Under review as a conference paper at ICLR 2026

DISCOVERING SYMBOLIC DIFFERENTIAL EQUATIONS
WITH SYMMETRY INVARIANTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Discovering symbolic differential equations from data uncovers fundamental dy-
namical laws underlying complex systems. However, existing methods often
struggle with the vast search space of equations and may produce equations that
violate known physical laws. In this work, we address these problems by intro-
ducing the concept of symmetry invariants in equation discovery. We leverage
the fact that differential equations admitting a symmetry group can be expressed
in terms of differential invariants of symmetry transformations. Thus, we pro-
pose using these invariants as atomic entities in equation discovery, ensuring the
discovered equations satisfy the specified symmetry. Our approach integrates
seamlessly with existing equation discovery methods such as sparse regression and
genetic programming, improving their accuracy and efficiency. We validate the
proposed method through applications to various physical systems, such as Darcy
flow and reaction-diffusion, demonstrating its ability to recover parsimonious and
interpretable equations that respect the laws of physics.

1 INTRODUCTION

Differential equations describe relationships between functions representing physical quantities and
their derivatives. They are crucial in modeling a wide range of phenomena, from fluid dynamics and
electromagnetic fields to chemical reactions and biological processes, as they succinctly capture the
underlying principles governing the behavior of complex systems. The discovery of governing equa-
tions in symbolic forms from observational data bridges the gap between raw data and fundamental
understanding of physical systems. Unlike black-box machine learning models, symbolic equations
provide interpretable insights into the structure and dynamics of the systems of interest. In this paper,
we aim to discover symbolic partial differential equations (PDEs) in the form

F(x,u™) =0, (1)

where x denotes the independent variables, u™ consists of the dependent variable u and all of its
up-to-nth order partial derivatives.

While it has long been an exclusive task for human experts to identify governing equations, symbolic
regression (SR) has emerged as an increasingly popular approach to automate the discoverym SR
constructs expressions from a predefined set of atomic entities, such as variables, constants, and
mathematical operators, and fits the expressions to data by numerical optimization. Common methods
include sparse regression (Brunton et al.| [2016; [Champion et al., [2019), genetic programming
(Cranmer et al., 2019;2020; |Cranmer, |2023)), neural networks (Kamienny et al., 2022), etc.

However, symbolic regression algorithms may fail due to the vastness of the search space or produce
more complex, less interpretable equations that overfit the data. A widely adopted remedy to these
challenges is to incorporate inductive biases derived from physical laws, such as symmetry and
conserved quantities, into equation discovery algorithms. Implementing these physical constraints
narrows the space for equations and expedites the search process, and it also rules out physically
invalid or unnecessarily complex equations.

'While some literature uses symbolic regression specifically for GP-based methods, we use the term inter-
changeably with equation discovery to refer to all algorithms for learning symbolic equations.

Under review as a conference paper at ICLR 2026

Variables —— | Symmetry Invariants |—— Symmetry
1,2,9, ..., Use, Uyy 1,r,...,Au S0(2)

g o 4 H ® o % [:?%]) O

[421, ¥ ‘1"]

- e y:0.2
Base | | E % L:EOJ
Algorithm ull”” T : ° 0 \
Ll @ @ [0, 4,]
Sparse Regression Genetic Programming Symbolic Transformers

Figure 1: Our framework enforces symmetry in equation discovery by using symmetry invariants.
We highlight three discovery algorithms in their original form (bottom row) and when constrained to
only use symmetry invariants (top row). The colored circles visualize the predicted functions on a
circular domain and demonstrate that using symmetry invariants guarantees a symmetric output.

Among the various physical constraints, symmetry plays a fundamental role in physical systems,
governing their invariances under transformations such as rotations, translations, and scaling. Previous
research has shown the benefit of incorporating symmetry in equation discovery, such as reducing the
dimensionality of the search space and promoting parsimony in the discovered equation (Yang et al.|
2024)). However, the scopes of existing works exploiting symmetry are limited in terms of the types
of equations they can handle, the compatible base algorithms, etc. For example, |Udrescu & Tegmark:
(2020) deals with algebraic equations;|Otto et al.|(2023) deals with ODE systems;|Yang et al.| (2024)
applies to sparse regression but not other SR algorithms.

In this paper, we propose a general procedure based on symmetry invariants to enforce the inductive
bias of symmetry with minimal restrictions in the types of equations and SR algorithms. Specifically,
we leverage the fact that a differential equation can be written in terms of the invariants of symmetry
transformations if it admits a certain symmetry group. Thus, instead of operating on the original
variables, our method uses the symmetry invariants as the atomic entities in symbolic regression,
as depicted in Figure[I] These invariants encapsulate the essential information while automatically
satisfying the symmetry constraints. Consequently, the discovered equations are guaranteed to
preserve the specified symmetry. In summary, our main contributions are listed as follows:

* We propose a general framework to enforce symmetry in differential equation discovery
based on the theory of differential invariants.

* Our approach can be easily integrated with existing symbolic regression methods, such as
sparse regression and genetic programming, and improves their accuracy and efficiency for
differential equation discovery.

* We show that our symmetry-based approach is robust in challenging setups in equation
discovery, such as noisy data and imperfect symmetry.

Notations. Throughout the paper, subscripts are usually reserved for partial derivatives, e.g. u; =
Ou/0t, and Uy, = 0%u/Ox?. Superscripts are used for indexing vector components or list elements.
We use Einstein notation, where repeated indices are summed over. Matrices, vectors and scalars are
denoted by capital, bold and regular letters, respectively, e.g. W, w, w. These conventions may admit
exceptions for clarity or context. See Table 2] for a full description of notations.

2 BACKGROUND

2.1 PDE SYMMETRY

This section introduces the basic concepts about partial differential equations and their symmetry. For
a more thorough understanding of Lie point symmetry of PDEs, we refer the readers to (Olver| (1993).

Under review as a conference paper at ICLR 2026

Partial Differential Equations. We consider PDEs in the form F'(x,u(™)) = 0, as given in (T)). We
restrict ourselves to a single equation and a single dependent variable, unless otherwise stated. We use
x € X C RP to denote all independent variables. For example, x = (¢, x) for a system evolving in
1D space. Note that the bold x refers to the collection of all independent variables while the regular x
denotes the spatial variable. Then, u = u(x) € U C R is the dependent variable; u(™) = (u,u,, ...)
denotes all up to nth-order partial derivatives of u; (x,u(™) € M™ c X x U™, where M (™ is
the nth order jet space of the total space X x U. M and u(™) are also known as the nth-order
prolongation of X x U and u, respectively.

Symmetry of a PDE. A point symmetry g is a local diffeomorphism on the total space £ = X x U:
g (x,u) = (X(x,u), u(x,u)), (2)

where X and @ are functions of E. The action of g on the function u(x) is induced from
by applying it to the graph of uw : X — U. Specifically, denote the domain of w as C X
and its graph as T';, = {(x,u(x)) : x € Q}. The group element g transforms the graph T, as

Tp=g-Tw={(x,0) =9 (x,u): (x,u) € Ty}

Since g transforms both independent and dependent variables, I, does not necessarily correspond to
the graph of any single-valued function. Nevertheless, by suitably shrinking the domain 2x, we can
ensure that the transformations close to the identity transform I',, to the graph of another function.
This function with the transformed graph I, is then defined to be the transformed function of the
original solution u, i.e. g - u = @ s.t. 'z = I',,. The symmetry of the PDE (T) is then defined:

Definition 2.1. A symmetry group of F'(x, u(™)) = 0 is a local group of transformations G' acting
on an open subset of the total space X x U such that, for any solution u to ' = 0 and any g € G,
the function 4 = (g - u)(x) is also a solution of F' = 0 wherever it is defined.

Infinitesimal Generators. Often, the symmetry group of a PDE is a continuous Lie group. In
practice, one needs to compute with infinitesimal generators of continuous symmetries, i.e., vector
fields. In more detail, we will write vector fieldsv : £ —TEon E = X x U as

. 0 0
v =¢ (%, u)@ + o(x, u)% 3)

Any such vector field generates a one-parameter group of symmetries of the total space {exp(ev) :
€ € R}. The symmetries arising from the exponentiation of a vector field moves a point in the total
space along the directions given by the vector field. We will specify symmetries by vector fields in
the following sections. For instance, v = x0, — y0, represents the rotation in (x, y)-plane; v = 9,
corresponds to time translation.

To analyze the symmetry of PDEs, we must know how it transforms not only the variables, but also
their derivatives accordingly. The group transformations on derivatives are formalized by prolonged
group actions and infinitesimal actions on the nth-order jet space, denoted ¢(") and v("), respectively.
More details on prolonged group actions are discussed in Appendix [B.2] with Figure] visualizing a
simple example. To introduce our method, it suffices to note that the prolongation of the vector field
([3) can be described explicitly by &7 and ¢ and their derivatives via the prolongation formula ().

2.2 SYMBOLIC REGRESSION ALGORITHMS

Given the data {(z%,3")} C X x Y, the objective of symbolic regression is to find a symbolic
expression for the function y = f(x). Although this original formulation is for algebraic equations,
it can be generalized to differential equations like (I)). To discover a PDE from the dataset of its
observed solutions on a grid €, i.e. {(x,u(x)) : x € Q}, we estimate the partial derivative terms
and add them to the dataset: {(x,u(™) : x € Q}. One of the variables in the variable set (x, u(™))
is used as the LHS of the equation, i.e. the role of the label y in symbolic regression, while other
variables serve as features. The precise set of derivatives added to symbolic regression and the choice
of the equation LHS requires prior knowledge or speculations about the underlying system.

We briefly review two classes of symbolic regression algorithms: sparse regression (SINDy) and
genetic programming (GP). A more detailed discussion of related works is found in Appendix [A]

Under review as a conference paper at ICLR 2026

Sparse regression (Brunton et al.||2016)) is specifically designed for discovering differential equations.
It assumes the LHS / of the equation is a fixed term, e.g. £ = u;, and the RHS of the equation can be
written as a linear combination of m predefined functions 6’ with trainable coefficients w € R™, i.e.,

O(x, u™) = wI I (x,u™), 7 : MM - R. 4)

The equation is found by solving for w that minimizes the objective | L — R||3 + A||w||o, where L
and R are obtained by evaluating ¢ and w’ ¢’ on all data points and concatenating them into column
vectors, and ||w||o regularizes the number of nonzero terms. This formulation can be easily extended

to ¢ equations and dependent variables (¢ > 1): £(x,u(™) = W44 (x,u™), W € RI*™,

One problem with sparse regression is its restrictive assumptions about the form of equations. Many

equations cannot be expressed in the form of @), e.g. y = xia where a could be any constant. Also,

the success of sparse regression relies on the proper choice of the function library {67}. If any term
in the true equation were not included, sparse regression would fail to identify the correct equation.

Genetic programming (GP) offers an alternative solution for equation discovery (Cranmer, [2023),
which can learn equations in more general forms. It represents each expression as a tree and
instantiates a population of individual expressions. At each iteration, it samples a subset of expressions
and selects one of them that best fits the data; the selected expression is then mutated by a random
mutation, a crossover with another expression, or a constant optimization; the mutated expression
replaces an expression in the population that does not fit the data well. The algorithm repeats this
process to search for different combinations of variables, constants, and operators, and finally returns
the “fittest” expression. GP can be less efficient than sparse regression when the equation can be
expressed in the form (4)) due to its larger search space. However, we will show that it is a promising
alternative to discover PDEs of generic forms, and our approach further boosts its efficiency.

3 SYMBOLIC REGRESSION WITH SYMMETRY INVARIANTS

Symmetry offers a natural inductive bias for the search space of symbolic regression in differential
equations. It reduces the dimensionality of the space and encourages parsimony of the resulting
equations. To enforce symmetry in PDE discovery, we aim to find the maximal set of equations
admitting a given symmetry and search in that set with symbolic regression (SR) methods.

3.1 DIFFERENTIAL INVARIANTS AND SYMMETRY CONDITIONS

To achieve this, our general strategy is to replace the original variable set with a complete set
of invariant functions of the given symmetry group. Since we consider PDEs containing partial
derivatives, the invariant functions refer to the differential invariants defined as follows.

Definition 3.1 (Def. 2.51,|Olver|(1993))). Let G be a local group of transformations acting on X x U.
Any g € G gives a prolonged group action pr(™g on the jet space M(™ c X x U™, An nth
order differential invariant of G is a smooth function 7 : M (™ — R, such that for all ¢ € G and all
(x,u™) e M™ n(g™ . (x,u™)) = n(x,u™) whenever (™ - (x,u™) is defined.

In other words, differential invariants are functions of all variables and partial derivatives that remain
invariant under prolonged group actions. Equivalently, if G is generated by a set of infinitesimal
generators B = {v, }, then a function 7 is a differential invariant of G iff v (n) =0forall v, € B.
The following theorem guarantees that any differential equation admitting a symmetry group can be
expressed solely in terms of the group invariants.

Theorem 3.2 (Prop. 2.56,[0Olver| (1993)). Let G be a local group of transformations acting on X x U.
Let {n*(x,u™), ...,n* (x,u™)} be a complete set of functionally independent nth-order differential
invariants of G. An nth-order differential equation (1)) admits G as a symmetry group if and only if it
is equivalent to an equation of the form F(n*, ...,n*) = 0.

Consequently, SR with a complete set of invariants precisely searches within the space of all symmet-
ric differential equations and automatically excludes equations violating the specified symmetry.

Our strategy of using differential invariants applies broadly to various equation discovery algorithms.
For instance, in sparse regression, we can construct the function library using invariants rather than

Under review as a conference paper at ICLR 2026

raw variables and derivatives. Similarly, in genetic programming, the variable set can be redefined
to include only invariant functions. In each case, the key benefit is the same: the search space is
restricted to symmetry-respecting equations by construction. The reduced complexity of the equation
search also leads to increased accuracy and efficiency.

Next, we describe how to construct a complete set of differential invariants (Section[3.2)), and how to
incorporate them into specific SR algorithms (Section [3.3).

3.2 CONSTRUCTING A COMPLETE SET OF INVARIANTS

Despite the simplicity of our strategy, we still need a concrete method for computing the invariants.
In this subsection, we provide a general guideline to construct a complete set of differential invariants
up to a required order given the group action.

By definition of differential invariants, we look for functions 7(x, u(™)) satisfying v(")(n) = 0 given
a prolonged vector field v(™). This is a first-order linear PDE that can be solved by the method of
characteristics. However, in practice, if E = X xU ~ RP xR, there are (p +Z_1) partial derivatives of
the independent variable u of order exactly n. Therefore, as n grows, it quickly becomes impractical
to solve directly for nth-order differential invariants. The higher-order differential invariants, if
necessary, can be computed recursively from lower-order ones by the following result:

Proposition 3.3. Let G be a local group of transformations acting on X x U ~ RP x R. Let
nt,n?, .-+ 0P be any p differential invariants of G whose horizontal Jacobian J = [D;n’] is non-
degenerate on an open subset Q@ C M™). If there are a maximal number of independent, strictly
nth-order differential invariants C',--- (%, ¢, = (p +Z_1), then the following set contains a

complete set of independent, strictly (n + 1)th-order differential invariants defined on §):

det(Diifly 1)) /det(Dyn?), Wk € [pl, k' € [gu], (5)
where i, j € [p] are matrix indices, D; denotes the total derivative w.r.t i-th independent variable
and ﬁfk}k,) =[nt, P CF Rt P

In practice, we first solve for pr v(n) = 0 to obtain a sufficient number of lower-order invariants
as required in Proposition [3.3] and then construct complete sets of invariants of arbitrary orders.
Notably, while in theory our framework operates on any complete set of differential invariants,
the invariants computed this way may be algebraically complicated and poorly scaled, leading to
difficulties in SR optimization. In practice, we start from such a complete set of differential invariants
and then deliberately convert them into simpler, physically interpretable invariant functions (such as
Laplacians for rotational symmetry) as the feature set for SR. We evaluate invariants on the dataset
only where they are well-defined. If necessary, we shrink the domain and filter out data points that
cause singularity (e.g., where the denominator of an invariant function vanishes). In Appendix [B.4}
we provide two examples of different symmetry groups and their differential invariants. Those results
will also be used in our experiments.

3.3 IMPLEMENTATION IN SR ALGORITHMS

Our symmetry principle characterizes a subspace of all equa- All equations: F(x,) = 0
tions with a given symmetry. Generally, this subspace partially
overlaps with the hypothesis spaces of SR algorithms, con-
ceptually visualized in Figure[2] As in Theorem PDEs
with symmetry can be expressed as implicit functions of all
differential invariants. However, symbolic regression methods
typically learn explicit functions mapping features to labels.
Some algorithms, such as SINDy, impose even stronger con- ’ Symmetry N SINDy ' Symmetry N SR
straints on equation forms. Therefore, adaptation is needed Figure 2: Venn diagram of hypoth-
to implement our strategy of using differential invariants in esis spaces from base SR methods
specific symbolic regression algorithms, as detailed below. and our symmetry principle.

symmetry:
Fip'.n?..)=0

General explicit SR We start with general SR methods that learn an explicit function y = f(x)
without additional assumptions about the form of f, e.g., genetic programming and symbolic trans-
former. When learning the equation with differential invariants, we do not know which one of them

Under review as a conference paper at ICLR 2026

should be used as the LHS of the equation, i.e. the label y in symbolic regression. Thus, we fit an
equation for each invariant as LHS and choose the equation with the lowest data error, as described in
Algorithm [T} We use relative error to select the best equation since the scales of LHS terms differ.

Algorithm 1 General explicit SR for differential equations with symmetry invariants

Require: PDE order 7, dataset {z’ = (x’, (u(™)?) € MM} N5 base SR algorithm S : (X, y)
y = f(x), infinitesimal generators of the symmetry group B = {v,}.
Ensure: A PDE admitting the given symmetry group.
Compute the symmetry invariants of B up to nth-order: o', - - -, n*. {Prop. }
Evaluate the invariant functions on the dataset: n** = n*(z%), for k € [K],i € [Np].
Initialize a list of candidate equations and their risks: E = [].
for kinl: K do
Use the kth invariant as label and the rest as features: y = n*, X = n~
Run S(X,y) and get a candidate equation n* = f*(n=F).
Evaluate £* = ||y — f*(X)||1/|ly|l: and set E[k] = (f*, LF).
end for
Choose the equation in E with the lowest error: £ = argmin; E[j][2].

return n* = f¥(n~"). {Optionally, expand all 7 in terms of original variables z.}

k,:

Sparse regression SINDy assumes a linear equation form (@). Generally, its function library differs
from the set of differential invariants. Also, SINDy fixes a LHS term, while we do not single out an
invariant as the LHS of the equation when constructing the set of invariants.

Assume we are provided the SINDy configuration, i.e. the LHS term ¢ and the function library {67}.
To implement sparse regression with symmetry invariants, we assign an invariant n* that symbolically
depends on 4, i.e. n* /0t # 0, as the LHS for the equation in terms of symmetry invariants. The
remaining invariants are included on the RHS, where they serve as inputs of the original SINDy
library functions. In other words, the equation form is n* = @767 (n~*). Similar to Algorithm |1} we
can expand all 7 variables to obtain the equation in original jet variables.

The above approach optimizes an unconstrained coefficient vector w for functions of symmetry
invariants. Alternatively, we can use the original SINDy equation form and implement the
symmetry constraint as a constraint on the coefficient w, as demonstrated in the following theorem.
Here, we generalize the setup to multiple dependent variables and equations.

Proposition 3.4. Let £(x,u™) = WO(x,u™) be a system of q differential equations admitting a
symmetry group G, where x € RP, u € RY, 6 € R™. Assume there exist some nth-order invariants
of G, r]é:q and nV ¥, s.t. (1) the system of equations can be expressed as ny = W'0'(n), where
0 = [n(l):q] and n = [n5E], and (2) i = TU*007 and (0') = S09, for some functions 0'(n)
and constant tensors W', T and S. Then, the space of all possible W is a linear subspace of R1*™.,

Intuitively, the conditions above state that the equations can be expressed as a linear combination of
invariant terms, similar to the form in (4) w.r.t original jet variables. Also, every invariant term in
1o and 6’(n) is already encoded in the original library 6. In practice, we need to choose a suitable
set of invariants according to the SINDy configuration to meet these conditions. For example, when
0 contains all monomials on M up to degree d, any set of invariants where each invariant is
a polynomial on M (™) up to degree d satisfies these conditions. The proof of Proposition is
provided in Appendix [Bl where we explicitly identify the basis of the linear subspace for V.

Proposition [3.4] allows us to keep track of the original SINDy parameters 1V during optimization.
This enables straightforward integration of symmetry constraints to variants of SINDy, e.g. Weak
SINDy (Messenger & Bortz, |2021ajb) for noisy data. For example, if the constrained subspace has a
basis Q € R"¥9%™ where r is the subspace dimension, we write W7* = Q%% 3?. While we directly
optimize /3, we can still easily compute the objective of Weak SINDy which explicitly depends on
W. In comparison, if we use the raw invariant terms for regression, e.g. the equations take the form
no = W’'0'(n), it is challenging to formulate the objective of Weak SINDy w.r.t W’.

Under review as a conference paper at ICLR 2026

3.4 CONSTRAINT RELAXATION FOR SYSTEMS WITH IMPERFECT SYMMETRY

Our approach discovers PDEs assuming perfect symmetry. However, it is common in reality that
a system shows imperfect symmetry due to external forces, boundary conditions, etc. (Wang et al.,
2022). In such cases, the previous method cannot identify any symmetry-breaking factors.

To address this, we propose to relax the symmetry constraints by allowing symmetry-breaking terms
to appear in the equation, but at a higher “cost”. We implement this idea in sparse regression, where
the equation has a linear structure £ = W6. We adopt the technique from Residual Pathway Prior
(RPP) (Finzi et al.| 2021)), which is originally developed for equivariant linear layers in neural nets.
Specifically, let () be the basis of the parameter subspace that preserves symmetry and P be the
orthogonal complement of (). Instead of parameterizing W in this subspace, we define W = A+ B
where A% = Q"% 3" and B7* = P*~% and place a stronger regularization on ~ than on /3. While the
model still favors equations in the symmetry subspace spanned by (), symmetry-breaking components
in P can appear if it fits the data well.

More implementation details related to Section [3.3|and [3.4] can be found in Appendix

4 EXPERIMENTS

4.1 DATASETS AND THEIR SYMMETRIES

We consider the following PDE systems, which cover different challenges in PDE discovery, such
as high-order derivatives, generic equation form, multiple dependent variables and equations, noisy
dataset, and imperfect symmetry. The datasets are generated by simulating the ground truth equation
from specified initial conditions, with detailed procedures described in Appendix [E.T}

Boussinesq Equation. Consider the Boussinesq equation describing the unidirectional propagation
of a solitary wave in shallow water (Newell, [1985)):

This equation has a scaling symmetry v, = 2t0; + 0, — 2ud,, and the translation symmetries in
space and time. The differential invariants are given by 74, 8) = Uy ()18 Uz (2Fet25)/3 Where o

and f are the orders of partial derivatives in = and ¢, respectively. To discover the 4th-order equation,
we compute all 7, g) for 0 < o + 3 < 4, except for 71,9y = 1 which is a constant.

Darcy Flow. The following PDE describes the steady state of a 2D Darcy flow (Takamoto et al.,
2022)) with spatially varying viscosity a(z,y) = e~4@"+%*) and a constant force term f () =1:

V(e 4@) vy) = 1 0)

This equation admits an SO(2) rotation symmetry v = yd, — x0,. A detailed calculation of
the differential invariants of this group can be found in Example[B.5] In our experiment, we use

the following complete set of 2nd-order invariants: {1 (22 + y?), u, Ty, — YUz, TUz + Yy, Ugy +

2
2 2 2 .2 2
Uy Uy T 2Ugy + Uy, T Uy + Y Uyy + 20YUgy }.

Reaction-Diffusion. We consider the following system of PDEs from |Champion et al.|(2019):

up = diViu+ (1 —u? —0?)u+ (u? +v?)v

v = da Vi — (u? + v*)u + (1 — u? — v?)v (8)
In the default setup, we use d; = da = 0.1. The system then exhibits rotational symmetry in the
phase space: v = ud, — v0,,. The ordinary invariants (functions of variables, not derivatives) are
{t,x,y,u* + v*}. The higher-order invariants are {u - u,,u* - u,}, where u = (u,v)7 and y is
any multi-index of ¢, z and y.
We also consider the following cases where the rotation symmetry is broken due to different factors:

¢ Unequal diffusivities We use different diffusion coefficients for the two components: d; =
0.1, d2 = 0.1 + €. This can happen, for example, when two chemical species described by the
equation diffuse at different rates due to molecular size, charge, or solvent interactions.

¢ External forcing The ground truth equation () is modified by adding —ew to the RHS of
u; and —eu to the RHS of v;. This can reflect a weak parametric forcing on the system.

Under review as a conference paper at ICLR 2026

4.2 METHODS AND EVALUATION CRITERIA

We consider three classes of algorithms for equation discovery: sparse regression (PySINDy, de Silva
et al.| (2020); Kaptanoglu et al.| (2022)), genetic programming (PySR, |Cranmer| (2023)), and a
pretrained symbolic transformer (E2E, [Kamienny et al.| (2022)). For each class, we compare the
original algorithm using the regular jet space variables (i.e. (x, (™)) and our method using symmetry
invariants. Our method will be referenced as SI (Symmetry Invariants) in the results.

To evaluate an equation discovery algorithm, we run it 100 times with randomly sampled data subsets
and randomly initialized models if applicable. We record its success probability (SP) of discovering
the correct equation. Specifically, we expand the ground truth equation into), ¢’ f*(z) = 0, where
¢* are nonzero coefficients, z denotes the variables involved in the algorithm, i.e., original jet variables
(%, u(”)) for baselines and symmetry invariants for our method, and f i are functions of z. Also,
the discovered equation is expanded as) _, ét f i(z) = 0, where ¢ # 0. The discovered equation is

considered correct if all the terms with nonzero coefficients match the ground truth, i.e., { f1} = {f7}.
We also report the prediction error (PE), which measures how well the discovered equation fits
the data. For evolution equations with time derivatives on the LHS, we simulate each discovered
equation from an initial condition and measure its difference from the ground truth solution at a
specific timestep in terms of root mean square error (RMSE). Otherwise, we just report the RMSE of
the discovered equation evaluated on all test data points.

4.3 RESULTS ON CLEAN DATA WITH PERFECT SYMMETRY

Table 1: Equation discovery results on clean data. C, standing for complexity, refers to the effective
parameter space dimension in sparse regression and the number of variables in GP/Transformer. SP
and PE stands for success probability and prediction error, as explained in Section[d.2] The entries
"-" suggest that the method does not apply to the specific PDE system, or the result is not meaningful.
The arrows 1 / | mean higher/lower metrics are better.

Method Boussinesq (6) Darcy flow Reaction-diffusion (8)

cl SPt PE| C| SPt PE,L CJ SPt PE|

Sparse PySINDy 15 0.00 0373 - - - 38 0.53 0.021

Regression SI 13 1.00 0.098 - - - 28 0.54 0.008
Genetic PySR 17 090 0.098 8 0.00 0.114 17 0.00 -

Programming SI 14 1.00 0.098 7 079 0.051 16 0.81 0.023
Transformer E2E 10 053 0.132 8 ().(7)() - 17 ().(7)() -
SI 7 085 0104 7 0.00 - 16 0.00 -

Table (1| summarizes the performance of all methods on the three PDE systems. For prediction errors
(PE), we report the median, instead of the average, of 100 runs for each algorithm, because some
incorrectly discovered equations yield tremendous prediction errors. Comparisons are made within
each class of methods. Generally, using symmetry invariants reduces the complexity of equation
discovery and improves the chance of finding the correct equations compared to the baselines.

Specifically, in sparse regression, our method using symmetry invariants is only slightly better than
PySINDy in the reaction-diffusion system, but constantly succeeds in the Boussinesq equation where
PySINDy fails. The failure of PySINDy is because the u2 term in (B)) is not supported by its function
library, showing that SINDy’s success relies heavily on the choice of function library. On the other
hand, by enforcing the equation to be expressed in invariants, our method automatically identifies the
proper function library. Appendix provides results for other variants of sparse regression.

For GP-based methods, Table[I]displays the results with a fixed number of GP iterations for each
dataset. We also include results with different numbers of iterations in Appendix [D.3] Generally,
GP with invariants can identify the correct equation with fewer iterations and is considered more
efficient. On the other hand, the pretrained symbolic transformer fails on two of the three datasets. We
conjecture this is because the data distribution from PDE solutions greatly differs from its pretraining
dataset. However, the symbolic transformer can discover the Boussinesq equation correctly, where
using symmetry invariants leads to much higher success probability.

Under review as a conference paper at ICLR 2026

4.4 RESULTS ON NOISY DATA AND IMPERFECT SYMMETRY

We test the robustness of our method under two challenging scenarios: (1) noise in observed data,
and (2) PDE with imperfect symmetry.
R-D w/ noisy data R-D w/ unequal diffusivities R-D w/ external forcing

1.0 0.5
—=— S| (K=1000)

SI (K=100)
-#- SINDy (K=1000) ! ¥
-4~ SINDy (K=100) ; i

°
S
°
®

+

°
w

°
=

Success Probability
°
r
1
!
|
»

Success probability
Success probability

R L .

Srrelaxed - S —#— Sl-relaxed
—s— Sl-relaxe
02 01 o 02 S|
. .. —a- SINDy -4- SINDy
A TIge Perfect symmet: Perfect symmetry
00 L 0.0 Y ry 00
1.0 15 2.0 25 3.0 35 4.0 4.5 5.0 -0.03 -0.02 -0.01 o 0.01 0.02 0.03 o 0.1 0.15 0.2
Noise Level (%) Symmetry breaking parameter & Symmetry breaking parameter €

Figure 3: Success probabilities of sparse regression methods on the reaction-diffusion system with
noisy data (left), unequal diffusivities (center) and external forcing (right). Under noisy data, our
method (SI) consistently outperforms SINDy under the same number of test functions. For systems
with imperfect symmetry, strictly enforcing symmetry (SI) hurts performance, but a relaxed symmetry
constraint (SI-relaxed, introduced in Section @) is still better than no inductive bias (SINDy).

In the first experiment, we add different levels of white noise to the simulated solution of the reaction-
diffusion system. Since the derivatives estimated by finite difference is inaccurate with the noisy
solution, we use the weak formulation of SINDy (Messenger & Bortz, |2021a), which does not require
derivative estimation. The success probabilities of our method (SI) and SINDy are shown in Figure 3|
(left), where K is the number of test functions in weak SINDy. With the same K, our method
consistently achieves higher success probability at different noise levels. Notably, when the noise
level is high, our symmetry-constrained model performs better with fewer test functions (X = 100).
We comment that choosing test functions and related hyperparameters is known to be a challenging
problem (Iran & Bortzl 2025), and we leave further investigation of this phenomenon to future work.

In the second experiment, we simulate the two variants of (8) (unequal diffusivities and external
forcing) with different values for the symmetry-breaking parameter € and add 2% noise to the
numerical solutions. We compare three models: (1) our model with strictly enforced symmetry (SI),
(2) our model with relaxed symmetry (SI-relaxed) introduced in Section [3.4] and (3) weak SINDy as
the baseline. The results for the two systems with symmetry breaking are shown in Figure [3|(center
& right). As expected, SI has a much lower success probability when the symmetry-breaking factor
becomes significant. Meanwhile, SI-relaxed remains highly competitive. It also has a clear advantage
over baseline SINDy, showing that even if the inductive bias of symmetry is slightly inaccurate, our
model with relaxed constraints is still better than a model without any knowledge of symmetry.

More comprehensive results, e.g. variant sparse regression models, comparison with D-CIPHER
(Kacprzyk et al/,[2023) baseline, discovered equation samples, are provided in Appendix [D}

5 DISCUSSION

We propose to enforce symmetry in symbolic regression algorithms for discovering PDEs by using
differential invariants of the symmetry group as the variable set. We implement this general strategy in
different classes of algorithms and observe improved accuracy, efficiency and robustness of equation
discovery, especially in challenging scenarios such as noisy data and imperfect symmetry.

It should be noted that our method assumes the symmetry group is already given. This assumption
aligns with common practice: physicists often begin by hypothesizing the symmetries of a system and
seek governing equations allowed by those symmetries. However, our current framework cannot be
applied if symmetry is unknown, and will produce incorrect results with misspecified symmetry. This
can be potentially addressed by incorporating automated symmetry discovery methods for differential
equations (Yang et al.|[2024; Ko et al.,2024), which we leave for future work.

Another caveat of our method is the calculation of differential invariants. While solving for v(™) () =
0 and applying the formula (3) is easy with any symbolic computation package, the resulting
differential invariants may be complicated and require ad-hoc adjustment for better interpretability

Under review as a conference paper at ICLR 2026

and compatibility with specific algorithm implementations (e.g. conditions in Proposition [3.4).
Fortunately, this only requires a one-time effort. Once we have derived the invariants for a symmetry
group, the results can be reused for any equation admitting the same symmetry.

ETHICS STATEMENT

All authors of this paper have read and agreed to adhere to the ICLR Code of Ethics. We believe that
this paper does not pose any significant ethical concerns that need to be highlighted here.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the experiments in this paper, we have provided detailed experimental
instructions for both data generation and symbolic regression methods in Appendix [E| Also, we have
provided the codebase to run the experiments in the supplementary material of this submission.

REFERENCES

Tara Akhound-Sadegh, Laurence Perreault-Levasseur, Johannes Brandstetter, Max Welling, and
Siamak Ravanbakhsh. Lie point symmetry and physics informed networks. arXiv preprint
arXiv:2311.04293, 2023.

Joseph Bakarji, Jared Callaham, Steven L. Brunton, and J. Nathan Kutz. Dimensionally consistent
learning with buckingham pi. Nature Computational Science, 2:834-844, 12 2022. ISSN 2662-
8457. doi: 10.1038/s43588-022-00355-5.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 936-945. PMLR, 18-24 Jul 2021.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. In International Conference on Machine Learning, pp. 2241-2256. PMLR,
2022.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932-3937, 2016. doi: 10.1073/pnas.1517384113.

Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery
of coordinates and governing equations. Proceedings of the National Academy of Sciences, 116
(45):22445-22451, 2019. doi: 10.1073/pnas.1906995116.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl, 2023.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 17429-17442. Curran Associates, Inc., 2020.

Miles D. Cranmer, Rui Xu, Peter Battaglia, and Shirley Ho. Learning symbolic physics with graph
networks, 2019.

David Dalton, Dirk Husmeier, and Hao Gao. Physics and lie symmetry informed gaussian processes.
In Forty-first International Conference on Machine Learning, 2024.

Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Kutz, and Steven
Brunton. Pysindy: A python package for the sparse identification of nonlinear dynamical systems
from data. Journal of Open Source Software, 5(49):2104, 2020. doi: 10.21105/joss.02104. URL
https://doi.org/10.21105/joss.02104.

Rendta Dubcdkovd. Eureqa: software review, 2011.

10

https://doi.org/10.21105/joss.02104

Under review as a conference paper at ICLR 2026

Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual pathway priors for soft equivariance
constraints. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 30037-30049. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/fi1le/fc394e9935fbd62c8aedc372464el1965-Paper.pdf.

Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto Tonda. Learning dynamical systems
using standard symbolic regression. In Miguel Nicolau, Krzysztof Krawiec, Malcolm 1. Heywood,
Mauro Castelli, Pablo Garcia-Sanchez, Juan J. Merelo, Victor M. Rivas Santos, and Kevin Sim
(eds.), Genetic Programming, pp. 25-36, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
regression with a learned concept library. Advances in Neural Information Processing Systems, 37:
44678-44709, 2024.

Arthur Grundner, Tom Beucler, Pierre Gentine, and Veronika Eyring. Data-driven equation discovery
of a cloud cover parameterization. arXiv preprint arXiv:2304.08063, 2023.

Daniel R Gurevich, Matthew R Golden, Patrick AK Reinbold, and Roman O Grigoriev. Learning
fluid physics from highly turbulent data using sparse physics-informed discovery of empirical
relations (spider). Journal of Fluid Mechanics, 996:A25, 2024.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. arXiv
preprint arXiv:2401.00282, 2023.

Krzysztof Kacprzyk, Zhaozhi Qian, and Mihaela van der Schaar. D-cipher: discovery of closed-
form partial differential equations. Advances in Neural Information Processing Systems, 36:
27609-27644, 2023.

Kadierdan Kaheman, J Nathan Kutz, and Steven L Brunton. Sindy-pi: a robust algorithm for parallel
implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A, 476
(2242):20200279, 2020.

Pierre-Alexandre Kamienny, Stéphane d’ Ascoli, Guillaume Lample, and Franc¢ois Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269-10281, 2022.

Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt,
Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe
Loiseau, J. Nathan Kutz, and Steven L. Brunton. Pysindy: A comprehensive python package for
robust sparse system identification. Journal of Open Source Software, 7(69):3994, 2022. doi:
10.21105/joss.03994. URL https://doi.org/10.21105/joss.03994.

Gyeonghoon Ko, Hyunsu Kim, and Juho Lee. Learning infinitesimal generators of continuous
symmetries from data. arXiv preprint arXiv:2410.21853, 2024.

Kookjin Lee, Nathaniel Trask, and Panos Stinis. Structure-preserving sparse identification of nonlinear
dynamics for data-driven modeling. In Bin Dong, Qianxiao Li, Lei Wang, and Zhi-Qin John Xu
(eds.), Proceedings of Mathematical and Scientific Machine Learning, volume 190 of Proceedings
of Machine Learning Research, pp. 65-80. PMLR, 15-17 Aug 2022.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Matteo Merler, Katsiaryna Haitsiukevich, Nicola Dainese, and Pekka Marttinen. In-context sym-
bolic regression: Leveraging large language models for function discovery. arXiv preprint
arXiv:2404.19094, 2024.

Daniel A Messenger and David M Bortz. Weak sindy for partial differential equations. Journal of
Computational Physics, 443:110525, 2021a.

Daniel A Messenger and David M Bortz. Weak sindy: Galerkin-based data-driven model selection.
Multiscale Modeling & Simulation, 19(3):1474-1497, 2021b.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fc394e9935fbd62c8aedc372464e1965-Paper.pdf
https://doi.org/10.21105/joss.03994

Under review as a conference paper at ICLR 2026

Daniel A Messenger, Joshua W Burby, and David M Bortz. Coarse-graining hamiltonian systems
using wsindy. Scientific Reports, 14(1):14457, 2024.

Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, and Bobak
Kiani. Self-supervised learning with lie symmetries for partial differential equations. Advances in
Neural Information Processing Systems, 36:28973-29004, 2023.

Alan C Newell. Solitons in mathematics and physics. SIAM, 1985.

Peter J Olver. Applications of Lie groups to differential equations, volume 107. Springer Science &
Business Media, 1993.

Peter J Olver. Equivalence, invariants and symmetry. Cambridge University Press, 1995.

Samuel E. Otto, Nicholas Zolman, J. Nathan Kutz, and Steven L. Brunton. A unified framework to
enforce, discover, and promote symmetry in machine learning, 2023.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2022.

Chengping Rao, Pu Ren, Yang Liu, and Hao Sun. Discovering nonlinear pdes from scarce data with
physics-encoded learning. arXiv preprint arXiv:2201.12354, 2022.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science advances, 3(4):e1602614, 2017.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442—-4450. PMLR, 2018.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81-85, 20009.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models. arXiv preprint
arXiv:2404.18400, 2024.

Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
Chandan K Reddy. Llm-srbench: A new benchmark for scientific equation discovery with large
language models. arXiv preprint arXiv:2504.10415, 2025.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pfliiger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596-1611, 2022.

April Tran and David Bortz. Weak form scientific machine learning: Test function construction for
system identification. arXiv preprint arXiv:2507.03206, 2025.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. Ai
feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural
Information Processing Systems, 33:4860-4871, 2020.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. In International Conference on Learning Representations, 2021.

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. In International Conference on Machine Learning. PMLR, 2022.

12

Under review as a conference paper at ICLR 2026

Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science.
MRS Communications, 9(3):793-805, 2019.

Xiaoyu Xie, Arash Samaei, Jiachen Guo, Wing Kam Liu, and Zhengtao Gan. Data-driven discovery

of dimensionless numbers and governing laws from scarce measurements. Nature Communications,
13(1):7562, 2022. doi: 10.1038/s41467-022-35084-w.

Jianke Yang, Wang Rao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry-informed
governing equation discovery. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

Zhi-Yong Zhang, Hui Zhang, Li-Sheng Zhang, and Lei-Lei Guo. Enforcing continuous symmetries

in physics-informed neural network for solving forward and inverse problems of partial differential
equations. Journal of Computational Physics, 492:112415, 2023.

13

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Symbolic Regression. Given the dataset {(z%,y")} C X x Y, symbolic regression (SR) aims to
model the function y = f(z) by a symbolic equation. A popular method for symbolic regression
is genetic programming (GP) (Schmidt & Lipson, 2009} |Gaucel et al., [2014), which leverages
evolutionary algorithms to explore the space of possible equations and has demonstrated success in
uncovering governing laws in various scientific domains such as material science (Wang et al., 2019),
climate modeling (Grundner et al.}|2023)), cosmology (Cranmer et al.,2020), etc. Various software
have been developed for GP-based symbolic regression, e.g. Eureqa (Dubcakova, 2011)) and PySR
(Cranmer, [2023)).

Another class of methods is sparse regression (Brunton et al.| 2016), which assumes the function to
be discovered can be written as a linear combination of predefined candidate functions and solves
for the coefficient matrix. It has also been extended to discover more general equations, such as
equations in latent variables (Champion et al.,|2019) and PDEs (Rudy et al., 2017).

Neural networks have also shown their potential in symbolic regression. [Martius & Lampert (2016));
Sahoo et al.| (2018) represents a few earliest attempts, where they replace the activation functions
in fully connected networks with math operators and functions, so the network itself translates to
a symbolic formula. Other works represent mathematical expressions as sequences of tokens and
train neural networks to predict the sequence given a dataset of input-output pairs. For example,
Petersen et al.|(2019) trains an RNN with policy gradients to minimize the regression error. Biggio
et al.[(2021), [Kamienny et al.|(2022) and [Holt et al.| (2023) pre-train an encoder-decoder network
over a large amount of procedurally generated equations and query the pretrained model on a new
dataset of input-output pairs at test time.

The aforementioned symbolic regression methods can be improved by incorporating specific domain
knowledge. For example, Al Feynman (Udrescu & Tegmark, 2020} [Udrescu et al., [2020) uses
properties like separability and compositionality to simplify the data. Cranmer et al.| (2020) specifies
the overall skeleton of the equation and fits each part with genetic programming independently. The
goal of this paper falls into this category — to use the knowledge of symmetry to reduce the search
space of symbolic regression and improve its accuracy and efficiency.

Recently, Large Language Models (LLMs) have emerged as an alternative for SR, using pre-trained
scientific priors to propose sequential hypothesis (Merler et al., 2024)) or to guide genetic program-
ming (Shojaee et al., [2024), balancing the efficiency of domain knowledge with the robustness of
evolutionary search. However, current LLM-based methods often rely on memorizing known equa-
tions rather than facilitating genuine discovery, and their guidance lacks interpretability, specifically,
the reasoning behind their suggestions, evidenced by a recent benchmark specially designed for
LLM-SR (Shojaee et al.;[2025). A recent effort sought to improve interpretability by binding symbolic
evolution with natural language explanations (Grayeli et al., 2024). However, this method relies on
frontier LLMs to conduct the evolution of the natural language components, rendering the process
itself opaque. These limitations highlight the need for approaches that enhance the controllability and
explainability of the prior knowledge injected, ensuring more transparent and trustworthy discovery.

Discovering Differential Equations. While it remains in the scope of symbolic regression, the
discovery of differential equations poses additional challenges because the derivatives are not directly
observed from data. Building upon the aforementioned SINDy sparse regression (Brunton et al.|
2016), Messenger & Bortz|(2021a3b)) formulates an alternative optimization problem based on the
variational form of differential equations and bypasses the need for derivative estimation. A similar
variational approach is also applied to genetic programming (Qian et al., |2022). Various other
improvements have been made, including refined training procedure (Rao et all 2022), relaxed
assumptions about the form of the equation (Kaheman et al.l 2020), and the incorporation of physical
priors (Xie et al.| {2022} |Bakarji et al., 2022; Lee et al., [2022}; Messenger et al., 2024)).

PDE Symmetry in Machine Learning. Symmetry is an important inductive bias in machine
learning. In the context of learning differential equation systems, many works encourage symmetry
in their models through data augmentation (Brandstetter et al., 2022), regularization terms (Akhound
Sadegh et al., 2023} Zhang et al., 2023 Dalton et al.l 2024), and self-supervised learning (Mialon
et al.,2023)). Strictly enforcing symmetry is also possible, but is often restricted to specific symmetries

14

Under review as a conference paper at ICLR 2026

and systems (Wang et al., 2021} (Gurevich et al.} [2024). For more general symmetries and physical
systems, enforcing symmetry often requires additional assumptions on the form of equations, such as
the linear combination form in sparse regression (Otto et al., 2023}, [Yang et al.,2024). EquivSINDy
[2024) has a similar goal to ours: to enforce symmetry when discovering differential
equations. However, they addressed the discovery of first-order autonomous ODE systems, where
they only considered the time-independent symmetries of ODEs (represented in vector fields by
>; #i(u)0;). In comparison, we deal with PDEs that contain partial derivatives and possibly higher-
order derivatives, and possibly have no “linear form” assumed by SINDy. In this context, we consider
the general Lie point symmetries of PDEs, which could act on the independent variables nontrivially
(represented in vector fields by >, &(x,)0z, + >, ¢j(x,)0y,). To the best of our knowledge,
our work is the first attempt to strictly enforce general symmetries of differential equations for general
symbolic regression methods.

15

Under review as a conference paper at ICLR 2026

B MATH

B.1 NOTATIONS

Table 2: Descriptions of symbols used throughout the paper. The three blocks include (1) basic
notations for PDEs, (2) notations for Lie symmetry of PDEs, and (3) notations for symbolic regression
algorithms and miscellaneous.

Symbols Descriptions
P Number of independent variables of a PDE.
q Number of dependent variables of a PDE.
X Space of independent variables of a PDE: X C RP. Also used to denote the feature
space of SR algorithms.
U Space of dependent variables of a PDE: U C R?. Assumed to be 1-dimensional
unless otherwise stated.
E Total space of all variables of a PDE: ' = X x U.
Uy Space of strictly kth-order partial derivatives of variables in U w.r.t variables in X.
U Space of all partial derivatives up to nth order (including the original variables in U):
UM =UxU; x- x U,
M™) nth-order jet space: M) C X x U™,
™ The tangent bundle of a manifold M.
X Independent variables of a PDE: x € RP.
t Time variable.
T,y Spatial variables in PDE contexts. Also used to denote the features and labels of SR
algorithms, where x can denote multi-dimensional features.
U, u Dependent variable(s) of a PDE: u € R and u € R9.
u(™ u™ | The collection of all up to n-th order partial derivatives of u or u.
df The (ordinary) differential of a function. For a differential function f : M (") — R,
df =32, #5dat + 3, 2Ldu,.
D;f The total derivative of a differential function f : M (") — R w.r.t the ith independent
variable. For example, if p = ¢ =1, D1 f = % + Z:O:O Uk+1 Bank’ where uy =
0Fu /0.
Df The total differential of a differential function f : M — R, ie. Df = D, f dx'.
g A group element with an action on E (2).
v A vector field on the total space E (3)), representing an infinitesimal transformation.
A list of multiple vector fields are indexed by subscripts.
pr(Mg nth-order prolongation of g acting on M (™).
pr™y nth-order prolongation of v acting on M ("),
g™, v(™ | Equivalent to pr™ g and pr(™v, respectively.
prv The (infinite) prolongation of v. For an nth-order differential function f(x, u(”)),
prv(f) = pr™v(f).
n,(, 0 Differential invariants of a symmetry group. 7 is used by default. The other letters
are used to distinguish between invariants of different orders.
(0 The LHS of SINDy equation (@). Often assumed to be time derivatives.
0 A column vector containing all SINDy library functions: 6 = [f1,--- ™|
w, W The SINDy parameters. For only one equation, w = [w!,--- ,w™] is a row vector.
For multiple equations, W = [w%] is a ¢ x m matrix.
X,y Concatenated matrix/vector of features/labels of all datapoints for symbolic regres-
sion.
[N] List of positive integers up to N, i.e. [1,2,--- , N] forany N € Z*.
1:N Equivalent to [N].
LHS, RHS | Left- and Right-hand side of an equation.

16

Under review as a conference paper at ICLR 2026

B.2 EXTENDED BACKGROUND ON PDE SYMMETRY

References for the below material include |Olver| (1993)), Olver, (1995)).

Prolonged group actions Let £ = X x U ~ RP x RY be endowed with the action of a group G via
point transformations. Then group elements g € G act locally on functions u = f(x), therefore also
on derivatives of these functions. This in turn induces, at least pointwise, “prolonged” transformations
on jet spaces: (X, a(™) = pr(™g - (x,u™).

Let J = (j1,-.-,Jn), 1 < j, < pbe an n-tuple of indices of independent variables and 1 < o < gq.
We will use the shorthand

o7 u Ay

afﬂ‘] o 6le e 8:1:%

uf =

and
DJ = Dj1 "'Djn,'

It is not practical to work explicitly with prolonged group transformations. Therefore one linearizes
and considers the prolonged action of the infinitesimal generators of G. Explicitly, given a vector

field ,
i 0
Z § a a’
i=1
its characteristic is a g-tuple Q = (Q*!,...,Q?) of functlons with
Q*(x,ul) =
Now the prolongation of v to order n is defined by
(n) - (n)y_9
V*Zf x,u) g (x,u)% 9)

1#J=
Here J ranges over all n-tuples J = (j1,...,Jn), 1 < j, < p and the ¢ are given by

p
05 =D;Q%+ > &y,

i=1

We remark that the prolongation of v has been described explicitly in terms of the coefficients of v
and their derivatives.

Rotation (g) of u(x) and its prolongation to uy(x) Full view of g™ in X x U x Uy =R3

Curves = Original curve: (x, u(x), ux(x))

— ':AX)] ' Transformed curve: (X, U(X), Ux(X))
= U0 =(g-u)x)
—_— ()

e 0 = (g% ud0)
Vector fields
— V1= —Udx+ X3y, /
— Vva= —ud+ (1+ud)ay, /
x

Original projected to X x U and X x Uy
Transformed projected to X x U and X x Uy

u;
\
\
\
/‘
1
0/\
Uy

Figure 4: Demonstration of the rotation v = —ud, + z0, acting on X x U, and its first-order
prolongation acting on X x U x Uj.

Figure [visualizes the group action of a Lie point transformation and its prolongation with a simple
example. Consider the total space X x U ~ R x R, and the standard rotation generator in 2D space

17

Under review as a conference paper at ICLR 2026

given by v = —ud, + x0,. The vector field is visualized in dark red arrows in the background. We
also consider a function X — U given by u(z) = 0.5(x — 1)3, whose graph is visualized by the
dark red solid line in Figure [4]left. The graph of its first-order derivative, u,(z) = 1.5(z — 1)2, is
visualized by the dark green dash-dot line.

Then, we choose a random group element g = exp(6v) that rotates a 2D vector (z,u) € X x U
by angle 6. Applying this pointwise transformation to every point on the graph of u(z), we have a
transformed graph visualized by the dark red dashed line. The transformed function, @ = g - u, is
defined as the function whose graph is the transformed graph. In other words, 4(x) = (g - u)(z) is
visualized by the dark red dashed line in Figure] left.

Next, we consider how the rotation of (x, u) transforms the first-order derivative u, = g—g. The
prolonged vector field, i.e., the infinitesimal generator of the prolonged group action, can be computed
by @): v(¥ = v + (1 + u2)d,,. The projection of v(!) onto X x U is visualized in the dark
green arrows in Figure [4] left. Similarly, the prolonged group action g() = exp(fv(!) is applied
to every point on the graph of u,(x), yielding the graph of the transformed derivative function,
Gy (r) = 9% (), visualized in the dark green dotted line.

The full transformation of the prolonged ¢(*) in the 3D space X x U x U; is shown on Figure
right. The graph of the original prolonged function u") () = (u(x), u.(x)) is shown in the solid
line, which is transformed into the dashed line by g(l).

B.3 PROOF OF PROPOSITION[3.3]

Olver| (19935)) provides the following general theorem to construct higher-order differential invariants
from a contact-invariant coframe. We refer the readers to Chapter 5 of |Olver| (1995)) for definitions of
relevant concepts, e.g., contact forms and contact-invariant forms and coframes.

Theorem B.1 (Thm. 5.48, (Olver, |1995)). Let G be a transformation group acting on a space with p
independent variables and q dependent variables. Suppose w', ...,wP is a contact-invariant coframe
for G, and let D; be the associated invariant differential operators defined via Df = D; f dx? =
D;f wl. If there are a e number of independent, strictly nth-order differential invariants (', - - , (I,
gn = (¥ +Z_1), then the set of differentiated invariants D;C", i € [p|, v € [gn), contains a complete
set of independent, strictly (n + 1)th-order differential invariants.

Specifically, the condition that there exist a maximal number of differential invariants of order exactly
n is guaranteed if n is at least dimG.

Our proposition is a derived result from the above theorem, which provides a concrete way of
computation from lower-order invariants to higher-order ones:

Proposition B.2. Let G be a local group acting on X x U ~ RP x R. Let n',n?, .- ,nP be any
p differential invariants of G whose horizontal Jacobian J = [D;n’] is non-degenerate on an open
subset Q C M), If there are a maximal number of independent, strictly nth-order differential
invariants C*,- -+ , (T, q, = (p +Zfl), then the following set contains a complete set of independent,
strictly (n 4 1)th-order differential invariants defined on §):

det(Dyif)), 1))

det(Dyni) Vk € [pl, k" € [qn], (10)

where i,j € [p| are matrix indices, D; denotes the total derivative w.r.t i-th independent variable
=7 — [nl k=1 k" k41
andngk,k/) - [77 7"'777 7(777 * 7"'777p]'

Proof. We show that the total differentials of the differential invariants ', ..., 7P can be used to
construct a contact-invariant coframe of G and then derive the associated invariant differential
operators to complete the proof.

First, note that for any differential invariant n of G, its total differential w = Dn = D;n dz’ can be
written as

w=w,+0, (11)

18

Under review as a conference paper at ICLR 2026

where w, = dip = 3,01 B dr’ + 3 4 <p =-du is the ordinary differential of n : M(™) — R

and 6 is a contact form.

Since 7 is a differential invariant, its differential w, = dn is an invariant one-form on M (M je.
(n)* —
(g *we = wo.

Also, a prolonged group action maps contact forms to contact forms. To see this, note that a prolonged
group action g(™ maps the prolonged graph of any function to the prolonged graph of a transformed
function. Then, for any contact form 6, (¢(™))*@ is annihilated by all prolonged functions f(™), thus
a contact form by definition:

g™ o f(n))*g

= (
=((g-NH™)0
0. (12)

(") ((g™)0)

Then, from (TI), we have

(gt w = (g"™) w, + (9" TV)0
=w,+ 60
—wt (0 6) (13)

where 6’ is some contact form and so is ' — 6. Thus, w is contact-invariant. For the p differential
invariants n', - - - , nP, we have p contact-invariant one-forms w', - - - , wP, respectively.

Next, we prove that w‘l, -+« ,wP are linearly independent and form a coframe. Assume there exists
smooth coefficients ¢/ such that ; ¢/w? = 0. Then, regrouping the coefficients of the horizontal
forms dz?, we have

0=> Dpfda’ =Y > Dy | da'. (14)
J

%] %

Because the dz® are linearly independent, each coefficient of dz® must vanish, i.e. Jij d = 0.
Since the Jacobian J = [D;7] is non-degenerate, the only solution is ¢/ = 0 (on the open subset
Q € M™). Thus, w',--- ,w? form a contact-invariant coframe. According to Theorem , the
associated invariant differential operators of the coframe take a complete set of same-order invariants
to a complete set of one-order-higher invariants.

The remaining step is to obtain the invariant differential operators explicitly in terms of 77. Recall
the formula in Theorem [B.T]that defines the invariant differential operators:

Dif dz' =D;f w. (15)

Expanding w’ = D/ = D;n’ dx®, we have the following linear system of invariant differential
operators Dj:

D Din* Dip* -+ D] [Dy
Dy Don' Dan? --- DanP| | Do
=1) i . (16)
D, Dynt Dyn? -+ DynPl LDy
Since J = [D;n?] is non-degenerate, Cramer’s rule yields
det Dz L., Dz k=1 Dl Dz k1. Dz P
D¢ = det@in | [D™ " [Di¢ | Din™ " | --- | Ding”) (17)
det(D;n?)
O
Remark B.3. We require that the differential invariants n', - - - , n? has a nondegenerate horizontal

Jacobian [D;n], which is a stronger condition than functional independence. Since the differential

19

Under review as a conference paper at ICLR 2026

invariants are functions on the jet space, it is possible that a set of such functions is functionally
independent, i.e., has a nondegenerate full Jacobian [9;77], where i € [g,,] indexes the jet space
variables (x, u(”)), but has a lower-rank horizontal Jacobian. For example, consider 771 = u, and
n* = w,,. In the full Jacobian, dn’ /Ou, and dn’ /Ou,, form the identity, so it has full rank. However,

Ugzy Uzy

its horizontal Jacobian containing total derivatives is given by [] , which is not invertible

on the subset of the jet space where 1,41y, — uﬁy =0.

In practice, this non-degeneracy condition can be easily checked once we have the symbolic expres-
sions of the p differential invariants.

Remark B.4. When p = 1, Proposition [B.2]is equivalent to the following (Prop. 2.53,(Olver| (1993)):

If y = n(x,u™) and w = ((z,u™) are n-th order differential invariants of G, then ‘3—1; = %Ifz
is an (n + 1)-th order differential invariant of G. Specifically, if y = n(z,u) and w = ((z,u, uy)
form a complete set of functionally independent differential invariants of pr(!) G, the complete set of

functionally independent differential invariants for pr(™)G is then given by
y,w, dw/dy, ...,d" tw/dy" L. (18)

B.4 EXAMPLES OF COMPUTING DIFFERENTIAL INVARIANTS

Example B.5. Consider the group SO(2) acting on X x U ~ R? x R by standard rotation in the
2D space of independent variable and trivial action on U, i.e. its infinitesimal generator given by
V =y0; — 20y.

First, we solve for a complete set of the ordinary and first-order invariants. By definition, the ordinary
invariants n = n(x, y, u) should satisfy yd,n — zd,n = 0. Since the vector field does not involve
u, an immediate solution is 7 = u. On the othe hand, by method of characteristics, we convert the
PDE to the characteristic equations dx/ds = y,dy/ds = —z. That is, the characteristics curves
(z(s),y(s)) are just circles around origin. Because 7 is constant along characteristic curves, it
must be a function of R? = 2 + y2. Therefore, we pick the following two ordinary invariants:
m(z,y,u) = 3(2% + y?) and n2 (2, y, u) = u. (@) dictates how we construct higher-order invariants
using these two functionally independent invariants and another arbitrary invariant. For notational
convenience, we convert (3)) to operators defined according to 72 and 7, respectively:

D, —yD,
0=y Vo= (19)
xuy — YUy
D, —u,D
0, = e "Lty (20)
TUy — YUy

Then, we need to find another new differential invariant, because applying these operators on 7; and
79 leads to trivial results. Since 77 and 79 generate all ordinary (zeroth-order) invariants, we must
look for the first-order invariants. To do this, note the prolonged vector field is given by

pr(l)v =V +uy0y, — ux(?uy 21

Solving for pr™)v gives two first-order invariants, ¢; = TUy — YUz and (2 = Tuy + yu,. Note that
the differential invariant (; is exactly the common denominator in O; and Os, so we can simplify O
and O, by using only their numerators, i.e.

Oy =zD, —yD, (22)
Oy = uyDy — uz Dy (23)

Note that O, has first-order coefficients, which may complicate things in the subsequent calculation.
Denoting the space of all continuous functions of the existing four invariants as Z = C(n1, 92, (1, 2),
we can choose any new operator within the Z-module spanned by O; and O3 that makes things easier.
Specifically, we use the following operator
A G 2m
©: G Ort G ©:
=xD, +yD, 24)

20

Under review as a conference paper at ICLR 2026

Then, we apply these operators to the first-order invariants, which raise the order by one and give us
the second-order invariants. For example, applying O; to (;, we have

O1G = zDyG1 — yD: G
= ‘r(muyy — Uy — yuacy) - y(uy + TUgy — yumz)

= xzuyy + yzum — TUg — YUy — 2TYUgy (25)

Note that (5 = xu, + yu, is a first-order invariant, so we can further remove it from the formula and
get a simplified second-order invariant

01 = @Puyy + Y use — 20Ytay (26)

Similarly, we compute O (o, (52(1 and (7)2 (2 and obtain the following, respectively:
U2 = V3 = (1 + 2y(uyy — Ugz) + (332 - ?ﬁ)uwy
= 2y(uyy — Uzz) + (22 — Y*) gy 27)
Vs = Co + 2 Uae + Yty + 2TYUgy

= xzum + y2uyy + 22YU Ly (28)

The above 8 invariants should form a complete set of second-order differential invariants of v =
20, — y0,. To verify, note that the Laplacian Au = uz, + u,,, which is a well-known rotational
invariant, can be written in terms of these differential functions:
(2° + y?) (Uaw + uyy)
.'172 + y2
U1+,
2m

AU = Ugg + Uyy =
(29)

2

Another second-order rotational invariant, the trace of the squared Hessian matrix, u2, + 2uﬁy + Uy

is recovered by
o 0142034 9%

2, = i (30)

2 2
Uzy + 2ug, +u

On the other hand, these 8 invariants are apparently not functionally independent - note that Jo =
01(; and Y3 = Oy(7 are the same. While this may be some coincidence, eventually it is not surprising
because we would expect to see 3 functionally independent strictly second-order differential invariants
instead of 4, since (Uzz, Uyy, Uzy) € Us is only 3-dimensional.

Example B.6 (Scaling and translation). Consider the vector field v = t9; +axd, +bud,. It generates
the scaling symmetry ¢ + At,z > A%z, u +— Alu. The ordinary invariants of this symmetry are
t®u~! and 2w, The higher-order invariants are given by 1, gy = 2t (a)y» u ™", where a and
B denote the orders of partial derivatives w.r.t t and z, €.g. U 2);1) = Ugye-

Besides the scaling symmetry, we can consider other common symmetries simultaneously, e.g.
translation symmetries in both space and time, vo = 0, and vg = 0;. These symmetries, along with
the scaling symmetry vy, span a three-dimensional symmetry group. There are no ordinary invariants
due to the translation symmetries. A convenient maximal set of functionally independent differential

invariants is given by
b—aa—B

M) = Uglerp® Uz *~ @ >0,8>0. (31)

B.5 PROOF OF PROPOSITION[3.4]

Proposition [3.4] restated below, aligns our symmetry constraint into the SINDy framework and results
in a set of constraints on the SINDy parameters.

Proposition B.7. Let £(x,u™) = W8(x,u™) be a system of q differential equations admitting a
symmetry group G, where x € RP, u € R?, @ € R™. Assume there exist some nth-order invariants
of G, né:q and Y, s.t. (1) the system of equations can be expressed as g = W'0'(n), where
no = [0’ and n = [n¥5], and (2) 5l = T7%0%¢7 and (¢')" = SY67, for some functions 6'(n)
and constant tensors W', T and S. Then, the space of all possible W is a linear subspace of R1*™,

21

Under review as a conference paper at ICLR 2026

Proof. (Note: In this proof, we do not distinguish between superscripts and subscripts. All are used
for tensor indices, not partial derivatives.)

For simplicity, we omit the dependency of functions and write

=W, (32)

Combining the conditions about the differential invariants, we know that the equation can be equiva-
lently expressed as

Tiikgkei = (W) §Ikgk (33)
for some W' € R9*™ where m’ is the number of invariant functions in 6.

Substituting (32)) into (33) and rearranging the indices, the principle of symmetry invariants then
translates to the following constraint on W: there exists some W/ € R7*™ g,

T," 0, W,'0, = (W");*S,70;,vx,ul™. (34)

To solve for T, we first eliminate the dependency on the variables x and u(™ from the equation.
We adopt a procedure similar to [Yang et al.| (2024). Denote z = (x, u(")). Define a functional

My as mapping a function to its coordinate in the function space spanned by 6, i.e. My : (z —

70;(z)) — (c',c?, -+, c™). Before we proceed, note that the LHS of (34) contains the products of

functions 0y (z)6;(z), which may or may not be included in the original function library 6. Therefore,

we denote 6(z) = [0(z) || {0x6; ¢ 6}] as the collection of all library functions), and all their
products 00;. The invariant functions 6’(n) can also be rewritten in terms of the prolonged library:

0'(n) = S0, where Sy., = S.
Then, applying My to (34), we have

Mé(ﬂrkekerel) = (W/)ikgkj' 35)
Further expanding the LHS, we have
T,"*w,'T,/ = (W")*S,7, (36)

where I satisfies 0,0, =T’ k:lj éj. In other words, the rows of the LHS fall in the row space of S. Let
S+ be the basis matrix for the null space of S, i.e. SS* = 0, we have

T,"*w,'T,/ (54),, =0, (37)
suggesting that W must lie in a linear subspace of RZ*™.,
O

Remark B.8. In practice, to solve for (37), we first rearrange into Mvec(W) = 0, where M

has shape (S.shape[2] x ¢, ¢ x m). Then, we perform SVD on M and apply a threshold of 10~ to
the singular values. The right singular vectors corresponding to the singular values smaller than the
threshold then form a basis of the linear subspace vec(W) lies in.

C IMPLEMENTATION DETAILS

This section discusses some detailed considerations in implementing the sparse regression-based
methods described in Section 3.3]and[34l Contents include:

* Appendix [C.I} An algorithmic description of direct sparse regression with symmetry
invariants.

* Appendix Converting the symmetry invariant condition as linear constraints on the
sparse regression parameters.

* Appendix [C.3} Using differential invariants in weak SINDy via the linear constraints, as
well as other considerations.

22

Under review as a conference paper at ICLR 2026

C.1 DIRECT SPARSE REGRESSION WITH SYMMETRY INVARIANTS

The first approach to enforcing symmetry in sparse regression, as discussed in Section [3.3] is to
directly use the symmetry invariants as the variables and their functions specified by a function library
as the RHS features. Similar to Algorithm [I]for general symbolic regression methods, we provide a
detailed algorithm for sparse regression below. Following the setup from SINDy, we aim to discover
a system of ¢ differential equations for ¢ dependent variables.

Algorithm 2 Sparse regression with symmetry invariants

Require: PDE order 7, dataset {z' = (x’, (u(™)?) € M(™}N5 SINDy LHS £, SINDy function
library {67}, infinitesimal generators of the symmetry group B = {v,}.

Ensure: A PDE system admitting the given symmetry group.
Compute the symmetry invariants of B up to nth-order: n',--- , 7. {Prop. }
Choose an invariant function n*: s.t. dn*: /0¢* # 0 for SINDy LHS component £°.
Letno = [n*1, ..., n*4]T and i) denote the column vector containing the remaining K — g invariants.
Instantiate the sparse regression model as g = W0(n).
Optimize W with the SINDy objective: >, ||170(z") — WO(n(z"))||? + A[|W ||o.

return 1y = WO(n). {Optionally, expand all »’ in terms of original variables z.}

The configuration from the original SINDy model, i.e., the LHS £ and the function library {67}, are
used to construct a new equation model in terms of the invariants. It should be noted that the functions
in the SINDy function library does not specify their input variables. For example, in the PySINDy
(Kaptanoglu et al.,[2022) implementation, a function 6 is provided in a lambda format 1ambda x,
y: x y. Thus, 6 can be applied to both the original variables, e.g. 6(z1, 22) = 2129, and the
invariant functions, e.g. 6(71,72) = M 72.

C.2 SYMMETRY INVARIANT CONDITION AS LINEAR CONSTRAINTS

Instead of directly using the invariant functions 7 as the features and labels for regression, we can
derive a set of linear constraints from the fact that the equation can be rewritten in terms of invariant
functions. As shown in Appendix a basis () of the constrained parameter space can be obtained
from the right singular vectors of a constraint matrix M. We rearrange () to a tensor of shape
(r,q,m), where r is the dimension of the constrained parameter space, and (g, m) is the original
shape of the parameter matrix /. Then, we can parameterize W by W7* = Q¥/*3* where /3 is the
learnable parameter, and discover the equation using the original SINDy objective as described in
Section 2.2

In practice, we observe that the basis () obtained from SVD is not sparse. Indeed, SVD does not
inherently encourage sparsity in the singular vectors. The lack of sparsity can pose a problem when
we perform sequential thresholding in sparse regression. Specifically, in SINDy, the entries in W
that are close to zero are filtered out at the end of each iteration, which serves as a proxy to the Lg
regularization. Since we fix () and only optimize (3, a straightforward modification to the sequential
thresholding procedure is to threshold the entries in /3 instead of those in W. However, if @ is dense,
even a sparse vector 3 can lead to a dense W, which contradicts the purpose of sparse regression.

Therefore, after performing SVD, we apply a Sparse PCA to () to obtain a sparsified basis, also of
shape (r, g, m):

spca = SparsePCA (n_components=r)
spca.fit (Q.reshape(r, gxm))
Q_sparse = spca.components.reshape(r,q,m)

Figure [5|shows an example of the original basis solved from SVD (top 7 x 2 grid) and the sparsified
basis using sparse PCA (bottom 7 x 2 grid). This is used in our experiment on the reaction-diffusion

system (B).

23

Under review as a conference paper at ICLR 2026

02 x12 x0.22 X122 x01 x11 x0.12 x112 x011 x1.11 x0 x1 x0x0 xIxl xOxl xOxOXDXIxLxLxOxIxLx0x0xl x0.2 x12 x0.22 x122 x01 x11 x0.12 x112 x0_11 x1.11

Figure 5: Basis for the SINDy parameter subspace that preserves SO(2) symmetry v = —v9,, + u0,.
The SINDy parameter W has dimension 2 x 19. The two rows correspond to the two equations with
uy and vy as the LHSs. The RHS contains 19 features, including all monomials of u, v up to degree 3
and their spatial derivatives up to order 2. The set of symmetry invariants used to compute the basis
is given by {t, z,y,u? + v*} U{u-u,} U{u’ - u,}, where u = (u,v)” and y is a multiindex of
t, x,y with order no more than 2. The top 7 x 2 grid displays the original basis solved from SVD,
and the bottom 7 x 2 grid displays the sparsified basis.

24

Under review as a conference paper at ICLR 2026

C.3 USING DIFFERENTIAL INVARIANTS IN WEAK SINDY

In this subsection, we discuss the formulation of weak SINDy and how to implement our strategy
of using differential invariants within the weak SINDy framework. To maintain a similar notation
to the original works on weak SINDy (Messenger & Bortz, [2021agb)), we use D, to denote partial
derivative operators, where oy = (s1, S2, ..., Sp) is a multi-index, instead of using subscripts for
partial derivatives. Thus, we no longer strictly differentiate subscripts and superscripts—both can be
used for indexing lists, vectors, etc.

Given a differential equation in the form

Doyu =Y Wy;Da, f(u), (38)
5,J

we can perform integration by parts (i.e., divergence theorem) to move the derivatives from u to some
analytic test function and thus bypass the need to estimate derivatives numerically. First, we multiply
both sides of (38) by a test function ¢ with compact support B C X and integrate over the spacetime
domain:

/X D u(x)p(x)dx = Z W, /X Do, f5(u()) $(x)dx (39)

WLOG, assume that s; # 0, and denote ays = (s1 — 1, s2, ..., 5p). Then, each term in the RHS can
be integrated by parts as

/ Do, f3(u(x))$(x)dx = / Do, f3(u())$(x)dx
X B
__ / Da, f;(u(x))Dr(x)dx + / 1 Do, f;(u(x))$(x)dx
B 1o)

B
_ /B Do, f;(u(x))D1(x)dx, (40)

where D; denotes the partial derivative operator w.r.t the first independent variable, and v, is the first
component of the unit outward normal vector.

Repeating this process until all the derivative operations move from f; () to the test function ¢, we
have

/. Dot otId = (-1 [f,0060)Da o) @)
X X
Similarly for the LHS:

/Daou(x)d)(x)d)(:(—l)lo“"/ w(X) Do d(x)dx (42)
X X

The final optimization problem is to solve for b = Gw, where w is the vectorized coefficient matrix
W, and each row in b and G is given by computing the integrals in (1)) and (@2) against a single test
function. The number of rows equals the number of different test functions used.

Direct integration of symmetry via linear constraints As we have discussed in Appendix
we can enforce symmetry by converting it to a set of linear constraints on the parameter W. With this
approach, we can directly incorporate symmetry in weak SINDy. Specifically, we just parameterize
W as in terms of a precomputed basis) and a trainable vector § and directly substitute this
parameterization of W into the optimization problem of weak SINDy. We adopt this strategy in our
experiments concerning weak SINDy.

Expressing the equations with differential invariants The above approach is only possible when
the conditions in Proposition about the selected set of symmetry invariants hold. We should
note that it is not always possible to find a set of invariants so that the symmetry condition can be
converted to linear constraints on the parameter W via the procedure in the proof of Proposition
One may ask the following question: can we simply express the equations in terms of differential

25

Under review as a conference paper at ICLR 2026

invariants and apply weak SINDy, similar to Algorithm 2] for the original SINDy formulation? Here,
we do not provide a definite conclusion for this question, but only discuss several cases where directly
using differential invariants in equations might succeed or fail in weak SINDy.

To adapt to the weak SINDy formulation (38, it is more helpful to consider the symmetry invariants
as generated by some fundamental invariants and some invariant differential operators, instead of
specifying a complete set of differential invariants for every order. Concretely, there exists a set
of invariant differential operators {O;} and a set of fundamental differential invariants I = {7}
s.t. every differential invariant can be written as O;,...O;, nx. For the SO(2) symmetry group in
Example [B.3] one possible choice is

m= %(wQ +9°), 12 =, O1 = 2Dy = yDy, O = zDy +yDy,. (43)
We can compose these generating invariant operators to obtain a full library of eligible differential
operators up to some order, denoted D = {D;}. The exact compositions can vary and we can
choose the most convenient one for subsequent calculations. For the above SO(2) example, for up to
second-order differential operators, we can choose {O1, 02, 0F, 03, 1 (OF + 03)}. Note the last
operator is exactly the Laplacian.

Then, the complete set of eligible terms (respecting the symmetry) in the equation is {D,;n, : D; €
D,n, € I}. If we assume, as in SINDy, that the governing equation can be written in linear
combination of these symmetry invariants, then we can assign a weight for each D;n;, and form a
coefficient matrix W = [W,y]. That is,

Djomko = >, WirDjm. (44)
(j,k);ﬁ(jo,k}o)

Then, multiplying each side by a test function ¢(x), we have

/ Dimd(®dx= 3 Wi / Dymb(x) . (45)
X (4,k)# (o ko) X

The question then boils down to whether we can apply the technique of integration by parts similarly
to this set of differential operators and differential functions, since the original algorithm only deals
with partial derivative operators D, and ordinary functions f;(u).

To check this, let us explicitly write out the dependency of these operators and fundamental invariants.

Case 1 A relatively simple case is when all invariant operators take the form D; = 3 a,(x)D,,
and 7y, = (%, u(x)). Each term in the RHS of (&3] can be expanded as

/X Dimeix =3 /X (%) Don, 7 (3, () (x)lx
=S /X i (%, 1()) D, [(%))} (46)

Evaluating (46) does not require estimating partial derivatives of u. Therefore, weak SINDy can be
applied to this case quite straightforwardly.

Case2 However, it is not always possible to have all D; as classical linear differential operators and
all 0y, as ordinary functions. For instance, in Example[B.€] there are no ordinary symmetry invariants
due to the constraint of translation symmetry.

If we still have linear operators D; = 3 _as(x)D,,, but on the other hand we have differential

functions 7, = 7, (x,u(™), we can still perform integration by parts as in (6}, but the final result
becomes
S [o) Do fan ()00, @)
. b'e
meaning we still have to evaluate whatever partial derivatives remain in 7. It is possible that we
can decrease the order of partial derivatives compared to vanilla sparse regression, but we cannot

eliminate all partial derivatives compared to Weak SINDy without any symmetry information.

26

Under review as a conference paper at ICLR 2026

Case 3 The most challenging case is when the invariant differential operators explicitly involve
the partial derivative, such as D; = > _a,(x,u(™)D,,,. Then, similar to (@7), integration by parts
yields:

D (=1l / 1k (%, ™) Dy, [as (%, u™) p(x)]dx. (48)

s X

In this case, we still need to compute the partial derivatives, not only those in 7y, but also those
arising from a; and D, _(as). The latter might involve higher-order derivatives and the benefit of
using the weak formulation may further diminish.

D ADDITIONAL EXPERIMENT RESULTS

Contents of this section include:

* Appendix Extended results in Table|l|with confidence intervals for the prediction error
metric over 100 runs.

* Appendix Results for some variants of the sparse regression models considered in
Table[dl

* Appendix Results for genetic programming-based algorithms under different computa-
tional budgets.

* Appendix[D.4} Results for the D-CIPHER (Kacprzyk et al., 2023)) baseline and our method
applied to D-CIPHER on the Darcy flow dataset.

* Appendix[D.5} Samples of equations discovered by different methods.
* Appendix[D.6} Visualized prediction errors of equations discovered by different methods.

D.1 RESULTS IN TABLE[I]WITH ERROR ESTIMATES

Table 3: Extended results in Table [1] with confidence intervals for the prediction error metric over 100
runs. Each table entry is formatted as median [25% quantile, 75% quantile].

Method Boussinesq (6) Darcy flow Reaction-diffusion
Sparse PySINDy 0.373 [0.367, 0.380] - 0.021 [0.020, 0.022]
Regression SI 0.098 [0.098, 0.098] 0.008 [0.007, 0.013]

Genetic PySR 0.098 [0.098, 0.098] 0.114 [0.089, 0.169] -
Programming SI 0.098 [0.098, 0.098] 0.051 [0.031, 0.053] 0.023 [0.015, 0.036]
Transformer E2E 0.13210.109, 0.322] - -

SI 0.104 [0.100, 0.109] - -

D.2 VARIANT SPARSE REGRESSION MODELS

Table 4: Results of sparse regression models on the Boussinesq equation and the reaction-diffusion
system. C stands for complexity, i.e., the dimensionality of the parameter space. SP stands for success
probability. The PySINDy and SI rows present the same results as the corresponding rows in Table E}

Boussinesq (6) Reaction-diffusion (8]

Method cl SP 4 cl SP 4
PySINDy 15 0.00 38 0.53
PySINDy* 21 1.00 468 0.00
PySINDy** 15 1.00 198 0.00

SI 13 1.00 28 0.54
Sl-aligned - - 14 0.56

PySINDy (de Silva et al.,|2020; [Kaptanoglu et al.,[2022)) constructs its library 8 from a list of variables
and derivatives, [u || u,| (Ja| > 0) and a set of scalar functions specified in lambda format. For

27

Under review as a conference paper at ICLR 2026

example, to include up to quadratic monomial terms in the library, we can specify the following
functions: © — z and (x,y) — xy. However, their original implementation does not allow these
functions to be applied to partial derivative terms. As a result, terms such as u2 cannot be modeled.
This leads to its failure to discover the Boussinesq equation (6)), as we have shown in Table[T]

We modify the implementation and include an additional set of results with different libraries,
denoted as PySINDy* in Table] The PySINDy* model supports a wider range of library functions,
including functions of partial derivatives, e.g., u2. Further more, we notice that the PySINDy* library
while comprehensive, contains many redundant terms, such as interactions between derivatives like
Uy Uy,. Therefore, we implement another library, denoted PySINDy**, where functions such as
(z,y) + xy are only applied when their arguments do not contain at least two different partial
derivatives. Therefore, PySINDy** library still includes all the necessary terms to recover the
Boussinesq equation but becomes much more compact. A complete description of the hypothesis
spaces of different sparse regression-based methods is available in Appendix [E-3]

As Table] shows, both PySINDy* and PySINDy** succeed in the Boussinesq equation. However,
they fails in the reaction-diffusion system because their parameter spaces become too large due to a
higher-dimensional total space X x U ~ R? x RZ2. Even with the more compact PySINDy**, there
are still 198 possible terms for the reaction-diffusion system, and the algorithm never succeeded in
100 runs. This augments the point that SINDy’s success relies on an appropriate choice of function
library. If the library is too small to contain all the terms appearing in the equation of interest, the
discovery is sure to fail. If the library is too large, the optimization problem becomes more difficult
in the high-dimensional parameter space. On the other hand, by introducing the inductive bias of
symmetry, our method automatically identifies a proper function library that contains all the necessary
terms for a PDE with a specific symmetry group, but not other redundant terms.

We include another model in Table EL SI-aligned, where we derive a set of linear constraints on the
sparse regression parameters from the fact that the equations can be expressed in terms of symmetry
invariants. In this way, we still optimize the original parameters (though in a constrained subspace)
as in the base SINDy model without symmetry, effectively "aligning" the hypotheses about equations
from symmetry and the base SINDy model. This method is discussed in detail in Section [3.3]and
Appendix [C.2] We should also note that this method is mainly developed for incorporating the
symmetry constraints into the weak formulation of SINDy. However, it is perfectly acceptable to
implement it in the original formulation of SINDy, so we provide its results in Table @] for reference.

For the reaction-diffusion system, SI-aligned has a 14-dimensional parameter space. The basis for
its parameter space is visualized in Figure[3] It achieves a slightly higher success probability than
SI (regression with symmetry invariants) and PySINDy (without symmetry information). We do
not apply SI-aligned to the Boussinesq equation, because it is not necessary to align the hypotheses
from SINDy and symmetry in this case. We can readily convert any equation discovered from SI
(regression with symmetry invariants) by multiplying both sides by u2.

We note that the results on the reaction-diffusion system in Table] are for models with the original
SINDy formulation, in contrast to the weak SINDy formulation used in Figure [3| Therefore, the
results in Figure [3|should not be directly compared to those in Table[T|and Table

D.3 GENETIC PROGRAMMING

Boussinesg GP Success Probability Darcy GP Success Probability R-D GP Success Probability
1.0 1.0 —e— Sl (ours) 1.0 —e— Sl (ours)
PySR PySR
>08 >08 '/o\. >08
3 3 3
S06 S06 806
o o 2
& & &
204 B4 $o4
8 8 8
E} 5 s
0 0.2 0 0.2 D02
—e— S| (ours)
0.0 PySR 0.0 0.0

5 10 15 50 100 200 100 200 400
Iterations Iterations Iterations

Figure 6: Success Probabilities of GP-based methods on different systems. Our method with
symmetry invariants can discover the correct equations with fewer iterations.

28

Under review as a conference paper at ICLR 2026

For each system in Section 4.1} we run the genetic programming discovery algorithm with three
different iteration counts, but otherwise keep all hyperparameters constant. In Figure[6] we plot the
success probability as a function of the iteration count for both the base GP algorithm and our method
that uses symmetry invariants.

In all cases, we find that using symmetry invariants results in a higher success probability in compar-
ison to unmodified PySR. Specifically, for the Boussinesq equation, our method achieves a 100%
chance of discovery with 5 iterations, whereas even with 3 times the number of iterations, PySR only
yields a 90% success probability. This highlights that using invariants improves the efficiency of
equation discovery. For Darcy flow and Reaction-Diffusion, we find that the base genetic program-
ming algorithm fails to ever make a correct prediction. On the other hand, using symmetry invariants
leads to a successful discovery the majority of the time.

We finally note that increasing the number of iterations to 200 for Darcy flow slightly lowers the
success probability when using symmetry invariants. We hypothesize this is because at higher
iterations, the search process begins to overfit and introduces extraneous low-order terms. While we
already drop some terms with small enough coefficients, future works may consider a more refined
filtration process.

D.4 CoMPARISON WITH D-CIPHER

A main advantage of our proposed method is its compatibility with various algorithms for symbolic
regression. In the main experiments in Section4.3|in Section we have shown that our method
works well with SINDy (Brunton et al.| [2016), weak SINDy (Messenger & Bortz,[2021a), genetic
programming (Cranmer} |2023)), and symbolic transformer (Kamienny et al., |2022). To further
demonstrate this advantage, we include another base algorithm for symbolic regression, D-CIPHER
(Kacprzyk et al.l [2023)), in this section.

Similar to weak SINDy, D-CIPHER (Kacprzyk et al.,[2023)) uses a variational objective for equation
discovery. It defines the extended derivative as

Eluf(x) = a(x)dah(x, 0),

where a and h are some functions and « is a multi-index indicating partial derivatives. Then, a library
{&%}5_, of such extended derivatives is specified by the user by providing S triples of (a, c, h).
The algorrthm then optimizes for a coefficient 3 € R and a symbolic function g(x, u) under a
variational loss and outputs the equation

Zﬂ £°u](x) = g(x,u).

As discussed in Appendix our approach can be directly used in D-CIPHER to enforce symmetry.
We demonstrate this with an experiment on the Darcy flow dataset with SO(2) symmetry. First, we
obtain the generating invariant operators of SO(2),i.e. Oy = D, —yD, and Oy = 2D, + yD,,.

To discover this second-order PDE, we enumerate the followrng 5 up to second-order differential
operators composed by 07 and Oz: O = {01, 04, 0%, 03, 12+y - (02+03)}. Note the last operator

is exactly the Laplacian. On the other hand, we have 2 fundamental differential invariants 22 + 7>
and u. To enforce symmetry, we replace the manually defined set of extended derivatives {£°} in
D-CIPHER by all nontrivial differential functions obtained from applying an operator in O to one
of the fundamental differential invariants. Also, instead of searching for general functions of all
variables (in this case, x, y, u) for the RHS expression, we restrict the search space to functions of
fundamental differential invariants, i.e. z? + 32 and . Since D-CIPHER uses genetic programming
to find a free-form expression g, we can simply replace the variable set in genetic programming by
{22 + 9%, u} to achieve this.

Table [5] shows the equations discovered by the D-CIPHER baseline and our method. Our method
can find the correct functional form of the Darcy flow equation, while D-CIPHER with the original
variables and derivative operators cannot. We comment that the benefit of symmetry is even greater
here for D-CIPHER than for other SR methods like SINDy, because D-CIPHER requires the user
to specify both the function coefficient a(x) and the function to be differentiated h(x,u) for an
extended derivative. Such choices of functions can be largely arbitrary if no prior knowledge is

29

Under review as a conference paper at ICLR 2026

Table 5: Discovery results of D-CIPHER-based methods on the Darcy flow dataset. The ground truth
equation is 8(zty + yuy) — (Uge + Uyy) — 2@ TV =0,

Method Discovered equation
D-CIPHER Tuy + yuy — 2.09z7u, — 2.09yu, — 0.19u, = 7.982%y? + 2.51zy + 0.80
D-CIPHER-SI (ours) (2t + ytty) — 0.13(tgs + Uy,y) = 0.13e+12(°+v7)

available. On the other hand, our symmetry-based approach automatically selects this dictionary of
differential functions.

D.5 SAMPLES OF DISCOVERED EQUATIONS

In Table [§] we list some randomly selected equations discovered by different methods for the
Boussinesq equation (6). Some methods almost consistently discover correct/incorrect equations (i.e.,
have success probabilities close to 1 or 0), so we only select one sample for each. For other methods
with a large variance in the discovered equations, we display two samples: a correct equation and an
incorrect one.

The ground truth equation in the original variables is given in (6). The ground truth equation in the
symmetry invariants is given by

M(0,2) + 1(0,0)7(2,0) + Na,0) + 1 =10 (49)

Table 6: Samples of discovered equations from the observed solution of the Boussinesq equation
@. For GP-based methods, we include results from different numbers of iterations (indicated by "N
its"). For transformer-based methods, we include two samples for each method because of the large
variance of discovered equations from different runs.

Method Equation sample(s)
Sparse PySINDy U = —1.01Upzre — 0.79UUL,
rep ression PySINDy* Uy = —1.01Upppe — O.99ui — 0.98uu 4,
gres SI N0,2) = —1.00 = 1.0074.0) — 1.000)0,0)7(2.0)
. PySR (5 its) Ulgy + 1.00Uy + Uggge = 0
Gr‘:‘)nig;mm PySR (15 its) Wity + gy + 42 + 1.00Uggze = 0
prog £ TSI5its) 1.007)(0.0)7)(2,0) + 1.0070.2) + 1.007(40) + 1 =0
E2E (D) uge = —1.13uttyy — 0.98Ugpe — 0.30]uy|
(2) uy = —0.85utgy — 0.75u2 — 0.99U 4000
Transformer ¢

S (1) mg0,2) = —1.057(0,0)1(2,0) — 1.001(4,0y — 0.96
(2) n0,2) = —0.8110,0)M(2,0) — 0-407(0,0) — 0.9874,0) — 0.90

Table|/|lists the equation samples discovered from the Darcy flow dataset. The ground truth equation
in original variables is given in (7), and the ground truth equation in symmetry invariants is given by

8Co — Au — e*F =0, (50)

where (3 = zuy + yuy, Au = Uy, + uyy, and R? = 22 + y? are among the rotational invariants
used in symbolic regression.

Table 7: Samples of discovered equations for the Darcy flow dataset.

Method Equation sample
Genetic PySR u — 0.47z2y2 — 0.38€0-09(ua=Fuyy) 4020 =0
programming S| (o — 0.13Au — 0.13¢+01R* —
E2E Upy = —T.431/u? + 0.65u2
Transformer “g; Au = —2.56u + 0.85Cs + 0.29

30

Under review as a conference paper at ICLR 2026

Finally, Table[§]lists the equation samples discovered from the reaction-diffusion dataset. The ground
truth equation in original variables is given in (8) with d; = dz = 0.1, and the ground truth equation
in symmetry invariants is given by

It = 01(Ip0 + Iyy) + A(1 — A)
E; = 01(Ey; + E,y) — A (51)
where I, = uu, + vv, and E,, = —vu,, + uv,, for any multiindex z of ¢, z,y, and A = u? + v2.

Table 8: Samples of discovered equations for the reaction-diffusion system dataset. Each discovered
result contains two equations, since this is an evolution system with two dependent variables u, v.

Method Equation sample
PySINDy {ut = 0.96u — 0.97u® + 1.00% — 0.97uv? + 1.00u?v + 0.09uzs + 0.09uy,
vy = 0.96v — 1.00u® — 0.97v% — 1.00uv? — 0.96u>v + 0.09v,, + 0.09vy,
Sparse PySINDy* {ut = 0.21u — 0.24u® + 1.00v° — 0.23uv? + 0.99u>v
regression vy = 0.21v — 1.01u® — 0.240v% — 0.99uv? — 0.23u%v
SI {It = 0.101,; + 0.101,, + 0.96A — 0.96 A2
E; = 0.10E,, + 0.10E,,, — 1.00A4?
Saligned {ut = 0.95u — 0.96u3 + 1.00v% — 0.96uv? 4 1.00uv 4 0.09ug, + 0.09u,y,
vy = 0.950 — 1.00u® — 0.96v3 — 1.00uv? — 0.96u?v + 0.09v,, + 0.09v,,
Genetic PySR {ut =0.92v
programming v = —0.92u
SI {It = 0.101,, 4+ 0.101,, + A — 1.00A?
E; = 0.10E,, + 0.10E,, — 1.00A4?
E2E {ut = 0.89u,
Transformer vy = —0.91u
SI {It =0
E; = 0.50arctan(0.45FE, — 0.31E,/(—540.12AE, + ...) + ...) + ...

D.6 PREDICTION ERRORS OF DISCOVERED EQUATIONS

In Table [T} we report the prediction errors of the discovered equations on the three PDE systems.
Specifically, for the Boussinesq equation and the reaction-diffusion system, we simulate the discovered
PDE from an initial condition for a certain time period, e.g., t € [0, 20] for the Boussinesq equation
and ¢ € [0, 10] for the reaction-diffusion system. Then, we compare the numerical solution with the
ground truth solution from the same initial condition at the end of the time period.

3x107t

Prediction error for Boussinesq equation

Prediction error for reaction-diffusion system

= SINDy-SI = SINDy-Sl-aligned
2% 10-1 SINDy 0.020 SINDy-SI-raw
= GP-SI -==- SINDy
--- GP = GP-SI
= Transformer-SI ; 0.0154
7
w —-—=- Transformer - 7 W
» 107! 17NN 0N)
= ! =
o < 0.0101
6x1072
0.005
4x1072
0.000
3x1072 L " " " " " " " " " "
00 25 50 75 100 125 150 175 200 0 2 4 6 8 10
Time Time

Figure 7: Prediction error over time using the discovered equations.

In addition to the prediction error at the end of the simulation time, Figure [7] shows the errors at
each simulation timestep. We do not include methods whose error curves grow too fast due to the

31

Under review as a conference paper at ICLR 2026

incorrectly identified equations. The results in Figure[7]are consistent with those in Table[I] Generally,
the discovered equations with smaller prediction errors at the end of the simulation time also have
lower prediction errors throughout the entire time interval.

For Darcy flow (7)), since it describes the steady state of a system and does not involve time derivatives,
we do not simulate the discovered PDEs. Instead, we evaluate each discovered PDE F'(x,u(™) = 0
on the test dataset {(x,u(™) : x € Q} and report the residual as the prediction error. In addition to
the average error over all the spatial grid points reported in Table[I] we visualize the error heatmaps
over the grid in Figure (8| It can be observed that the discovered equations with symmetry invariants
have lower errors across the entire grid.

Discovered equations with regular variables
[(A — e

Discovered equations with invariants

0.005 0.005

0.004 0.004

0.003 0.003

0.002 0.002

0.001 0.001

0.000 0.000

Figure 8: Prediction error of discovered equations from genetic programming methods for Darcy
flow. Left: genetic programming with regular variables. Right: genetic programming with symmetry
invariants.

E EXPERIMENT DETAILS

In this section, we describe the experiment setups required to reproduce the experiments. In terms of
computational resources, our experiments are conducted with 12 INTEL(R) XEON(R) PLATINUM
8558 CPUs and should be reproducible within minutes with any modern CPUs.

E.1 DATA GENERATION

Boussinesq equation The equation is solved using a Fourier pseudospectral method for spatial
derivatives and a fourth-order Runge-Kutta (RK4) scheme for time integration. The solution is
computed on a periodic spatial domain [—L, L] with N = 256 grid points. The equation is reformu-
lated as a first-order system in time by introducing v = w;, and both u and v are evolved in time.
Spatial derivatives are computed using the Fast Fourier Transform, and time derivatives of u up to
the fourth order are derived analytically from the governing equation. At each time step, values of u
are recorded in the dataset for equation discovery. The simulation starts from an initial condition of
u(x) = 0.5¢=*" and ut = 0 and proceeds up to a final time 7" = 20 with a time step of At = 0.001.
Starting from the solution at 7' = 20, we simulate for another 7" = 20 with the same configuration
to obtain a test dataset for evaluating prediction errors of the discovered equations.

Darcy flow We use the data generation codeE] from PDEBench (Takamoto et al.,[2022) to generate
the steady-state solution of Darcy flow over a unit square. The solution is obtained by numerically
solving a temporal evolution equation

uy(x,t) — V(a(x)Vu(x,t)) = f(z),x € (—0.5,0.5)2, (52)

with a(x) = e~4IXI5 and f(x) = 1.

“https://github.com/pdebench/PDEBench/tree/main/pdebench/data_gen/data_gen_NLE/ReactionDiffusionEq

32

https://github.com/pdebench/PDEBench/tree/main/pdebench/data_gen/data_gen_NLE/ReactionDiffusionEq

Under review as a conference paper at ICLR 2026

Reaction-diffusion We use the data generation codeﬂ from PySINDy (de Silva et al., [2020; [Kap4
tanoglu et al., 2022). The spatial domain is [—10, 10] x [—10,10] with 128 grid points in each
direction. The simulation proceeds up to a final time 7" = 10 with a time step A¢ = 0.05. We perturb
the numerical solution by a 0.05% noise and record the values of u, v to the dataset for equation
discovery. Starting from the solution at T = 10, we simulate for another 77 = 10 with the same
configuration to obtain a test dataset for evaluating prediction errors of the discovered equations.

E.2 SPARSE REGRESSION

Boussinesq equation For SINDy with original variables, we fix u; as the LHS of the equation
and include functions of up to 4th-order derivatives on the RHS. For PySINDy in Table[]] the library
contains monomials on U4 with degree in u no larger than 2 and degree in any partial derivative
terms u,, no larger than 1. For example, u?u, is included, but 2, u2 are not. For PySINDy*, the
library contains all monomials on UU(*) up to degree 2. For example, u2 and uu,, are included. Note
that the PySINDy* library does not contain all functions in the original PySINDy library, e.g., u?u,
is not included because it has degree 3.

Our method, SI, uses the invariant set in Example@for sparse regression. Specifically, n(g,2) =
iy ui is used as the LHS of the equation, and the rest of the invariants are included in the RHS.
The function library contains all monomials of these RHS invariants up to degree 2. Also, since the
invariants contain rational functions with u, on the denominator, we remove the data points with
|ug| < 0.1 to avoid numerical issues.

We also conduct an additional experiment to investigate the impact of the threshold value for |u,|. In
TableEI, we enumerate different threshold values from {0.0001, 0.001,0.01,0.1,0.2, 0.3}, and report
the resulting filtered dataset sizes (and their proportions compared to the unfiltered dataset), and the
success probability (SP) and the prediction error (PE) metrics as in Tablem

First of all, we notice that when the threshold value is small (¢ = 0.0001), i.e. effectively no filtering,
the success probability for SINDy using invariant functions dramatically decreases. This exactly
shows the necessity of applying this numerical filter, as u, values close to zero would cause the
invariant features to have large magnitudes and make the SINDy optimization unstable.

Then, as we increase ¢, we observe that our method can achieve 100% success probability for
¢ € {0.001,0.01,0.1}, showing its robustness to different choices of the threshold to some extent.
When we further increase c, the filtered dataset becomes much smaller, and the success probability
decreases. However, even with ¢ = (0.3 and only 99 data points, our method is still able to recover
the correct equation with more than 50% probability.

Table 9: SINDy with invariant functions on the Boussinesq equation when removing data points with
|uz| < ¢ for different threshold values c. In the second row, we report the number of samples in the
filtered datasets and their proportions compared to the original dataset. The success probability (SP)
and the prediction error (PE) are computed from 100 runs with different random seeds, in the same
way as Tablem The prediction error is reported as median [25% quantile, 75% quantile].

Threshold ¢ Dataset size SP PE
0.0001 99,756 (97.4%) 0.36 NaN [0.129, NaN]
0.001 97,956 (95.7%) 1.00 0.103[0.099, 0.118]

0.01 85,591 (83.6%) 1.00 0.098 [0.098, 0.099]
0.1 26,231 (25.6%) 1.00 0.098 [0.098, 0.098]
0.2 1,318 (1.3%) 0.91 0.098 [0.097, 0.108]
0.3 99 (0.1%) 0.52 0.100 [0.098, NaN]

For all methods, we flatten the data on the spatiotemporal grid and randomly sample 2% of the data
for each run. The data filtering process in SI-raw is performed after subsampling. The threshold value
for sequential thresholding is set to 0.25, and the coefficient for Lo regularization is set to 0.05.

*https://github.com/dynamicslab/pysindy/blob/master/examples/10_PDEFIND_examples.ipynb

33

https://github.com/dynamicslab/pysindy/blob/master/examples/10_PDEFIND_examples.ipynb

Under review as a conference paper at ICLR 2026

Darcy flow Sparse regression-based methods are not directly applicable to Darcy flow (7)) because

there exist terms such as e~4(®*+¥") While it is still possible to include all necessary terms in the
function library so that the equation can be written in the linear combination form (@), the knowledge
of these complicated terms is nontrivial and should not be assumed available before running the
equation discovery algorithm.

Reaction-Diffusion For SINDy with original variables, We fix u, and v; as the LHS of the equation
and include functions of up to 2nd-order spatial derivatives on the RHS. In PySINDy, the library
contains monomials of w, v up to degree 3 and all spatial derivatives up to order 2. In PySINDy*, the
library contains all monomials of u, v and their up to second-order spatial derivatives up to degree 3.

Our method uses the invariant set {¢, z,y, u* + v?} U{u - v, } U{ut - u,,}, where u = (u,v)” and
 is a multiindex of ¢, z,y. We will denote I, = u-u, and £, = ut - u,. We use I; and E; as
the LHS of the equation, and the rest of the invariants are included in the RHS. The function library
contains all monomials of these RHS invariants up to degree 2.

We randomly sample 10% of the data for each run. The threshold value for sequential thresholding is
set to 0.05. The coefficient for Ly regularization is set to 0 for SINDy with original variables and 0.1
for our method with symmetry invariants.

For the experiments with different levels of noise (Section , we use weak SINDy as the base
algorithm. We use the implementation of weak SINDy from the PySINDy package (Kaptanoglu
et al}2022). The function library is the same as SINDy as described above. To enforce symmetry,
instead of directly using the symmetry invariants, we derive a set of linear constraints on the sparse
regression parameters to adapt to weak SINDy. This procedure is further described in Appendix [C.3]

E.3 GENETIC PROGRAMMING

In all experiments, to determine if an equation matches the ground truth we first expand the prediction
into a sum of monomial terms. We then eliminate all terms whose relative coefficient is below 0.01.
For each term in the filtered expression, we see if it matches any term in the ground truth expression.
This is done by randomly sampling 100 points from the standard normal distribution and evaluating
both the prediction and candidate ground truth term on the generated points. Note that we drop the
coefficients before evaluation. If all evaluations of the predicted term have a relative error of less than
5% from those of the ground truth, the terms are said to match. If there is a perfect matching between
the terms in the ground truth and prediction, the prediction is listed as correct.

Rather than directly returning a single equation, PySR finally produces a hall-of-fame that consists of
multiple candidate solutions with varying complexities. To finally pick a single prediction, we use a
selection strategy equivalent to the “best” option from PySR.

Boussinesq equation For the Boussinesq equation (6)), we first randomly subsample 10000 data-
points. We configure PySR to use the addition and multiplication operators, to have 127 populations
of size 27, and to have the default fraction-replaced coefficient of 0.00036.

When running with ordinary variables, we sequentially try fixing the LHS to each variable in (x, u(*)
and allow the RHS to be a function of all remaining variables. Similarly, runs using invariants
sequentially fix the LHS from the set given by Example [B.6]and the RHS as a function of all other
invariants.

For each iteration count of 5, 10, and 15, we run the algorithm using invariant or ordinary variables
and report the number of correct predictions out of 100 trials.

Darcy flow In the Darcy experiment (7)), we eliminate all points that are within 3 pixels from the
border and then randomly subsample 10000 datapoints. We configure PySR to use the addition,
multiplication, and exponential operators; to have 127 populations of size 64; and to have a fraction-
replaced coefficient of 0.1. We further constrain it to disallow nested exponentials (e.g. exp(exp(z) +
4).

34

Under review as a conference paper at ICLR 2026

We try all possible ordinary variables in (x, u(?)) for the LHS and the RHS is then a function of the
unused variables. Likewise when using invariants, we fix the LHS to each possible invariant specified
in Example and set the RHS as a function of the remaining invariants.

For each iteration count of 50, 100, and 200, we run the algorithm using invariant or ordinary variables
and report the number of correct predictions out of 100 trials.

Reaction-Diffusion For the Reaction Diffusion equation (), we remove all points that are within 3
pixels from the border or have timestamp greater than or equal to 40, and then randomly subsample
10000 datapoints. We configure PySR to use the addition and multiplication operators, to have 127
populations of size 64, and to have a fraction-replaced coefficient of 0.5.

In the ordinary variable case, we fix the LHS as either u;; or vy and allow the RHS to be a function
of all other variables in (x, u(2)). When using invariants, the LHS is fixed to be either I; or E; and
the RHS is then a function of all remaining invariants.

For each iteration count of 100, 200, and 400, we run the algorithm using regular and ordinary
variables and report the number of correct predictions out of 100 trials.

E.4 SYMBOLIC TRANSFORMER

We use the pretrained symbolic transformer model provided in the official codebaseﬂ from Kamienny
et al.| (2022). The transformer-based symbolic regressor is initialized with 200 maximal input points
and 100 expression trees to refine. The variable sets used in the symbolic transformer are the same as
those described in the genetic programming experiments, except for the Boussinesq equation, where
we remove all mixed derivative terms in both the original variable set and the symmetry invariant set.
We find that the symbolic transformer can sometimes discover the correct equation under this further
simplified setup, but fails when using the larger variable sets.

We also fix the LHS of the function and use the remaining variables as RHS features. For the
Boussinesq equation, the LHS is fixed to uy; for original variables and 7,2y for symmetry invariants.
For the Darcy flow, the LHS is fixed to u,, for original variables and Au for symmetry invariants.
For the reaction-diffusion system, the LHS is fixed to u;, v; for original variables and [I;, F; for
symmetry invariants.

E.5 HYPOTHESIS SPACES OF EQUATION DISCOVERY ALGORITHMS

Table[I0]and Table [IT]describe the hypothesis spaces of different equation discovery algorithms when
applied to the Boussinesq equation and the reaction-diffusion system.

Table 10: Hypothesis spaces of different equation discovery algorithms for the Boussinesq equation.

Method Hypothesis space
PySINDy uee = WOW™®), {607} = {ab: a € Mono<a(U),b € {1, Uz, ..., Usses } }
Sparse PySINDy* ue = P(u®) € Poly ., (U®)
Regression pySINDy** w;y = WO(u™), {7} = {u®uS uPuPust : ¢; > 0, Soci < 2,5 sgn(c;) <1}
SI n0,2) = P(n) € Poly <5 ({n(a.5) }\{10.2})
Genetic PySR 20 = f(z77) forz = (x,u™) and some j
Programming SI N(ag,80) = J (M—(ag.80)) For n = {nwap) : @+ B < 4} and some (o, Bo)

DECLARATION OF LLLM USAGE

We used LLM solely to assist with minor language editing and polishing of the manuscript text. LLM
was not involved in the research design, experiments, analysis, or in generating any original scientific
content.

*https://github.com/facebookresearch/symbolicregression/blob/main/Example.ipynb

35

https://github.com/facebookresearch/symbolicregression/blob/main/Example.ipynb

Under review as a conference paper at ICLR 2026

Table 11: Hypothesis spaces of different equation discovery algorithms for 2D reaction-diffusion.
u® e U™ denotes the collection of all up to nth order spatial derivatives. o = [a1, @] is the
multiindex for spatial variables. x = (z,y,t). A = u? + v%

Method Hypothesis space

PySINDy u, = WO(u®), {67} = Mono<3(U) U{u, : Ja| <2}
Sparse PySINDy* W= P(u(z)) € Polyga(U@)) ‘
Regression PySINDy** w; = WO(u®), {67} = {[], ,(ul)% : ¢l < 3,3, 51 sen(cl,) < 1)

SI [I;, B)T = P € Poly o (A, X, I, Eq; |a| < 2)

Sl-aligned u;, = WO(u®), Wik = Q7§ for some precomputed Q
Genetic PySR u; = f(x,u®)
Programming SI (I, E;)T = £(A,x, I, Ey; o] <2)

36

	Introduction
	Background
	PDE Symmetry
	Symbolic Regression Algorithms

	Symbolic Regression with Symmetry Invariants
	Differential Invariants and Symmetry Conditions
	Constructing a Complete Set of Invariants
	Implementation in SR Algorithms
	Constraint Relaxation for Systems with Imperfect Symmetry

	Experiments
	Datasets and Their Symmetries
	Methods and Evaluation Criteria
	Results on Clean Data with Perfect Symmetry
	Results on Noisy Data and Imperfect Symmetry

	Discussion
	Related Works
	Math
	Notations
	Extended Background on PDE Symmetry
	Proof of Proposition 3.3
	Examples of Computing Differential Invariants
	Proof of Proposition 3.4

	Implementation Details
	Direct Sparse Regression With Symmetry Invariants
	Symmetry Invariant Condition as Linear Constraints
	Using Differential Invariants in Weak SINDy

	Additional Experiment Results
	blueResults in tab:all With Error Estimates
	Variant Sparse Regression Models
	Genetic Programming
	Comparison with D-CIPHER
	Samples of Discovered Equations
	Prediction Errors of Discovered Equations

	Experiment Details
	Data generation
	Sparse regression
	Genetic Programming
	Symbolic Transformer
	Hypothesis Spaces of Equation Discovery Algorithms

