

Full view of g(1) in X × U × Ux R3

Original curve: (x, u(x), ux(x))
Transformed curve: (x, u(x), ux(x))
Original projected to X × U and X × Ux

Transformed projected to X × U and X × Ux

Figure 4: Demonstration of the rotation v = −u∂x + x∂u acting on X × U , and its first-order
prolongation acting on X × U × U1.

Figure 4 visualizes the group action of a Lie point transformation and its prolongation with a simple
example. Consider the total space X × U ≃ R× R, and the standard rotation generator in 2D space

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

given by v = −u∂x + x∂u. The vector field is visualized in dark red arrows in the background. We
also consider a function X → U given by u(x) = 0.5(x − 1)3, whose graph is visualized by the
dark red solid line in Figure 4 left. The graph of its first-order derivative, ux(x) = 1.5(x− 1)2, is
visualized by the dark green dash-dot line.

Then, we choose a random group element g = exp(θv) that rotates a 2D vector (x, u) ∈ X × U
by angle θ. Applying this pointwise transformation to every point on the graph of u(x), we have a
transformed graph visualized by the dark red dashed line. The transformed function, ũ = g · u, is
defined as the function whose graph is the transformed graph. In other words, ũ(x) = (g · u)(x) is
visualized by the dark red dashed line in Figure 4 left.

Next, we consider how the rotation of (x, u) transforms the first-order derivative ux := du
dx . The

prolonged vector field, i.e., the infinitesimal generator of the prolonged group action, can be computed
by (9): v(1) = v + (1 + u2

x)∂ux
. The projection of v(1) onto X × U1 is visualized in the dark

green arrows in Figure 4 left. Similarly, the prolonged group action g(1) = exp(θv(1)) is applied
to every point on the graph of ux(x), yielding the graph of the transformed derivative function,
ũx(x) =

dũ
dx (x), visualized in the dark green dotted line.

The full transformation of the prolonged g(1) in the 3D space X × U × U1 is shown on Figure 4
right. The graph of the original prolonged function u(1)(x) = (u(x), ux(x)) is shown in the solid
line, which is transformed into the dashed line by g(1).

B.3 PROOF OF PROPOSITION 3.3

Olver (1995) provides the following general theorem to construct higher-order differential invariants
from a contact-invariant coframe. We refer the readers to Chapter 5 of Olver (1995) for definitions of
relevant concepts, e.g., contact forms and contact-invariant forms and coframes.

Theorem B.1 (Thm. 5.48, (Olver, 1995)). Let G be a transformation group acting on a space with p
independent variables and q dependent variables. Suppose ω1, ..., ωp is a contact-invariant coframe
for G, and let Dj be the associated invariant differential operators defined via Df = Djf dxj =
Djf ωj . If there are a e number of independent, strictly nth-order differential invariants ζ1, · · · , ζqn ,
qn =

(
p+n−1

n

)
, then the set of differentiated invariants Diζ

ν , i ∈ [p], ν ∈ [qn], contains a complete
set of independent, strictly (n+ 1)th-order differential invariants.

Specifically, the condition that there exist a maximal number of differential invariants of order exactly
n is guaranteed if n is at least dimG.

Our proposition is a derived result from the above theorem, which provides a concrete way of
computation from lower-order invariants to higher-order ones:

Proposition B.2. Let G be a local group acting on X × U ≃ Rp × R. Let η1, η2, · · · , ηp be any
p differential invariants of G whose horizontal Jacobian J = [Diη

j] is non-degenerate on an open
subset Ω ⊂ M (n). If there are a maximal number of independent, strictly nth-order differential
invariants ζ1, · · · , ζqn , qn =

(
p+n−1

n

)
, then the following set contains a complete set of independent,

strictly (n+ 1)th-order differential invariants defined on Ω:

det(Diη̃
j
(k,k′))

det(Diηj)
, ∀k ∈ [p], k′ ∈ [qn], (10)

where i, j ∈ [p] are matrix indices, Di denotes the total derivative w.r.t i-th independent variable
and η̃j(k,k′) = [η1, ..., ηk−1, ζk

′
, ηk+1, ..., ηp].

Proof. We show that the total differentials of the differential invariants η1, ..., ηp can be used to
construct a contact-invariant coframe of G and then derive the associated invariant differential
operators to complete the proof.

First, note that for any differential invariant η of G, its total differential ω = Dη = Djη dxj can be
written as

ω = ωo + θ, (11)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where ωo := dη =
∑

i∈[p]
∂F
∂xi dx

i +
∑

|α|≤n
∂F
∂uα

duα is the ordinary differential of η : M (n) → R
and θ is a contact form.

Since η is a differential invariant, its differential ωo = dη is an invariant one-form on M (n), i.e.
(g(n))∗ωo = ωo.

Also, a prolonged group action maps contact forms to contact forms. To see this, note that a prolonged
group action g(n) maps the prolonged graph of any function to the prolonged graph of a transformed
function. Then, for any contact form θ, (g(n))∗θ is annihilated by all prolonged functions f (n), thus
a contact form by definition:

(f (n))∗((g(n))∗θ) = (g(n) ◦ f (n))∗θ

= ((g · f)(n))∗θ
= 0. (12)

Then, from (11), we have

(g(n+1))∗ω = (g(n))∗ωo + (g(n+1))∗θ

= ωo + θ′

= ω + (θ′ − θ) (13)

where θ′ is some contact form and so is θ′ − θ. Thus, ω is contact-invariant. For the p differential
invariants η1, · · · , ηp, we have p contact-invariant one-forms ω1, · · · , ωp, respectively.

Next, we prove that ω1, · · · , ωp are linearly independent and form a coframe. Assume there exists
smooth coefficients cj such that

∑
j c

jωj = 0. Then, regrouping the coefficients of the horizontal
forms dxi, we have

0 =
∑
i,j

cjDiη
jdxi =

∑
i

∑
j

cjDiη
j

 dxi. (14)

Because the dxi are linearly independent, each coefficient of dxi must vanish, i.e. J j
i cj = 0.

Since the Jacobian J = [Diη
j] is non-degenerate, the only solution is cj = 0 (on the open subset

Ω ∈ M (n)). Thus, ω1, · · · , ωp form a contact-invariant coframe. According to Theorem B.1, the
associated invariant differential operators of the coframe take a complete set of same-order invariants
to a complete set of one-order-higher invariants.

The remaining step is to obtain the invariant differential operators explicitly in terms of ηj . Recall
the formula in Theorem B.1 that defines the invariant differential operators:

Dif dxi = Djf ωj . (15)

Expanding ωj = Dηj = Diη
j dxi, we have the following linear system of invariant differential

operators Dj : 
D1

D2

...
Dp

 =


D1η

1 D1η
2 · · · D1η

p

D2η
1 D2η

2 · · · D2η
p

...
...

...
Dpη

1 Dpη
2 · · · Dpη

p



D1

D2

...
Dp

 . (16)

Since J = [Diη
j] is non-degenerate, Cramer’s rule yields

Dkζ =
det(Diη

1 | · · · | Diη
k−1 | Diζ | Diη

k+1 | · · · | Diη
p)

det(Diηj)
. (17)

Remark B.3. We require that the differential invariants η1, · · · , ηp has a nondegenerate horizontal
Jacobian [Diη

j], which is a stronger condition than functional independence. Since the differential

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

invariants are functions on the jet space, it is possible that a set of such functions is functionally
independent, i.e., has a nondegenerate full Jacobian [∂iη

j], where i ∈ [qn] indexes the jet space
variables (x, u(n)), but has a lower-rank horizontal Jacobian. For example, consider η1 = ux and
η2 = uy . In the full Jacobian, ∂ηj/∂ux and ∂ηj/∂uy form the identity, so it has full rank. However,

its horizontal Jacobian containing total derivatives is given by
[
uxx uxy

uxy uyy

]
, which is not invertible

on the subset of the jet space where uxxuyy − u2
xy = 0.

In practice, this non-degeneracy condition can be easily checked once we have the symbolic expres-
sions of the p differential invariants.
Remark B.4. When p = 1, Proposition B.2 is equivalent to the following (Prop. 2.53, Olver (1993)):

If y = η(x, u(n)) and w = ζ(x, u(n)) are n-th order differential invariants of G, then dw
dy ≡ Dxζ

Dxη

is an (n + 1)-th order differential invariant of G. Specifically, if y = η(x, u) and w = ζ(x, u, ux)
form a complete set of functionally independent differential invariants of pr(1)G, the complete set of
functionally independent differential invariants for pr(n)G is then given by

y, w, dw/dy, ..., dn−1w/dyn−1. (18)

B.4 EXAMPLES OF COMPUTING DIFFERENTIAL INVARIANTS

Example B.5. Consider the group SO(2) acting on X × U ≃ R2 × R by standard rotation in the
2D space of independent variable and trivial action on U , i.e. its infinitesimal generator given by
v = y∂x − x∂y .

First, we solve for a complete set of the ordinary and first-order invariants. By definition, the ordinary
invariants η = η(x, y, u) should satisfy y∂xη − x∂yη = 0. Since the vector field does not involve
u, an immediate solution is η = u. On the othe hand, by method of characteristics, we convert the
PDE to the characteristic equations dx/ds = y, dy/ds = −x. That is, the characteristics curves
(x(s), y(s)) are just circles around origin. Because η is constant along characteristic curves, it
must be a function of R2 = x2 + y2. Therefore, we pick the following two ordinary invariants:
η1(x, y, u) =

1
2 (x

2 + y2) and η2(x, y, u) = u. (5) dictates how we construct higher-order invariants
using these two functionally independent invariants and another arbitrary invariant. For notational
convenience, we convert (5) to operators defined according to η2 and η1, respectively:

O1 =
xDy − yDx

xuy − yux
(19)

O2 =
uyDx − uxDy

xuy − yux
(20)

Then, we need to find another new differential invariant, because applying these operators on η1 and
η2 leads to trivial results. Since η1 and η2 generate all ordinary (zeroth-order) invariants, we must
look for the first-order invariants. To do this, note the prolonged vector field is given by

pr(1)v = v + uy∂ux
− ux∂uy

(21)

Solving for pr(1)v gives two first-order invariants, ζ1 = xuy − yux and ζ2 = xux + yuy . Note that
the differential invariant ζ1 is exactly the common denominator in O1 and O2, so we can simplify O1

and O2 by using only their numerators, i.e.

O1 = xDy − yDx (22)
O2 = uyDx − uxDy (23)

Note that O2 has first-order coefficients, which may complicate things in the subsequent calculation.
Denoting the space of all continuous functions of the existing four invariants as I = C(η1, η2, ζ1, ζ2),
we can choose any new operator within the I-module spanned by O1 and O2 that makes things easier.
Specifically, we use the following operator

Õ2 =
ζ2
ζ1

O1 +
2η1
ζ1

O2

= xDx + yDy (24)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Then, we apply these operators to the first-order invariants, which raise the order by one and give us
the second-order invariants. For example, applying O1 to ζ1, we have

O1ζ1 = xDyζ1 − yDxζ1

= x(xuyy − ux − yuxy)− y(uy + xuxy − yuxx)

= x2uyy + y2uxx − xux − yuy − 2xyuxy (25)

Note that ζ2 = xux + yuy is a first-order invariant, so we can further remove it from the formula and
get a simplified second-order invariant

ϑ1 = x2uyy + y2uxx − 2xyuxy (26)

Similarly, we compute O1ζ2, Õ2ζ1 and Õ2ζ2 and obtain the following, respectively:

ϑ2 = ϑ3 = ζ1 + xy(uyy − uxx) + (x2 − y2)uxy

≡ xy(uyy − uxx) + (x2 − y2)uxy (27)

ϑ4 = ζ2 + x2uxx + y2uyy + 2xyuxy

≡ x2uxx + y2uyy + 2xyuxy (28)

The above 8 invariants should form a complete set of second-order differential invariants of v =
x∂y − y∂x. To verify, note that the Laplacian ∆u = uxx + uyy, which is a well-known rotational
invariant, can be written in terms of these differential functions:

∆u = uxx + uyy =
(x2 + y2)(uxx + uyy)

x2 + y2

=
ϑ1 + ϑ4

2η1
(29)

Another second-order rotational invariant, the trace of the squared Hessian matrix, u2
xx +2u2

xy +u2
yy ,

is recovered by

u2
xx + 2u2

xy + u2
yy =

ϑ2
1 + 2ϑ2

2 + ϑ2
4

4η21
(30)

On the other hand, these 8 invariants are apparently not functionally independent - note that ϑ2 =
O1ζ2 and ϑ3 = Õ2ζ1 are the same. While this may be some coincidence, eventually it is not surprising
because we would expect to see 3 functionally independent strictly second-order differential invariants
instead of 4, since (uxx, uyy, uxy) ∈ U2 is only 3-dimensional.
Example B.6 (Scaling and translation). Consider the vector field v1 = t∂t+ax∂x+bu∂u. It generates
the scaling symmetry t 7→ λt, x 7→ λax, u 7→ λbu. The ordinary invariants of this symmetry are
tbu−1 and xau−1. The higher-order invariants are given by η(α,β) = xαtβux(α)t(β)u−1, where α and
β denote the orders of partial derivatives w.r.t t and x, e.g. ux(2)t(1) := uxxt.

Besides the scaling symmetry, we can consider other common symmetries simultaneously, e.g.
translation symmetries in both space and time, v2 = ∂x and v3 = ∂t. These symmetries, along with
the scaling symmetry v1, span a three-dimensional symmetry group. There are no ordinary invariants
due to the translation symmetries. A convenient maximal set of functionally independent differential
invariants is given by

η(α,β) = ux(α)t(β)u
b−aα−β

a−b
x , α ≥ 0, β ≥ 0. (31)

B.5 PROOF OF PROPOSITION 3.4

Proposition 3.4, restated below, aligns our symmetry constraint into the SINDy framework and results
in a set of constraints on the SINDy parameters.
Proposition B.7. Let ℓ(x,u(n)) = Wθ(x,u(n)) be a system of q differential equations admitting a
symmetry group G, where x ∈ Rp, u ∈ Rq, θ ∈ Rm. Assume there exist some nth-order invariants
of G, η1:q0 and η1:K , s.t. (1) the system of equations can be expressed as η0 = W ′θ′(η), where
η0 = [η1:q0] and η = [η1:K], and (2) ηi0 = T ijkθkℓj and (θ′)i = Sijθj , for some functions θ′(η)
and constant tensors W ′, T and S. Then, the space of all possible W is a linear subspace of Rq×m.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. (Note: In this proof, we do not distinguish between superscripts and subscripts. All are used
for tensor indices, not partial derivatives.)

For simplicity, we omit the dependency of functions and write

ℓi = W ijθj . (32)

Combining the conditions about the differential invariants, we know that the equation can be equiva-
lently expressed as

T ijkθkℓj = (W ′)ijSjkθk (33)

for some W ′ ∈ Rq×m′
, where m′ is the number of invariant functions in θ′.

Substituting (32) into (33) and rearranging the indices, the principle of symmetry invariants then
translates to the following constraint on W : there exists some W ′ ∈ Rq×m′

s.t.

T rk
i θkW

l
r θl = (W ′) k

i S j
k θj , ∀x,u(n). (34)

To solve for W , we first eliminate the dependency on the variables x and u(n) from the equation.
We adopt a procedure similar to Yang et al. (2024). Denote z = (x,u(n)). Define a functional
Mθ as mapping a function to its coordinate in the function space spanned by θ, i.e. Mθ : (z 7→
cjθj(z)) 7→ (c1, c2, · · · , cm). Before we proceed, note that the LHS of (34) contains the products of
functions θk(z)θl(z), which may or may not be included in the original function library θ. Therefore,
we denote θ̃(z) = [θ(z) || {θkθl /∈ θ}] as the collection of all library functions θk and all their
products θkθl. The invariant functions θ′(η) can also be rewritten in terms of the prolonged library:
θ′(η) = S̃θ̃, where S̃1:m = S.

Then, applying Mθ̃ to (34), we have

Mθ̃(T
rk

i θkW
l

r θl) = (W ′) k
i S̃ j

k . (35)

Further expanding the LHS, we have

T rk
i W l

r Γ j
kl = (W ′) k

i S̃ j
k , (36)

where Γ satisfies θkθl = Γ j
kl θ̃j . In other words, the rows of the LHS fall in the row space of S̃. Let

S̃⊥ be the basis matrix for the null space of S̃, i.e. S̃S̃⊥ = 0, we have

T rk
i W l

r Γ j
kl (S̃

⊥)js = 0, (37)

suggesting that W must lie in a linear subspace of Rq×m.

Remark B.8. In practice, to solve for (37), we first rearrange (37) into Mvec(W) = 0, where M

has shape (S̃.shape[2]× q, q ×m). Then, we perform SVD on M and apply a threshold of 10−6 to
the singular values. The right singular vectors corresponding to the singular values smaller than the
threshold then form a basis of the linear subspace vec(W) lies in.

C IMPLEMENTATION DETAILS

This section discusses some detailed considerations in implementing the sparse regression-based
methods described in Section 3.3 and 3.4. Contents include:

• Appendix C.1: An algorithmic description of direct sparse regression with symmetry
invariants.

• Appendix C.2: Converting the symmetry invariant condition as linear constraints on the
sparse regression parameters.

• Appendix C.3: Using differential invariants in weak SINDy via the linear constraints, as
well as other considerations.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.1 DIRECT SPARSE REGRESSION WITH SYMMETRY INVARIANTS

The first approach to enforcing symmetry in sparse regression, as discussed in Section 3.3, is to
directly use the symmetry invariants as the variables and their functions specified by a function library
as the RHS features. Similar to Algorithm 1 for general symbolic regression methods, we provide a
detailed algorithm for sparse regression below. Following the setup from SINDy, we aim to discover
a system of q differential equations for q dependent variables.

Algorithm 2 Sparse regression with symmetry invariants

Require: PDE order n, dataset {zi = (xi, (u(n))i) ∈ M (n)}ND
i=1, SINDy LHS ℓ, SINDy function

library {θj}, infinitesimal generators of the symmetry group B = {va}.
Ensure: A PDE system admitting the given symmetry group.

Compute the symmetry invariants of B up to nth-order: η1, · · · , ηK . {Prop. 3.3}
Choose an invariant function ηki s.t. ∂ηki/∂ℓi ̸= 0 for SINDy LHS component ℓi.
Let η0 = [ηk1 , ..., ηkq]T and η denote the column vector containing the remaining K−q invariants.
Instantiate the sparse regression model as η0 = Wθ(η).
Optimize W with the SINDy objective:

∑
i ∥η0(z

i)−Wθ(η(zi))∥2 + λ∥W∥0.
return η0 = Wθ(η). {Optionally, expand all ηj in terms of original variables z.}

The configuration from the original SINDy model, i.e., the LHS ℓ and the function library {θj}, are
used to construct a new equation model in terms of the invariants. It should be noted that the functions
in the SINDy function library does not specify their input variables. For example, in the PySINDy
(Kaptanoglu et al., 2022) implementation, a function θ is provided in a lambda format lambda x,
y: x * y. Thus, θ can be applied to both the original variables, e.g. θ(z1, z2) = z1z2, and the
invariant functions, e.g. θ(η1, η2) = η1η2.

C.2 SYMMETRY INVARIANT CONDITION AS LINEAR CONSTRAINTS

Instead of directly using the invariant functions η as the features and labels for regression, we can
derive a set of linear constraints from the fact that the equation can be rewritten in terms of invariant
functions. As shown in Appendix B.5, a basis Q of the constrained parameter space can be obtained
from the right singular vectors of a constraint matrix M . We rearrange Q to a tensor of shape
(r, q,m), where r is the dimension of the constrained parameter space, and (q,m) is the original
shape of the parameter matrix W . Then, we can parameterize W by W jk = Qijkβi, where β is the
learnable parameter, and discover the equation using the original SINDy objective as described in
Section 2.2.

In practice, we observe that the basis Q obtained from SVD is not sparse. Indeed, SVD does not
inherently encourage sparsity in the singular vectors. The lack of sparsity can pose a problem when
we perform sequential thresholding in sparse regression. Specifically, in SINDy, the entries in W
that are close to zero are filtered out at the end of each iteration, which serves as a proxy to the L0

regularization. Since we fix Q and only optimize β, a straightforward modification to the sequential
thresholding procedure is to threshold the entries in β instead of those in W . However, if Q is dense,
even a sparse vector β can lead to a dense W , which contradicts the purpose of sparse regression.

Therefore, after performing SVD, we apply a Sparse PCA to Q to obtain a sparsified basis, also of
shape (r, q,m):

spca = SparsePCA(n_components=r)
spca.fit(Q.reshape(r, q*m))
Q_sparse = spca.components.reshape(r,q,m)

Figure 5 shows an example of the original basis solved from SVD (top 7× 2 grid) and the sparsified
basis using sparse PCA (bottom 7× 2 grid). This is used in our experiment on the reaction-diffusion
system (8).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

x0 x1 x0x0 x1x1 x0x1 x0x0x0x1x1x1x0x1x1x0x0x1 x0_2 x1_2 x0_22 x1_22 x0_1 x1_1 x0_12 x1_12 x0_11 x1_11 x0 x1 x0x0 x1x1 x0x1 x0x0x0x1x1x1x0x1x1x0x0x1 x0_2 x1_2 x0_22 x1_22 x0_1 x1_1 x0_12 x1_12 x0_11 x1_11

x0 x1 x0x0 x1x1 x0x1 x0x0x0x1x1x1x0x1x1x0x0x1 x0_2 x1_2 x0_22 x1_22 x0_1 x1_1 x0_12 x1_12 x0_11 x1_11 x0 x1 x0x0 x1x1 x0x1 x0x0x0x1x1x1x0x1x1x0x0x1 x0_2 x1_2 x0_22 x1_22 x0_1 x1_1 x0_12 x1_12 x0_11 x1_11

Figure 5: Basis for the SINDy parameter subspace that preserves SO(2) symmetry v = −v∂u + u∂v .
The SINDy parameter W has dimension 2× 19. The two rows correspond to the two equations with
ut and vt as the LHSs. The RHS contains 19 features, including all monomials of u, v up to degree 3
and their spatial derivatives up to order 2. The set of symmetry invariants used to compute the basis
is given by {t, x, y, u2 + v2}

⋃
{u · uµ}

⋃
{u⊥ · uµ}, where u = (u, v)T and µ is a multiindex of

t, x, y with order no more than 2. The top 7× 2 grid displays the original basis solved from SVD,
and the bottom 7× 2 grid displays the sparsified basis.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.3 USING DIFFERENTIAL INVARIANTS IN WEAK SINDY

In this subsection, we discuss the formulation of weak SINDy and how to implement our strategy
of using differential invariants within the weak SINDy framework. To maintain a similar notation
to the original works on weak SINDy (Messenger & Bortz, 2021a;b), we use Dαs

to denote partial
derivative operators, where αs = (s1, s2, ..., sp) is a multi-index, instead of using subscripts for
partial derivatives. Thus, we no longer strictly differentiate subscripts and superscripts–both can be
used for indexing lists, vectors, etc.

Given a differential equation in the form

Dα0
u =

∑
s,j

WsjDαs
fj(u), (38)

we can perform integration by parts (i.e., divergence theorem) to move the derivatives from u to some
analytic test function and thus bypass the need to estimate derivatives numerically. First, we multiply
both sides of (38) by a test function ϕ with compact support B ⊂ X and integrate over the spacetime
domain: ∫

X

Dα0
u(x)ϕ(x)dx =

∑
s,j

Wsj

∫
X

Dαs
fj(u(x))ϕ(x)dx (39)

WLOG, assume that s1 ̸= 0, and denote αs′ = (s1 − 1, s2, ..., sp). Then, each term in the RHS can
be integrated by parts as∫

X

Dαs
fj(u(x))ϕ(x)dx =

∫
B
Dαs

fj(u(x))ϕ(x)dx

= −
∫
B
Dαs′ fj(u(x))D1ϕ(x)dx+

∫
∂B

ν1Dαs′ fj(u(x))ϕ(x)dx

= −
∫
B
Dαs′ fj(u(x))D1ϕ(x)dx, (40)

where D1 denotes the partial derivative operator w.r.t the first independent variable, and ν1 is the first
component of the unit outward normal vector.

Repeating this process until all the derivative operations move from fj(u) to the test function ϕ, we
have ∫

X

Dαs
fj(u(x))ϕ(x)dx = (−1)|αs|

∫
X

fj(u(x))Dαs
ϕ(x)dx (41)

Similarly for the LHS:∫
X

Dα0
u(x)ϕ(x)dx = (−1)|α0|

∫
X

u(x)Dα0
ϕ(x)dx (42)

The final optimization problem is to solve for b = Gw, where w is the vectorized coefficient matrix
W , and each row in b and G is given by computing the integrals in (41) and (42) against a single test
function. The number of rows equals the number of different test functions used.

Direct integration of symmetry via linear constraints As we have discussed in Appendix C.2,
we can enforce symmetry by converting it to a set of linear constraints on the parameter W . With this
approach, we can directly incorporate symmetry in weak SINDy. Specifically, we just parameterize
W as in terms of a precomputed basis Q and a trainable vector β and directly substitute this
parameterization of W into the optimization problem of weak SINDy. We adopt this strategy in our
experiments concerning weak SINDy.

Expressing the equations with differential invariants The above approach is only possible when
the conditions in Proposition 3.4 about the selected set of symmetry invariants hold. We should
note that it is not always possible to find a set of invariants so that the symmetry condition can be
converted to linear constraints on the parameter W via the procedure in the proof of Proposition 3.4.
One may ask the following question: can we simply express the equations in terms of differential

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

invariants and apply weak SINDy, similar to Algorithm 2 for the original SINDy formulation? Here,
we do not provide a definite conclusion for this question, but only discuss several cases where directly
using differential invariants in equations might succeed or fail in weak SINDy.

To adapt to the weak SINDy formulation (38), it is more helpful to consider the symmetry invariants
as generated by some fundamental invariants and some invariant differential operators, instead of
specifying a complete set of differential invariants for every order. Concretely, there exists a set
of invariant differential operators {Oj} and a set of fundamental differential invariants I = {ηk}
s.t. every differential invariant can be written as Oj1 ...Ojnηk. For the SO(2) symmetry group in
Example B.5, one possible choice is

η1 =
1

2
(x2 + y2), η2 = u, O1 = xDy − yDx, O2 = xDx + yDy. (43)

We can compose these generating invariant operators to obtain a full library of eligible differential
operators up to some order, denoted D = {Dj}. The exact compositions can vary and we can
choose the most convenient one for subsequent calculations. For the above SO(2) example, for up to
second-order differential operators, we can choose {O1,O2,O2

1,O2
2,

2
η1
(O2

1 +O2
2)}. Note the last

operator is exactly the Laplacian.

Then, the complete set of eligible terms (respecting the symmetry) in the equation is {Djηk : Dj ∈
D, ηk ∈ I}. If we assume, as in SINDy, that the governing equation can be written in linear
combination of these symmetry invariants, then we can assign a weight for each Djηk and form a
coefficient matrix W = [Wjk]. That is,

Dj0ηk0 =
∑

(j,k)̸=(j0,k0)

WjkDjηk. (44)

Then, multiplying each side by a test function ϕ(x), we have∫
X

Dj0ηk0ϕ(x)dx =
∑

(j,k)̸=(j0,k0)

Wjk

∫
X

Djηkϕ(x)dx. (45)

The question then boils down to whether we can apply the technique of integration by parts similarly
to this set of differential operators and differential functions, since the original algorithm only deals
with partial derivative operators Dαs

and ordinary functions fj(u).

To check this, let us explicitly write out the dependency of these operators and fundamental invariants.

Case 1 A relatively simple case is when all invariant operators take the form Dj =
∑

s as(x)Dαs

and ηk = ηk(x, u(x)). Each term in the RHS of (45) can be expanded as∫
X

Djηkϕ(x)dx =
∑
s

∫
X

as(x)Dαs
ηk(x, u(x))ϕ(x)dx

=
∑
s

(−1)|αs|
∫
X

ηk(x, u(x))Dαs [as(x)ϕ(x)]dx (46)

Evaluating (46) does not require estimating partial derivatives of u. Therefore, weak SINDy can be
applied to this case quite straightforwardly.

Case 2 However, it is not always possible to have all Dj as classical linear differential operators and
all ηk as ordinary functions. For instance, in Example B.6, there are no ordinary symmetry invariants
due to the constraint of translation symmetry.

If we still have linear operators Dj =
∑

s as(x)Dαs , but on the other hand we have differential
functions ηk = ηk(x, u

(n)), we can still perform integration by parts as in (46), but the final result
becomes ∑

s

(−1)|αs|
∫
X

ηk(x, u
(n))Dαs [as(x)ϕ(x)]dx, (47)

meaning we still have to evaluate whatever partial derivatives remain in ηk. It is possible that we
can decrease the order of partial derivatives compared to vanilla sparse regression, but we cannot
eliminate all partial derivatives compared to Weak SINDy without any symmetry information.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Case 3 The most challenging case is when the invariant differential operators explicitly involve
the partial derivative, such as Dj =

∑
s as(x, u

(n))Dαs
. Then, similar to (47), integration by parts

yields: ∑
s

(−1)|αs|
∫
X

ηk(x, u
(n))Dαs [as(x, u

(n))ϕ(x)]dx. (48)

In this case, we still need to compute the partial derivatives, not only those in ηk, but also those
arising from as and Dαs

(as). The latter might involve higher-order derivatives and the benefit of
using the weak formulation may further diminish.

D ADDITIONAL EXPERIMENT RESULTS

Contents of this section include:

• Appendix D.1: Extended results in Table 1 with confidence intervals for the prediction error
metric over 100 runs.

• Appendix D.2: Results for some variants of the sparse regression models considered in
Table 1.

• Appendix D.3: Results for genetic programming-based algorithms under different computa-
tional budgets.

• Appendix D.4: Results for the D-CIPHER (Kacprzyk et al., 2023) baseline and our method
applied to D-CIPHER on the Darcy flow dataset.

• Appendix D.5: Samples of equations discovered by different methods.
• Appendix D.6: Visualized prediction errors of equations discovered by different methods.

D.1 RESULTS IN TABLE 1 WITH ERROR ESTIMATES

Table 3: Extended results in Table 1 with confidence intervals for the prediction error metric over 100
runs. Each table entry is formatted as median [25% quantile, 75% quantile].

Method Boussinesq (6) Darcy flow (7) Reaction-diffusion (8)
Sparse
Regression

PySINDy 0.373 [0.367, 0.380] - 0.021 [0.020, 0.022]
SI 0.098 [0.098, 0.098] - 0.008 [0.007, 0.013]

Genetic
Programming

PySR 0.098 [0.098, 0.098] 0.114 [0.089, 0.169] -
SI 0.098 [0.098, 0.098] 0.051 [0.031, 0.053] 0.023 [0.015, 0.036]

Transformer E2E 0.132 [0.109, 0.322] - -
SI 0.104 [0.100, 0.109] - -

D.2 VARIANT SPARSE REGRESSION MODELS

Table 4: Results of sparse regression models on the Boussinesq equation and the reaction-diffusion
system. C stands for complexity, i.e., the dimensionality of the parameter space. SP stands for success
probability. The PySINDy and SI rows present the same results as the corresponding rows in Table 1.

Method Boussinesq (6) Reaction-diffusion (8)
C ↓ SP ↑ C ↓ SP ↑

PySINDy 15 0.00 38 0.53
PySINDy∗ 21 1.00 468 0.00
PySINDy∗∗ 15 1.00 198 0.00

SI 13 1.00 28 0.54
SI-aligned - - 14 0.56

PySINDy (de Silva et al., 2020; Kaptanoglu et al., 2022) constructs its library θ from a list of variables
and derivatives, [u || uα] (|α| > 0) and a set of scalar functions specified in lambda format. For

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

example, to include up to quadratic monomial terms in the library, we can specify the following
functions: x 7→ x and (x, y) 7→ xy. However, their original implementation does not allow these
functions to be applied to partial derivative terms. As a result, terms such as u2

x cannot be modeled.
This leads to its failure to discover the Boussinesq equation (6), as we have shown in Table 1.

We modify the implementation and include an additional set of results with different libraries,
denoted as PySINDy∗ in Table 4. The PySINDy∗ model supports a wider range of library functions,
including functions of partial derivatives, e.g., u2

x. Further more, we notice that the PySINDy∗ library
while comprehensive, contains many redundant terms, such as interactions between derivatives like
uxuxx. Therefore, we implement another library, denoted PySINDy∗∗, where functions such as
(x, y) 7→ xy are only applied when their arguments do not contain at least two different partial
derivatives. Therefore, PySINDy∗∗ library still includes all the necessary terms to recover the
Boussinesq equation but becomes much more compact. A complete description of the hypothesis
spaces of different sparse regression-based methods is available in Appendix E.5.

As Table 4 shows, both PySINDy∗ and PySINDy∗∗ succeed in the Boussinesq equation. However,
they fails in the reaction-diffusion system because their parameter spaces become too large due to a
higher-dimensional total space X × U ≃ R2 × R2. Even with the more compact PySINDy∗∗, there
are still 198 possible terms for the reaction-diffusion system, and the algorithm never succeeded in
100 runs. This augments the point that SINDy’s success relies on an appropriate choice of function
library. If the library is too small to contain all the terms appearing in the equation of interest, the
discovery is sure to fail. If the library is too large, the optimization problem becomes more difficult
in the high-dimensional parameter space. On the other hand, by introducing the inductive bias of
symmetry, our method automatically identifies a proper function library that contains all the necessary
terms for a PDE with a specific symmetry group, but not other redundant terms.

We include another model in Table 4, SI-aligned, where we derive a set of linear constraints on the
sparse regression parameters from the fact that the equations can be expressed in terms of symmetry
invariants. In this way, we still optimize the original parameters (though in a constrained subspace)
as in the base SINDy model without symmetry, effectively "aligning" the hypotheses about equations
from symmetry and the base SINDy model. This method is discussed in detail in Section 3.3 and
Appendix C.2. We should also note that this method is mainly developed for incorporating the
symmetry constraints into the weak formulation of SINDy. However, it is perfectly acceptable to
implement it in the original formulation of SINDy, so we provide its results in Table 4 for reference.

For the reaction-diffusion system, SI-aligned has a 14-dimensional parameter space. The basis for
its parameter space is visualized in Figure 5. It achieves a slightly higher success probability than
SI (regression with symmetry invariants) and PySINDy (without symmetry information). We do
not apply SI-aligned to the Boussinesq equation, because it is not necessary to align the hypotheses
from SINDy and symmetry in this case. We can readily convert any equation discovered from SI
(regression with symmetry invariants) by multiplying both sides by u2

x.

We note that the results on the reaction-diffusion system in Table 4 are for models with the original
SINDy formulation, in contrast to the weak SINDy formulation used in Figure 3. Therefore, the
results in Figure 3 should not be directly compared to those in Table 1 and Table 4.

D.3 GENETIC PROGRAMMING

5 10 15
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

Boussinesq GP Success Probability

SI (ours)
PySR

50 100 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

Darcy GP Success Probability
SI (ours)
PySR

100 200 400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

R-D GP Success Probability
SI (ours)
PySR

Figure 6: Success Probabilities of GP-based methods on different systems. Our method with
symmetry invariants can discover the correct equations with fewer iterations.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

For each system in Section 4.1, we run the genetic programming discovery algorithm with three
different iteration counts, but otherwise keep all hyperparameters constant. In Figure 6, we plot the
success probability as a function of the iteration count for both the base GP algorithm and our method
that uses symmetry invariants.

In all cases, we find that using symmetry invariants results in a higher success probability in compar-
ison to unmodified PySR. Specifically, for the Boussinesq equation, our method achieves a 100%
chance of discovery with 5 iterations, whereas even with 3 times the number of iterations, PySR only
yields a 90% success probability. This highlights that using invariants improves the efficiency of
equation discovery. For Darcy flow and Reaction-Diffusion, we find that the base genetic program-
ming algorithm fails to ever make a correct prediction. On the other hand, using symmetry invariants
leads to a successful discovery the majority of the time.

We finally note that increasing the number of iterations to 200 for Darcy flow slightly lowers the
success probability when using symmetry invariants. We hypothesize this is because at higher
iterations, the search process begins to overfit and introduces extraneous low-order terms. While we
already drop some terms with small enough coefficients, future works may consider a more refined
filtration process.

D.4 COMPARISON WITH D-CIPHER

A main advantage of our proposed method is its compatibility with various algorithms for symbolic
regression. In the main experiments in Section 4.3 in Section 4.4, we have shown that our method
works well with SINDy (Brunton et al., 2016), weak SINDy (Messenger & Bortz, 2021a), genetic
programming (Cranmer, 2023), and symbolic transformer (Kamienny et al., 2022). To further
demonstrate this advantage, we include another base algorithm for symbolic regression, D-CIPHER
(Kacprzyk et al., 2023), in this section.

Similar to weak SINDy, D-CIPHER (Kacprzyk et al., 2023) uses a variational objective for equation
discovery. It defines the extended derivative as

E [u](x) = a(x)∂αh(x,u),

where a and h are some functions and α is a multi-index indicating partial derivatives. Then, a library
{Es}Ss=1 of such extended derivatives is specified by the user by providing S triples of (a, α, h).
The algorithm then optimizes for a coefficient β ∈ RS and a symbolic function g(x,u) under a
variational loss and outputs the equation

S∑
s=1

βsEs[u](x) = g(x,u).

As discussed in Appendix C.3, our approach can be directly used in D-CIPHER to enforce symmetry.
We demonstrate this with an experiment on the Darcy flow dataset with SO(2) symmetry. First, we
obtain the generating invariant operators of SO(2), i.e. O1 = xDy − yDx and O2 = xDx + yDy.
To discover this second-order PDE, we enumerate the following 5 up to second-order differential
operators composed by O1 and O2: O = {O1,O2,O2

1,O2
2,

1
x2+y2 (O2

1+O2
2)}. Note the last operator

is exactly the Laplacian. On the other hand, we have 2 fundamental differential invariants x2 + y2

and u. To enforce symmetry, we replace the manually defined set of extended derivatives {Es} in
D-CIPHER by all nontrivial differential functions obtained from applying an operator in O to one
of the fundamental differential invariants. Also, instead of searching for general functions of all
variables (in this case, x, y, u) for the RHS expression, we restrict the search space to functions of
fundamental differential invariants, i.e. x2 + y2 and u. Since D-CIPHER uses genetic programming
to find a free-form expression g, we can simply replace the variable set in genetic programming by
{x2 + y2, u} to achieve this.

Table 5 shows the equations discovered by the D-CIPHER baseline and our method. Our method
can find the correct functional form of the Darcy flow equation, while D-CIPHER with the original
variables and derivative operators cannot. We comment that the benefit of symmetry is even greater
here for D-CIPHER than for other SR methods like SINDy, because D-CIPHER requires the user
to specify both the function coefficient a(x) and the function to be differentiated h(x,u) for an
extended derivative. Such choices of functions can be largely arbitrary if no prior knowledge is

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 5: Discovery results of D-CIPHER-based methods on the Darcy flow dataset. The ground truth
equation is 8(xux + yuy)− (uxx + uyy)− e4(x

2+y2) = 0.

Method Discovered equation
D-CIPHER xux + yuy − 2.09xuy − 2.09yux − 0.19uy = 7.98x2y2 + 2.51xy + 0.80

D-CIPHER-SI (ours) (xux + yuy)− 0.13(uxx + uyy) = 0.13e4.12(x
2+y2)

available. On the other hand, our symmetry-based approach automatically selects this dictionary of
differential functions.

D.5 SAMPLES OF DISCOVERED EQUATIONS

In Table 6, we list some randomly selected equations discovered by different methods for the
Boussinesq equation (6). Some methods almost consistently discover correct/incorrect equations (i.e.,
have success probabilities close to 1 or 0), so we only select one sample for each. For other methods
with a large variance in the discovered equations, we display two samples: a correct equation and an
incorrect one.

The ground truth equation in the original variables is given in (6). The ground truth equation in the
symmetry invariants is given by

η(0,2) + η(0,0)η(2,0) + η(4,0) + 1 = 0 (49)

Table 6: Samples of discovered equations from the observed solution of the Boussinesq equation
(6). For GP-based methods, we include results from different numbers of iterations (indicated by "N
its"). For transformer-based methods, we include two samples for each method because of the large
variance of discovered equations from different runs.

Method Equation sample(s)

Sparse
regression

PySINDy utt = −1.01uxxxx − 0.79uuxx

PySINDy∗ utt = −1.01uxxxx − 0.99u2
x − 0.98uuxx

SI η(0,2) = −1.00− 1.00η(4,0) − 1.00η(0,0)η(2,0)

Genetic
programming

PySR (5 its) uuxx + 1.00utt + uxxxx = 0
PySR (15 its) uuxx + utt + u2

x + 1.00uxxxx = 0
SI (5 its) 1.00η(0,0)η(2,0) + 1.00η(0,2) + 1.00η(4,0) + 1 = 0

Transformer
E2E (1) utt = −1.13uuxx − 0.98uxxxx − 0.30|ux|

(2) utt = −0.85uuxx − 0.75u2
x − 0.99uxxxx

SI (1) η(0,2) = −1.05η(0,0)η(2,0) − 1.00η(4,0) − 0.96
(2) η(0,2) = −0.81η(0,0)η(2,0) − 0.40η(0,0) − 0.98η(4,0) − 0.90

Table 7 lists the equation samples discovered from the Darcy flow dataset. The ground truth equation
in original variables is given in (7), and the ground truth equation in symmetry invariants is given by

8ζ2 −∆u− e4R
2

= 0, (50)

where ζ2 = xux + yuy, ∆u = uxx + uyy, and R2 = x2 + y2 are among the rotational invariants
used in symbolic regression.

Table 7: Samples of discovered equations for the Darcy flow dataset.

Method Equation sample
Genetic
programming

PySR u− 0.47x2y2 − 0.38e0.09(uxx+uyy) + 0.20 = 0

SI ζ2 − 0.13∆u− 0.13e4.01R
2

= 0

Transformer E2E uxx = −7.43
√
u2 + 0.65u2

x
SI ∆u = −2.56u+ 0.85ζ2 + 0.29

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Finally, Table 8 lists the equation samples discovered from the reaction-diffusion dataset. The ground
truth equation in original variables is given in (8) with d1 = d2 = 0.1, and the ground truth equation
in symmetry invariants is given by

It = 0.1(Ixx + Iyy) +A(1−A)

Et = 0.1(Exx + Eyy)−A2 (51)

where Iµ = uuµ + vvµ and Eµ = −vuµ + uvµ for any multiindex µ of t, x, y, and A = u2 + v2.

Table 8: Samples of discovered equations for the reaction-diffusion system dataset. Each discovered
result contains two equations, since this is an evolution system with two dependent variables u, v.

Method Equation sample

Sparse
regression

PySINDy
{
ut = 0.96u− 0.97u3 + 1.003 − 0.97uv2 + 1.00u2v + 0.09uxx + 0.09uyy

vt = 0.96v − 1.00u3 − 0.97v3 − 1.00uv2 − 0.96u2v + 0.09vxx + 0.09vyy

PySINDy∗
{
ut = 0.21u− 0.24u3 + 1.00v3 − 0.23uv2 + 0.99u2v

vt = 0.21v − 1.01u3 − 0.24v3 − 0.99uv2 − 0.23u2v

SI
{
It = 0.10Ixx + 0.10Iyy + 0.96A− 0.96A2

Et = 0.10Exx + 0.10Eyy − 1.00A2

SI-aligned
{
ut = 0.95u− 0.96u3 + 1.00v3 − 0.96uv2 + 1.00u2v + 0.09uxx + 0.09uyy

vt = 0.95v − 1.00u3 − 0.96v3 − 1.00uv2 − 0.96u2v + 0.09vxx + 0.09vyy

Genetic
programming

PySR
{
ut = 0.92v

vt = −0.92u

SI
{
It = 0.10Ixx + 0.10Iyy +A− 1.00A2

Et = 0.10Exx + 0.10Eyy − 1.00A2

Transformer
E2E

{
ut = 0.89uy

vt = −0.91u

SI
{
It = 0

Et = 0.50 arctan(0.45Ey − 0.31Ey/(−540.12AEy + ...) + ...) + ...

D.6 PREDICTION ERRORS OF DISCOVERED EQUATIONS

In Table 1, we report the prediction errors of the discovered equations on the three PDE systems.
Specifically, for the Boussinesq equation and the reaction-diffusion system, we simulate the discovered
PDE from an initial condition for a certain time period, e.g., t ∈ [0, 20] for the Boussinesq equation
and t ∈ [0, 10] for the reaction-diffusion system. Then, we compare the numerical solution with the
ground truth solution from the same initial condition at the end of the time period.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

10 1

3 × 10 2

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

RM
SE

Prediction error for Boussinesq equation
SINDy-SI
SINDy
GP-SI
GP
Transformer-SI
Transformer

0 2 4 6 8 10
Time

0.000

0.005

0.010

0.015

0.020

RM
SE

Prediction error for reaction-diffusion system
SINDy-SI-aligned
SINDy-SI-raw
SINDy
GP-SI

Figure 7: Prediction error over time using the discovered equations.

In addition to the prediction error at the end of the simulation time, Figure 7 shows the errors at
each simulation timestep. We do not include methods whose error curves grow too fast due to the

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

incorrectly identified equations. The results in Figure 7 are consistent with those in Table 1. Generally,
the discovered equations with smaller prediction errors at the end of the simulation time also have
lower prediction errors throughout the entire time interval.

For Darcy flow (7), since it describes the steady state of a system and does not involve time derivatives,
we do not simulate the discovered PDEs. Instead, we evaluate each discovered PDE F (x, u(n)) = 0
on the test dataset {(x, u(n)) : x ∈ Ω} and report the residual as the prediction error. In addition to
the average error over all the spatial grid points reported in Table 1, we visualize the error heatmaps
over the grid in Figure 8. It can be observed that the discovered equations with symmetry invariants
have lower errors across the entire grid.

Discovered equations with regular variables

0.000

0.001

0.002

0.003

0.004

0.005 Discovered equations with invariants

0.000

0.001

0.002

0.003

0.004

0.005

Figure 8: Prediction error of discovered equations from genetic programming methods for Darcy
flow. Left: genetic programming with regular variables. Right: genetic programming with symmetry
invariants.

E EXPERIMENT DETAILS

In this section, we describe the experiment setups required to reproduce the experiments. In terms of
computational resources, our experiments are conducted with 12 INTEL(R) XEON(R) PLATINUM
8558 CPUs and should be reproducible within minutes with any modern CPUs.

E.1 DATA GENERATION

Boussinesq equation The equation is solved using a Fourier pseudospectral method for spatial
derivatives and a fourth-order Runge-Kutta (RK4) scheme for time integration. The solution is
computed on a periodic spatial domain [−L,L] with N = 256 grid points. The equation is reformu-
lated as a first-order system in time by introducing v = ut, and both u and v are evolved in time.
Spatial derivatives are computed using the Fast Fourier Transform, and time derivatives of u up to
the fourth order are derived analytically from the governing equation. At each time step, values of u
are recorded in the dataset for equation discovery. The simulation starts from an initial condition of
u(x) = 0.5e−x2

and ut = 0 and proceeds up to a final time T = 20 with a time step of ∆t = 0.001.
Starting from the solution at T = 20, we simulate for another T ′ = 20 with the same configuration
to obtain a test dataset for evaluating prediction errors of the discovered equations.

Darcy flow We use the data generation code2 from PDEBench (Takamoto et al., 2022) to generate
the steady-state solution of Darcy flow over a unit square. The solution is obtained by numerically
solving a temporal evolution equation

ut(x, t)−∇(a(x)∇u(x, t)) = f(x),x ∈ (−0.5, 0.5)2, (52)

with a(x) = e−4∥x∥2
2 and f(x) = 1.

2https://github.com/pdebench/PDEBench/tree/main/pdebench/data_gen/data_gen_NLE/ReactionDiffusionEq

32

https://github.com/pdebench/PDEBench/tree/main/pdebench/data_gen/data_gen_NLE/ReactionDiffusionEq

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Reaction-diffusion We use the data generation code3 from PySINDy (de Silva et al., 2020; Kap-
tanoglu et al., 2022). The spatial domain is [−10, 10] × [−10, 10] with 128 grid points in each
direction. The simulation proceeds up to a final time T = 10 with a time step ∆t = 0.05. We perturb
the numerical solution by a 0.05% noise and record the values of u, v to the dataset for equation
discovery. Starting from the solution at T = 10, we simulate for another T ′ = 10 with the same
configuration to obtain a test dataset for evaluating prediction errors of the discovered equations.

E.2 SPARSE REGRESSION

Boussinesq equation For SINDy with original variables, we fix utt as the LHS of the equation
and include functions of up to 4th-order derivatives on the RHS. For PySINDy in Table 1, the library
contains monomials on U (4) with degree in u no larger than 2 and degree in any partial derivative
terms uα no larger than 1. For example, u2ux is included, but u3, u2

x are not. For PySINDy∗, the
library contains all monomials on U (4) up to degree 2. For example, u2

x and uux are included. Note
that the PySINDy∗ library does not contain all functions in the original PySINDy library, e.g., u2ux

is not included because it has degree 3.

Our method, SI, uses the invariant set in Example B.6 for sparse regression. Specifically, η(0,2) =
utt/u

2
x is used as the LHS of the equation, and the rest of the invariants are included in the RHS.

The function library contains all monomials of these RHS invariants up to degree 2. Also, since the
invariants contain rational functions with ux on the denominator, we remove the data points with
|ux| < 0.1 to avoid numerical issues.

We also conduct an additional experiment to investigate the impact of the threshold value for |ux|. In
Table 9, we enumerate different threshold values from {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3}, and report
the resulting filtered dataset sizes (and their proportions compared to the unfiltered dataset), and the
success probability (SP) and the prediction error (PE) metrics as in Table 1.

First of all, we notice that when the threshold value is small (c = 0.0001), i.e. effectively no filtering,
the success probability for SINDy using invariant functions dramatically decreases. This exactly
shows the necessity of applying this numerical filter, as ux values close to zero would cause the
invariant features to have large magnitudes and make the SINDy optimization unstable.

Then, as we increase c, we observe that our method can achieve 100% success probability for
c ∈ {0.001, 0.01, 0.1}, showing its robustness to different choices of the threshold to some extent.
When we further increase c, the filtered dataset becomes much smaller, and the success probability
decreases. However, even with c = 0.3 and only 99 data points, our method is still able to recover
the correct equation with more than 50% probability.

Table 9: SINDy with invariant functions on the Boussinesq equation when removing data points with
|ux| < c for different threshold values c. In the second row, we report the number of samples in the
filtered datasets and their proportions compared to the original dataset. The success probability (SP)
and the prediction error (PE) are computed from 100 runs with different random seeds, in the same
way as Table 1. The prediction error is reported as median [25% quantile, 75% quantile].

Threshold c Dataset size SP PE
0.0001 99,756 (97.4%) 0.36 NaN [0.129, NaN]
0.001 97,956 (95.7%) 1.00 0.103 [0.099, 0.118]
0.01 85,591 (83.6%) 1.00 0.098 [0.098, 0.099]
0.1 26,231 (25.6%) 1.00 0.098 [0.098, 0.098]
0.2 1,318 (1.3%) 0.91 0.098 [0.097, 0.108]
0.3 99 (0.1%) 0.52 0.100 [0.098, NaN]

For all methods, we flatten the data on the spatiotemporal grid and randomly sample 2% of the data
for each run. The data filtering process in SI-raw is performed after subsampling. The threshold value
for sequential thresholding is set to 0.25, and the coefficient for L2 regularization is set to 0.05.

3https://github.com/dynamicslab/pysindy/blob/master/examples/10_PDEFIND_examples.ipynb

33

https://github.com/dynamicslab/pysindy/blob/master/examples/10_PDEFIND_examples.ipynb

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Darcy flow Sparse regression-based methods are not directly applicable to Darcy flow (7) because
there exist terms such as e−4(x2+y2). While it is still possible to include all necessary terms in the
function library so that the equation can be written in the linear combination form (4), the knowledge
of these complicated terms is nontrivial and should not be assumed available before running the
equation discovery algorithm.

Reaction-Diffusion For SINDy with original variables, We fix ut and vt as the LHS of the equation
and include functions of up to 2nd-order spatial derivatives on the RHS. In PySINDy, the library
contains monomials of u, v up to degree 3 and all spatial derivatives up to order 2. In PySINDy∗, the
library contains all monomials of u, v and their up to second-order spatial derivatives up to degree 3.

Our method uses the invariant set {t, x, y, u2 + v2}
⋃
{u · uµ}

⋃
{u⊥ · uµ}, where u = (u, v)T and

µ is a multiindex of t, x, y. We will denote Iµ = u · uµ and Eµ = u⊥ · uµ. We use It and Et as
the LHS of the equation, and the rest of the invariants are included in the RHS. The function library
contains all monomials of these RHS invariants up to degree 2.

We randomly sample 10% of the data for each run. The threshold value for sequential thresholding is
set to 0.05. The coefficient for L2 regularization is set to 0 for SINDy with original variables and 0.1
for our method with symmetry invariants.

For the experiments with different levels of noise (Section 4.4), we use weak SINDy as the base
algorithm. We use the implementation of weak SINDy from the PySINDy package (Kaptanoglu
et al., 2022). The function library is the same as SINDy as described above. To enforce symmetry,
instead of directly using the symmetry invariants, we derive a set of linear constraints on the sparse
regression parameters to adapt to weak SINDy. This procedure is further described in Appendix C.3.

E.3 GENETIC PROGRAMMING

In all experiments, to determine if an equation matches the ground truth we first expand the prediction
into a sum of monomial terms. We then eliminate all terms whose relative coefficient is below 0.01.
For each term in the filtered expression, we see if it matches any term in the ground truth expression.
This is done by randomly sampling 100 points from the standard normal distribution and evaluating
both the prediction and candidate ground truth term on the generated points. Note that we drop the
coefficients before evaluation. If all evaluations of the predicted term have a relative error of less than
5% from those of the ground truth, the terms are said to match. If there is a perfect matching between
the terms in the ground truth and prediction, the prediction is listed as correct.

Rather than directly returning a single equation, PySR finally produces a hall-of-fame that consists of
multiple candidate solutions with varying complexities. To finally pick a single prediction, we use a
selection strategy equivalent to the “best” option from PySR.

Boussinesq equation For the Boussinesq equation (6), we first randomly subsample 10000 data-
points. We configure PySR to use the addition and multiplication operators, to have 127 populations
of size 27, and to have the default fraction-replaced coefficient of 0.00036.

When running with ordinary variables, we sequentially try fixing the LHS to each variable in (x, u(4))
and allow the RHS to be a function of all remaining variables. Similarly, runs using invariants
sequentially fix the LHS from the set given by Example B.6 and the RHS as a function of all other
invariants.

For each iteration count of 5, 10, and 15, we run the algorithm using invariant or ordinary variables
and report the number of correct predictions out of 100 trials.

Darcy flow In the Darcy experiment (7), we eliminate all points that are within 3 pixels from the
border and then randomly subsample 10000 datapoints. We configure PySR to use the addition,
multiplication, and exponential operators; to have 127 populations of size 64; and to have a fraction-
replaced coefficient of 0.1. We further constrain it to disallow nested exponentials (e.g. exp(exp(x)+
4).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

We try all possible ordinary variables in (x, u(2)) for the LHS and the RHS is then a function of the
unused variables. Likewise when using invariants, we fix the LHS to each possible invariant specified
in Example B.5 and set the RHS as a function of the remaining invariants.

For each iteration count of 50, 100, and 200, we run the algorithm using invariant or ordinary variables
and report the number of correct predictions out of 100 trials.

Reaction-Diffusion For the Reaction Diffusion equation (8), we remove all points that are within 3
pixels from the border or have timestamp greater than or equal to 40, and then randomly subsample
10000 datapoints. We configure PySR to use the addition and multiplication operators, to have 127
populations of size 64, and to have a fraction-replaced coefficient of 0.5.

In the ordinary variable case, we fix the LHS as either utt or vtt and allow the RHS to be a function
of all other variables in (x, u(2)). When using invariants, the LHS is fixed to be either It or Et and
the RHS is then a function of all remaining invariants.

For each iteration count of 100, 200, and 400, we run the algorithm using regular and ordinary
variables and report the number of correct predictions out of 100 trials.

E.4 SYMBOLIC TRANSFORMER

We use the pretrained symbolic transformer model provided in the official codebase4 from Kamienny
et al. (2022). The transformer-based symbolic regressor is initialized with 200 maximal input points
and 100 expression trees to refine. The variable sets used in the symbolic transformer are the same as
those described in the genetic programming experiments, except for the Boussinesq equation, where
we remove all mixed derivative terms in both the original variable set and the symmetry invariant set.
We find that the symbolic transformer can sometimes discover the correct equation under this further
simplified setup, but fails when using the larger variable sets.

We also fix the LHS of the function and use the remaining variables as RHS features. For the
Boussinesq equation, the LHS is fixed to utt for original variables and η(0,2) for symmetry invariants.
For the Darcy flow, the LHS is fixed to uxx for original variables and ∆u for symmetry invariants.
For the reaction-diffusion system, the LHS is fixed to ut, vt for original variables and It, Et for
symmetry invariants.

E.5 HYPOTHESIS SPACES OF EQUATION DISCOVERY ALGORITHMS

Table 10 and Table 11 describe the hypothesis spaces of different equation discovery algorithms when
applied to the Boussinesq equation and the reaction-diffusion system.

Table 10: Hypothesis spaces of different equation discovery algorithms for the Boussinesq equation.

Method Hypothesis space

Sparse
Regression

PySINDy utt = Wθ(u(4)), {θj} = {ab : a ∈ Mono≤2(U), b ∈ {1, ux, ..., uxxxx}}
PySINDy∗ utt = P (u(4)) ∈ Poly≤2(U

(4))

PySINDy∗∗ utt = Wθ(u(4)), {θj} = {uc0uc1
1 uc2

2 uc3
3 uc4

4 : ci ≥ 0,
∑4

0 ci ≤ 2,
∑4

1 sgn(ci) ≤ 1}
SI η(0,2) = P (η) ∈ Poly≤2({η(α,β)}\{η(0,2)})

Genetic
Programming

PySR zj = f(z−j) for z = (x, u(4)) and some j
SI η(α0,β0) = f(η−(α0,β0)) for η = {η(α,β) : α+ β ≤ 4} and some (α0, β0)

DECLARATION OF LLM USAGE

We used LLM solely to assist with minor language editing and polishing of the manuscript text. LLM
was not involved in the research design, experiments, analysis, or in generating any original scientific
content.

4https://github.com/facebookresearch/symbolicregression/blob/main/Example.ipynb

35

https://github.com/facebookresearch/symbolicregression/blob/main/Example.ipynb

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 11: Hypothesis spaces of different equation discovery algorithms for 2D reaction-diffusion.
u(n) ∈ U (n) denotes the collection of all up to nth order spatial derivatives. α = [α1, α2] is the
multiindex for spatial variables. x = (x, y, t). A = u2 + v2.

Method Hypothesis space

Sparse
Regression

PySINDy ut = Wθ(u(2)), {θj} = Mono≤3(U)
⋃
{uα : |α| ≤ 2}

PySINDy∗ ut = P (u(2)) ∈ Poly≤3(U
(2))

PySINDy∗∗ ut = Wθ(u(2)), {θj} = {
∏

i,α(u
i
α)

ciα :
∑

ciα ≤ 3,
∑

|α|≥1 sgn(c
i
α) ≤ 1}

SI [It, Et]
T = P ∈ Poly≤2(A,x, Iα, Eα; |α| ≤ 2)

SI-aligned ut = Wθ(u(2)),W jk = Qijkβi for some precomputed Q

Genetic
Programming

PySR ut = f(x,u(2))
SI [It, Et]

T = f(A,x, Iα, Eα; |α| ≤ 2)

36

	Introduction
	Background
	PDE Symmetry
	Symbolic Regression Algorithms

	Symbolic Regression with Symmetry Invariants
	Differential Invariants and Symmetry Conditions
	Constructing a Complete Set of Invariants
	Implementation in SR Algorithms
	Constraint Relaxation for Systems with Imperfect Symmetry

	Experiments
	Datasets and Their Symmetries
	Methods and Evaluation Criteria
	Results on Clean Data with Perfect Symmetry
	Results on Noisy Data and Imperfect Symmetry

	Discussion
	Related Works
	Math
	Notations
	Extended Background on PDE Symmetry
	Proof of Proposition 3.3
	Examples of Computing Differential Invariants
	Proof of Proposition 3.4

	Implementation Details
	Direct Sparse Regression With Symmetry Invariants
	Symmetry Invariant Condition as Linear Constraints
	Using Differential Invariants in Weak SINDy

	Additional Experiment Results
	blueResults in tab:all With Error Estimates
	Variant Sparse Regression Models
	Genetic Programming
	Comparison with D-CIPHER
	Samples of Discovered Equations
	Prediction Errors of Discovered Equations

	Experiment Details
	Data generation
	Sparse regression
	Genetic Programming
	Symbolic Transformer
	Hypothesis Spaces of Equation Discovery Algorithms

