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Abstract

The tool-using capability of large language001
models (LLMs) enables them to access up-002
to-date external information and handle com-003
plex tasks. Current approaches to enhancing004
this capability primarily rely on distilling ad-005
vanced models by data synthesis. However,006
this method incurs significant costs associated007
with advanced model usage and often results008
in data compatibility issues, led by the high009
discrepancy in the knowledge scope between010
the advanced model and the target model. To011
address these challenges, we propose ToolDev,012
a self-improving framework for tool learning.013
First, we decompose the tool-learning objective014
into sub-tasks that enhance basic tool-making015
and tool-using abilities. Then, we introduce a016
self-evolving paradigm that allows lightweight017
models to self-improve, reducing reliance on018
advanced LLMs. Extensive experiments vali-019
date the effectiveness of our approach across020
models of varying scales and architectures.021

1 Introduction022

Large Language Models (LLMs) have achieved023

remarkable progress in natural language process-024

ing. However, they face significant limitations,025

including factual inaccuracies and challenges in ac-026

cessing real-time information or executing actions.027

Enhancing their ability to use external tools—such028

as search engines (Schick et al., 2023; Nakano029

et al., 2021), APIs (Qin et al., 2023), and math-030

ematical tools (Cobbe et al., 2021; He-Yueya et al.,031

2023)—is a promising solution. Tool integration032

not only grounds LLMs’ outputs in reliable infor-033

mation but also expands their applicability to real-034

world scenarios requiring complex interactions.035

Existing approaches to improve tool-utilization036

capabilities typically rely on distilling advanced037

models like GPT-4 or Claude 3.5 through data syn-038

thesis (Patil et al., 2023; Qin et al., 2023; Tang et al.,039

2023; Lin et al., 2024; Liu et al., 2024a). However,040

this strategy introduces three major challenges: 1) 041

Inference Cost. Utilizing advanced models is pro- 042

hibitively expensive, particularly when generating 043

large-scale training datasets. 2) Data Compatibil- 044

ity. The synthesized data frequently exhibits distri- 045

butional discrepancies, making it less compatible 046

with the target model being fine-tuned. Specifically, 047

unfamiliar samples—those introducing concepts 048

outside the base model’s knowledge scope—often 049

lead to hallucinations (Hartmann et al., 2023; Kang 050

et al., 2024). Consequently, target models tend to 051

memorize the training data rather than generalize 052

from it (Tirumala et al., 2022; Setlur et al., 2024), 053

ultimately leading to suboptimal tool-utilization 054

performance. 3) Data Privacy. In real-world ap- 055

plications, numerous user queries involve privacy 056

constraints, prohibiting the synthesis using exter- 057

nal advanced models. A promising alternative is 058

self-evolution (Tao et al., 2024), where a model 059

generates or refines its own training data, enabling 060

iterative improvement without heavy reliance on 061

external resources. Self-evolution has shown suc- 062

cess in enhancing reasoning (Gulcehre et al., 2023; 063

Singh et al., 2023; Huang et al., 2023) and code- 064

generation (Jiang et al., 2023; Chen et al., 2024b) 065

tasks through techniques like top-k sampling or nu- 066

cleus sampling, where multiple solutions are gener- 067

ated, and correct ones are used for fine-tuning. 068

However, applying self-evolution to iterative 069

improvement in tool-learning scenarios presents 070

unique challenges. Tool-learning tasks typically 071

consist of three components: user queries, candi- 072

date tools, and ground-truth tool invocations. En- 073

hancing models with a diverse range of candidate 074

tools during fine-tuning has been shown to im- 075

prove their overall proficiency and zero-shot ca- 076

pabilities in tool utilization (Liu et al., 2024a). 077

While lightweight, open-source LLMs demonstrate 078

the ability to invoke tools from predefined can- 079

didate sets, they struggle to generate both novel 080

tools and accurate invocations directly from user 081
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queries (Huang et al., 2024). This limitation makes082

the generation of high-quality, diverse training data083

a significant challenge.084

To address the aforementioned challenges, we085

first decompose tool learning into several tool-086

related sub-tasks, enhancing the tool-making and087

tool-using abilities. Then we propose a self-088

evolution strategy specifically tailored for tool-089

learning, enabling the model to self-improve. The090

overall pipeline is termed as ToolDev. First,091

we identified that constructing tool documenta-092

tion adaption tasks focused on tool definitions for093

post-trained models can effectively enhance the094

model’s understanding of tools, thereby improv-095

ing its tool-using and tool-generation capabilities.096

Subsequently, we decomposed the conventional097

tool-learning training objective, which typically098

concentrates solely on tool-using ability, into two099

tasks: tool generation and tool invocation. This100

approach strengthens the target model’s ability to101

generate candidate tools based on a query, while102

simultaneously improving the accuracy of tool in-103

vocation, equipping the model with the founda-104

tional capabilities for self-evolution. Finally, af-105

ter the aforementioned two-stage training, by pro-106

viding new user queries, the target model itera-107

tively generates candidate tools and corresponding108

invocations. This iterative process establishes a109

self-evolutionary mechanism that automatically en-110

hances the model’s tool-utilization performance111

over time. Our contributions can be summarized as112

follow:113

• We propose ToolDev, the first self-evolutionary114

framework designed to enhance LLMs’ tool-115

invocation capabilities, equipping lightweight mod-116

els with self-evolving abilities.117

• We propose the tool documentation adaption sub-118

task and decompose the tool-learning objective into119

tool generation and invocation tasks, demonstrating120

the task decomposition significantly improves tool-121

invocation performance.122

• Through extensive experiments on LLMs of vary-123

ing scales, we validate the effectiveness of our ap-124

proach and provide insights into how self-evolution125

potential varies with model size.126

2 Related Work 127

2.1 Tool Learning 128

The integration of external tools significantly en- 129

hances the capabilities of large language mod- 130

els (LLMs), enabling them to perform more spe- 131

cialized, accurate, and reliable problem-solving 132

tasks (Qin et al., 2023). Existing methods for 133

equipping LLMs with tool-use capabilities can be 134

broadly categorized into two types: prompt-based 135

approaches and tool-augmented tuning. Prompt- 136

based methods enable LLMs to use tools by pro- 137

viding in-context examples and tool descriptions, 138

bypassing the need for additional model train- 139

ing (Mialon et al., 2023; Hsieh et al., 2023; Ruan 140

et al., 2023). A notable example is the ReAct 141

framework (Yao et al., 2023), which allows LLMs 142

to alternate between reasoning and executing ac- 143

tions to solve complex tasks. While tuning-free 144

methods are lightweight and flexible, their perfor- 145

mance is heavily reliant on the LLM’s intrinsic 146

capabilities, which limits their effectiveness for 147

tasks requiring advanced tool utilization. In con- 148

trast, tool-augmented tuning methods directly en- 149

hance LLMs’ tool-use capabilities through addi- 150

tional training (Qin et al., 2023; Schick et al., 2023; 151

Patil et al., 2023; Tang et al., 2023; Liu et al., 2024b; 152

Abdelaziz et al., 2024; Liu et al., 2024a; Lin et al., 153

2024). These methods typically involve fine-tuning 154

LLMs to use external APIs and tools. However, a 155

common limitation is the demand for high-quality 156

data, which highly relies on data synthesis by an ad- 157

vanced model, such as GPT-4 or Claude-3.5. This 158

generation process is not only resource-intensive 159

but also incurs significant costs. 160

2.2 Self Evolution of LLMs 161

Self-evolution enables models to acquire and up- 162

date knowledge autonomously, akin to human 163

learning. For instance, the transition from Al- 164

phaGo (Silver et al., 2016) to AlphaZero (Silver 165

et al., 2017) utilized a self-play mechanism to facil- 166

itate model evolution without reliance on labeled 167

data. In the context of LLM self-evolution, re- 168

search often focuses on two stages: task acqui- 169

sition and solution generation. During the task 170

acquisition stage, the target model generates new 171

tasks. For example, Self-Instruct (Wang et al., 172

2022) enables models to autonomously generate 173

new instructions as tasks, while Ada-Instruct (Cui 174

and Wang, 2023) proposes an adaptive approach 175

for task instruction generation. WizardLM (Xu 176
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Generate a tool definition according
to the description: {description} 

{"name": "get_weather",
"description": "...", "parameters": ...}

Instruction

Tool Definition

Name: get_weather
Description:

Get weather
information of the

location
Parameters:
...

Tool Documentation

(a) Tool Documentation Adaption (b) Query-aware tool generation and invocation

(c) Self Evolution

Here are tools you can use: 
{tool_descriptions} 

How about the weather in
New York recent days? 

[get_weather(location="New
York")]

Candidate tools

Query

Tool invocation

Generate helpful tool
signatures to solve
the query: {query} 

[{"name": "get_weather",
"description": "...",

"parameters": ...}, ...]

Instruction

Candidate tools

Tool Generation

Query

Tool invocation

[get_weather(location="New
York")]

Candidate tools

How about the weather in
New York recent days? 

Tool Invocation
Here are tools you can use: 

{tool_descriptions} 

LLMIs it sunny in New York
recent days? 

Query Candidate tools

Here are helpful tools: 
{tool_descriptions}  LLM [check_weather(location=...)]

Tool invocation

Model update

Query
Candidate tools
Tool invocation

Training data

Figure 1: Overall framework of the self-evolving paradigm. (a) Tool documentation adaption, aiming to enhance
the understanding of tools; (b) Query-aware tool generation and invocation, equipping the model with self-evolving
abilities; (c) Self-evolution, where the model first generates candidate tools and then generates tool invocation,
forming the self-training data.

et al., 2023) introduces the Evol-Instruct method,177

which evolves instructions through both depth and178

breadth. In the solution generation stage, empha-179

sis is placed on producing suitable answers for180

tasks. The STaR (Zelikman et al., 2024) framework181

incorporates the model’s reasoning process and182

uses correct problem-solving steps as training data.183

REST (Gulcehre et al., 2023) and RESTem (Singh184

et al., 2023) employ sampling strategies to gen-185

erate multiple trajectories and leverage a reward186

model to guide updates. Other approaches uti-187

lize both positive and negative sample pairs for188

preference-based training, such as DPO (Rafailov189

et al., 2024). Self-Reward (Yuan et al., 2024), for190

instance, constructs preference pairs by using the191

model itself as a reward model after solution gen-192

eration. SPIN designates model-generated data as193

negative samples and labeled SFT data as positive194

samples. GRATH (Chen et al., 2024a) explicitly195

generates both positive and negative samples simul-196

taneously, while Self-Contrast (Zhang et al., 2024b)197

compares differences between solutions and com-198

piles these differences into a checklist for iterative199

refinement. In this work, we implement both task200

acquisition and solution generation, achieving com-201

pletely autonomous evolution for LLMs.202

3 Methodology203

3.1 Task Definitions204

Given the user query q and candidate tools T =205

{t1, t2, · · · , tN}, the goal of the tool invocation206

task is to select suitable tools and extract informa-207

tion as arguments A with the model parameters 208

Θ: 209

A = [· · · , (tj , aj), · · · ] = f(q, T,Θ) 210

where tj and aj represent the j-th called tool and 211

corresponding arguments, respectively. f(·) de- 212

notes the auto-regressive generation manner of 213

LLMs. The training sample tailored for tool- 214

using is usually formalized as a triplet of a user 215

query, candidate tools and the ground-truth an- 216

swers: ⟨q, T,A⟩. 217

The overall framework of ToolDev comprises 218

three stages: tool documentation adaption, query- 219

aware tool generation and innovation, and self- 220

evolution, which is illustrated in Figure 1. 221

3.2 Tool Documentation Adaption 222

To enhance the LLM’s capability on specific do- 223

mains, continual pre-training on domain data is 224

usually adopted as an effective method (Wu et al., 225

2023; Singhal et al., 2025). Drawing inspiration 226

from this, we propose to train LLM on tool docu- 227

mentation for better tool understanding. This pro- 228

cess enables the model to acquire a more in-depth 229

understanding of the syntax, functionality, and con- 230

straints of specific tools, which can significantly 231

improve its utility in real-world applications. Un- 232

like general-purpose pre-training, this approach 233

equips the model with domain-specific knowledge 234

directly related to tool usage, reducing the gap 235

between training data and deployment scenarios. 236

Unlike other methods that continually pre-train a 237
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“base”-series LLM without any post-training such238

as instruction tuning, we design a adaption task239

for “Instruct”-series models, thereby keeping the240

instruct-following ability obtained in post-training.241

Specifically, given the documentation of a tool:242

ti = ⟨name, description, parameters⟩, we con-243

struct an instruction xti to ask the model to com-244

plete tool definitions according to tool description,245

such as “Generate a tool signature according to246

the description: {description}”. Then the training247

procedure aligns with an instruction tuning:248

min
Θ

ℓ (f (xti ,Θ) , ti) (1)249

where ℓ(·) is the loss function to align the model’s250

prediction with the tool’s documentation. The task251

enables the LLM to be familiar with the format of252

tool definitions, building the fundamental ability to253

construct tools for coming queries.254

3.3 Query-Aware Tool Generation and255

Invocation256

Unlike question-answering or coding tasks, which257

typically involve only queries and answers, tool258

invocation data often requires not only the user’s259

query but also a set of candidate tools. Existing260

studies generally rely on a finite set of candidate261

tools sampled from a fixed pool. However, this262

approach overlooks a critical issue: when models263

are applied to new scenarios with unseen candi-264

date tools and queries, the accuracy of tool invo-265

cation tends to suffer significantly. Therefore, a266

tool invocation model with self-evolution capabili-267

ties should ideally possess the ability to expand its268

training set of tools autonomously.269

To address this challenge, we decompose the270

tool learning data into two sub-tasks: query-aware271

tool generation and tool invocation. In existing272

tool-learning training, the focus is typically on the273

tool invocation, i.e., given a query and a set of274

candidate tools, aligning the model’s predicted tool275

invocation with the ground truth A:276

min
Θ

ℓ (f (q, T,Θ) , A) (2)277

Contrastively, our decomposition introduces an278

additional task during training: generating query-279

relevant candidate tools based on the given query.280

This aims to both enhance the model’s understand-281

ing of the relationship between queries and tools282

and equip it with the ability to autonomously gen-283

erate relevant candidate tools, thereby preparing it284

for self-evolution. Similar to tool documentation 285

adaption, given a query q, we convert it into an 286

instruction format xq, such as “Generate candidate 287

tools related to the query: {query}.” The train- 288

ing objective is then to generate the corresponding 289

candidate tools T : 290

min
Θ

ℓ (f (xq,Θ) , T ) (3) 291

By training with this objective, the model becomes 292

capable of generating candidate tools for incoming 293

queries, transcending the limitations of a finite tool 294

set, thereby opening the door to self-evolution. 295

3.4 Self-Evolution 296

After training through the first two stages, the 297

model acquires the foundational capabilities for 298

self-evolution: the ability to generate candidate 299

tools based on a given query, and the ability to 300

invoke tools based on the query and its correspond- 301

ing candidate tools. When confronted with a new 302

query, the model can autonomously generate new 303

tool invocation training data. The self-evolution 304

process is primarily composed of three steps: can- 305

didate tool generation, tool invocation generation, 306

and model updating, illustrated in Figure 1(c). 307

Candidate tool generation. Upon a new query 308

q is collected, it is first reformulated into an instruc- 309

tion xq to guide the model in generating a set of 310

candidate tools T̃ relevant to the query: 311

T̃ = f(xq,Θ
(i)) (4) 312

To ensure the correctness of the format of generated 313

tools, we adopt a rule checker to filter out those 314

problematic samples, such as missing argument 315

descriptions or JSON-unparsable. 316

Tool invocation generation. After the genera- 317

tion of candidate tools, the model is then prompted 318

to generate tool calls Ã to solve the query with gen- 319

erated tools T̃ . To improve the correctness of the 320

generated solution, we obtain multiple solutions 321

via the top-k sampling strategy and then majority 322

voting is applied to select the answer as the ground 323

truth. The sampling and voting process, termed as 324

self-consistency decoding (Wang et al., 2023), has 325

been validated as an effective method to improve 326

the performance of LLMs. From the perspective of 327

self-rewarding, it assigns a positive reward to the 328

solution with higher confidence: 329

Ã = majority_vote(fsampling(q, T̃ ,Θ
(i)) (5) 330
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Table 1: Accuracy performance comparison on BFCL leaderboard. The top 20 models are listed for comparison.
The models are sorted according to the overall score. FC denotes the model is tailored for functional calling.

Model
Non-Live Live Overall

Simple Multi Parallel
Parallel

Multi
Simple Multi Parallel

Parallel
Multi

Non-live Live Overall

GPT-4-turbo (Prompt) 82.25 94.50 95.00 93.50 78.68 83.12 81.25 75.00 91.31 82.09 86.70
xLAM-8x22b-r (FC) 77.00 95.50 92.50 94.00 70.93 77.72 75.00 75.00 89.75 76.33 83.04
ToolDev(FC) 80.17 97.50 93.50 87.50 70.16 76.37 81.25 75.00 89.67 75.20 82.44
Llama-3-70B-Instruct (Prompt) 75.83 94.50 91.50 87.00 69.77 78.01 75.00 66.67 87.21 76.18 81.69
mistral-large (FC) 57.50 94.00 93.00 92.00 79.07 78.88 87.50 75.00 84.12 78.95 81.54
xLAM-8x7b-r (FC) 77.25 95.50 92.00 89.00 68.99 76.18 50.00 75.00 88.44 74.46 81.45
ToolACE-8B (FC) 80.58 95.00 91.00 90.50 62.79 74.25 81.25 75.00 89.27 72.13 80.70
GPT-4o-mini (Prompt) 79.67 89.50 89.00 88.00 72.09 73.77 81.25 70.83 86.54 73.48 80.01
GPT-3.5-Turbo (FC) 74.08 93.00 87.50 83.50 65.50 74.16 56.25 54.17 84.52 71.91 78.22
FireFunction-v2 (FC) 78.83 92.00 91.00 81.00 69.38 70.97 56.25 54.17 85.71 70.18 77.95
GPT-4-turbo (FC) 60.58 91.00 90.00 89.00 67.83 74.45 75.00 62.50 82.65 72.96 77.81
GPT-4o (FC) 73.58 92.50 91.50 84.50 67.83 69.43 75.00 66.67 85.52 69.14 77.33
GPT-4o-mini (FC) 67.83 90.50 89.50 83.50 67.83 69.82 81.25 70.83 82.83 69.59 76.21
Gorilla-OpenFunctions-v2 (FC) 77.67 95.00 89.00 87.50 63.95 63.93 62.50 45.83 87.29 63.59 75.44
xLAM-7b-fc-r (FC) 77.33 92.50 91.50 86.00 63.57 63.36 56.25 50.00 86.83 63.08 74.95
Open-Mistral-Nemo (FC) 60.92 92.00 85.50 85.50 68.22 67.98 75.00 62.50 80.98 68.01 74.50
GPT-4o (Prompt) 64.08 86.50 88.00 85.00 67.44 67.21 56.25 58.33 80.90 66.96 73.93
Gemini-1.5-Flash-Preview (FC) 65.42 94.50 71.50 77.00 62.79 72.61 56.25 54.17 77.10 70.18 73.64
Claude-3.5-Sonnet (FC) 75.42 93.50 62.00 50.50 72.48 70.68 68.75 75.00 70.35 71.08 70.72
Gemini-1.5-Pro-Preview (FC) 50.17 89.50 83.50 79.00 60.08 66.35 75.00 54.17 75.54 65.02 70.28
o1-mini (Prompt) 68.92 89.00 73.50 70.50 62.79 65.09 68.75 58.33 75.48 64.57 70.02

where majority_vote(·) denotes select the solu-331

tions with the most votes and fsampling denotes the332

sampling-based decoding strategy, which is imple-333

mented as top-k sampling in our experiments. Also,334

a rule checker is applied to filter out those samples335

with unreasonable solutions, such as calling hallu-336

cinating tools or arguments and filling arguments337

with wrong types.338

Model updating. For each incoming query, can-339

didate tool generation and tool invocation genera-340

tion can turn the query q to a complete tool-using341

triplet ⟨q, T̃ , Ã⟩. Then a new training set can be342

collected after repeating the first two steps on all343

queries, where the model can be trained with two344

types of objectives: query-aware tool generation345

and invocation, as proposed in Section 3.3:346

Θ(i+1) = min
Θ

ℓ
(
f(q, T̃ ,Θ), Ã

)
+ ℓ

(
f (xq,Θ) , T̃

)
(6)347

4 Experiments348

4.1 Experimental Settings349

Datasets Construction. In the first phase of350

training, we sampled a subset of data from351

ToolACE (Liu et al., 2024a), comprising a total352

of 26,522 tools, to perform tool documentation353

adaption on the model. Subsequently, in the sec- 354

ond phase, we utilized a dataset containing 20,000 355

synthesized tool invocation samples generated by 356

GPT-4 1 for further fine-tuning. In each subsequent 357

self-evolution round, the model self-generates train- 358

ing data by processing 10,000 incoming queries. 359

We set the max round of self-evolution as 3 and 360

the best results (may not be at the third round) are 361

adopted in Table 1. Note that the overall training 362

utilizes 20,000 synthesized query-solution pairs 363

and a maximum of 30,000 queries in total. 364

Benchmark and Evaluation. To evaluate 365

the model’s tool invocation capabilities, we se- 366

lected the Berkeley Function Call Leaderboard 367

(BFCL) (Yan et al., 2024), a widely recognized 368

benchmark, as the evaluation framework. BFCL 369

consists of two subsets: Non-live and Live, rep- 370

resenting synthetic test cases and real-world sce- 371

narios, respectively 2. Both non-live and live sub- 372

sets comprise four types of test examples: simple, 373

multiple, parallel, and parallel multiple. Simple 374

1https://chatgpt.com
2We focused exclusively on single-turn tool invocation

AST data, as these test cases exhibit higher stability and relia-
bility, whereas other cases tend to have significant variability
and lower reliability.
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Table 2: Results on other tool learning benchmarks.
Bold and underline results represent the 1st and the 2nd
best results.

Model APIBank T-Eval

GPT-4-turbo 63.39 87.50
Llama-3.1-8B-Instruct 54.11 76.60

ToolDev 67.82 77.03

and multiple examples both involve only one in-375

voked tool, while there are multiple candidate tools376

in multiple examples. Parallel (or Parallel multi-377

ple) examples require invoking multiple tools from378

one (or multiple) candidate tool(s). The evalua-379

tion metrics for each subset are accuracy-based,380

and for certain categories, the scores are computed381

as the average of subcategory scores. To further382

validate the efficiency of our method, we evaluate383

ToolDev on another two tool-calling benchmarks:384

API-Bank (Li et al., 2023) and T-Eval (Chen et al.,385

2024c). The details of those benchmarks are re-386

ported in Appendix A.387

Implementation Details. We employed the388

LLaMA3.1-8B-Instruct (AI@Meta, 2024) as the389

base model for training. Due to resource con-390

straints, the parameter-efficient training technique,391

LoRA (Hu et al., 2022), is conducted on 8 Nvidia392

V100-32GB GPUs. All model modules are enabled393

for LoRA fine-tuning, with the LoRA rank set to394

16 and alpha set to 32. The training processes uti-395

lize a global batch size of 64 and a learning rate of396

10−4 with a commonly used cosine learning rate397

scheduler, where the warmup ratio is set as 0.1. The398

prompts in each stage are illustrated in Appendix B.399

More details are provided in Appendix A.400

4.2 Main Results401

To demonstrate the superiority of the model perfor-402

mance under the training framework we propose,403

we compare the tool invocation accuracy of the404

top 20 models in the BFCL leaderboard 3. And405

we compare the GPT-4-turbo and Llama3.1-8B-406

Instruct on other two benchmarks. The results are407

shown in Table 1 and Table 2, where we can have408

the following observations:409

First, ToolDev, trained using our proposed self-410

3The data is sourced from the BFCL leader-
board update on 2024-09-20, referenced from
https://github.com/ShishirPatil/gorilla/blob/
e82d4246bec26276cceade9c710df92b9d83420a/data_
combined_Sep_20_2024.csv
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Figure 2: Relative Improvements of Self-Evolution. The
backbone model is LLaMA-3.1-8B-Instruct.

evolution framework, achieves high accuracy at the 411

8B model scale only, surpassing larger models such 412

as LLaMA-3-70B-Instruct, several closed-source 413

models like Claude, Gemini, and GPT-4o, and mod- 414

els that are specifically fine-tuned for tool invoca- 415

tion. The performance of ToolDev is on par with 416

that of large MoE models like xLAM-8x22B-r. Be- 417

sides, ToolDev shows significant improvements on 418

another two benchmarks compared with Llama-3.1- 419

8B-Instruct. This is attributed to the effectiveness 420

of our training framework. 421

Second, compared to ToolACE-8B that is 422

finetuned from LLaMA-3.1-8B-Instruct as well, 423

ToolDev still demonstrates further improvements, 424

achieving higher scores in BFCL. Our new train- 425

ing framework enables ToolDev to achieve signif- 426

icant improvements with only a minimal amount 427

(20,000) of labeled training data, resulting in re- 428

duced training data costs while increasing the data 429

utilization efficiency. Additionally, it fully lever- 430

ages the model’s capability to generate its own 431

data, showcasing that the self-evolution process is 432

as effective as data synthesis with advanced models. 433

This suggests that self-evolution is highly effective 434

for tool-invocation tasks and may become a more 435

efficient approach for data acquisition in the future. 436

Furthermore, ToolDev shows a more significant 437

improvement on the more challenging Live subset 438

than on the Non-live subset compared to ToolACE- 439

8B. In the BFCL test set, the candidate tools in the 440

Live category are user-contributed, which increases 441

their authenticity and diversity compared to the 442

Non-live category, making the queries in the Live 443

subset more complex. ToolDev achieves a larger 444

gain in this more difficult subset, which can be at- 445

tributed to our tool documentation adaption and 446

query-aware tool generation auxiliary tasks, which 447

improve data utilization. Additionally, the model’s 448

self-evolution process generates high-quality train- 449
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Table 3: Ablation study on the proposed training objec-
tives. Invo. and Gen. represent the tool invocation and
tool generation task, respectively. "w. Adaption" repre-
sents the model is trained successively from Adaption.

Model Non-live Live Overall

Raw 72.06 56.93 64.50
Adaption 73.54 57.52 65.53
Invo. 88.96 72.73 80.85
Invo. w. Adaption 89.08 73.03 81.06
Invo.+Gen. w. Adaption 89.40 73.93 81.67

ing data that is appropriately challenging, rather450

than simplistic or trivial.451

4.3 Performance of Self-Evolution452

To evaluate the effectiveness of the model’s self-453

evolution mechanism, we conducted three rounds454

of self-training using the LLaMA-3.1-8B-Instruct455

model after it had undergone pre-training phases in-456

cluding Tool Documentation Adaption and Query-457

Aware Tool Generation and Invocation. In each458

round of evolution, the model processed 10,000459

queries through a two-step generation, producing460

corresponding candidate tools and tool invocations,461

as detailed in Section 3.4. The results of each itera-462

tive step are presented in Figure 2.463

It is evident that the scores for Non-live, Live,464

and Overall metrics consistently improve across465

iterations, indicating that the model successfully466

generates informative training data tailored to its467

current state. Notably, we observe a more pro-468

nounced improvement in the more challenging Live469

scores, suggesting that the data samples generated470

during self-evolution are appropriately challenging471

and contain substantial informational value. Addi-472

tionally, we find that the performance gains from473

self-evolution diminish as the number of iterations474

increases. This aligns with conclusions drawn in475

prior study (Chen et al., 2024d), leading to a hy-476

pothesize: the self-iteration process gradually en-477

hances the model’s confidence in generating accu-478

rate tool invocations, and once the model’s confi-479

dence becomes sufficiently high, the self-generated480

data contributes less to further improvements.481

4.4 Ablation Study482

To validate the effectiveness of the training objec-483

tives proposed at each stage, we conducted an abla-484

tion study to evaluate various variants. Specifically,485

we compared the following variants:486

Raw: The raw model without extra post training. 487

Adaption: The model undergoes only the first 488

stage of Tool Documentation Adaption training, 489

without any labeled tool invocation data. 490

Invo.: The model is trained exclusively on the 491

tool invocation portion of the data, using the train- 492

ing objective in Equation 2. 493

Invo. w. Adaption: The model first undergoes 494

Tool Documentation Adaption training, followed 495

by training with the tool invocation objective. 496

Invo.+Gen. w. Adaption: The model first un- 497

dergoes Tool Documentation Adaption training, 498

then trains both the tool invocation and tool gen- 499

eration objectives simultaneously, optimizing the 500

training objectives in Equation 2 and Equation 3. 501

The evaluation results for each variant are shown 502

in Table 3. First, the Adaption model shows im- 503

provement compared to the Raw model, and Invo. 504

w. Adaption outperforms Invo., indicating that 505

Tool Documentation Adaption contributes to en- 506

hancing the model’s understanding of tool defi- 507

nitions and syntax, thereby improving its tool in- 508

vocation capability. Furthermore, Invo.+Gen. w. 509

Adaption demonstrates a clear advantage among 510

the variants, suggesting that the tool generation 511

task, as an advanced tool-related capability, signif- 512

icantly aids in enhancing the model’s tool-related 513

performance. 514
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Figure 3: Ablation study of different training objectives
on various models.
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Figure 4: Effects of self-evolution on various models.

4.5 Effectiveness on various models515

To validate the effectiveness and generality of our516

proposed framework, we conducted experiments517

on various models, including models of differ-518

ent parameter scales within the same series and519

models of similar parameter scales across differ-520

ent series. Specifically, we trained the Qwen2.5-521

Instruct (Qwen-Team, 2024) series models with522

parameter sizes of 1.5B, 3B, and 7B, as well as the523

Mistral-v0.3-7B-Instruct (Mistral-AI, 2024) and524

LLaMA-3.1-8B-Instruct models. We evaluated the525

effectiveness of the proposed training objectives526

at each stage and the efficacy of the model’s self-527

evolution mechanism.528

Effectiveness of training objectives. The results529

of our proposed training objectives across various530

models are shown in Figure 3(a). As observed,531

Invo.+Gen. w. Adaption significantly outperforms532

all other variants, further validating the effective-533

ness of the proposed Adaption and Generation534

tasks. Additionally, due to the varying initial tool535

invocation capabilities of different model back-536

bones, the improvements achieved by Adaption537

and the invocation tasks differ across models. For538

instance, Qwen2.5-7B, which exhibits a relatively539

strong initial tool invocation capability and a better540

understanding of tools, shows only marginal gains541

from the Adaption and tool invocation tasks. In542

contrast, the improvements are more pronounced543

for LLaMA-3.1-8B and Mistral-v0.3-7B.544

As the model size increases, the effects of our 545

proposed training strategy exhibit certain differ- 546

ences, as illustrated in Figure 3(b). For smaller 547

models, such as 1.8B model, the weaker instruction- 548

following capabilities result in a tendency to gener- 549

ate tools rather than invoke them when only Tool 550

Documentation Adaption is applied, leading to a 551

decline in tool invocation scores. Additionally, 552

due to the limited number of parameters, the im- 553

provements achieved through multitask training 554

in Invo.+Gen. w. Adaption are comparatively 555

smaller. In this case, the tool generation task poses 556

a greater challenge for smaller models, making it 557

more difficult for them to generalize effectively. 558

Effectiveness of self-evolution. The self-evolution 559

performance of different models is illustrated in 560

Figure 4. Our findings are as follows: First, for 561

models with 7-8B parameters, the self-evolution 562

results are consistently positive, aligning with the 563

conclusions drawn in Section 4.3. Second, larger 564

models exhibit greater potential for self-evolution. 565

For instance, the 7B models show improvement 566

across all evolution iterations, whereas the 3B mod- 567

els display a slight downward trend in the final iter- 568

ation, and the 1.5B models exhibit a convergence 569

trend with fluctuations in the last two iterations. 570

This behavior may be attributed to smaller models 571

being more prone to overfitting the training data 572

distribution after 1-2 iterations, which reduces the 573

diversity of the subsequently self-generated data 574

and limits further improvements. 575

5 Conclusion 576

In this work, we proposed a training framework 577

designed to enhance the tool invocation capabil- 578

ities of large language models (LLMs), enabling 579

effective self-evolution in tool-related tasks. The 580

training algorithm begins with a Tool Documenta- 581

tion Adaption task to strengthen the model’s un- 582

derstanding of tools. Subsequently, we decompose 583

tool-learning data into query-aware tool generation 584

and invocation sub-tasks, empowering the model 585

with the ability to generate tools tailored to specific 586

queries. Building on this foundation, the model can 587

iteratively improve itself by generating data based 588

on given queries. Experimental results demonstrate 589

that our training approach endows the model with 590

self-evolution capabilities, achieves superior tool 591

invocation accuracy compared to all other models 592

of similar scale, and validates the generality of the 593

proposed method across various models. 594
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Limitations595

First, our experiments were conducted on mod-596

els up to 7B due to resource constraints, leaving597

the self-evolution performance of larger models598

(e.g., 14B, 32B) unexplored. Given existing results,599

larger models are likely to generate higher-quality600

data, potentially enhancing self-evolution. Addi-601

tionally, this work focuses on tool invocation ac-602

curacy—selecting the correct tool and providing603

precise parameters—but does not address retriev-604

ing tools from a large-scale tool pool, an important605

avenue for future research.606
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A Experimental Details863

A.1 Benchmark Details864

Berkeley Function-Calling Leaderboard865

(BFCL). The BFCL (Yan et al., 2024) benchmark866

consists of Non-Live and Live categories, where 867

each category comprises single, multiple, parallel 868

and parallel multiple samples. 869

• Single: A single function evaluation represents 870

the most straightforward yet commonly encoun- 871

tered format, where the user supplies a single 872

JSON function document, and exactly one func- 873

tion call is invoked. 874

• Multiple: The multiple function category in- 875

volves a user query that triggers a single function 876

call selected from among 2 to 4 available JSON 877

function documents. The model must be capable 878

of determining the most appropriate function to 879

invoke based on the context provided by the user. 880

• Parallel: A parallel function entails the simul- 881

taneous invocation of multiple function calls in 882

response to a single user query. The model must 883

determine the number of required function calls, 884

with the user’s query potentially consisting of a 885

single sentence or multiple sentences. 886

• Parallel Multiple: Parallel multiple functions 887

combine the concepts of parallel function and 888

multiple function. In this scenario, the model is 889

provided with several function documents, and 890

each corresponding function call may be invoked 891

zero or more times. 892

API-Bank. API-Bank (Li et al., 2023) is a bench- 893

mark designed to evaluate and enhance the tool- 894

augmented capabilities of LLMs, too. It features a 895

runnable evaluation system with 73 API tools and 896

an annotated dataset of 314 dialogues containing 897

753 API calls, used to assess LLMs’ ability to plan, 898

retrieve, and call APIs. In this work, we mainly 899

focus on the tool-invocation task, averaging the cor- 900

rectness of Call and Retrieve+Call in API-Bank as 901

the overall score. 902

T-Eval. T-Eval (Chen et al., 2024c) takes several 903

abilities helpful for tool invocation into evaluation, 904

including the instruction following, planning, rea- 905

soning, retrieval, understanding, and review. In this 906

work, we average scores of three tool-invocation 907

task as the overall score: planning, retrieval and 908

understanding, where planning and retrieval rep- 909

resent tool selection and understanding represents 910

parameters filling. 911

A.2 Baselines 912

We have selected top 20 LLMs on BFCL as base- 913

line models as they show advantaged tool-calling 914

11

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2409.03215
https://doi.org/10.18653/v1/2024.acl-long.197
https://doi.org/10.18653/v1/2024.acl-long.197
https://doi.org/10.18653/v1/2024.acl-long.197


performance, including closed models and open-915

sourced models. Closed models include GPT-series916

from OpenAI, Gemini-series from Google and917

Claude-series from Anthropic. Open-sourced mod-918

els include general LLMs, such as LLaMA-3-series919

and mistral-series, and tool-augumented LLMs,920

such as xLAM-series (Zhang et al., 2024a) and921

OpenFunctions-series (Patil et al., 2023). For API-922

Bank and T-Eval, we have compared the state-of-923

the-art GPT-4-turbo and the LLaMA-3.1-Instruct-924

8B.925

A.3 Implementation Details926

In the self-evolution stage, we leverage the target927

model to generate candidate tools and tool invo-928

cations by itself. vLLM framework (Kwon et al.,929

2023) is used to accelerate the generation process.930

For the generation of the candidate tools, we set the931

temperature of generation as 1.0, aiming to enhance932

the diversity of generated tools. For the generation933

of tool invocation, we utilize the self-consistency934

decoding strategy, generating 5 solutions for each935

sample and selecting the solution with the most936

votes as the final solution.937

B Prompts938

In this section, we illustrate all prompts used in939

the training framework, including the tool invoca-940

tion task(Figure 5), tool documentation pre-SFT941

task(Figure 6) and query-aware tool generation942

task(Figure 7). In each task, an example compris-943

ing of the input prompt and the expected output is944

detailed.945
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[SYSTEM]
You are a helpful assistant. You can call various user-defined tools to solve users’ problems.

# Tools You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>

{
"name": "Division API",
"description": "Divide two time series and return the result.",
"arguments": {

"type": "dict",
"properties": {

"interval": {
"description": "Interval between two consecutive points in time series.
Supports: `1min`, `5min`, `15min`, `30min`, `45min`, `1h`, `2h`, `4h`, `1day`, `1week`",

"type": "string"
},
"symbol": {
"description": "Instrument symbol, can be any equity, index, ETF, forex or cryptocurrency.

E.g. `AAPL`, `EUR/USD`, `ETH/BTC`, ...",
"type": "string"

},
...

"required": ["interval", "symbol"]
}
...

}

</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
"name": <function-name>, "arguments": <args-json-object>
</tool_call>

[USER]
Could you provide the ratio of the high to the close prices over different intervals for the AAPL symbol? I’d need 1min,
15min and 1h intervals. Make sure to use JSON format for the results.

[ASSISTANT]
<tool_call>
{
"name": "Division API",
"arguments": {

"interval": "1min", "symbol": "AAPL", "series_type_1": "high",
"series_type_2": "close", "format": "json"
}

}
</tool_call>
<tool_call>
{

"name": "Division API",
"arguments": {
"interval": "15min", "symbol": "AAPL", "series_type_1": "high",
"series_type_2": "close", "format": "json"

}
}
</tool_call>
<tool_call>
{

"name": "Division API",
"arguments": {

"interval": "1h", "symbol": "AAPL", "series_type_1": "high",
"series_type_2": "close", "format": "json"

}
}
</tool_call>

Figure 5: Illustration of the tool invocation task. The blue part represents the expected output.
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[SYSTEM]
You are a helpful assistant. You are a helpful assistant. You are skilled in generating tool signatures. You can generate
high-quality tool signature according to the instruction.

Output the tool signature within <tools></tools> XML tags:

<tools>
{

"name": "xxx",
"description": "xxx",
"arguments": {

"type": "dict",
"properties": {

"arg1": {
"type": "xxx",
"description": "xxx"

},
"arg2": {...}

},
"required": ["arg1", ...]

},
"results": {

"type": "dict",
"properties": {

"result_1": {"type": "xxx", "description": "xxx"}, "result_2": {...}}
}

}
</tools>

[USER]
Generate a tool definition according to the description: Divide two time series and return the result.

[ASSISTANT]
<tools>
{

"name": "Division API",
"description": "Divide two time series and return the result.",
"arguments": {
"type": "dict",
"properties": {

"interval": {
"description": "Interval between two consecutive points in time series.
Supports: `1min`, `5min`, `15min`, `30min`, `45min`, `1h`, `2h`, `4h`, `1day`, `1week`",

"type": "string"
},
"symbol": {
"description": "Instrument symbol, can be any equity, index, ETF, forex or cryptocurrency.

E.g. `AAPL`, `EUR/USD`, `ETH/BTC`, ...",
"type": "string"

},
...

"required": ["interval", "symbol"]
}
...

}
</tools>

Figure 6: Illustration of the tool documentation pre-SFT task. The blue part represents the expected output.
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[SYSTEM]
You are a helpful assistant. You are a helpful assistant. You are skilled in generating tool signatures. You can generate
high-quality tool signature according to the instruction.

Output the tool signature within <tools></tools> XML tags:

<tools>
{

"name": "xxx",
"description": "xxx",
"arguments": {

"type": "dict",
"properties": {

"arg1": {
"type": "xxx",
"description": "xxx"

},
"arg2": {...}

},
"required": ["arg1", ...]

},
"results": {

"type": "dict",
"properties": {

"result_1": {"type": "xxx", "description": "xxx"}, "result_2": {...}}
}

}
</tools>

[USER]
Generate tools to solve the query: Could you provide the ratio of the high to the close prices over different intervals for the
AAPL symbol? I’d need 1min, 15min and 1h intervals. Make sure to use JSON format for the results.

[ASSISTANT]
<tools>
{

"name": "Division API",
"description": "Divide two time series and return the result.",
"arguments": {
"type": "dict",
"properties": {

"interval": {
"description": "Interval between two consecutive points in time series.
Supports: `1min`, `5min`, `15min`, `30min`, `45min`, `1h`, `2h`, `4h`, `1day`, `1week`",

"type": "string"
},
"symbol": {
"description": "Instrument symbol, can be any equity, index, ETF, forex or cryptocurrency.

E.g. `AAPL`, `EUR/USD`, `ETH/BTC`, ...",
"type": "string"

},
...

"required": ["interval", "symbol"]
}
...

}
</tools>

Figure 7: Illustration of the query-aware tool generation task. The blue part represents the expected output.
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