Self-Generated In-Context Examples Improve
LLM Agents for Sequential Decision-Making Tasks

Vishnu Sarukkai Zhiqiang Xie Kayvon Fatahalian
Stanford University Stanford University Stanford University
Abstract

Improving Large Language Model (LLM) agents for sequential decision-making
tasks typically requires extensive task-specific knowledge engineering—custom
prompts, curated examples, and specialized observation/action spaces. We inves-
tigate a different approach where agents automatically improve by learning from
their own successful experiences without human intervention. Our method con-
structs and refines a database of self-generated trajectories that serve as in-context
examples for future tasks. Even naive accumulation of successful trajectories yields
substantial performance gains across three diverse benchmarks: ALFWorld (73%
to 89%), Wordcraft (55% to 64%), and InterCode-SQL (75% to 79%). These
improvements exceed those achieved by upgrading from gpt-4o-mini to gpt-4o and
match the performance of allowing multiple attempts per task. We further enhance
this approach with two innovations: database-level curation using population-based
training to propagate high-performing example collections, and exemplar-level
curation that selectively retains trajectories based on their empirical utility as
in-context examples. With these enhancements, our method achieves 93% suc-
cess on ALFWorld—surpassing approaches that use more powerful LLMs and
hand-crafted components. Our trajectory bootstrapping technique demonstrates
that agents can autonomously improve through experience, offering a scalable
alternative to labor-intensive knowledge engineering.

1 Introduction

When creating LLM agents for sequential decision-making tasks, practitioners often improve agent
performance by investing in task-specific knowledge engineering (through tedious prompt tuning [1[],
human-crafted in-context examples [2} 3] or custom observation and action spaces [4}[5]). Using
these techniques, scaling agent performance comes from scaling human effort.

In this paper, we investigate an alternative path: enabling LLM agents to autonomously bootstrap
their own performance by leveraging their own successful experiences via in-context learning. The
efficacy of in-context learning depends critically on both the quality of the examples [2, 3] and their
relevance to the current decision point [6-8]]. This insight provides a natural direction for automated
agent self-improvement: accumulating successful self-generated trajectories and estimating the most
relevant and effective prior experiences to use as in-context examples for each action.

Our work assumes a ReAct-style agent [9] that retrieves different examples for each decision point
based on their relevance to the current situation 10, [11]]. We build on this foundation by focusing
specifically on how to construct and refine the underlying database of self-generated examples.
How can we identify which trajectories enhance performance on new tasks versus those that hinder
performance? This database construction problem requires addressing both the collection of high-
quality trajectories and the strategic curation of the most valuable ones for future retrieval at each
decision point in the agent’s reasoning and acting loop.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Algorithm 1 ReAct-style Agent Loop

1: function AGENT(g, D, E,T)

2 C) < Retrieve(D, keys = [g]) > Retrieve for plan
3 P < LLMpian(g, Cp) > Generate initial plan
4 Initialize 7 < (g, p, {}, —); 01 + £.0bs()

5: Cy + Retrieve(D, keys = [g, p,01]) > Retrieve for current observation
6 fort =1to 7 do

7 74 4 LLMeason (7, 0, Ct) > Generate reasoning
8 Ci11 < Retrieve(D, keys = [g,p, 7)) > Retrieve for current reasoning
9: ay < LLMye (7, 04,74, Cig1) > Decide action
10 0¢+1,done, s «+ E.step(ay) > Execute action in environment
11: T<—TU(Ot7’I’t,at)
12: if done then
13: return (gvp7{(0i7Ti7ai)}§=1’S)
14: return (g, p, {(0i,7:,a;)} 1, 0) > Failed due to timeout

We demonstrate that even naive database accumulation improves test-set performance from 73% to
89% on ALFWorld, 55% to 64% on Wordcraft, and 75% to 79% on InterCode-SQL. (Equivalent
to what a baseline agent would achieve if it were allowed two to three attempts per task.) We
further propose two database construction enhancements: (1) database-level curation that identifies
and propagates high-performing example databases, and (2) exemplar-level curation that identifies
helpful trajectories based on their empirical utility as in-context examples. These approaches do not
require task-specific prompt engineering [12, 4] or custom observation/action space design [[L1} 4],
but improve success rates on ALFWorld to 93%—surpassing approaches like AutoManual [4]] that
use more powerful LLMs and hand-crafted observation and action spaces, as well as hierarchical
approaches like Autoguide [12]. The success rate improvement on ALFWorld exceeds the boost
obtained from upgrading the agent’s underlying LLM from gpt-4o-mini to gpt-4o. Our results
highlight the practical value of trajectory bootstrapping as a dimension for scaling test-time compute.

2 Preliminaries

Sequential Decision-Making Tasks We focus on multi-step sequential decision-making tasks
where agents must produce a series of actions based on observations of the environment. The
sequential nature of these tasks introduces unique challenges for LLM agents, as they must interpret
intermediate environmental feedback, maintain coherent reasoning across steps, and adapt their
strategy based on the evolving task state.

We assume a standard POMDP setup (App.[B), where an agent, given a task goal g, interacts with
the environment & for up to 7 timesteps. At each timestep ¢, the agent receives an observation o,
takes an action a;, and & transitions to the next state. We consider sparse-reward environments
where success is only determined at the end of an episode. This is a standard setting in prior agentic
work [9} [13] 12} 4]. Please see App. E]for details.

ReAct-style Agent Loop Our work assumes a ReAct-style [9]] agent architecture that employs
recent best practices for in-context retrieval [[10, [11]. The agent operates through a three-phase
approach (planning, reasoning, and acting) as formalized in Alg.[I] Two key components differentiate
our implementation from basic ReAct: (1) an initial planning step where the agent generates a
high-level plan before execution begins ([I] line 3), which has been shown to boost performance in
prior work [[10} 14} (13} 4], and (2) dynamic retrieval of different trajectory segments for each decision
point [10,|11], rather than using the same examples throughout an episode [9, [13} [12].

The agent operates through three key LLM-based functions: LLM,, generates a high-level plan p for
the goal, LLMe,50n processes observations o, to produce reasoning r, and LLM,, determines actions a;.
The Retrieve() function selects the k& most relevant examples from database D based on similarity
between lookup keys and examples. Our contribution focuses specifically on constructing and
refining the trajectory database that powers this retrieval mechanism, without relying on task-specific

prompting, observation spaces [11] or action spaces [5, 4]. Note that in Alg. [T] all task-specific
knowledge is encapsulated in D. For simplicity, we eschew other techniques, like hierarchical
learning [[13} 12} 4], that are also task-agnostic, but add additional agent complexity.

3 Problem Statement

Given the ReAct-style agent described in Sec. 2] our goal is to construct a trajectory database
that maximizes agent performance on sequential decision-making tasks. We focus on building
and refining the example database accessed by the agent’s retrieval mechanism. Formally, we
aim to construct a trajectory database D where each trajectory 7 € D captures a complete task
attempt: 7 = (g,p,{(0,7¢,a¢)}1_1,5). We aim to maximize agent performance across tasks
T: D* = argmaxp E,.7[Success(Agent(g,D,E,T))], where Success() returns the binary
outcome s. We assume that we are given: (1) D initialized with a small number of human-generated
trajectories, (2) a descriptor of the action space, and (3) access to a set of training tasks drawn from T
that the agent can attempt. All three assumptions are typical for ReAct-based agents [9} 10} 13} 12} 4]

4 Related Work

In-context learning for agent improvement Despite the current popularity of reinforcement
learning-based approaches for improving agent capabilities [15H18]], in-context learning offers
distinct scientific and practical advantages. These benefits include model-agnostic portability across
different LLMs, efficiency in low-sample regimes [3} [19], and accessibility when implementation
barriers exist for weight modification methods. Both empirical and theoretical work has established
that in-context performance can scale effectively with additional examples [0, [7} 19, 8], suggesting
that strategic example accumulation should lead to significant performance improvements. We focus
on maximizing the value of limited examples through in-context methods, while hypothesizing that
database quality, not just quantity, critically influences performance scaling. For completeness, we
offer a preliminary investigation in App.[F of how our collected trajectories could potentially serve as
training data for fine-tuning approaches.

Automatic in-context examples Recent work has demonstrated the effectiveness of optimizing
both instructional content and example curation in prompts. DSPy [20] introduced a framework
for optimizing multi-step pipelines through instruction tuning and strategic example curation. Self-
generated examples containing reasoning traces can eliminate the need for human-written examples,
and these self-generated examples often contribute more to performance than optimized instructions
alone [21]]. These approaches typically select fixed exemplars for all task instances, whereas our
method enables the dynamic selection of different in-context examples for each decision.

In-context self-improvement of LLM Agents Self-improvement methods for LLM agents either
aim to solve one task (performing search/optimization) or transfer knowledge from prior tasks to
novel ones (generalization) (see App. [J.2]for further discussion). Approaches to solve a single task
scale the number of sampled solutions at inference time [22H24]] or incorporate feedback from failed
attempts [25]. Knowledge transfer approaches include abstraction-based methods like ExpeL [[13]]
and AutoGuide [12f], while others employ task-specific information in their design—RAP [10]
uses task-specific prompts and AutoManual [4] constructs task-specific state and action spaces (see
App.[IT). Other dimensions of self-improvement include hierarchical execution [26] and optimization
techniques for multi-stage systems[27H29]—techniques complementary to our approach. Rather than
developing complex architectures or leveraging task-specific information, we focus on identifying
which trajectories most contribute to successful outcomes as in-context examples.

In-context reinforcement learning Our work connects to the emerging area of in-context rein-
forcement learning, where language models perform sequential decision-making through contextual
examples rather than parameter updates. Recent work has explored how transformers can implement
RL algorithms in-context, both via algorithm distillation for in-context RL [30]], and via transformers’
ability to learn from reward trajectory contexts via supervised pretraining [31]]. LLMs can balance
exploration-exploitation tradeoffs through intelligent prompt design [32]], and other work suggests
LLMs being able to perform in-context policy iteration [33]]. While these approaches focus on
learning RL algorithms or policies in-context, our work addresses a complementary problem: how to

Algorithm 2 Database Curation Logic for +DB-Curation

1: procedure OPTIMIZEDATABASES({D1, Ds, ..., Dn }, interval)

2 Initialize performance metrics {my, ma, ..., my } for each database
3 fort =1,2,..., Tirqin do

4 fori=1,2,..., N in parallel do

5: Execute task ¢ using database D;

6: If successful, add trajectory to D;

7 Update rolling performance metric m; on recent tasks

8 ift = 10 x 27 for any j € N then

9 Sort databases by rolling performance on recent tasks

0 Replace worst database with copies of best

effectively curate and retrieve trajectory examples to maximize in-context learning performance for
sequential decision-making tasks.

5 Methods

We now discuss three algorithms for constructing database D using a continual collection approach.

5.1 Traj-Bootstrap: Constructing a Database of Previously-Solved Tasks

Our trajectory-bootstrapping algorithm Traj-Bootstrap constructs a trajectory database D by collecting
successful agent experiences. As outlined in Sec. 3] we start with a minimal set of human-provided
exemplars (which could be empty), then grow the database as the agent successfully completes
training tasks. This process creates a positive feedback loop where successful examples help the
agent solve new tasks, generating more successful examples.

Traj-Bootstrap operates on principles similar to reward-weighted regression in reinforcement learn-
ing [34], where only successful trajectories (s = 1) are stored in the database. This filtering
mechanism ensures the agent learns from positive examples while avoiding potentially misleading
failed attempts. Successful trajectories can be leveraged by asking the agent to imitate the successful
patterns in these trajectories. Failed trajectories are more challenging to operationalize due to the
credit attribution problem: it is necessary to identify the ‘good’ vs ‘bad’ parts of the trajectory so the
the agent can imitate the good parts and avoid the mistakes made in the bad parts. Failed trajectories
do offer the opportunity to guide exploration [25]]; we leave this direction to future work.

5.2 +DB-Curation: Database-Level Data Curation

Traj-Bootstrap exhibits unpredictable performance variation
across training (database construction) trials, even when fol-

lowing identical collection procedures. Fig. [I]illustrates this InterCode-SQL

variation across five trials on the InterCode-SQL benchmark 3 N Tt E e ee——
D X © 0.78 NS ot

(a benchmark we use for evaluation in Sec. [6)). The variance N Tl e

arises from two factors: (1) the stochasticity of LLM outputs ﬁ 0.76) it -\<:\ o

creating different initial trajectories, and (2) an amplification Qg 74 { §f -7

effect where early differences in collected examples lead to 2 i

wide performance variation. 0.721 v+ i ; ;

. 0 200 400 600 800
This observation motivates a data curation strategy inspired Num. Training Tasks

by population-based training in reinforcement learning [35].

Fig. [T] shows that some databases lead to better task per- Figure 1: Traj-Bootstrap exhibits
formance than others—so we identify the underperforming variance in test-time success rate.
databases periodically during training and remove them, con- Dashed lines plot success rates
tinuing growth from top-performing ones. We introduce +DB- achieved in five independent trials.
Curation, a population-based training algorithm (Alg. [2) to

identify and propagate the most effective databases during the

bootstrapping process.

Algorithm 3 Database Construction from Top Exemplars for +Exemplar-Curation

1: procedure SELECTEXEMPLARS({D1, Ds, ..., Dn}, Tirain)

2 Dcomposite — @

3 Compute quality metric Q(7) for each trajectory T € Uf\il D;
4: for each task t € T},.qin do

5: T} < {successful trajectories for task ¢ across all databases }
6: if T} is not empty then

7 Select top-1 trajectory from 7} by quality metric)

8 Add selected trajectory t0 Deomposite

9

return Dcomposite

+DB-Curation maintains /N database instances initialized with identical human-provided exemplars.
Each instance is used by a separate agent that accumulates successful trajectories independently.
Curation events occur when the number of tasks attempted reaches size thresholds (starting at size 10
and doubling thereafter). At each threshold, +DB-Curation evaluates database performance based on
the agent’s success rate on all training tasks since the last threshold, and replaces the worst-performing
database with a copy of the top-performing database.

The key insight of this approach is that database quality emerges from collective properties—like
coverage, diversity, and complementarity across examples—not just individual trajectory quality.
Moreover, a single trajectory collected early in training can influence many future trajectories by
guiding the agent toward particular solution strategies, creating cascading database-level effects. By
selecting and propagating entire databases, we preserve these beneficial emergent properties while
using a simple, computationally efficient evaluation metric based on recent performance.

5.3 +Exemplar-Curation: Exemplar-Level Data Curation

While database-level curation via +DB-Curation identifies entire sets of complementary trajectories,
discarding whole databases can eliminate valuable trajectories. We find that even poor-performing
databases contain individual high-quality trajectories that yield better outcomes when used as exam-
ples. Conversely, some successful trajectories may contain bad individual decisions that would be
unhelpful to repeat. This observation motivates +Exemplar-Curation: identifying and selecting indi-
vidual high-quality exemplars across multiple database instances based on their empirical utility as
in-context examples. This approach parallels value-function learning in reinforcement learning [36],
where we estimate the ‘value’ of each trajectory based on its contribution to successful outcomes.

We introduce a retrieval-weighted quality metric analogous to a value function to quantify each
trajectory’s contribution to successful outcomes:

Yier(r) 0i - JilT)
ZiGR(T) fl (T)

where R(7) is the set of tasks for which trajectory T was retrieved, o; is the binary outcome of task 4,
and f;(7) is the retrieval frequency during task .

Q(r) =

ey

This value metric measures how often a trajectory is associated with successful outcomes when
retrieved as an in-context example. It weights outcomes by retrieval frequency, prioritizing trajectories
frequently retrieved during successful completions while penalizing those associated with failures.

Alg. 3] outlines +Exemplar-Curation. For each task in the training set, it identifies all successful
trajectories across all N database instances and selects the exemplar with the highest value according
to the metric. This approach constructs a composite database containing only the most effective
exemplars as measured by their empirical contribution to successful outcomes on subsequent tasks.

5.4 Train-Time vs Test-Time LLM Costs

The curation methods (+DB-Curation and +Exemplar-Curation) maintain /N parallel database in-
stances during training, and therefore require /N x more LLM inference during training compared

to Traj-Bootstrap. However, all methods use the same quantity and distribution of training tasks.
At test time, all three methods have identical computational costs—Alg. [T]is simply provided with
a different database D for each method. This contrasts with approaches that scale the number of
LLM calls per test-time task to improve performance [22H25]]. Our methods shift computational
burden to training while maintaining efficient inference, a property our in-context methods share with
fine-tuning methods.

6 Experiments

We evaluate our database construction methods through experiments addressing three key questions:

» Database scaling: How does task success rate scale with increasing database size?

* Improving database construction: How much do population-based training and exemplar-
level curation improve task success rate?

* Overall effectiveness: How do our approaches compare to alternative approaches leveraging
task-specific domain knowledge or hierarchical algorithms?

6.1 Experimental Setup
6.1.1 Benchmark Tasks

We evaluate our methods on three benchmarks: ALFWorld [37], a text-based environment for
navigation and object manipulation; InterCode-SQL [38]], an interactive coding environment for
SQL query generation; and Wordcraft [39], a simplified adaptation of Little Alchemy requiring
compositional reasoning to combine elements. These benchmarks were selected because they: (1)
provide large enough task pools to support meaningful train/test splits, (2) represent diverse reasoning
challenges relevant to sequential decision-making, and (3) have been used in prior work, enabling
direct comparisons with existing methods.

6.1.2 Methods Compared
Our methods include:

* Fixed-DB: The baseline agent as described in Sec. |2} with a fixed database of human-
provided initial examples and no database growth.

* Traj-Bootstrap: The simple progressive accumulation approach from Sec.

* Traj-Bootstrap+DB-Curation: Our database-level trajectory curation from Alg.

* Traj-Bootstrap+Exemplar-Curation: Our exemplar-level trajectory curation from Alg.

* Traj-Bootstrap+DB+Exemplar-Curation: Applying both our database-level trajectory
curation and propagation and our exemplar-level trajectory curation.

We compare these methods to two hierarchical designs. Autoguide [[12] converts successful tra-
jectories into explicit rules and retrieves the most contextually relevant rules, alongside low-level
trajectories, at inference time. AutoManual [4]] leverages hand-crafted task-specific observation and
action spaces—see App. [l.1]for details. Unless otherwise specified, we use GPT-40-mini as our base
LLM. We report success rates averaged over five random seeds. See App. [E|for additional details.

6.2 Traj-Bootstrap Results

Traj-Bootstrap performance improves with more training tasks Tab.[I| presents the final success
rate metrics for our database construction methods. The performance of Traj-Bootstrap generally
improves with increases in the number of training tasks attempted (Fig. [2)) Performance continues
to improve with more training tasks across all benchmarks, but exhibits diminishing returns—most
gains occur within the first 25% of added training tasks. This efficiency decline occurs because
each new example is retrieved less frequently as the database grows, influencing fewer generations,
a pattern consistent with findings from Bertsch et al. [19] and Agarwal et al. [8]. As mentioned
in Sec.[5} we observe performance variability across trials and within individual trials. Cross-trial
variance indicates that some trials produce higher-performing databases when solving identical tasks.
Within-trial fluctuations show that certain added trajectories can degrade performance.

Method ALFWorld InterCode-SQL Wordcraft

Fixed-DB 0.73£0.02 0.75£0.01 0.55+0.03
Traj-Bootstrap 0.89+0.01 0.79+0.01 0.64+0.03
+DB-Curation 0.91£0.01 0.78£0.01 0.64+0.01
+Exemplar-Curation 0.90+0.02 0.81+£0.01 0.7240.02
+DB+Exemplar-Curation ~ 0.93+0.03 0.82+0.01 0.694+0.01

Table 1: Average success rate of our methods: self-collected trajectories provide the largest
boosts in task success rate. Traj-Bootstrap outperforms Fixed-DB across all three benchmarks.
The combination of +DB-Curation and +Exemplar-Curation provides the best performance on both
ALFWorld and InterCode-SQL. +Exemplar-Curation provides the best performance on Wordcraft.

Method LLM(s) Num Training Tasks ALFWorld

gpt-3.5-turbo

Autoguide [12]] T gpt-d-turbo 100 0.79*
Automanual [4] gp::jf)t-ur?grcl)l 36 0.72+0.01
&P . 36 0.91£0.01

+ gpt-40-mini
y gpt-4o-mini 0 0.73+0.05
Fixed-DB opt-4o 0 0.88+0.02
. gpt-40-mini 100 0.84%0.04
Traj-Bootstrap gpt-do-mini 3500 0.89+0.01
i . gpt-40-mini 100 0.86+0.02
+DB-Curation ¢pt-do-mini 3500 0.91-£0.01
) . gpt-40-mini 100 0.86£0.03
+Exemplar-Curation o\ 40, mini 3500 0.90+0.02
+DB-Curation gpt-4o-mini 100 0.8140.02
+Exemplar-Curation gpt-40-mini 3500 0.93+0.03

Table 2: Comparison of agent success rates on ALFWorld: contextualizing the performance
of Traj-Boostrap. The 15-point boost in average success rate from database construction via
Traj-Bootstrap is similar to that achieved from upgrading Fixed-DB from gpt-4o0-mini to gpt-4o.
The performance of Traj-Bootstrap+DB+Exemplar-Curation exceeds Automanual [4], even though
Automanual utilizes hand-designed observation and action spaces and a better LLM (gpt-4-turbo+gpt-
4o-mini). * indicates results reported from original papers.

+DB-Curation boosts performance on ALFWorld Fig. 3] illustrates how +DB-Curation can
improve upon Traj-Bootstrap’s performance, despite exhibiting occasional performance dips at
smaller database sizes. These dips result from inaccurate estimates (due to low sample count) of
database quality early in the process—introducing noise into the curation process.

+Exemplar-Curation boosts performance on InterCode-SQL and Wordcraft As seen in Tab.
+Exemplar-Curation yields improvements in final task success rates on InterCode-SQL and Wordcraft,
and also boosts success rate at intermediate database sizes for both InterCode-SQL and Wordcraft
(Fig[3). To further highlight the impact of our exemplar-level curation metric, Fig. f] compares
databases built from the ‘best’ trajectories that are the most empirically effective in-context examples
versus the least effective trajectories, as determined by Equation[I]in Sec.[5.3] The ‘best’ curve is
identical to +Exemplar-Curation, while the ‘worst’ curve selects the bottom-1 trajectory instead of
top-1 in Alg.[3] line 7. Using the database of high-quality examples yields a higher success rate across
all database sizes for ALFWorld and Wordcraft, and for smaller database sizes for InterCode-SQL.

+DB+Exemplar-Curation achieves best performance on ALFWorld and InterCode-SQL Fig.
and Tab. |1| highlight that +DB-Curation and +Exemplar-Curation can be complementary, as the
combined +DB+Exemplar-Curation achieves the best final task success rates on both ALFWorld
and InterCode-SQL (0.93 and 0.82 respectively). Note that on Wordcraft, +DB-Curation fails to

ALFWorld InterCode-SQL Wordcraft

® 0.90 ° 0.70
§ ' § 0.78 / § 0.65 -
¥ 0.80 ¥ 0.76 » 0.60 r///
(] () (0]
9 0.70 S0.74 ‘ 9 0.55 /
3> Y- 3 =] 0.50
n ‘ ‘ ‘ ‘ V0721 ‘ ‘ ‘ ‘ w0 ==L ‘ ‘ ‘
0 1000 2000 3000 0 200 400 600 800 0 1000 2000 3000
Num. Training Tasks Num. Training Tasks Num. Training Tasks

—e— Avg of 5 trials
Figure 2: Traj-Bootstrap results: success rate improves with increasing training tasks on all
three benchmarks. Individual trials (5) shown as dashed lines. All benchmarks exhibit diminishing
returns as the database size increases. Trials show substantial performance variability, both within
individual trials and across different trials.

ALFWorld InterCode-SQL Wordcraft
0] v 0.82 v 0.70
w© 0.90 = go.
& >~ & 0.80 & 0.65
@ 0.85 @ 0.78 Y @ Y
% 0.80 g 7z S
[0 0.76 // o 0.60
& 0.75 @074 a
¢ . . . : 0.551¢ i i i .
0 1000 2000 3000 0 200 400 600 800 0 1000200030004000
Num. Training Tasks Num. Training Tasks Num. Training Tasks
—e— Traj-Bootstrap +DB-Curation —e— +Exemplar-Curation —e— +DB+Exemplar-Curation

Figure 3: Success rate comparison for Traj-Bootstrap and its variants (+DB-Curation,
+Exemplar-Curation, +DB+Exemplar-Curation). +DB-Curation enhances final success rate
only on ALFWorld, but improves success rate for smaller DB sizes on all benchmarks. +Exemplar-
Curation delivers success rate gains on both Intercode-SQL and Wordcraft. The combination of both
enhancements delivers the largest gains on both ALFWorld and InterCode-SQL.

provide boosts whether or not +Exemplar-Curation is used—Traj-Bootstrap and +DB-Curation perform
identically (0.64), and +Exemplar-Curation(0.71) outperforms +DB+Exemplar-Curation (0.67).

6.3 Contextualizing performance boosts from Traj-Bootstrap

To contextualize the improvements achieved by Traj-Bootstrap, we compare with several alternative
strategies: test-time sampling, using a better LLM, task-specific strategies, and hierarchical strategies.

Comparison with test-time scaling Our trajectory bootstrapping approaches achieve success
rate improvements equivalent to scaling test-time compute by making multiple task attempts—an
advantage in scenarios where multiple attempts are impractical or when success verification is
unavailable at test time. Furthermore, our approaches provide these benefits without requiring any
modifications to the test-time inference process. To demonstrate the magnitude of this benefit, we
compare our methods to the alternative strategy of making multiple attempts at each test task with
the Fixed-DB baseline and selecting the best outcome [22H24]. Tab. 3] reports the pass @k metrics
for Fixed-DB across all three benchmarks, representing the probability of at least one successful
attempt when making & independent attempts at each task. Using only a single attempt per task, Traj-
Bootstrap approach achieves success rate comparable to Fixed-DB pass@2 or pass@3 on all three
benchmarks. +DB-Curation and/or +Exemplar-Curation perform nearly on the level of Fixed-DB
pass@4 on ALFWorld, pass@5 on InterCode-SQL, and pass@5 for Wordcraft.

Comparsion with model upgrades On ALFWorld, after 3500 training tasks Traj-Bootstrap yields
a 20-point success rate boost over Fixed-DB, significantly outperforming the 15-point improvement
gained by upgrading Fixed-DB to a more powerful LLM.

Comparison with task-specific strategies Tab. |2| shows that Traj-Bootstrap+DB+Exemplar-
Curation using GPT-40-mini achieves a success rate exceeds (0.93) that exceeds that of Automan-
ual [4] configured to use a combination of GPT-4-turbo and GPT-40-mini (0.91). Thus, our methods

ALFWorld InterCode-SQL Wordcraft

0.90
o 0.85 -4 o
a n 0.78 v 0.65
§ 0.80 8 /// 8
0.76
50.75 5 5 060
w0 ‘ ‘ ‘ ‘ wn 0.74 ‘ ‘ ‘ ‘ wn ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 200 400 600 800 0 1000200030004000
Num. Training Tasks Num. Training Tasks Num. Training Tasks

—e— Best Worst

Figure 4: The ‘best’ bootstrapped trajectories compared to the ‘worst’. Databases constructed
from the highest-quality successful trajectory per task, as measured by Eq.[I} outperform databases
built from the lowest-quality successful trajectories on both ALFWorld and Wordcraft. The ‘best’
curve is identical to +Exemplar-Curation, while the ‘worst’ curve selects the bottom-1 trajectory
instead of top-1 in Alg.[3] line 7.

Method ALFWorld Intercode-SQL Wordcraft
Traj-Bootstrap 0.89+0.01 0.79+0.01 0.64+0.03

+DB+Exemplar-Curation ~ 0.9340.03 0.82+0.01 0.69£0.01
Fixed-DB@1 0.73+0.03 0.75+0.01 0.554+0.03
Fixed-DB @2 0.87+0.02 0.78£0.03 0.62+0.02
Fixed-DB @3 0.92+0.02 0.80£0.03 0.64+0.02
Fixed-DB @4 0.94+0.02 0.81£0.02 0.66+0.02
Fixed-DB@5 0.96+0.02 0.82+0.03 0.7240.02

Table 3: Pass@k of Fixed-DB on all benchmarks. On all benchmarks, using only a single test-time
attempt per task, Traj-Bootstrap achieves success rates between that of Fixed-DB at pass@2 and at
pass@3. +DB+Exemplar-Curation achieves success rates between pass@3 and pass@5.

outperform an approach that uses a more powerful LLM and customized observation and action
spaces. See App.[K]for a comparison to hand-crafted approaches on InterCode-SQL.

Comparison with hierarchical algorithms Given 100 training tasks, Autoguide, a hierarchical
rule-learning approach, achieves a 0.79 success rate (using a combination of gpt-3.5-turbo + gpt-4-
turbo). Given the same number of training tasks our best approach achieves significantly greater
success rate (0.86) with gpt-4o-mini (Tab. [2). While this comparison employs different algorithms
and LLMs, the performance of Traj-Bootstrap suggests that self-constructed databases of low-level
trajectories can be competitive with hierarchical approaches.

6.4 Extending Traj-Bootstrap

Can we predict agent success? Beyond improving agent performance, we can also utilize our
self-collected examples to implement useful agent diagnostics, such as predicting an agent’s success
on novel tasks. On InterCode-SQL and Wordcraft, we train a calibrated Random Forest classifier of
agent success based on task goal and initial observation embeddings. Classifier quality (measured
via AUROC) improves with database size, reaching 0.77 for InterCode-SQL and 0.71 for Wordcraft
with our largest databases. The predicted probabilities also closely match empirical success rates,
indicating well-calibrated predictions. See App. [H]for details.

Can we use our self-collected databases for fine-tuning? We fine-tune GPT-40-mini using
trajectories from our best-performing Traj-Bootstrap+DB+Exemplar-Curation database for each
benchmark. The resulting fine-tuned agents (ReAct-Finetune) outperform our in-context approach on
ALFWorld (23-point vs. 20-point boost) and Wordcraft (19-point vs. 14-point), but perform worse on
InterCode-SQL (4-point vs. 7-point). This suggests our self-collected examples are effective not only
for in-context learning but also for creating fine-tuned agents. See App. [F]for details.

Does our approach generalize across models? To test whether our method captures fundamental
task structure rather than model-specific artifacts, we evaluate Mixtral 8x7B Instruct v0.1 using

databases collected with GPT-40-mini. Despite this challenging cross-model transfer scenario, our
full method achieves substantial improvements: +28 points on ALFWorld (0.55 vs. 0.27), +18 points
on IC-SQL (0.70 vs. 0.52), and +12 points on Wordcraft (0.52 vs. 0.40). These gains match or exceed
those observed with GPT-4o0-mini itself, demonstrating that curated databases can effectively transfer
across different model architectures and families. See App.[G]|for details.

7 Discussion

Contextualizing the costs of scaling performance along various axes Our self-improvement
algorithm offers substantial cost savings compared to two common approaches for scaling model
performance: (i) switching to a larger LLM, and (ii) test-time scaling via multiple attempts per task
(assuming access to a perfect verifier).

Our full configuration with 5 parallel databases requires 3,500 x 5 training trajectories on GPT-4o-
mini, with a worst-case database construction cost of $600. After this one-time investment, the per-
task inference cost is only $0.034 (see Appendix D|for detailed token usage and cost calculations). As
shown in Section [6.3] this approach achieves a 0.93 task success rate on ALFWorld—outperforming
GPT-40 with Fixed-DB (0.88) and matching GPT-4o0-mini with Fixed-DB and 3 attempts per task
(0.92).

In comparison, using GPT-40 at inference time costs $0.57 per task, breaking even with our approach
after only 1,100 tasks. Test-time scaling with 3 attempts costs $0.10 per task, breaking even after
8,750 tasks. Beyond these thresholds, our method remains consistently more cost-effective while
delivering superior performance.

At production scale, these savings become substantial. Consider a service processing one million
ALFWorld tasks daily—a modest industry-scale throughput. Our method would save $530,000 daily
versus GPT-4o, or $60,000 daily versus GPT-40-mini with test-time compute, even accounting for all
offline construction costs.

Failed trajectories are used to improve the system During the initial database construction step,
our method achieves train-set success rates of 81.3% (ALFWorld), 76.9% (InterCode), and 58.6%
(Wordcraft) on average across 5 training runs. This means 18.7%, 23.1%, and 41.4% of trajectories
are discarded respectively. While failed trajectories are not retained for in-context use at test time,
failed trajectories are used to improve agent performance via our Exemplar-Curation algorithm
(Section [5.3)). We do not provide the failed trajectories directly in-context due to the challenges of
credit attribution—given a long trajectory with a single incorrect action, it is challenging for the LLM
to identify the actions within that trajectory to emulate and the ones to avoid repeating.

Future directions The success of our approach reveals performance gains that stem primarily
from accumulating successful examples, establishing a foundation for agent self-improvement where
the quantity and quality of accessible data rivals the importance of architectural complexity. This
parallels trends in traditional deep learning, where data curation often yields substantial improvements.
Our findings point to promising research directions that approach LLM agent enhancement from a
data-centric perspective—advancing both strategic data collection methods (balancing exploration
versus exploitation across diverse tasks) and refined filtering techniques to maximize performance.

Acknowledgments Thank you to Brennan Shacklett, Purvi Goel, Zander Majercik, William Wang,
Bradley Brown, Jon Saad-Falcon, and William Mark for valuable discussions and feedback. This
work was supported by the Stanford HAI SEAMS program, Roblox, and Meta, and API credits were
provided by OpenAl and together.ai.

10

References

(1]

(2]

(3]

[4

—_

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently.
arXiv preprint arXiv:2303.03846, 2023.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automanual:
Generating instruction manuals by 1lm agents via interactive environmental learning. arXiv
preprint arXiv:2405.16247, 2024.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. arXiv
preprint arXiv:2410.13825, 2024.

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning, pages 35151-35174.
PMLR, 2023.

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao
Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning.
Advances in Neural Information Processing Systems, 37:76930-76966, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira
Kinose, Koki Oguri, Felix Wick, and Yang You. Rap: Retrieval-augmented planning with
contextual memory for multimodal 1lm agents. arXiv preprint arXiv:2402.03610, 2024.

Ruiwen Zhou, Yingxuan Yang, Muning Wen, Ying Wen, Wenhao Wang, Chunling Xi, Guogiang
Xu, Yong Yu, and Weinan Zhang. Trad: Enhancing Ilm agents with step-wise thought retrieval
and aligned decision. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 3—13, 2024.

Yao Fu, Dong-Ki Kim, Jackyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon
Bae, and Honglak Lee. Autoguide: Automated generation and selection of context-aware
guidelines for large language model agents. arXiv preprint arXiv:2403.08978, 2024.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
Llm agents are experiential learners. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19632-19642, 2024.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 2998-3009,
2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

11

[16] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36:53728-53741, 2023.

[17] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[18] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[19] Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant, Matthew R Gormley, and Graham
Neubig. In-context learning with long-context models: An in-depth exploration. arXiv preprint
arXiv:2405.00200, 2024.

[20] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

[21] Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei
Zaharia, and Omar Khattab. Optimizing instructions and demonstrations for multi-stage
language model programs. arXiv preprint arXiv:2406.11695, 2024.

[22] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[23] Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen
Han, Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm
search for code generation. arXiv preprint arXiv:2409.03733, 2024.

[24] Xiyao Wang, Zhengyuan Yang, Linjie Li, Hongjin Lu, Yuancheng Xu, Chung-Ching Lin, Kevin
Lin, Furong Huang, and Lijuan Wang. Scaling inference-time search with vision value model
for improved visual comprehension. arXiv preprint arXiv:2412.03704, 2024.

[25] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

[26] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[27] Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov,
Etash Guha, E Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, et al. Archon: An
architecture search framework for inference-time techniques. arXiv preprint arXiv:2409.15254,
2024.

[28] Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

[29] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiagi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow
generation. arXiv preprint arXiv:2410.10762, 2024.

[30] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steiger-
wald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement
learning with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

[31] Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
Emma Brunskill. Supervised pretraining can learn in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36:43057-43083, 2023.

12

[32] Zhenwen Dai, Federico Tomasi, and Sina Ghiassian. In-context exploration-exploitation for
reinforcement learning. arXiv preprint arXiv:2403.06826, 2024.

[33] Ethan Brooks, Logan Walls, Richard L Lewis, and Satinder Singh. Large language models can
implement policy iteration. arXiv preprint arXiv:2210.03821, 2022.

[34] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for
operational space control. In Proceedings of the 24th international conference on Machine
learning, pages 745-750, 2007.

[35] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, et al. Population based
training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

[36] Andrew G Barto. Reinforcement learning: An introduction. by richard’s sutton. SIAM Rev, 6
(2):423, 2021.

[37] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Co6té, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning. arXiv preprint arXiv:2010.03768, 2020.

[38] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. Advances in Neural Information
Processing Systems, 36:23826-23854, 2023.

[39] Minqi Jiang, Jelena Luketina, Nantas Nardelli, Pasquale Minervini, Philip HS Torr, Shimon
Whiteson, and Tim Rocktéschel. Wordcraft: An environment for benchmarking commonsense
agents. arXiv preprint arXiv:2007.09185, 2020.

[40] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[41] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[42] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. arXiv preprint arXiv:2401.13919, 2024.

[43] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/
abs/1908.10084!

[44] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

[45] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744-20757, 2022.

[46] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

13

http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

A Limitations and Broader Impacts

We make the assumption that we are given a few human-provided examples at the start of the database
construction process—an assumption standard in the Agentic literature 9L [13| 12} 4, 10]]. In App. I}
we explore the alternate setting of starting from an empty database, and look forward to further
research on bootstrapping from zero human examples in the future. Our algorithm is dependent
on the in-context capabilities of LLMs—so our algorithms may be less effective if using an LLM
with weaker in-context capabilities than gpt-4o-mini, but may be more effective if paired with more
advanced LLMs. In addition, our algorithm generally produces improvements in task success rates,
but task success rates are not monotonically increasing, and we hope future work will help improve
both the monotonicity and sample efficiency of our algorithm.

This work has the potential to allow LLM Agents applied to a variety of task domains to self-improve.
This provides a variety of benefits in terms of task performance, but could lead to applications in the
future where the agents perform reward hacking-type behavior—performing undesirable behaviors
that are not captured in task success/failure. Since the behavior of our agents is controlled via
in-context examples, a potential mitigation technique could be to manually inspect the databases of
self-generated examples, or even use an LLM Judge to inspect the examples.

B Note on Sequential Decision-Making Tasks

We focus on multi-step sequential decision-making tasks where agents must produce a series of actions
over time based on observations of the environment. The sequential nature of these tasks introduces
unique challenges for LLM agents, as they must interpret intermediate environmental feedback,
maintain coherent reasoning across multiple steps, and adapt their strategy based on the evolving
task state. This contrasts with one-shot generation tasks (e.g., solving math problems [40]], one-shot
code generation [41]]) where feedback is only available after the complete solution is provided. Our
example-driven learning strategy is potentially also suitable to single-step decision-making tasks, but
we focus on the multi-step setting due to its applicability to a number of agentic tasks in real-world
settings (embodied agents [14]], browser-based tasks [42], etc.).

Formally, these tasks can be modeled as Partially Observable Markov Decision Processes (POMDPs),
represented by the tuple (S,0, A, T, R,v), where S denotes the underlying state space, O the
observation space, A the action space, 7 : S x A — S defines the deterministic transition function,
R : S x A — R is the reward function, and v € [0, 1] is the discount factor. The partial observability
reflects that agents don’t have direct access to the full environment state but rather receive observations
that provide limited information.

Given a task goal g, an episode consists of the agent interacting with the environment for a maximum
of T timesteps. At each timestep ¢, the agent receives an observation o; € O of the current state,
takes an action a; € A, and the environment transitions to the next state according to the transition
function 7. In our setting, we specifically consider sparse-reward environments where success is
only determined at the end of an episode—the agent receives R = 1 for successful task completion
and R = 0 otherwise. This is a standard setting in prior agentic work [9} [13 12} |4].

C Key Agent Details

In Sec.|2| we establish an agent design that enables it to learn in-context from its own self-collected
experiences. Here, we elaborate on a few key design decisions in our agent design:

» Standardized prompts: we use the same simple, task-agnostic prompt templates for all
tasks, rather than writing new prompts per task. These prompts are in App. [E] Alternate
appraoches incorporate domain-specific information into their prompts—we discuss these
approaches in Appendices[J.T]and

» Two-level retrieval: We retrieve trajectories at both trajectory level (for planning) and
state level (for reasoning and action selection), enabling the agent to leverage both strategic
patterns and situation-specific techniques. Database D contains self-collected trajectories,
and retrieval is performed at the trajectory level for the initial plan p, and in the state-level
observation-reasoning-action loop for both r; and a;.

14

Algorithm 4 Multi-key Retrieval

1: procedure MULTIKEYRETRIEVAL(D, traj_keys, state_key, query, k, window_size)

2:

3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:

similarities < []
for each trajectory 7 in D do
sim < 0
for each key in traj_keys do
sim < sim + CosineSimilarity (query[key], 7[key])

sim < sim/|traj_keys| > Average similarity across trajectory keys
similarities.append(sim, 7)
similar_trajectories <— TopK (similarities, k)
if state_key is not None then > State-level retrieval with window
windowed_results + ||
for each trajectory 7 in similar_trajectories do
state_similarities < |]
for each state s in 7.states do
state_sim < CosineSimilarity(query[state_key], s[state_key])
state_similarities.append (state_sim, s, index(s))
_, most_similar_state, idx < Max(state_similarities)
window_start «— max (0, idx — | window_size/2])
window_end <— min(|7.states|,idx + [window_size/2])
windowed_results.append(7.states[window_start : window_end)])
return windowed_results
else
return similar_trajectories

* Multi-key retrieval: All retrieval is performed by KNN, with similarity metric defined as the
average of cosine similarities across the specified ‘key’ variables. For instance, in Line 3 of
Alg.[I] we retrieve from D using two keys: goal ¢ and plan p. We return similar trajectories
based off the average of the cosine similarities of goals and plans when comparing each
trajectory to the current trajectory. When doing state-level retrieval (Lines 7 and 10), we
additionally find the most similar states within the selected trajectories via state-level key
o; or ¢, then return a window of states around the most similar state. This is similar to the
retrieval scheme in [10]. See detailed pseudocode for retrieval in Alg. 4]

* Thought-based retrieval: For the first step of a trajectory, we retrieve using the trajectory-
level keys (g,p) as well as the current observation o1 (Alg. E], line 6)-but for all subsequent
steps we use reasoning 7 as a key instead of observation o; (Alg.[I] line 9). This approach,
inspired by Zhou et al. [[L 1], enables generalization across trajectories with similar reasoning,
and similarity across natural-language r; can be handled by generic embedding functions
more easily than potentially bespoke observations o,. By retrieving at every step, we aim to
retrieve the most relevant trajectories for each decision.

* Generic embedding mechanism: Since g, p, and r, are all natural-language strings, we
employ standard embeddings (all-MiniLM-L6-v2 [43]) that generalize across domains
without task-specific engineering.

D Token Usage and Cost Analysis

We provide a detailed breakdown of token usage and costs for our self-improvement approach across
all three benchmarks. This analysis demonstrates the economic viability of our method compared to
alternative approaches for scaling model performance.

D.1 Per-Episode Token Usage

Table 4 summarizes the average token consumption per episode across our three evaluation domains.
Token counts reflect the full agent execution trace, including both reasoning and action generation

steps.

15

Benchmark Avg Input Tokens Avg Output Tokens Max Episode Length

Wordcraft 5,047 68 8 requests
InterCode 5,385 37 20 requests
ALFWorld 3,706 30 61 requests

Table 4: Average token usage per episode across benchmarks. Episode length refers to the maximum
number of API requests needed to complete a task.

The token usage pattern reflects our agent architecture design. For any task, we require 2 requests
per step (one for reasoning, one for acting), plus 1 additional request when using planning at
the episode start. The variance in input token counts primarily reflects differences in accumulated
trajectory history within an episode.

D.2 Per-Episode Cost Breakdown

Using GPT-40-mini pricing (as of writing: $0.15 per 1M input tokens, $0.60 per 1M output tokens),
we calculate the cost per episode for each benchmark:

Wordcraft: Cost = (5,047 x 0.15 + 68 x 0.60)/1,000,000 x 8 ~ $0.006 per episode
InterCode: Cost = (5,385 x 0.15 4 37 x 0.60)/1,000,000 x 20 = $0.016 per episode
ALFWorld: Cost = (3,706 x 0.15 + 30 x 0.60) /1,000,000 x 61 ~ $0.034 per episode

D.3 Training Database Construction Costs

Our full self-improvement configuration uses 5 parallel databases with trajectory bootstrapping and
exemplar curation. For ALFWorld, we collect 3,500 training trajectories per database; for Wordcraft,
we collect 4,000 trajectories per database; and for InterCode, we collect 800 trajectories per database.
The worst-case cost for database construction is:

Benchmark Episodes per DB Total Episodes Total Training Cost Per-Task Inference Cost

Wordcraft 4,000 20,000 $120 $0.006
InterCode 800 4,000 $64 $0.016
ALFWorld 3,500 17,500 $595 $0.034

Table 5: Training and inference costs across benchmarks. Total episodes calculated as episodes per
database x 5 parallel databases.

Note that these costs represent one-time upfront investments. Once the databases are constructed,
the per-task inference cost remains constant regardless of how many test-time tasks are processed.

D.4 Cost Comparison with Baseline Approaches

We compare our approach against two common alternatives:

Alternative 1: Using a larger model (GPT-40). At current pricing ($5.00/$15.00 per 1M input/out-
put tokens), GPT-40 costs approximately:

» Wordcraft: $0.20 per task
* InterCode: $0.54 per task
* ALFWorld: $0.57 per task

Alternative 2: Test-time scaling with multiple attempts. Using GPT-40-mini with 3 attempts per
task (assuming a perfect verifier):

16

» Wordcraft: $0.018 per task
* InterCode: $0.048 per task
* ALFWorld: $0.102 per task

D.5 Breakeven Analysis
For ALFWorld (our most expensive benchmark), our method breaks even with:

* GPT-4o after $595/($0.57 — $0.034) ~ 1,110 test tasks
* GPT-40-mini with 3 attempts after $595/($0.102 — $0.034) =~ 8,750 test tasks

D.6 Production-Scale Cost Savings

To contextualize these savings at production scale, consider a hypothetical agentic service processing
1 million ALFWorld tasks daily (a modest industry-scale throughput):

Daily cost comparison:

¢ Our approach: 1M x $0.034 + $595 (amortized) =~ $34,595
» GPT-40 baseline: 1M x $0.57 = $570,000
¢ GPT-40-mini with 3 attempts: 1M x $0.102 = $102,000

Daily savings:

* vs. GPT-40: $535,405 ($195M annually)
* vs. 3-attempt baseline: $67,405 ($24.6M annually)

These calculations demonstrate that even modest upfront investments in self-improvement can yield
substantial returns at production scale, while simultaneously improving task performance.

E Additional Implementation Details

E.1 Hyperparameters

Unless otherwise specified, we use GPT-40-mini as our base LLM (temperature 0.1). For Fixed-DB
and all Traj-Bootstrap agents, we retrieve the top-k most similar trajectories at each decision step
(k = 6 for ALFWorld and InterCode-SQL, 10 for Wordcraft). We initialize each database with a
small human-provided example set (18 for ALFWorld, 10 for InterCode-SQL, 4 for Wordcraft). With
+DB-Curation, we maintain N = 5 database instances with curation every time the database size is
doubled, starting with a minimum size of ten trajectories. We report success rates averaged over five
random seeds. The standard deviation of the success rates is also reported. By default, we report
success rate given the database at the end of the training process.

E.2 Prompt Templates

Across all benchmarks, we use standardized prompt templates for the core components of our
retrieval-based ReAct agent. The same templates were used across all benchmarks with no task-
specific modifications. These templates are intentionally minimalist, focusing on providing the
necessary context and retrieved examples while avoiding task-specific prompt engineering.

The templates are included below. Across all templates, the in-context examples follow the format
specified in the prompt itself (for plan, the in-context examples are of form “goal,plan”, etc):

Plan:

17

1 system_prompt: 'You are an expert at generating high-level plans of actions to
— achieve a goal.\n Here is your action space: {action_space}.\n Here are
— some examples of goal,plan from episodes that successfully achieved
— similar goals: {examples}'

2 user_prompt: 'goal: {goal}\n plan: '

Reason:

| system_prompt: 'You are an expert at reasoning about the most appropriate
< action to take towards achieving a goal.\n Here is your action space:
— {action_space}.\n Here are some examples of
— goal,plan,observation,reasoning,action from episodes that successfully
< achieved similar goals: {examples}'

2 user_prompt: 'goal: {goal}\n plan: {plan}\n trajectory: {trajectory}\n
— reasoning: '

Act:

1 system_prompt: 'You are an agent in an environment. Given the current
— observation, you must select an action to take towards achieving the goal:
— {self.goal}.\n Here is your action space: {action_space}.\n Here are some
— examples of goal,plan,observation,reasoning,action from episodes that
— successfully achieved similar goals: {examples}'

2 user_prompt: 'goal: {goall}\n plan: {plan}\n trajectory: {trajectory}\n action:

(IS U

E.3 Retrieval Implementation

For all retrieval steps, we implement hybrid search across all the desired retrieval keys—ex. goal, plan,
observation, reasoning. We return the top-k examples by averaged distance across each of the keys.
We implement a sliding window approach for state-level retrieval to enhance contextual relevance—we
include the surrounding context (preceding and following states) up to a window of 5 steps to provide
coherent episode fragments.

The retrieval mechanism is implemented using FAISS [44] for efficient similarity search as the
database grows. We use exact nearest neighbor search.

E.4 Population-Based Training Details

Our database-level curation approach maintains a population of 5 database instances. Each instance
is initialized with the same set of human-provided exemplars. The population undergoes curation
every time the database size doubles, and performance is evaluated on the tasks attempted since the
previous doubling.

The replacement strategy follows standard population-based training practices: the bottom 20% of
databases (based on validation performance) are replaced with copies of the top 20%.

E.5 Quality Metric Computation

For exemplar-level curation, we track the retrieval patterns of each trajectory throughout the training
process. For each task, we record: 1. Which trajectories were retrieved 2. How many times each
trajectory was retrieved during the solution process 3. Whether the task was successfully completed

After completing all training tasks, we compute the quality metric Q(7) for each trajectory T as:

Yier(r) 0i - JilT)
ZiER(T) fi(7)

where R (7) is the set of tasks for which trajectory 7 was retrieved, o; € {0, 1} is the outcome of task
i, and f;(7) is the retrieval frequency of trajectory 7 during task i.

Qr) = @

18

Method ALFWorld InterCode-SQL Wordcraft

Traj-Bootstrap+DB+Exemplar-Curation ~ 0.934-0.03 0.82+£0.01 0.69+0.01
ReAct-Finetune 0.96+0.01 0.79£0.01 0.74+0.01

Table 6: Trained on the same data, fine-tuned agent ReAct-Finetune is competitive with our best
in-context approach. This suggests that our self-collected data is effective not only for in-context
prompting but also for creating fine-tuned agents. All values are averages over 5 trials.

To ensure statistical significance, we only compute the quality metric for trajectories that were
retrieved for at least 3 different tasks. For trajectories with insufficient retrieval data, we assign a
neutral quality score equal to the average success rate across all tasks.

E.6 Note on planning step

Following the convention from RAP [10], we omit the planning step on benchmarks with short
trajectory length (Intercode-SQL, Wordcraft). This planning step is valuable for maintaining long-
horizon coherence on the ALFWorld benchmarks (30 steps), and is standard in prior ReAct-based
agentic work [10} [13} [12]], whether the planning step is explicitly separate from reasoning, or
incorporated into the first reasoning step.

F Can Self-Collected Examples Improve a Fine-Tuned LLLM Agent?

We have shown that self-collected databases improve the performance of in-context LLM agents.
Here, we test whether the same data can also benefit fine-tuning.

Using the OpenAl fine-tuning API, we fine-tune GPT-40-mini on each benchmark using data from our
best-performing database construction method: Traj-Bootstrap+DB+Exemplar-Curation, collected
over the full training set. We fine-tune using a simple ReAct-format prompt:

T

2 'system':'You are a ReAct agent that helps users accomplish tasks. Given a
goal, you will receive observations about the environment and respond with
your reasoning and actions. For each observation, first think through the
problem step by step (Thought), then decide on an action (Action). Your
actions should be clear, concise, and directly executable in the
environment.',

'user':'Goal: {goal} \n Initial observation: {observations[0]}',
'assistant':'Thought: {reasoning[i]}\nAction: {action[i]}',
'user':'Observation: {observations[i+1]}',

ELLrdg

BT Y, T Nt}

We refer to the resulting fine-tuned model as ReAct-Finetune. To run the agent, we prompt it with a
goal and initial observation, then alternate assistant messages (for reasoning and action) with user
messages (for new observations).

Tab. [] shows that ReAct-Finetune slightly outperforms the in-context agent on ALFWorld (0.96
vs. 0.93) and Wordcraft (0.74 vs. 0.69), while performing slightly worse on InterCode-SQL (0.79
vs. 0.82). These results suggest that self-collected examples are effective not only for in-context
prompting but also for creating competitive fine-tuned agents.

G Can Databases Transfer Across LLMs?

To evaluate whether our self-improvement approach captures fundamental task structure or merely
exploits model-specific artifacts, we conducted additional experiments using Mixtral 8x7B Instruct,
a popular open-source model with different architecture and capabilities than GPT-40-mini. This
experiment tests a challenging transfer scenario: databases collected with GPT-40-mini are used to
improve a different model at test time, without any additional data collection or fine-tuning.

19

G.1 Experimental Setup

We evaluate Mixtral 8x7B on all three benchmarks, comparing the Fixed-DB baseline to Traj-
Bootstrap+DB+Exemplar-Curation. Critically, all databases were previously collected using GPT-40-
mini trajectories. Each configuration is evaluated over 5 random seeds, with results averaged across
trials. As seen in Table[7] despite the distribution gap between the collection model (GPT-40-mini)
and deployment model (Mixtral 8x7B), our self-improvement methods yield substantial performance
gains across all benchmarks.

Benchmark Fixed-DB TrajBS+DB+Exemplar-Cur Improvement

ALFWorld 0.27 0.55 +28 points
IC-SQL 0.52 0.70 +18 points
Wordcraft 0.40 0.52 +12 points

Table 7: Cross-model generalization results with Mixtral 8x7B Instruct v0.1 using databases collected
with GPT-40-mini. All results averaged over 5 trials. Full Method refers to Traj-Bootstrap + DB-
Curation + Exemplar-Curation.

G.2 Comparison with In-Distribution Performance

Benchmark GPT-40-mini Improvement Mixtral 8x7B Improvement

ALFWorld +20 points +28 points
IC-SQL +7 points +18 points
Wordcraft +14 points +12 points

Table 8: Comparison of performance improvements (Fixed-DB vs. Traj-BS+DB+Exemplar-Cur)
between the collection model (GPT-40-mini) and a different deployment model (Mixtral 8x7B).

Table [§] compares the improvements observed with Mixtral 8x7B against those achieved with GPT-
4o0-mini (the collection model) using the same methods. The improvements with Mixtral 8x7B match
or exceed those observed with GPT-40-mini on all three benchmarks. This suggests that our approach
captures fundamental task structure—such as effective exploration strategies, common failure modes,
and successful action sequences—rather than exploiting model-specific quirks or artifacts.

H Can We Predict Agent Success Rates?

We have shown that increasing the number of self-collected examples improves agent performance.
Here, we test whether the same examples can also predict performance on new tasks.

On InterCode-SQL and Wordcraft, task difficulty is partly observable from the goal g and initial
observation o;. For InterCode-SQL, g is a natural-language query. For Wordcraft, g is the desired
element and o; specifies available crafting elements. In contrast, ALFWorld task difficulty depends
heavily on scene layout, which g and 0; do not reveal. We therefore exclude ALFWorld from this
analysis.

We use the same embedding model as in retrieval (all-MiniLM-L6-v2 [43]) to encode the concatenated
string [g; 01]. We train a calibrated Random Forest classifier to predict task success/failure, calibrating
its outputs via 5-fold cross-validation with a learned sigmoid function. For each of 5 independent
Traj-Bootstrap trials, we evaluate (1) the classifier’s AUROC on held-out tasks, and (2) its calibration.

As shown in Fig. [5] prediction performance improves as the database grows. For InterCode-SQL,
AUROOC rises from 0.60 (100 tasks) to 0.77 (800 tasks). Wordcraft shows a similar trend, improving
from 0.50 (100 tasks) to 0.71 (4000 tasks). In both cases, predictive accuracy increases alongside
task performance.

Fig.[6] shows the calibration of the final classifiers (trained on all available training tasks). Predicted
success probabilities closely match observed success rates, indicating well-calibrated models.

20

1.00 1.00
0.751 0.754
<
© 0.50 o 0.501
g 2
*0.25 0.25
0.00 . " " " 0.00+ . . .
200 400 600 800 0 1000 2000 3000
Num training tasks Num training tasks
(a) InterCode-SQL (b) Wordcraft

Figure 5: AUROC of success prediction improves with more self-collected examples. Performance
continues to rise with increasing database size.

1.0 1.0 7

0.51 0.5

Observed Task Success Rate
Observed Task Success Rate

0.01; i i 0.0+ i i
0.0 0.5 1.0 0.0 0.5 1.0
Predicted Prob of Task Success Predicted Prob of Task Success
(a) InterCode-SQL (b) Wordcraft

Figure 6: Predicted probabilities are well-calibrated. For both benchmarks, predicted and empirical
success rates generally align.

I Isit Possible to Bootstrap an Agent Without Initial Hand-Crafted
Examples?

Providing a small number of hand-crafted in-context examples is standard practice in the LLM agent
literature [9, 113} [12} 4] [10]. However, what if we initialized Traj-Bootstrap with an empty database?
In order to understand the value of the initial human-provided examples, we test Traj-Boostrap with
and without the initial human-provided examples on Wordcraft. We refer to the variant initialized
with an empty database as -Human-Examples. Traj-Bootstrap, initialized by default with a database
of 5 human-provided trajectories for Wordcraft, achieves better performance with these starting
examples than when initialized from an empty database (-Human-Examples). Performance still scales
with database size for -Human-Examples—but in this case fails to reach the performance achieved
via 5 human-provided examples, even after self-collecting trajectories on 4000 training tasks. On at
least this one task, the initial human-provided trajectories shaped the reasoning and action patterns of
the agent in a way that boosted the continual database construction process. We leave exploration of
hand-crafting these in-context examples to future work.

J Key Details of Prior Agentic Approaches

J.1 How does Automanual Leverage Hand-Crafted Information

Rather than learning from self-collected examples, an alternate approach to agent construction is to
leverage practitioner domain knowledge. Beyond implementing both a hierarchical learning system
and code-based action spaces, Automanual [4] incorporates domain knowledge about the ALFWorld
task into multiple components of the algorithm. In this section we include some code from the official
Automanual GitHub to illustrate.

Observation spaces : Automanual uses a modified observation space that enhances the ALFWorld
string by adding two critical pieces of information: 1) The current location of the agent, 2) What the

21

Wordcraft

(O]
s 0.60
o
n 0.55
(%]
3 0.50
o

& 0.45

0 10002000 3000 4000
Num. Training Tasks

—e— Traj-Bootstrap
-Human_Examples

Figure 7: Ablating the value of initial human-provided examples, Wordcraft. Traj-Bootstrap,
initialized by default with a database of 5 human-provided trajectories for Wordcraft, achieves better
performance with these starting examples than when initialized from an empty database (-Human-
Examples). Performance still scales with database size for -Human-Examples—but in this case fails to
reach the performance achieved via 5 human-provided examples, even after self-collecting trajectories
on 4000 training tasks.

agent is currently holding. Both of these pieces of information typically have to be deduced from the
trajectory of previous observations and actions, but Automanual tracks them explicitly:

1 if "Nothing happens" not in observation:

2 self.last_obs = observation

3 if "go to" in script:

4 self.cur_loc = re.search(r'go to (\S+)', script).group(l)

5 self.cur_loc_info = observation

6 if "open" in script or "close" in script:

7 self.cur_loc_info = observation

8 if "take" in script:

9 self .holding = re.search(r"(?<=take\s) (.*?7) (?=\sfrom)",
< script).group(1)

10 self.cur_loc_info = ""

11 if "put" in script:

12 self .holding = "nothing"

13 self.cur_loc_info = ""

14 elif "go to" in script:

15 loc = re.search(r'go to (\S+)', script).group(1l)
16 if loc == self.cur_loc:

17 observation = self.cur_loc_info

18 observation += f" You are at {self.cur_loc} and holding {self.holding}."

Action spaces : In ALFWorld, any task typically involves three main components: 1) Searching for
an object, 2) Performing an action with the object (heating, cooling, cleaning, etc.), 3) Placing the
object somewhere. Automanual significantly simplifies both the search and placement operations by
providing multi-action helper functions within its code-based action space:

Define a helper method to find object that is needed
def find_object(agent, recep_to_check, object_name):
for receptacle in recep_to_check:
observation = agent.go_to(receptacle)
Check if we need to open the receptacle. If we do, open 2t.
if 'closed' in observation:
observation = agent.open(receptacle)
Check if the object ts in/on the receptacle.
if object_name in observation:
object_ids = get_object_with_id(observation, object_name)
return object_ids, receptacle
return None, None

© ® N9 o L R W~

w N~ o

22

14 # Define a helper method to put object in/on the target receptacle
15 def go_to_put_object(agent, target_receptacle, object_id):

16 observation = agent.go_to(target_receptacle)

17 # check <f target_receptacle is closed. If so, open tt.

18 if 'closed' in observation:

19 observation = agent.open(target_receptacle)

20 observation = agent.put_in_or_on(object_id, target_receptacle)
21 return observation

J.2 A note on training and test sets

The distinction between how different techniques leverage data is crucial in understanding the
generalization capabilities of LLM agents. We can categorize existing approaches based on how they
treat training and test data:

Single-Task Optimization : Some approaches focus exclusively on improving performance on
a single task instance without concern for generalization. For example, Shinn et al. [25] leverages
feedback from failed attempts to incrementally improve performance on the same task. Similarly,
search methods [22, 24] expand the solution space for a specific problem instance. While these
approaches can solve individual tasks, they don’t transfer knowledge across different problems,
essentially ‘overfitting® to a single instance.

Mixed Train-Test Evaluation : Some recent work blurs training and test boundaries. For instance,
RAP [[10] makes multiple passes over the same dataset, allowing the system to ‘learn‘ from some
test examples before evaluating on others within the same set. This approach does not assess true
generalization capability, as the model has indirect exposure to the test distribution during its learning
phase.

Full Train-Test Separation : Several papers maintain a clear separation between training and
test data: 1) ExpeL [13] extracts general rules from a training set of trajectories and applies them
to entirely separate test tasks, 2) AutoGuide [12]] generates contextual guidelines from training
experiences that are evaluated on distinct test scenarios. 3) AutoManual [4] constructs hierarchical
‘manuals‘ from training interactions that are then applied to novel test tasks.

Our approach similarly ensures that trajectories used for database construction come exclusively
from designated training tasks, with evaluation conducted on a separate set of test tasks never seen
during the database construction phase. This separation is essential for validating that the knowledge
captured by the agent generalizes to new problems rather than memorizing specific solutions.

K Comparison to Hand-Crafted InterCode-SQL Agent

We further contextualize the performance of Traj-Bootstrap by comparing to two hand-crafted agents
on InterCode-SQL. The Intercode-SQL paper [38] provides a hand-crafted agent, GameSQL to solve
the task, and optionally provides the agent with a ‘handicap’—giving the agent information on all
relevant parts of the database schema. We denote the assisted version as GameSQL+Cheat. Neither
agent provides in-context examples, and both share a bespoke, hand-crafted prompt (see App. [N).

As seen in Tab.[9] Fixed-DB performs similarly to GameSQL (0.74 vs 0.73), and the performance
of our best method, +DB+Exemplar-Curation, approaches the performance of GameSQL+Cheat
(0.82 vs 0.84). Therefore, our database-construction techniques lift the performance of a generic
ReAct-style agent nearly as much as the lift provided to the hand-crafted agent via ‘handicap’ access
to the database schema.

23

Method Intercode-SQL Success Rate

GameSQL 0.73
GameSQL~+Cheat 0.84
Fixed-DB 0.74
Traj-Bootstrap 0.79
+DB-Curation 0.78
+Exemplar-Curation 0.81
+DB+Exemplar-Curation 0.82

Table 9: Comparison of agent success rates on InterCode-SQL: contextualizing the performance
of Traj-Boostrap. Without cheats, the hand-crafted GameSQL agent (0.73) performs comparably to
Fixed-DB (0.74). With handicap access to the database schema, GameSQL+Cheat (0.84) slightly
outperforms +DB+Exemplar-Curation (0.82). The boost from our database-construction techniques
nearly matches the boost from providing the GameSQL agent with access to privileged database
schema information.

L Benchmark Details

L.1 ALFWorld

ALFWorld [37]] is a text-based environment that aligns with embodied tasks, allowing agents to navi-
gate and manipulate objects through textual commands. We use the standard ALFWorld benchmark
consisting of 3500 training tasks and 134 out-of-distribution test tasks across 6 task categories:

* Pick & Place: Find and move objects to specified locations

* Clean & Place: Find, clean, and place objects

* Heat & Place: Find, heat, and place objects

* Cool & Place: Find, cool, and place objects

* Pick Two & Place: Find and move two objects to a specified location

* Look at Object: Find an object and examine it under light

Following [[10]], for the ALFWorld benchmark we perform similarity search over task categories
in addition to the other retrieval keys (goal, plan, observation, action). We do this to follow the
convention in this prior work.

For our initial human-provided exemplars, we used the 18 successful trajectories (3 per task category)
provided by Zhao et al. [13]]. These trajectories were used to initialize all database instances.

The success criteria for ALFWorld tasks are defined by the environment and require the agent to
satisfy all conditions specified in the goal. For example, in a ‘Heat & Place* task, the agent must find
the target object, place it in the microwave, turn on the microwave, and finally place the heated object
at the specified destination. Both Autoguide and Automanual allow 50 actions for task completion—
but choosing to employ "reasoning" counts as an action. Since we force our agent to reason at every
step, we allow our agents (Fixed-DB, Traj-Bootstrap and variants) only 30 steps for task completion
(on Autoguide and Automanual, the agent does not reason in practice at most steps ex. in a search
procedure).

For this benchmark, we do not provide an action space string to the LLM, relying purely on the
in-context examples to communicate the action space.

L.2 InterCode-SQL

InterCode-SQL [38]] is an interactive coding environment for evaluating language agents’ SQL
programming abilities. We use a subset of the InterCode benchmark focusing on SQL query
generation, built upon the Spider SQL dataset. Of the 1034 tasks in the dataset, we randomly assign
800 tasks to train and the remaining 234 tasks to test.

24

Each task provides a natural language query request. The agent must generate a syntactically correct
SQL query that retrieves the requested information. The agent must first execute queries to understand
the database schema. The environment provides feedback on syntax errors and execution results, but
the agent is only allowed to submit a solution once.

The success criteria for InterCode-SQL tasks require the agent to submit a solution query within 10
steps. The environment executes the query and compares the results against a ground-truth reference.

For our initial human-provided exemplars, we collected 10 human-created trajectories for 10
randomly-selected training tasks. These trajectories were used to initialize all database instances. For
all solved trajectories, we append the solution query to the goal string—since the goal of the task is to
‘discover’ this query through interacting with the SQL database.

We used the following action space string for InterCode-SQL:

Your action space is outputting valid mysql commands to solve the sql task.

You will be evaluated on the Latest Standard Output.

If you believe the latest observation is the final answer, you can complete the
task by running 'submit' by itself.

You have 10 iterations to solve the task.

Follow the syntax and logical flow from the provided examples exactly.

L.3 Wordcraft

Wordcraft [39] is a simplified adaptation of the game Little Alchemy, where agents must combine
elements to create new elements through multi-step processes. We randomly select 4000 training
tasks and 500 test tasks from the subset of tasks requiring up to 2 steps to solve, with the train-test
split separating the tasks into disjoint sets of goal elements.

The agent starts with a set of elements and must discover combinations that creates a particular target
element specified in the goal. The environment provides feedback on successful combinations and
updates the available elements accordingly.

The success criteria for Wordcraft tasks require the agent to create the target element within 4 steps,
while the minimum solution length is up to 2 steps.

For our initial human-provided exemplars, we collected 4 human-annotated trajectories from
randomly-selecting training tasks. These trajectories were used to initialize all database instances. We
collected fewer initial trajectories for Wordcraft than for InterCode-SQL (4 vs 10) since Wordcraft is
a slightly simpler task, requiring up to 4 steps for task completion while InterCode-SQL requires up
to 10.

We used the following action space string for Wordcraft:

Output strings with the names of the two entities we would like to combine in this
step.

L.4 Note on Benchmark Selection

We selected three sequential decision-making benchmarks that cover different reasoning chal-
lenges—ALFWorld [37] tests text-based navigation and object manipulation, InterCode-SQL
[38] tests interactive code generation, and Wordcraft [39]] tests compositional reasoning.

While prior works [[13] [12] test on WebShop [45]], we encountered bugs in generating achievable
goals on the full benchmark (confirmed by https://github.com/princeton-nlp/WebShop/issues/43) and
identified tasks with incorrect rewards.

We excluded QA benchmarks (HotPotQA [46], etc.) because performance depends on information
retriever quality and LLM self-evaluation efficacy, two factors that would confound our study of
LLM Self-Improvement. We plan to test our algorithms on QA benchmarks in future work.

25

M Computational Resources

All experiments were conducted using the following computational resources:

* 1 NVIDIA A5000 GPU (24GB memory) for embedding computation
* 64GB RAM

The majority of computation was spent on OpenAl API calls for the LLM-based decision-making.
Database operations including embedding computation, storage, and retrieval accounted for less than
5% of the total computation time.

For embedding computations, we used all-MiniLM-L6-v2 [43]].
For LLM inference, we used the OpenAl API for GPT-40-mini, which required approximately:

e 2,000,000 API calls for ALFWorld
¢ 200,000 API calls for InterCode-SQL
* 500,000 API calls for Wordcraft

The total cost of API usage was approximately $3,000 USD.

N GameSQL Prompt

Yang et al. [38] write this hand-crafted prompt for the GameSQL agent:

1

—

2 {self.language}Env’ is a multi-turn game that tests your ability to write
3 a {self.language} command that produces an output corresponding to a natural
— language query.

5 ## GAME DESCRIPTION

6 At the start of this game, you are given a natural language query describing
— some

7 desired output (i.e. "Find the first name of a student who have both cat and
— dog pets").

8 Aside from the natural language query, you have mo information about the
— tables you have access to.

10 The game will be played in a series of turns. Each turn, you can submit a
— {self.language} command.

11 You will then get a response detailing the output of your {self.language}
— query along with a reward

12 that tells you how close your {self.language} command is to the correct
— answer.

14 The goal of this game is to write a {self.language} command that gets a reward
— of 1. The game wrll automatically
15 terminate once you get a reward of 1.

17 ## INPUT DESCRIPTION
18 Each turn, you can submit a {self.language} command. Your {self.language}
— command should be formatted as follows:

20 " {self.languagel}
21 Your {self.language} code here

24 Your {self.language} command can help you do one of two things:

25 1. Learn more about the tables you have access to

26 2. Ezecute {self.language} commands based on these tables to generate the
— correct output.

26

28
29

30
31
32
33
34

35
36
37
38

B
40
41
42
43

45

46

47

48

49

50

51

52

53

54

OUTPUT DESCRIPTION
Given your {self.language} command input, “{self.language}Env’ will then give
— back output formatted as follows:

Output: <string>
Reward: <decimal wvalue between 0 and 1>

The output is a string displaying the result from executing your
— {self.language} query.
The reward is a decimal value between 0 and 1.

REWARD DESCRIPTION

The reward should be interpreted as a ratio. It tells you how many rows your
— {self.language}

command outputted correctly compared to the correct answer.

RULES
1. Do NOT ask questions. Your commands are fed directly into a SQL compiler.

STRATEGY
You are free to play as many turns of the game as you'd like to inspect tables
and develop your {self.language} command.

The best strategy for this game is to first write {self.language} commands

— that help you learn

about the tables that you have access to. For instance, in a S{L environment,
— you might use “SHOW TABLES"

and "DESC <table name>" to learn more about the tables you have access to.

Once you have a good understanding of the tables, you should then write
— {self.language} commands
that would answer the natural language query using the tables you have access

— to.
rr

27

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and intro clearly state the contributions, which match the experimental
results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See App.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

28

Justification: Paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Information provided both in Sec[6]and in several sections of the Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

29

Answer: [Yes]

Justification: Code is attached in Supplemental, and will be made publicly available. Bench-
marks are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details across Sec.[6|and Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All tables have standard deviation of success rate across 5 trials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Information in Appendix [M]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See App.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Paper offers an algorithmic framework for self-improving LLM Agent, existing
safeguards for LLMs themselves apply when an LLM is used within the agentic system.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All used models and benchmarks are cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets. The paper does include code to
replicate experiments in the supplemental, but this code is not a core asset introduced by the
paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Paper describes usage of LLMs as a core component of an LLM Agent.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Problem Statement
	Related Work
	Methods
	Traj-Bootstrap: Constructing a Database of Previously-Solved Tasks
	+DB-Curation: Database-Level Data Curation
	+Exemplar-Curation: Exemplar-Level Data Curation
	Train-Time vs Test-Time LLM Costs

	Experiments
	Experimental Setup
	Benchmark Tasks
	Methods Compared

	Traj-Bootstrap Results
	Contextualizing performance boosts from Traj-Bootstrap
	Extending Traj-Bootstrap

	Discussion
	Limitations and Broader Impacts
	Note on Sequential Decision-Making Tasks
	Key Agent Details
	Token Usage and Cost Analysis
	Per-Episode Token Usage
	Per-Episode Cost Breakdown
	Training Database Construction Costs
	Cost Comparison with Baseline Approaches
	Breakeven Analysis
	Production-Scale Cost Savings

	Additional Implementation Details
	Hyperparameters
	Prompt Templates
	Retrieval Implementation
	Population-Based Training Details
	Quality Metric Computation
	Note on planning step

	Can Self-Collected Examples Improve a Fine-Tuned LLM Agent?
	Can Databases Transfer Across LLMs?
	Experimental Setup
	Comparison with In-Distribution Performance

	Can We Predict Agent Success Rates?
	Is it Possible to Bootstrap an Agent Without Initial Hand-Crafted Examples?
	Key Details of Prior Agentic Approaches
	How does Automanual Leverage Hand-Crafted Information
	A note on training and test sets

	Comparison to Hand-Crafted InterCode-SQL Agent
	Benchmark Details
	ALFWorld
	InterCode-SQL
	Wordcraft
	Note on Benchmark Selection

	Computational Resources
	GameSQL Prompt

