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Figure 1. We present an approach for the photo-realistic capture of small scenes by incorporating dense metric depth, multi-view, and multi-illumination
images into neural 3D scene understanding pipelines. We use a robot mounted multi-flash stereo camera system, developed in-house, to capture the necessary
supervision signals needed to optimize our representation with a few input views. The reconstruction of the LEGO plant and the face were generated with
11 and 2 stereo pairs respectively. We relight the textured meshes using [11]. Background design by [42].

1. Introduction

Capturing photo realistic appearance and geometry of
scenes is a fundamental problem in computer vision and
graphics with a set of mature tools and solutions for con-
tent creation [12, 67], large scale scene mapping [5], aug-
mented reality and cinematography [6, 80, 97]. Enthusiast
level 3D photogrammetry, especially for small or tabletop
scenes, has been supercharged by more capable smartphone
cameras and new toolboxes like RealityCapture and NeRF-
Studio. A subset of these solutions are geared towards view
synthesis where the focus is on photo-realistic view inter-
polation rather than recovery of accurate scene geometry.
These solutions take the “shape-radiance ambiguity”[58]
into stride by decoupling the scene transmissivity (related
to geometry) from the scene appearance prediction. But
without diverse training views, several neural scene repre-

sentations (e.g. [39, 73, 76]) are prone to poor shape recon-
structions while estimating accurate appearance.

By only reasoning about appearance as cumulative ra-
diance weighted with the scene’s transmissivity, one can
achieve convincing view interpolation results, with the qual-
ity of estimated scene geometry improving with the diver-
sity and number of training views. However, capturing a
diverse set of views, especially for small scenes, often be-
comes challenging due to the scenes’ arrangement.

Without dense metric depth measurements, researchers
have used sparse depth from structure from motion [30, 53,
83], and dense monocular depth priors [108] to improve
reconstruction, with a focus on appearance. Assimilating
dense non-metric depth (e.g. [20, 33]) is often challenging
due to the presence of an unknown affine degree of freedom
which needs to be estimated across many views.
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However, without diversity of viewpoints, measuring the
geometry directly is often useful. Several hardware solu-
tions for digitizing objects exist, ranging from consumer
level 3D scanners (e.g. [91]), and room scale metrology
devices [2, 3, 69] to high precision hand held 3D scanners
(e.g. [1]). Although these systems measure geometry very
accurately, they interpret appearance as diffuse reflectance
and often fall short in modelling view-dependent effects.

Despite the known effectiveness of incorporating depth
and widespread availability of dense metric depth sensors in
smartphone cameras [110, 112] and as standalone devices
[4, 54], incorporation of dense metric depth into neural 3D
scene understanding is underexplored. In this work:
1. we present a method to incorporate dense metric depth

into the training of neural 3D fields, enabling state-of-
the-art methods to use dense metric depth with minor
changes.

2. We investigate an artifact (Fig. 4) commonly observed
while jointly refining shape and appearance. We identify
its cause as existing methods’ inability to differentiate
between depth and texture discontinuities. We address it
by using depth edges as an additional supervision signal.

We demonstrate our ideas using a robot mounted multi-
flash stereo camera rig developed in-house from off-the-
shelf components. This device allows us to capture a diverse
range of scenes with varying complexity in both appearance
and geometry. Using the captured data, we demonstrate re-
sults in reconstruction, view interpolation, geometry cap-
ture, and relighting with a few views. We hope that our
full-stack solution comprising of the camera system and al-
gorithms will serve as a test bench for automatically cap-
turing small scenes in the future. Additional results may be
viewed at https://stereomfc.github.io and in the supplemen-
tary document.

2. Related Work

View synthesis and reconstruction of shapes from multi-
ple 3D measurements is an important problem in computer
vision with highly efficient and general solutions like vol-
umetric fusion [26], screened Poisson surface reconstruc-
tion [52], patch based dense stereopsis [41] and joint refine-
ment of surface and appearance [27]. While these continue
to serve as robust foundations, they fall short in capturing
view-dependent appearance. Additionally, even with arbi-
trary levels of discretization, they often oversmooth texture
and surfaces due to data association relying on weighted av-
erages along the object surface.

Recent neural 3D scene understanding approaches (e.g.
[62, 100, 105]) have avoided this by adopting a continuous
implicit volumetric representation to serve as the geometric
and appearance back-end of the view synthesizer. Together
with continuous models, reasoning about appearance as
radiance, and high frequency preserving embeddings[96],
these approaches serve as highly capable view interpola-

tors by reliably preserving view dependent appearance and
minute geometric details. More recent work has included
additional geometric priors in the form of monocular depth
supervision [108], sparse depth supervision from structure-
from-motion toolboxes [95], dense depth maps [9, 84],
patch based multi-view consistency [40], and multi-view
photometric consistency under assumed surface reflectance
functions [46]. Our work builds on the insights from us-
ing dense depth supervision to improve scene understand-
ing with only a few training views available.

Novel hardware is often used for collecting supervi-
sion signals in addition to color images to aid 3D scene
understanding. [8] demonstrate a method to incorporate
a time-of-flight sensor. [89] demonstrate a method to ex-
tract geometric and radiometric cues from scenes captured
with a commercial RGBD sensor and improve view synthe-
sis with a few views. Event based sensors have also been
used to understand poorly lit scenes with fast moving cam-
eras [56, 66]. Researchers have also combined illumination
sources with cameras to capture photometric and geometric
cues for dense 3D reconstruction of scenes with known re-
flectances [17, 44]. Similarly, [7, 21, 86, 87] capture geom-
etry and reflectance of objects by refining multi-view color,
depth and multi-illumination images. Given the recent ad-
vances in stereo matching [103] we use a stereo camera
to collect data for view synthesis to disambiguate between
shape and appearance at capture.

Pairing illumination sources with imaging can improve
reasoning about the appearance in terms of surface re-
flectance parameters. [50, 87, 114] approaches the prob-
lem of material capture using a variety of neural and clas-
sical techniques. [10, 21, 51, 111] leverage recent neural
scene understanding techniques to jointly learn shape and
appearance as reflectance of the scene. Our work also pairs
illumination sources with stereo cameras to capture multi-
illumination images from the scene and we build on mod-
ern neural techniques for view synthesis and relighting the
scene.

3. Method

We follow related works [62, 100, 101, 105] and represent
the scene with two neural networks – an intrinsic network
N (ω) and an appearance network A(ε) which are jointly
optimized to capture the shape and appearance of the ob-
ject. N (ω) is a multi-layer perceptron (MLP) with parame-
ters (ω) and uses multi-level hash grids to encode the inputs
[62]. It is trained to approximate the intrinsic properties of
the scene – the scene geometry as a neural signed distance
field S(ω) and an embedding E(ω). The appearance network
A(ε) is another MLP which takes E(ω) and a frequency en-
coded representation of the viewing direction and returns
the scene radiance along a ray.

Prior work has jointly learned S,N ,A with only multi-
view images by optimizing a loss in the form of Eq. (7)
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Figure 2. A snapshot of the important supervision signals. We capture a high dynamic range image [71] and display it after tonemapping [81] in Fig. 2a.
Figure 2b shows the scene depth (in mm) from stereo. Figure 2c displays the likelihood of each pixel falling on a depth edge. Figure 2d shows the object
surface normals. We note that unlike conventional stereo matching [47], [103] returns locally smooth surfaces and often ignores local texture variations
but is less noisy. The inset shows the surface normals on the textured aluminum plate calculated as gradients of depth from conventional stereo matching.
Finally, Fig. 2e identifies the pixels with the largest appearance variation due to moving lights. We used the system in Fig. 5 to capture the data.

using stochastic gradient descent [55] along a batch of rays
projected from known camera centers to the scene

ϑ = ϑC + ϖgϑD + ϖcE(|→2
xS(xs)|), (1)

where ϖs are hyperparameters and the third term in Eq. (7)
is the mean surface curvature minimized against the cap-
tured surface normals (see [62]). As the gradients of the
loss functions ϑC (appearance loss) and ϑD (geometry loss)
propagate through A and N (and S as it is part of N ) the
appearance and geometry are learned together.

We describe our method of incorporating dense metric
depth in Sec. 3.1 which enables a variety of neural 3D rep-
resentations (Sec. 3.3) to use it. In Sec. 3.2 we jointly op-
timize shape and appearance of a scene using information
about scene depth edges.

3.1. Incorporating dense metric depth

Given a large number of orthogonal view pairs (viewpoint
diversity), and the absence of very strong view dependent
effects, Eq. (7) is expected to guide S to towards an unbi-
ased estimate of the true scene depth (see e.g. [43]). We
can accelerate the convergence by providing high quality
biased estimate of the scene depth. Given the quality of
modern deep stereo [103] and a well calibrated camera sys-
tem, a handful of aligned RGBD sequences can serve as a
good initial estimate of the true surface depth in absence of
diverse viewpoints.

In this section we describe our method to directly op-
timize S with estimates of true surface depth to any sur-
face point xs. Although [27, 77, 115] use the depth esti-
mates directly, they fall short of modelling view-dependent
effects. To avoid that, we elect to learn a continuous and lo-
cally smooth function that approximates the signed distance
function of the surface xs which can then be transformed to
scene density [77, 100, 105]. To do this, we roughly follow
[45] and consider a loss function of the form

ϑD(ω) = ϑxs + ϖE(||→xS(x!, ω)||↑ 1)2 (2)

where, ϑxs =
1

N
!→x [S(x, ω) + 1↑ ↓→xS(x, ω),nx↔] .

Through the two components of ϑxs , the loss encourages
the function S(x, ω) to vanish at the observed surface points
and the gradients of the surface to align at the measured sur-
face normals (nx). The second component in Eq. (2) is the
Eikonal term [24] which encourages the gradients of S to
have a unit L2 norm everywhere. The individual terms of
Eq. (2) are averaged across all samples in a batch corre-
sponding to N rays projected from a known camera.

The Eikonal constraint applies to the neighborhood
points x!

s of each point in xs. [45] identifies candidate x!
s

through a nearest neighbor search, whereas [105] identifies
x! through random perturbations of the estimated surface
point along the projected ray. As we have access to depth
maps, we identify the variance of the neighborhood of xs

through a sliding window maximum filter on the depth im-
ages. This lets us avoid expensive nearest neighbor lookups
for a batch of xs to generate better estimates of x!

s than
[105] at train time. As a result, convergence is accelerated
– (↗ 100↘ over [45]) with no loss of accuracy. As we used
metric depth, noisy depth estimates for parts of the scene are
implicitly averaged by S optimized by minimizing Eq. (2),
making us more robust to errors than [108]. We provide
more details in the supplementary material.

3.2. Incorporating depth edges in joint optimization

of appearance and geometry

Prior works [13, 15, 27, 48, 62, 100, 105, 115] show the
benefits of jointly refining geometry and appearance as it af-
fords some degree of geometric super-resolution and more
stable training. However, some pathological cases may
arise when the scene has a large variation in appearance cor-
responding to a minimal variation in geometry across two
neighboring surface points – xs and x!

s . We investigate
this effect by considering an extreme case – a checkerboard
printed on matte paper with an inkjet printer, where there is
no geometric variation (planar geometry) or view dependent
artifacts (ink on matte paper is close to Lambertian) corre-
sponding to a maximum variation in appearance (white on
black). The qualitative results are presented in Fig. 4.

Consider two rays ϱrxs and ϱrx!
s

connecting the camera
center and two neighboring points xs and x!

s on two sides



(a) (b) (c) (d) (e) (f)

Figure 3. Overview of our sampling process during training. Figure 3a is the ground truth test image. Figure 3b is the reconstruction of the test
image after training has progressed 15% (15k gradient steps), Fig. 3c is the reconstruction of the test image at the end of training (100k gradient steps).
Figure 3d denotes the per-pixel likelihoods of depth edges in the scene at the same view captured with our device. We note in Fig. 3b, the parts of scene
with complicated geometry (foliage with many depth edges) have lower fidelity of appearance in the reconstruction at an earlier stage of training, which
gradually improves in Fig. 3c. Figure 3e indicates the per-pixel sampling likelihood if the test view were to be used for training, at a training progress of
10%, Fig. 3f indicates the same at a progress of 90%. Equation (3) is used to draw the samples: ε = 0.1 and 0.9 respectively for Figs. 3e and 3f. Brighter
color indicates higher sampling likelihood.

(a) (b)

Figure 4. We demonstrate a corner case of jointly refining appearance

and geometry. The left insets of Figs. 4a and 4b are the scene geome-
tries recovered in the worst cases, the right insets display the better meshes
recovered using the method described in Sec. 3.2. An image used for train-
ing and the edge map used for sampling are in the insets. We recommend
zooming into the figure for details. Corresponding quantitative results are
in Tab. 4.

of an checkerboard edge included in the same batch of the
gradient descent. The total losses for those rays depend on
the sum of the geometry and appearance losses (Eq. (7)).
By default, the current state of the art [62, 101, 106] etc. do
not have a mechanism to disambiguate between texture and
geometric edges (depth discontinuities).

As seen in Fig. 4, given unsuitable hyperparameters, the
approaches will continue to jointly update both geometry
and appearance to minimize a combined loss (Eq. (7)). This
can often result in pathological reconstructions (left insets
in Fig. 4) due to ϑC gradients dominating over ϑD. By grad-
ually increasing the modelling capacity of N we can some-
what avoid this artifact and force the gradient updates to
focus on A to minimize the cumulative loss. [62] recognize
this and provide an excellent set of hyperparameters and
training curricula to gradually increase the modelling ca-
pacity of N (ε). This results in remarkable geometric recon-
structions for well known datasets [49, 57]. Alternatively,
if we have per-pixel labels of geometric edges (E, Figs. 2c
and 3d), we can preferentially sample image patches with
low variation of geometric features when the model capac-
ity is lower (S(ω) tends to represent smoother surfaces),
and focus on image patches with geometric edges when the
model capacity has increased. The modelling capacity of
A(ε) never changes.

Figure 3 describes our sampling procedure while learn-

ing a scene with a variety of geometric and texture edges.
Equation (3) is used to draw pixel samples – the probabil-
ity of drawing pixel pi is calculated as a linear blend of the
likelihood that it belongs to the set of edge pixels E and ς
is a scalar (ς ≃ [0, 1]) proportional to the progress of the
training.

P (pi|ς) = (1↑ ς)P (pi ≃ E) + ςP (pi /≃ E) (3)

To preserve the geometric nature of the edges while rul-
ing out high frequency pixel labels, we use Euclidean dis-
tance transform [34] to dilate E before applying Eq. (3). We
provide implementation details in the supplementary mate-
rial for reproducibility. We discuss quantitative results in
Sec. 5.2.

3.3. Baselines augmented with depth

As baselines, we augment four state-of-the-art methods to
incorporate metric depth:

AdaShell
++ is our implementation of AdaptiveShells

[101] using metric depth. We retain the formulations for
the scene geometry and appearance models, and adapt
the formulation of the “shells” to use dense metric depth.
Through AdaShell++we also demonstrate how dense met-
ric depth can combine the advantages of volumetric and sur-
face based representations in Fig. 7.

VolSDF
++is our augmented version of [105, 106],

where we use the metric depths along the rays to optimize
the geometry Eq. (2). All the other parts of the original ap-
proaches, including the methods for generating samples to
minimize Eq. (7) and scene density transforms are left un-
changed.

NeUS
++is our augmented version of [62], where we

also use Eq. (2) to optimize the geometry. The rest of the
algorithm including the background radiance field is left in-
tact.

UniSurf
++is our deliberately hamstrung version of [77]

where we force the samples generated for the volumetric
rendering step to have a very low variance around the cur-
rent biased estimate of the surface. This makes the algo-
rithm necessarily indifferent to the relative magnitudes of
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Figure 5. A multi-flash stereo camera to image small scenes.

ϑD and ϑC in Eq. (7), and helps us exaggerate the patholog-
ical effects of not segregating texture and geometric edges.
We choose to name the method UniSurf++after we (and
[13]) observed that original method was vulnerable to this
artifact under certain hyperparameter choices.

Across all the methods, we implement and train N (ω)
following [62], and all of them use the same appearance
network A(ε). AdaShell++and UniSurf++require a warm
start – S pre-optimized for 5K gradient steps. All methods
except UniSurf++use the sampling strategy from Sec. 3.2.
More details are in the supplementary material.

4. Setup and Dataset

4.1. A multi-flash stereo camera

In addition to multi-view images, scene depth and depth
edges are valuable signals to train neural 3D representa-
tions. To capture all the supervision signals, we designed
and fabricated a multi-flash stereo camera based on insights
from [35, 79], with off-the-shelf parts. We capture data by
moving our camera rig in front of objects. For each cam-
era pose we capture a stereo pair of high dynamic range
(HDR) images, two depth maps from left and right stereo,
two corresponding image aligned surface normals (as gra-
dient of depth maps). We first tonemap the HDR images
[81] and in-paint them with the depth edges before using
[103] to preserve intricate surface details in the depth maps.
Additionally we capture 12 pairs of multi-illumination im-
ages for 12 flash lights around the cameras, one light at a
time. From the multi-flash images we recover a per pixel
likelihood of depth edges in the scene and a label of pixels
with a large appearance variation under changing illumina-
tion – relating to the specularity. We detail the design of our
rig and the capture processes in the supplementary material.
Figure 2 shows a snapshot of the data captured, Fig. 5 illus-
trates our camera rig prototype.

We elected to calculate depth from stereo because it
performs better than the following three alternatives we
tested. 1) Recovering geometry from intrinsic-image-
decomposition [28] and photometric stereo with a few lights
[17] did not yield satisfactory results. PIE-Net[28] requires
256↘256 images which were too low-resolution for re-
construction and, our captures were out-of-distribution for

BMVS DTU ReNe DGT+ PDR OIl. Ours
Depth ↭ ↭ → ↭ → → ↭
Light OLAT → OLAT OLAT → OLAT Flash
Pol. → → → → ↭ ↭ →
Spec. → → → → ↭ → ↭
D.E. → → → → → → ↭
HDR ↭ → → ↭ → ↭ ↭
Illum. ↭ → → ↭ ↭ ↭ →

Table 1. We identify some differences between our dataset and a few

established datasets: BMVS[104], DTU[49], ReNe[98], DiLiGenT[90],
DiLiGenT-MV[90] (both abbreviated as DGT+), PaNDoRa (PDR)[29]
and Open-Illumination (OIl)[64]. OLAT: one light at a time, Flash: cam-
era flash < 0.1f away from camera, Pol.: polarization information, Spec.:
specularity labels, D.E.: depth edge labels, HDR: High dynamic range im-
ages, Illum.: Illumination model supplied.

the pre-trained model. [17] assumes fixed lights – we’d
need new light calibrations per-view. 2) Self-calibrating-
photometric-stereo [18, 59], demonstrated on [90], needs
50-80 light views and accurate masks which we do not cap-
ture. Also, our lights are much closer to the camera than
[60, 90]. And, 3) modern camera-projector systems [19, 75]
yield better estimates of geometry than stereo, but is not fast
enough to capture human subjects (Fig. 8).

4.2. Dataset

Although a dataset is not the primary contribution of our re-
search, we capture some salient aspects of the scene that are
not present in several established datasets. We identify these
aspects in Tab. 1. In the rows labeled “specularity” and
“depth edges” we note if the dataset has explicit labels for
the specular nature of the pixel or a presence of a depth edge
at that pixel respectively. Under “illum. model” we note if
an explicit illumination model is present per scene – we do
not capture an environment illumination model, and instead
provide light poses. PaNDoRa does not have explicit spec-
ularity labels but polarization measurements at pixels may
be used to derive high quality specularity labels, which are
better than what our system natively captures. We differen-
tiate between “OLAT” (one light at a time) and “flash” by
the location of the source of illumination. Similar to [21],
our flashes are parallel to the imaging plane, located close
(↗0.1f) to the camera, as opposed to ReNE and OpenIllu-
mination.

5. Experiments and results

5.1. Accuracy of incorporating metric depth

We reconstruct synthetic scenes with ground truth depth
from [9, 84] to measure the accuracy of our technique. We
use 12-15 RGBD images to reconstruct the scenes and train
for an average of 30k gradient steps (↗1500 epochs) in
about 75 minutes. In contrast, [9, 84] use 300+ RGBD tu-
ples and 9+ hours of training on comparable hardware. No-
tably, [9] also optimizes for noise in camera poses and re-



Scene NRGBD BF AdaShell++ NeUS++ VolSDF++

greenroom 0.013 0.024 0.015 0.016 0.014
staircase 0.045 0.091 0.024 0.009 0.020
kitchen I 0.252 0.234 0.044 0.036 0.047
kitchen II 0.032 0.089 0.045 0.032 0.060

Table 2. Accuracy of reconstruction from un-posed RGBD images. For
un-posed RGBD images, we compare the accuracy of scene reconstruc-
tion using AdaShell++, NeUS++, and VolSDF++with NeuralRGBD
(NRGBD) [9] and BundleFusion (BF) [27]. We report normalized Cham-
fer distances (lower is better) across four synthetic scenes from [9].

Scene R 0 R 1 R 2 O 0 O 1 O 2 O 3 O 4

[84] 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72
AS++

0.11 0.10 0.09 0.12 0.06 0.08 0.14 0.11

Table 3. Accuracy of reconstruction from posed RGBD images.

For RGBD images with ground-truth poses, we compare the accu-
racy of reconstructing the scene between AdaShell++(AS++) and
PointSLAM[84]. We report the mean L1 distances in cm (lower is better)
across eight synthetic scenes from the Replica Dataset [94]. The scenes
with prefix R are the room scenes, scenes with prefix O are the office
scenes.

ports metrics with ground truth and optimized poses. We re-
port the best metric among these two. [27] registers the im-
ages themselves. We register the RGBD images with a com-
bination of rigid and photometric registration [78, 85, 113].
We present the quantitative results in Tabs. 2 and 3. We
replicate or out-perform the baselines by using a fraction of
the training data and gradient steps. Among all methods dis-
cussed in Sec. 3.3, AdaShell++and VolSDF++demonstrate
similar performance, NeUS++recovers a smoother surface
at the expense of ↗ 1.25↘ more gradient steps. Our er-
rors on these synthetic datasets closely reflect the perfor-
mance of [45] on approximating surfaces from low noise
point clouds. These datasets do not have large view depen-
dent appearance variations to affect the gradient updates.

5.2. The effect of depth edges in training

We tested fused RGBD maps from stereo and four baselines
from Sec. 3.3 to investigate the effect of depth and texture
edges. We use edge guided sampling (Sec. 3.2 and Eq. (3))
for all except stereo and UniSurf++to prioritize learning ge-
ometric discontinuities over appearance. We present the
results in Fig. 4 and Tab. 4. All of the baselines except
UniSurf++improve the reconstruction accuracy due to seg-
regation of texture and depth edges. The smoothness en-
forced by the curvature loss in Eq. (7) also improves the
surface reconstruction over stereo.

5.3. View synthesis with dense depth

Incorporating dense metric depth and our sampling strategy
from Secs. 3.1 and 3.2 enables AdaShell++, VolSDF++,
and NeUS++to perform competitively across challenging
scenes. Scene A (Fig. 6(a)) looks at a couple of reflec-
tive objects with large variation in view dependent appear-

Scene stereo VolSDF++ NeUS++ AdaShell++ UniSurf++

Fig. 4a 6.22 4.74 2.77 5.42 13.21
Fig. 4b 6.82 3.87 3.68 6.34 16.02

Table 4. Depth edges help prioritize learning of texture discontinu-
ities over geometric ones. We report the RMS deviation from a plane
(lower is better) for the reconstructed checkerboard surfaces in mm. We
note that AdaShell++performs slightly worse than volumetric methods
VolSDF++and NeUS++. Except for UniSurf++, all improve the qual-
ity of the surface measured with only stereo. Qualitative results are shown
in Fig. 4.

Metric VolSDF++ NeUS++ AdaShell++

27.5+ 21.3 33.1 40.0 70.5 100+ 100+ 22.6 23.2 94.6
100K 30.28 30.33 30.69 27.82 29.45 25.31 31.56 31.45 28.27

Table 5. Training performance for view synthesis. We report two met-
rics - number of steps required to reach or exceed a PSNR of 27.5 and
PSNR at the end of 100K gradient steps. We observe that all the base-
lines perform competitively and ignoring depth and additional supervision
signals (last two columns) leads to failures in the view synthesis tasks.

ance. Additionally, there are large local errors in the cap-
tured depth maps due to specularities in the scene. We cap-
ture six stereo pairs, train on 11 images and test on one im-
age. Scene B (Fig. 6(b)) features a rough metallic object of
relatively simple geometry captured by a 16mm lens (450
mm focal length, shallow depth of field). We capture four
stereo pairs, train on seven images and test on one image.
Scene C (Fig. 6(c)) features a fairly complicated geome-
try and is captured with 12 stereo pairs. We train on 22
images and test on two. Quantitative results of our experi-
ments are in Tab. 5. We observe that AdaShell++, which
is roughly 15% faster per gradient step than VolSDF++,
generally converges the fastest (wall clock time) to a tar-
get PSNR. When the geometry is very complicated (scene
C), an equally complicated sampling volume negates the ef-
ficiency gains of our sampler. We could not find good pa-
rameters for UniSurf++for any of these sequences.

View synthesis was unsuccessful without the inclusion
of dense depth. We trained VolSDF++with no depth super-
vision (equivalent to [105]) until saturation (less than 0.1
PSNR increase for 1000 consecutive epochs). The recon-
structions, none of which had a PSNR of 18 or higher, are
shown in the last column of Fig. 6.

5.4. Using noisy depth

To investigate the effects of noise in the depth maps, we
obtain the depths of scenes using conventional stereo. We
used semi-global matching stereo [47] with a dense census
cost [109] and sub-pixel refinement on tone mapped HDR
images to calculate the surface depth. Surface normals were
calculated using the spatial gradients of the depth maps. To
focus on the performance of our approaches, we did not fil-
ter or smooth the depth obtained from conventional stereo.
From the top of Tab. 6, we observe that NeUS++strictly
improves the quality of the surface reconstructed from just

https://blendswap.com/blend/8381
https://blendswap.com/blend/14449
https://blendswap.com/blend/11801
https://blendswap.com/blend/5156


Figure 6. Relative performance of the baselines. Quantitative results in Tab. 5, discussions in Sec. 3.3.

noisy stereo (row 1 and 2 versus row 3), especially when
edge sampling is enabled. If the end goal is just view syn-
thesis, AdaShell++, which blends the advantages of volu-
metric and surface based rendering, performs equally well
with large noise in depth, whereas NeUS++takes many
more iterations to converge. This indicates that photore-
alistic view synthesis with a volumetric renderer is possible
with noisy depth data. However conventional stereo often
introduces large local errors which our approaches were un-
able to improve significantly.

In the presence of noisy depth, the quality of the re-
constructed surface was enhanced through edge-based sam-
pling (Sec. 3.2 and Eq. (3)). Our sampling strategy allocated
samples away from depth edges, where the noise was more
prevalent, leading to fewer gradient steps spent modelling
areas with higher noise. Table 6 presents the quantitative
details of the experiment.

scene Fig. 7(a)[5] Fig. 6(b)[7] Fig. 4b[5]
edge sampling 491 403 225

no edge sampling 593 419 251
noisy stereo 600 523 369

27.5+ AdaShell++w/ noise 7.93 20.2 5.12
27.5+ AdaShell++w/o noise 7.85 23.2 2.71
25.0+ NeUS++w/ noise 49.4 36.0 32.9

Table 6. Effect of noisy depth and depth edges. Top: The surface recon-
struction quality (Hausdorff distance, lower is better) with conventional
(noisy) stereo compared with surface recovered by NeUS++on learned
stereo. Bottom: gradient steps (in 1000s lower is faster) required to sur-
pass a test time target PSNR. We specify the count of training views in [ ]
braces.

Scene F 1 F 2 F 3 F 4 S 1 S 2

mask 28.95 31.19 29.56 27.28 25.18 24.51

no mask 27.17 30.05 27.82 25.46 23.65 21.88

Table 7. Relighting scenes with a volumetric renderer. We report PSNR
(higher is better) under two heads – masked and unmasked relit images,
to offset the effects of incorrect shadows cast on the background. The
unmasked reconstructions generally have a poorer PSNR because our im-
plicit scene understanding approach does not approximate a ray tracer and
cannot cast correct shadows on the background. The lower PSNR for re-
constructing the shiny objects is mainly due to the inability of the network
to model saturation caused by reflection. Results in Fig. 8.

5.5. Relighting

We capture multi-illumination images with known light
poses and recover geometry independently of appearance.
This allows us to infer the illumination dependent appear-
ance using a combination of physically based appearance
parameters – e.g. the Principled BRDF[14]. As a bench-
mark, we upgraded the closest related work, [21], which
uses the full gamut of the Disney BRDF parameters, with
NeUS++, to incorporate dense depth. For the data we col-
lected, the optimization process as implemented by [21],
was quite brittle and some parameters (e.g. ‘clearcoat-
gloss’) would often take precedence over other appearance
parameters (e.g. ‘specular-tint’) and drive the optimiza-
tion to a poor local minima. We demonstrate this prob-
lem in detail in the supplementary material. We found the
optimization of a subset of appearance parameters (‘base-
color’, ‘specular-tint’, and ‘roughness’) to be the most sta-
ble. [13, 111] conclude the same.

For relighting, we explore two avenues – the inference



Figure 7. AdaShell
++

recovers sampling volumes similar to [101]. Fig. a shows the geometry recovered with 5 RGBD tuples. Figures b displays the
sampling volumes around the geometry after AdaShell++has converged – we note the similarity of this step with [101]. Figs. c and d are the ground-truth
and reconstructed test images. AdaShell++combines the advantages of volumetric rendering (see insets in fig. d) and surface based rendering (fig. b). More
details are in the supplementary materials.

(a) Face 1 (F 1) (b) Face 2 (F 2) (c) Face 3 (F 3) (d) Face 4(F 4) (e) Shiny 1 (S 1) (f) Shiny 2 (S 2)

Figure 8. Relighting scenes can be achieved with AdaShell++trained with multi-illumination images. Discussion and results in Sec. 5.5 and Tab. 7. We
capture 12 flash lit images for all the camera views and we use alternate flashes for all the training views (6 per view). Figures above show one (of six) flash
configurations for the test view. More results on the project website.

step of our approach as a volumetric renderer and a mesh
created with the appearance parameters as texture (Fig. 1).
Quantitative and qualitative results of the volumetric ren-
derer are shown in Tab. 7 and Fig. 8. We used [11]
to unwrap the geometry and generate texture coordinates
whose quality exceeded [107] and our implementation of
[93]. None of our approaches worked on the ReNe dataset
(Tab. 1, [98]) due to low view diversity, and the absence of
metric depth. We used the labels in Fig. 2e to allocate more
gradient steps for learning the regions with higher appear-
ance variation. We provide more details in the supplemen-
tary material.

6. Limitations

Although we achieve state of the art results in view-
synthesis and relighting with a few views, our approach
struggles to represent transparent objects and accurately
capture the geometry of reflective surfaces. [65] address
the problem of reflective objects by modelling background
reflections and is based on the architecture proposed by
[100]. As NeUS++enables [100] to use possibly noisy met-
ric depth, it can potentially be extended to model reflective
objects.

Our approaches require metric depth and depth edges for
the best performance. Our approach relies on capture de-
vices with reasonable quality depth measurements. Future
work will address incorporation of monocular and sparse
depth priors with depth edges.

Incorporation of metric depth introduces a strong bias,

often limiting super resolution of geometry sometimes
achieved in neural 3D scene representation (see e.g. [62]).
Decreasing the effect of Eq. (2) during training may po-
tentially encourage geometric superresolution and is future
work.

Finally, modern grid based representations (see e.g.
[31, 82]) produce very compelling view interpolation results
at a fraction of the computational cost of a state of the art
volumetric renderer (e.g. [76, 101]). However, they need
to be “distilled” from a pre-trained volumetric view inter-
polator. Future work can investigate the use of depth priors
to train a grid based representation directly from color and
depth images.

7. Conclusions

We present a solution to incorporate dense metric depth into
neural 3D reconstruction which enables state of the art ge-
ometry reconstruction. We examine a corner case of jointly
learning appearance and geometry and address it by incor-
porating additional supervision signals. Additionally, we
describe a variant of the multi-flash camera to capture the
salient supervision signals needed to improve photorealis-
tic 3D reconstruction and demonstrate a pipeline for view
synthesis and relighting of small scenes with a handful of
training views.
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[9] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,
Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 6290–6301, 2022. 2, 5, 6, 15

[10] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,
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