
Learning to be Smooth:
An End-to-End Differentiable Particle Smoother

Ali Younis and Erik B. Sudderth
Department of Computer Science, University of California, Irvine, CA 92617

ayounis@uci.edu, sudderth@uci.edu

Abstract

For challenging state estimation problems arising in domains like vision and
robotics, particle-based representations attractively enable temporal reasoning
about multiple posterior modes. Particle smoothers offer the potential for more ac-
curate offline data analysis by propagating information both forward and backward
in time, but have classically required human-engineered dynamics and observation
models. Extending recent advances in discriminative training of particle filters, we
develop a framework for low-variance propagation of gradients across long time
sequences when training particle smoothers. Our “two-filter” smoother integrates
particle streams that are propagated forward and backward in time, while incor-
porating stratification and importance weights in the resampling step to provide
low-variance gradient estimates for neural network dynamics and observation mod-
els. The resulting mixture density particle smoother is substantially more accurate
than state-of-the-art particle filters, as well as search-based baselines, for city-scale
global vehicle localization from real-world videos and maps.

1 Introduction
Global localization of the state of a moving vehicle using a city-scale map is challenging due to the
large area, as well as the inherent ambiguity in urban landscapes, where many street intersections and
buildings appear similar. Recent work on global localization [1–11] has typically localized each time
point independently during training, sometimes followed by temporal post-processing, often with
demanding requirements like near-exact external estimation of relative vehicle poses [11].

For a broader range of state estimation problems in fields like vision and robotics, a number of
methods for end-to-end particle filter (PF) training have been proposed [8, 12–16]. Learnable PFs are
suitable for global localization because they can represent multi-modal posterior densities, propagate
uncertainty over time, and learn models of real vehicle dynamics and complex sensors directly from
data. However, most learnable PF methods have only been applied to simulated environments [12–14],
with only a few preliminary applications to real-world data [8, 15].

Particle filters [17–21] only use past observations to estimate the current state. For offline inference
from complete time series, more powerful particle smoothing (PS) algorithms [22–27] may in
principle perform better by integrating past and future data. But to our knowledge, recent advances in
end-to-end differentiable training of PFs have not been generalized to the more complex PS scenario,
requiring error-prone human engineering of PS dynamics and observation models. Classical work on
generative parameter estimation via PS [28] is limited to parametric models with few parameters. In
contrast, we develop differentiable PS that scale to complex models defined by deep neural networks.

After introducing differentiable particle filters (Sec. 2) and classical particle smoothers (Sec. 3), we
develop our differentiable, discriminative Mixture Density Particle Smoother (MDPS, see Fig. 1) in
Sec. 4. Thorough experiments in Sec. 5 then highlight the advantages of our MDPS over differential
PFs on a synthetic bearings-only tracking task, and also show substantial advantages over search-based
and retrieval-based baselines for challenging real-world, city-scale global localization problems.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

𝒕𝒕 − 𝟏 𝒕 + 𝟏

Fo
rw

ar
d

Fi
lt

er

Observations:

Time-step:

Ba
ck

w
ar

d
Fi

lt
er

Sm
oo

th
er

Posterior Output:

···

Re
sa

m
pl
e

D
yn

am
ic
s

M
ea

su
re
m
en

t

Re
sa

m
pl
e

D
yn

am
ic
s

M
ea

su
re
m
en

t

Re
sa

m
pl
e

D
yn

am
ic
s

M
ea

su
re
m
en

t

Resam
ple

D
ynam

ics

M
easurem

ent

Resam
ple

D
ynam

ics

M
easurem

ent

Resam
ple

D
ynam

ics

M
easurem

ent

···

Combine Combine Combine

···

···
𝒙𝒕
(𝒊)

𝒘𝒕
(𝒊) = !

Figure 1: Left: Our MDPS method showing the forward and backward particle filters, which are integrated
(via learned neural networks, indicated by trapezoids) to produce a smoothed mixture posterior. Right: Feature
encoders and measurement model used for global localization. First-person camera views are encoded into a
Birds-Eye-View (BEV) feature map by extracting features before applying a geometric projection [11]. Map
features are extracted via a feed-forward encoder, and un-normalized particle weights are computed as an inner
product between BEV features and features of a local map extracted from the global map at the particle location.

2 Differentiable Particle Filters

Particle filters iteratively estimate the posterior distribution p(xt|y1:t, a1:t) over the state xt at discrete
time t given a sequence of observations yt and, optionally, actions at. PFs use a collection of
N samples, or particles, x(:)t = {x(1)t , ..., x

(N)
t } with weights w(:)

t = {w(1)
t , ..., w

(N)
t } to flexibly

capture multiple posterior modes nonparametrically. Classic PFs are derived from a Markov generative
model, leading to an intuitive recursive algorithm that alternates between proposing new particle
locations and updating particle weights. End-to-end training requires gradients for each PF step.

Particle Proposals. At each iteration, new particles x(:)t are proposed by applying a model of the state
transition dynamics individually to each particle x(i)t ∼ p(x

(i)
t |x

(i)
t−1, at), conditioned on actions at if

available. Of note, only simulation of the dynamics model is required; explicit density evaluation is
unnecessary. Using reparameterization [29–31], the dynamics model can be defined as a feed-forward
neural network f(·) that transforms random (Gaussian) noise to produce new particles:

x
(i)
t = f(η

(i)
t ;x

(i)
t−1, at), η

(i)
t ∼ N(0, I). (1)

Measurement Updates and Discriminative Training. Proposed particles are importance-weighted
by the likelihood function, w(i)

t ∝ p(yt|x(i)t)w
(i)
t−1, to incorporate the latest observation yt into the

posterior. The updated weights are then normalized such that
∑N

i=1 w
(i)
t = 1. However, for complex

observations like images or LiDAR, learning accurate generative models p(yt|xt) is extremely
challenging. Recent work [8, 12–15] has instead learned discriminative PFs parameterized by
differentiable (typically, deep neural network) measurement models:

w
(i)
t ∝ l(x

(i)
t ; yt)w

(i)
t−1. (2)

Here, l(xt; yt) scores particles to minimize a loss, such as negative-log-likelihood or squared-error,
in the prediction of true target states xt that are observed during training.

2.1 Particle Resampling

The stochastic nature of PF dynamics causes some particles to drift towards states with low pos-
terior probability. These low-weight particles do not usefully track the true system state, wasting
computational resources and reducing the expressiveness of the overall approximate posterior.

Particle resampling offers a remedy by drawing a new uniformly weighted particle set x̂(:)t from
x
(:)
t , with each particle duplicated (or not) proportional to its current weight w(i)

t . The simplest

2

multinomial resampling strategy [23, 32, 33] chooses particles independently with replacement:

x̂
(i)
t = x

(j)
t , j ∼ Cat(w(1)

t , . . . , w
(N)
t). (3)

To maintain an unbiased posterior, resampled particles have weight ŵ(i)
t = 1

N . Multinomial resam-
pling may be implemented [32] by drawing a continuous Unif(0, 1) variable for each particle, and
transforming these draws by the inverse cumulative distribution function (CDF) of particle weights.

Stratified resampling [23, 32, 33] reduces the variance of conventional multinomial resampling, by
first partitioning the interval (0, 1] intoN sub-intervals (0, 1

N]∪ ...∪(1− 1
N , 1]. One uniform variable

is then sampled within each sub-interval, before transforming these draws by the inverse CDF of
particle weights. Our differentiable PS incorporate stratified resampling to reduce variance with
negligible computational overhead, making training more robustly avoid local optima (see Fig. 2).

While other methods like residual resampling [34, 32, 35] have been proposed in the PF literature,
this partially-deterministic approach is less robust than stratified resampling in our experiments (see
Fig. 2), and also much slower because residual resampling cannot be parallelized across particles.

For our mixture density PS, particles are resampled from a continuous Gaussian mixture, in which all
components share a common standard deviation β. This resampling can equivalently be expressed as
x̂
(i)
t = µ

(i)
t + βη

(i)
t , where η(i)t ∼ N(0, I) and µ(i)

t is generated via discrete sampling of the mixture
component means. We incorporate stratified resampling in this step to boost performance.

2.2 Differentiable Approximations of Discrete Resampling

For discriminative PFs to effectively learn to propagate state estimates over time, gradients are needed
for all steps of the PF. While differentiable dynamics and measurement models are easily constructed
via standard neural-network architectures, discrete particle resampling is not differentiable.

Truncated-Gradient Particle Filters (TG-PF) [15], the first so-called “differentiable” particle filter,
actually treated the resampling step as non-differentiable and simply truncated gradients to zero at
resampling, preventing back-propagation through time (BPTT) [36]. Due to this weakness, dynamics
models were assumed known rather than learned, and measurement models were learned from biased
gradients that fail to propagate information over time, reducing accuracy [14].

Soft Resampling Particle Filters (SR-PF) [13] utilize a differentiable resampling procedure that sets
particle resampling weights to be a mixture of the true weights and a discrete uniform distribution:

x̂
(i)
t = x

(j)
t , j ∼ Cat(v(1)t , . . . , v

(N)
t), v

(i)
t = (1− λ)w(i)

t +
λ

N
. (4)

Gradients are then propagated via the resampled particle weights defined as:

ŵ
(i)
t =

w
(i)
t

(1− λ)w(i)
t + λ/N

, ∇ϕŵ
(i)
t = ∇ϕ

(
w

(i)
t

(1− λ)w(i)
t + λ/N

)
. (5)

This simple approach resamples low-weight particles more frequently, degrading performance. The
gradients of Eq. (5) also have substantial bias, because they incorrectly assume model perturbations
only influence the particle weights in (5), and not the discrete particle resampling in (4).

Relaxations of Discrete Resampling. While discrete particle resampling could potentially be
replaced by continuous particle interpolation with samples from a Gumbel-Softmax or Concrete
distribution [37, 38], no work has successfully applied such relaxations to PFs, and experiments
in Younis and Sudderth [14] show very poor performance for this baseline. Alternatively, entropy-
regularized optimal transport particle filters (OT-PF) [12] replace discrete resampling with an
entropy-regularized optimal transport problem, that minimizes a Wasserstein metric to determine
a probabilistic mapping between the weighted pre-resampling particles and uniformly weighted
post-resampling particle. OT-PF performance is sensitive to a non-learned entropy regularization
hyperparameter, and the biased gradients induced by this regularization may substantially reduce
performance [14]. Furthermore, “fast” Sinkhorn algorithms [39] for entropy-regularized OT still
scale quadratically with the number of particles, and in practice are orders of magnitude slower than
competing resampling strategies. This makes OT-PF training prohibitively slow on the challenging
city-scale localization tasks considered in this paper, so we do not compare to it.

3

TG-PF
(Multinomial)

TG-PF
(Stratified)

SR-PF
(Multinomial)

SR-PF
(Stratified)

MDPF
(Multinomial)

MDPF
(Residual)

MDPF
(Stratified)

MDPF-Backward
(Stratified)

FFBS
(Multinomial)

FFBS
(Stratified)

MDPS
(Stratified)

5.0

5.5

6.0

6.5

7.0

N
eg

. L
og

-li
ke

lih
oo

d

TG-PF
(Multinomial)

7.9

8.0

8.1

TG-PF
(Stratified)

7.50

7.55

7.60

7.65

Figure 2: Box plots showing median (red line), quartiles (blue box), and range (whiskers) over 11 training
runs for Bearings-Only tracking (Sec. 5.1). We boost the robustness of the top-performing MDPF [14], which
previously used multinomial resampling, by incorporating variance-reduced stratified resampling; residual
resampling is both slower and less effective. Stratified resampling provides larger advantages for the less-
sophisticated TG-PF [15] and SR-PF [13] gradient estimators, but these baselines remain inferior to MDPF. Our
MDPS substantially improves on all PFs by incorporating both past and future observations when computing
posteriors. Classic FFBS particle smoothers [24, 25] have poor performance, even when provided the true
likelihoods (rather than a learned approximation), showing the effectiveness of our end-to-end learning of particle
proposals and weights. Forward PFs are initialized with noisy samples of the true state, while MDPF-Backward
(the backwards-time PF component of MDPS) is initialized by sampling uniformly from the state space.

2.3 Mixture Density Particle Filters

Mixture Density Particle Filters (MDPF) [14] are a differentiable variant of regularized PFs [40, 41].
MDPF estimates a continuous kernel state density [42] by convolving particles with a continuous,
and differentiable, kernel function K (such as a Gaussian) with bandwidth hyperparameter β:

m(xt | x(:)t , w
(:)
t , β) =

N∑
i=1

w
(i)
t K(xt − x(i)t ;β). (6)

Particles are then resampled x̂(i)t ∼ m(xt | x(:)t , w
(:)
t , β) from this continuous mixture instead

of via discrete resampling. Unbiased and low-variance Importance Weighted Sample Gradient
(IWSG) [14] estimates may then be constructed by viewing the particle proposal q(z) = m(z | ϕ0)
to be fixed to the mixture model parameters ϕ0 = {x(:)t , w

(:)
t , β} at the current training iteration.

Gradients then account for parameter perturbations not by perturbing particle locations as in standard
reparameterization [29–31], but by perturbing particle importance weights away from uniform:

ŵ(i) =
m(z(i) | ϕ)

∣∣
ϕ=ϕ0

m(z(i) | ϕ0)
= 1, ∇ϕŵ

(i) =
∇ϕm(z(i) | ϕ)

∣∣
ϕ=ϕ0

m(z(i) | ϕ0)
. (7)

With this approach, the bandwidth parameter β may also be tuned for end-to-end prediction of state
distributions, avoiding the need for classic bandwidth-selection heuristics [42–44]. An “adaptive”
variant of MDPF [14] incorporates two bandwidths, one for particle resampling (to propagate
information over time) and a second for estimation of state posteriors (to compute the loss). Our
MDPS also incorporates separate bandwidths for resampling and state estimation, as detailed below.

3 From Filtering to Smoothing

Particle smoothers extend PFs to estimate the state posteriors p(xt|y1:T) given a full T -step sequence
of observations. (To simplify equations, we do not explicitly condition on actions a1:T in the
following two sections.) Particle smoothers continue to approximate posteriors via a collection of
particles←→x (1:N)

t with associated weights←→w (1:N)
t , where we use bi-directional overhead arrows to

denote smoothed posteriors. Classical particle smoothing algorithms, which are non-differentiable
and typically assume human-engineered dynamics and likelihoods, fall into two broad categories.

Forward-Filtering, Backward Smoothing (FFBS) algorithms [24, 25] compute p(xt|y1:T) by
factoring into forward filtering and backward smoothing components:

p(xt|y1:T) =
∫
p(xt, xt+1|y1:T)dxt+1 = p(xt|y1:t)︸ ︷︷ ︸

forward filtering

∫
p(xt+1|y1:T)p(xt+1|xt)∫
p(xt+1|xt)p(xt|y1:t)

dxt+1︸ ︷︷ ︸
backward smoothing

. (8)

A natural algorithm emerges from Eq. (8), where a conventional PF first approximates p(xt|y1:t) for
all times via particles −→x (1:N)

t with weights −→w (1:N)
t . A backward smoother then recursively reweights

4

the “forward” particles to account for future data, but does not change particle locations:

←→w (i)
t ∝ −→w

(i)
t

(
N∑
j=1

←→w (j)
t+1

p(−→x (j)
t+1|
−→x (i)

t)∑N
k=1
−→w (k)

t p(−→x (j)
t+1|
−→x (k)

t)

)
. (9)

Because FFBS sets ←→x (i)
t = −→x (i)

t , it is only effective when filtered state posteriors p(xt|y1:t)
substantially overlap with smoothed posteriors p(xt|y1:T) [25]; performance deteriorates when future
data is highly informative. FFBS also requires explicit evaluation, not just simulation, of the state
transition dynamics p(xt+1|xt), which is not tractable for dynamics parameterized as in Eq. (1).

Two Filter Smoothing (TFS) algorithms [22, 24, 25] instead express the smoothed posterior as a
normalized product of distinct forward-time and backward-time filters:

p(xt|y1:T) =
p(xt|y1:t)p(yt+1:T |xt)

p(yt+1:T |y1:t)
∝ p(xt|y1:t)p(yt+1:T |xt). (10)

Here p(xt|y1:t) may be approximated by a standard PF, and p(yt+1:T |xt) is the so-called backward
information filter [25, 24] defined as

p(yt:T |xt) =
∫
p(yt+1:T |xt+1)p(xt+1|xt)p(yt|xt)dxt+1. (11)

Because p(yt:T |xt) is a likelihood function rather than a probability density in xt, and it is possible that∫
p(yt:T |xt)dxt =∞. This is not an issue when p(yt:T |xt) is computed analytically as in Kalman

smoothers for Gaussian models [45], but particle-based methods can only hope to approximate finite
measures. Bresler [22] addresses this issue via an auxiliary probability measure γt(xt):

p(yt:T |xt) ∝
p̃(xt|yt:T)
γt(xt)

, p̃(xt:T |yt:T) ∝ γt(xt)p(yt|xt)
T∏

s=t+1

p(xs|xs−1)p(ys|xs). (12)

From Eqs. (10,12), the smoothed posterior is a reweighted product of forward and backward filters:

p(xt|y1:T) ∝

forward filtering︷ ︸︸ ︷
p(xt|y1:t)

backward filtering︷ ︸︸ ︷
p̃(xt|yt+1:T)

γt(xt)
. (13)

This suggest an algorithm where two PFs are run on the sequence independently, one forward
and one backward in time, to compute forward particles {−→x (1:N)

t ,−→w (1:N)
t } and backward particles

{←−x (1:N)
t ,←−w (1:N)

t }. Because continuously sampled forward and backward particle sets will not
exactly align, classic TFS integrate these two filters by rewriting Eq. (13) as follows:

p(xt|y1:T) ∝
p(yt|xt)p̃(xt|yt+1:T)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

γt(xt)
. (14)

This yields a particle re-weighting approach where backward filter particles←−x (1:N)
t are re-weighted

using the forward filter particle set, to produce the final smoothed particle weights←→w (1:N)
t :

←→w (i)
t ∝ ←−w

(i)
t

N∑
j=1

−→w (j)
t−1

p(←−x (i)
t |−→x

(j)
t−1)

γt(
←−x (i)

t)
,

N∑
i=1

←→w (i)
t = 1. (15)

Conventional TFS set ←→x (1:N)
t = ←−x (1:N)

t , which similar to FFBS, makes performance heavily
dependant on significant overlap in support between p(xt|yt+1:T) and p(xt|y1:T). Like FFBS, TFS
also restrictively requires evaluation (not just simulation) of the state transition dynamics.

4 Mixture Density Particle Smoothers

Our novel Mixture Density Particle Smoother (MDPS, Fig. 1) can be seen as a differentiable TFS,
where the forward and backward filters of Eq. (13) are defined as MDPFs (Sec. 2.3). Using discrim-
inative differentiable particle filters (MDPFs) within the TFS frameworks, and replacing Eq. (14)
with an importance-weighted integration of forward and backward particles, enables an effective and
end-to-end differentiable particle smoother. We begin by rewriting Eq. (13) as

p(xt|y1:T) ∝
p(yt|xt)p(xt|y1:t−1)p̃(xt|yt+1:T)

γt(xt)
, (16)

5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Position Error [m]

0

20

40

60

80

100

Re
ca

ll
[%

]

0 5 10 15 20 25 30 35 40 45
Angle Error [°]

Top 3 Modes:
MDPF
MDPS
Dense Search (Sliding Win.)
Retrieval (Sliding Win.)
Retrieval (PF)

Top Mode:
MDPF
MDPS
Dense Search (Sliding Win.)
Retrieval (Sliding Win.)
Retrieval (PF)

"Cheating" using GT
Dense Search (Top 3 Modes)
Dense Search (Top Mode)
Retrieval (Top 3 Modes)

"Cheating" using GT
Dense Search (Top 3 Modes)
Dense Search (Top Mode)
Retrieval (Top 3 Modes)

Figure 3: Position and error recall using the MGL [11] dataset. Recall is computed with the top posterior mode
as well as with the best of the top-3 posterior modes, extracted via non-maximal suppression. As expected,
Retrieval [3] methods do poorly due to their lack of discrimination power between neighboring map patches.
Dense search [11] does better by using fine map details during localization, but it requires a ground truth hint
(“Cheating" with GT, which artificially improves performance) to work well at city-scale environments. Retrieval
(PF) [8] uses unlearned state dynamics, which proves useful, but still suffers from the poor discriminative ability
of retrieval. In contrast, MDPF [14] uses end-to-end learned dynamics and measurement models, allowing for
good performance but suffering from only using past information when estimating posterior densities. Our
MDPS is able to learn similar strong dynamics and measurement models as MDPF, and also incorporates future
as well as past information to achieve a more accurate posterior density and thus higher recall.

where the forward and backward filters no longer condition on the current observation. This allows
for functionally identical MDPFs to be used for both directions, simplifying implementation. MDPFs
parameterize state posteriors as continuous kernel density mixtures:

p(xt|y1:t−1) =

N∑
i=1

−→w (i)
t K(xt −−→x (i)

t ;
−→
β), p(xt|yt+1:T) =

N∑
i=1

←−w (i)
t K(xt −←−x (i)

t ;
←−
β). (17)

Unlike discrete probability measures, these continuous mixture distributions can be combined via
direct multiplication to give a smoothed posterior mixture containing N2 components, one for each
pair of forward and backward particles. For this product integration of forward and backward filters,
the normalizing constants for all pairs of kernels must be explicitly computed to correctly account for
the degree to which hypotheses represented by forward and backward particles are consistent. These
normalization constants are tractable for some simple kernels including Gaussians [46], but more
complex for the other cases such as von Mises kernels of orientation angles [47, 48].

Direct mixture multiplication eliminates the need to evaluate the dynamics model, as in classic TFS,
but introduces significant overhead due to the quadratic scaling of the number of mixture components.
To address this issue, our MDPS uses importance sampling where the smoothed posterior is defined
by M ≪ N2 particles drawn from a mixture of the filter posteriors:

←→x (i)
t ∼ q(xt) =

1

2
p(xt|y1:t−1) +

1

2
p(xt|yt+1:T), i = 1, . . . ,M. (18)

By construction, this proposal will include regions of the state space that lie within the support of
either p(xt|y1:t−1) or p(xt|yt+1:T), improving robustness. Our experiments set M = 2N , drawing
N particles from each of the filtered and smoothed posteriors. Given true dynamics and likelihood
models, importance sampling may correct for the fact that smoothed particles are drawn from a
mixture rather than a product of filtered densities, as well as incorporate the local observation:

←→w (i)
t ∝

p(yt|←→x (i)
t)p(←→x (i)

t |y1:t−1)p̃(
←→x (i)

t |yt+1:T)

γt(
←→x (i)

t)q(←→x (i)
t)

,

M∑
i=1

←→w (i)
t = 1. (19)

To more easily train a discriminative PS, rather than estimating each term in Eq. (19) separately, we
directly parameterize their product via a feed-forward neural network l(·):

←→w (i)
t ∝

l(←→x (i)
t ; yt, p(

←→x (i)
t |y1:t−1), p̃(

←→x (i)
t |yt+1:T))

q(←→x (i)
t)

,

M∑
i=1

←→w (i)
t = 1. (20)

The posterior weight network l(·) scores particles based on agreement with yt, as well as consistency
with the forward and backward filters, and implicitly accounts for the auxiliary distribution γt(·). To
allow state prediction and compute the training loss, the smoothed posterior is approximated as:

p(xt|y1:T) ≈ m(xt|←→x (:)
t ,←→w (:)

t ,
←→
β) =

N∑
i=1

←→w (i)
t K(xt −←→x (i)

t ;
←→
β), (21)

where
←→
β is a learned, dimension-specific bandwidth parameter.

6

Figure 4: Example trajectories from the MGL dataset with observations shown in the top row. We show the
current true state and state history (black arrow and black line), the estimated posterior density of the current state
(red cloud, with darker being higher probability) and the top 3 extracted modes (blue arrows) for the MDPS as
well as its forward and backward MDPFs. Due to ambiguity at early time-steps, MDPF [14] is unable to resolve
the correct intersection, and instead places probability mass at multiple intersections. By fusing both forward and
backward filters, our MDPS resolves this ambiguity with probability mass focused on the correct intersection.
Furthermore, MDPS provides a tighter posterior density than either MDPF-Forward or MDPF-Backward.

Training Loss and Gradient Computation. We discriminatively train our MDPS by minimizing the
negative log-likelihood of the true state sequence:

L =
1

T

∑
t∈T

− log(m(xt|←→x (:)
t ,←→w (:)

t ,
←→
β)). (22)

During training, the IWSG estimator of Eq. (7) provides unbiased estimates of the gradients of
the forward and backward resampling steps. We may similarly estimate gradients of the mixture
resampling (18) that produces smoothed particles, enabling the first end-to-end differentiable PS:

∇ϕ
←→w (i)

t ∝
∇ϕl(

←→x (i)
t ; yt, p(

←→x (i)
t |y1:t−1), p̃(

←→x (i)
t |yt+1:T))

q(←→x (i)
t)

. (23)

Training Details. Because the smoother weights of Eq. (20) cannot be effectively learned when
filter parameters are random, we train MDPS via a three-stage procedure. In stage 1, the forward
and backward PFs are trained separately (sharing only parameters for the encoders, see Fig. 1) to
individually predict the state. In stage 2, the PFs are frozen and the particle smoother measurement
model l(·) of Eq. (20) is trained. In stage 3, all models are unfrozen and trained jointly to minimize
the loss in the MDPS output state posterior predictions of the true states. The forward MDPF,
backward MDPF, and MDPS posterior each have separate kernel bandwidths (

−→
β ,
←−
β ,
←→
β) that are

jointly learned with the dynamics and measurement models. We randomly resample a stochastic
subset of the training sequences for each step, and adapt learning rates via the Adam [49] optimizer.

Computational Requirements. At training time, to allow unbiased gradient propagation, MDPS
computes importance weights for each particle during resampling. For N particles and T time-steps,
this requires O(TN2) operations. At inference time, importance weighting is not needed as the
particle weights can simply be set as uniform, and resampling only requires O(TN) operations. All
phases of our MDPS scale linearly withN at test time, in contrast with other differentiable relaxations
such as OT-PF [12], which requires O(TN2) operations for both training and inference.

5 Experiments

We evaluate our MDPS on a synthetic bearings-only tracking task [14], as well as on real-world
city-scale global localization. For all tasks, we estimate the MDPF/MDPS posterior distributions of a
3D (translation and angle) state xt = (x, y, θ), using Gaussian kernels for the position dimensions,
and von Mises kernels for the angular dimensions of the state posterior mixtures.

7

True State at Time t True State at Time t+1

Figure 5: Learned dynamics from the forward filter of MDPS trained on the MGL dataset. Density cloud
illustrates density of particles after applying dynamics while marginalizing actions. MDPS clearly learns
informative, non-linear dynamics models which aid in state posterior estimation.

5.1 Bearings Only Tracking Task

To allow comparison to prior discriminative PFs, we use the same bearings-only tracking task as [14],
where the 3D state of a variable-velocity synthetic vehicle is tracked via noisy bearings from a fixed-
position radar. 85% of observations are the true bearing plus von Mises noise, while 15% are uniform
outliers. Train and evaluation sequences have length T = 50. Unlike Younis and Sudderth [14],
we find truncated BPTT [50] is not necessary if bandwidths are initialized appropriately. Filtering
particles are initialized as the true state with added Gaussian noise, while MDPF-Backward (and the
MDPS backwards filter) are initialized with uniformly sampled particles to mimic datasets where
often only the starting state is known. More details can be found in the Appendix.

We compare our MDPS methods to several existing differentiable particle filter baselines, but no
differentiable particle smoother baseline exists. Instead, we implement the classic FFBS [24, 25]
algorithm (Sec. 3), which assumes known dynamics and measurement models. Since FFBS is not
differentiable, we learn the dynamics model using the dataset true state pairs {xt−1, xt} outside of the
FFBS algorithm. In order to simulate from and evaluate the state transition dynamics, as needed by
the FFBS, we parameterize the dynamics model to output a mean and use a fixed bandwidth parameter
(tuned on validation data) to propose new particles. We also use the true observation likelihood as the
measurement model, instead of a learned approximation; this boosts FFBS performance.

Results. In Fig. 2 we show statistics of performance over 11 training and evaluation runs for each
method. We compare to TG-PF [15], SR-PF [13], the classical FFBS [24, 25], and MDPF [14].
Interestingly, MDPF outperforms SR-PF and TG-PF even when the initial particle set is drawn
uniformly from the state space as in MDPF-Backward.

By incorporating more temporal data, MDPS substantially outperforms MDPF. Even when unfairly
provided the true observation likelihood, FFBS performs poorly since particles are simply re-weighted
(not moved) by the backward smoother. This inflexibility, and lack of end-to-end learning, makes
FFBS less robust to inaccuracies in the forward particle filter.

We are the first to compare resampling variants in the context of modern discriminative PFs. Stratified
resampling substantially improves TG-PF and SR-PF performance, but only modestly improves the
worst-performing MDPF runs. This may be because even with basic multinomial resampling, the
lower-variance MDPF gradients dramatically outperform all TG-PF and SR-PF variants. Residual
resampling performs worse than stratified resampling, and is also much slower since it cannot be
easily parallelized on GPUs, so we do not consider it for other datasets.

5.2 City Scale Global Localization Task

Our global localization task is adopted from Sarlin et al. [11], where we wish to estimate the 3D state
(position and heading) of a subject (person/bike/vehicle) as it moves through real-world city-scale
environments. Observations are gravity-aligned first-person images, actions are noisy odometry, and
a 2D planimetric map is provided to help localize globally. We use the Mapillary Geo-Localization
[11] and KITTI [51] datasets to compare our MDPS method to MDPF [14] as well as other methods
specifically designed for the global localization task, which are not sequential Monte Carlo methods.

Our global localization task is distinct from local localization systems, which aim to track subject
positions relative to their starting position, instead of in relation to the global map origin. Visual
SLAM systems [21] almost exclusively solve the local localization task, using the starting position as
the origin of their estimated map. If a map is provided, then just the localization part of Visual SLAM
can be run, but detailed visual or 3D maps of the environment are needed. These have prohibitive
memory requirements at city-scales, and need constant updating as the visual appearance of the
environment changes (e.g., with the weather/seasons) [11]. Hybrid place recognition with localization

8

also requires detailed visual or 3D maps [52]. In our experiments, we instead seek to use planimetric
maps for global localization, which are compact and robust to environment changes. It is not obvious
how to apply SLAM/Hybrid place recognition systems to this type of map.

Retrieval methods [1–7] rely on latent vector similarity where map patches and the observation are
encoded into a common latent state space before doing a vector similarity search. These methods
are trained using a contrastive loss [2, 53] that forces the observation encoding to be similar to its
corresponding map patch encoding, while being dissimilar to other patch and observation encodings.
Accuracy depends on map patch extraction density and patch similarity; if similar patches are mapped
to near-identical encodings, performance suffers. Zhou et al. [8] extend this framework using a non-
differentiable PF, where a retrieval-based measurement model is trained outside the PF framework,
and non-learned dynamics are fixed to actions with added Gaussian noise.

Refinement methods [9, 10] refine an initial position estimate via expensive optimization, by
maximizing the alignment of features extracted from the observation and map. Due to the extreme
non-linearity of this objective, refinement methods require an accurate initial estimate to converge to
the correct solution, if at all. This prevents their use for city-scale global localization.

Dense Search [11] extracts birds-eye-view (BEV) features from the observed images via geometric
projection (see Fig. 1), before applying a dense search to align BEV features with extracted map
features. Heuristic alignment probabilities may be produced by tracking alignment values during
search, and applying a softmax operator. Higher discretization density boosts accuracy, but requires
significantly more memory and compute. Temporal information can be used by warping probability
volumes onto the current time-step, but this requires near-exact relative poses which Sarlin et al. [11]
determine via an expensive, black-box Visual-Inertial SLAM system [21].

5.3 Mapillary Geo-Localization (MGL) Dataset

In the Mapillary Geo-Localization (MGL) [11] dataset, images sequences are captured from handheld
or vehicle-mounted cameras as a subject (person/bike/car) roams around various European and U.S.
cities. Observations are set as 90◦ Field-of-View images in various viewing directions, with actions
being noisy odometry. A planimetric map of the environment is also provided via the OpenStreetMap
platform [54] at 0.5 meter/pixel resolution. We generate custom training, validation, and test splits to
create longer sequences with T = 100 steps. For particle-based methods, we use stratified resampling
and set the initial particle sets to be the true state with added noise. More details are in the Appendix.

Implementation Details. For MDPF and our MDPS, we set the dynamics model to a multi-layer
perceptron (MLP) network. The measurement model incorporates BEV features [11] and map
features as illustrated in Fig. 1. The smoother measurement model incorporates additional inputs via
an extra MLP. Memory constraints prevent Dense Search in city-scale environments, so we consider
two methods to limit the search space. A sliding window limits the search space to a 256m× 256m
area that is recursively re-centered around the best position estimate at t− 1, propagated to t using
at. We can also limit the search space to a 256m× 256m area containing the true state, though this
artificially increases performance. We similarly limit the search space for Retrieval, which performs
poorly in large environments; Zhou et al. [8] even limit the vector search to known road networks.

Results. We compare our MDPS to MDPF [14], Dense Search [11], Retrieval [3] implemented as
detailed by [11], and Retrieval (PF) [8], reporting the position and rotation recall in Fig. 3. Due
to ambiguity in large city environments (e.g., intersections can look very similar), estimated state
posteriors can be multi-modal (see Fig. 4), and thus simply reporting accuracy using the highest
probability mode does not fully characterize performance. We thus also extract the top-three modes
using non-maximal suppression (see Appendix), and report accuracy of the best mode. Interestingly,
MDPF and MDPS give dramatic improvements over baselines engineered specifically for this task,
highlighting the usefulness of end-to-end training. MDPS outperforms MDPF by using the full
sequence of data to reduce mode variance, and discard incorrect modes as illustrated in Fig. 4.

Informative dynamics models boost performance, as demonstrated by the MDPS and MDPF results
in Fig. 3. We visualize the learned dynamics of the MDPS forward filter in Fig. 5. Good dynamics
models keep particles densely concentrated in high-probability regions, while also including diversity
to account for sometimes-noisy actions. This enables learning of more discriminative measurement
models, since training encourages the weights model to disambiguate nearby particles.

9

LateralLo
ng

itu
di
na

l

0 2 4 6 8 10 12 14
Lateral Error [m]

0

20

40

60

80

100

Re
ca

ll
[%

]

0 2 4 6 8 10 12 14
Longitudinal Error [m]

Top 3 Modes:
MDPF
MDPS
Dense Search (Sliding Win.)
Retrieval (Sliding Win.)
Retrieval (PF)

Top Mode:
MDPF
MDPS
Dense Search (Sliding Win.)
Retrieval (Sliding Win.)
Retrieval (PF)

"Cheating" using GT
Dense Search (Top 3 Modes)
Dense Search (Top Mode)
Retrieval (Top 3 Modes)

"Cheating" using GT
Dense Search (Top 3 Modes)
Dense Search (Top Mode)
Retrieval (Top 3 Modes)

Figure 6: Left: Lateral and longitudinal errors are in the vehicle frame of reference. Right: Position recall
versus error for the KITTI [51] dataset. Recall is computed with the top posterior mode as well as with the
best of the top-3 posterior modes. Longitudinal localization performance is poor for all methods due to lack
of visual features. MDPF [14] offers dramatic improvements for lateral error over Retrieval [3], Retrieval
(PF) [8] and Dense Search [11] baselines, even when these baselines are constrained to operate around the
ground truth state (“Cheating" with GT). For longitudinal recall, methods using “Cheating" with GT have good
performance because they are artificially constrained to be near the true state, and thus have significantly less
position ambiguity along the roadway. MDPS offers further improvements over MDPF as it maintains a more
diverse set of posterior modes, instead of prematurely collapsing to incorrect modes.

Computational Requirements. While MDPS is more accurate than other methods, it is also more
efficient than dense search. Because dense search must try many options to find the best alignment
of the BEV and extracted map features, it has complexity O(KW 2H2) for K search rotations, and
search locations defined on a grid of widthW and heightH . (For notational simplicity, we assume the
BEV features and the map features have the same width and height.) This complexity can be reduced
to O(KWH log(WH)) by using the Fast Fourier Transform. In contrast, MDPS has complexity
O(NWH), where N ≪ K log(WH), as it only compares the BEV and map features at the particle
locations. This allows MDPS to better scale to large-scale environments.

5.4 KITTI Dataset

We also evaluate our MDPS method for the global localization task using the KITTI [51] dataset,
where observations are forward-facing camera images from a moving vehicle. We augment this
datatset with noisy odometry computed from the ground truth states and use the default Train, Test1,
and Test2 splits for training, validation, and evaluation respectively. Like MGL, a planimetric map of
the environment is provided via the OpenStreetMap platform [54] at 0.5 meter/pixel resolution. Due
to the small size of the KITTI dataset, we pre-train all methods using MGL before refining on KITTI,
using the same network architectures as was used for the MGL dataset. See Appendix for details.

Results. Due to the forward-facing camera, the observation images lack visual features for useful
localizing along the roadway, therefore we decouple the position error into lateral and longitudinal
errors when reporting recalls in Fig. 6. Understandably, all methods have larger longitudinal error
than lateral error. Interestingly, MDPF and MDPS offer similar Top 3 mode performance for small
lateral errors (under 2 meters) while significantly outperforming all other methods. When the lateral
error is greater than 2 meters, MDPS sees a performance gain as it maintains a more diverse set of
posterior modes, whereas MDPF prematurely collapses the posterior density to incorrect modes.

5.5 Limitations

Like all particle-based methods, our MDPS suffers from the curse of dimensionality [55] where
particle sparsity increases as the dimension of the state space increases, reducing expressiveness of
state posteriors. More effective use of particles via smarter dynamics and measurement models, as
enabled by end-to-end MDPS training, can reduce but not eliminate these challenges.

6 Discussion

We have developed a fully-differentiable, two-filter particle smoother (MDPS) that robustly learns
more accurate models than classic particle smoothers, whose components are often determined via
heuristics. MDPS successfully incorporates temporal information from the past as well as the future
to produce more accurate state posteriors than state-of-the-art differentiable particle filters. When
applied to city-scale global localization from real imagery, our learned MDPS dramatically improves
on search and retrieval-based baselines that were specifically engineered for the localization task.

10

Acknowledgments

This research supported in part by NSF Robust Intelligence Award No. IIS-1816365 and ONR Award
No. N00014-23-1-2712.

References
[1] Yujiao Shi, Xin Yu, Dylan Campbell, and Hongdong Li. Where am i looking at? joint location

and orientation estimation by cross-view matching. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[2] Sixing Hu, Mengdan Feng, Rang M. H. Nguyen, and Gim Hee Lee. Cvm-net: Cross-view
matching network for image-based ground-to-aerial geo-localization. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[3] Noe Samano, Mengjie Zhou, and Andrew Calway. You Are Here: Geolocation by Embedding
Maps and Images. In European Conference on Computer Vision (ECCV), 2020.

[4] Sijie Zhu, Taojiannan Yang, and Chen Chen. Vigor: Cross-view image geo-localization beyond
one-to-one retrieval. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3640–3649, 2021.

[5] Yujiao Shi, Liu Liu, Xin Yu, and Hongdong Li. Spatial-aware feature aggregation for image
based cross-view geo-localization. In Advances in Neural Information Processing Systems
(Neurips), 2019.

[6] Yujiao Shi, Xin Yu, Liu Liu, Tong Zhang, and Hongdong Li. Optimal feature transport for
cross-view image geo-localization. In Association for the Advancement of Artificial Intelligence
(AAAI), 2020.

[7] Zimin Xia, Olaf Booij, Marco Manfredi, and Julian FP Kooij. Visual cross-view metric
localization with dense uncertainty estimates. In European Conference on Computer Vision
(ECCV), 2022.

[8] Mengjie Zhou, Xieyuanli Chen, Noe Samano, Cyrill Stachniss, and Andrew Calway. Efficient
localisation using images and openstreetmaps. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

[9] Yujiao Shi and Hongdong Li. Beyond cross-view image retrieval: Highly accurate vehicle
localization using satellite image. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[10] Paul-Edouard Sarlin, Ajaykumar Unagar, Måns Larsson, Hugo Germain, Carl Toft, Victor
Larsson, Marc Pollefeys, Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, and Torsten Sattler.
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[11] Paul-Edouard Sarlin, Daniel DeTone, Tsun-Yi Yang, Armen Avetisyan, Julian Straub, Tomasz
Malisiewicz, Samuel Rota Bulo, Richard Newcombe, Peter Kontschieder, and Vasileios Bal-
ntas. OrienterNet: Visual Localization in 2D Public Maps with Neural Matching. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[12] Adrien Corenflos, James Thornton, George Deligiannidis, and Arnaud Doucet. Differentiable
particle filtering via entropy-regularized optimal transport. International Conference on Machine
Learning (ICML), 2021.

[13] Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter networks with application to visual
localization. Conference on Robot Learning (CORL), 2018.

[14] Ali Younis and Erik Sudderth. Differentiable and Stable Long-Range Tracking of Multiple
Posterior Modes. Neural Information Processing Systems (NeurIPS), 2023.

11

[15] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. Differentiable particle filters: End-
to-end learning with algorithmic priors. Proceedings of Robotics: Science and Systems (RSS),
2018.

[16] Adam Ścibior, Vaden Masrani, and Frank Wood. Differentiable particle filtering without modi-
fying the forward pass. International Conference on Probabilistic Programming (PROBPROG),
2021.

[17] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. IEE proceedings F-Radar and Signal Processing, 1993.

[18] K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for dynamic proba-
bilistic networks. In UAI 11, pages 346–351. Morgan Kaufmann, 1995.

[19] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, 2001.

[20] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Proc., 50(2):174–188,
February 2002.

[21] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005. ISBN 0262201623.

[22] Yoram Bresler. Two-filter formulae for discrete-time non-linear bayesian smoothing. Interna-
tional Journal of Control, 1986.

[23] Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 1996.

[24] Arnaud Doucet, Adam M Johansen, et al. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of nonlinear filtering, 2009.

[25] Mike Klaas, Mark Briers, Nando de Freitas, A. Doucet, Simon Maskell, and Dustin Lang. Fast
particle smoothing: if i had a million particles. International Conference on Machine Learning
(ICML), 2006.

[26] Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for state-space models.
Annals of the Institute of Statistical Mathematics, 2010.

[27] Herbert E Rauch, F Tung, and Charlotte T Striebel. Maximum likelihood estimates of linear
dynamic systems. American Institute of Aeronautics and Astronautics journal, 1965.

[28] Nikolas Kantas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, and Nicolas Chopin. On
particle methods for parameter estimation in state-space models. Statistical Science, 2015.

[29] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
International Conference on Machine Learning (ICML), 2014.

[30] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. International Confer-
ence on Learning Representations (ICLR), 2014.

[31] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International Conference on Machine
Learning (ICML), 2014.

[32] Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering. In
ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing
and Analysis, 2005., 2005.

[33] Tiancheng Li, Miodrag Bolic, and Petar M. Djuric. Resampling methods for particle filtering:
Classification, implementation, and strategies. IEEE Signal Processing Magazine, 2015.

[34] Jun S Liu and Rong Chen. Sequential monte carlo methods for dynamic systems. Journal of
the American statistical association, 1998.

12

[35] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 1994.

[36] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 1990.

[37] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
International Conference on Learning Representations (ICLR), 2016.

[38] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. International Conference on Learning Representations
(ICLR), 2016.

[39] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
Neural Information Processing Systems (NeurIPS), 2013.

[40] N. Oudjane and C. Musso. Progressive correction for regularized particle filters. International
Conference on Information Fusion, 2000.

[41] C. Musso, N. Oudjane, and F. Le Gland. Improving regularized particle filters. In Sequential
Monte Carlo Methods in Practice, 2001.

[42] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.

[43] M Chris Jones, James S Marron, and Simon J Sheather. A brief survey of bandwidth selection
for density estimation. Journal of the American Statistical Association, 1996.

[44] Adrian W Bowman. An alternative method of cross-validation for the smoothing of density
estimates. Biometrika, 1984.

[45] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice-Hall, 1979.

[46] Alexander Ihler, Erik Sudderth, William Freeman, and Alan Willsky. Efficient multiscale
sampling from products of gaussian mixtures. In Advances in Neural Information Processing
Systems, 2003.

[47] K. V. Mardia and P. J. Zemroch. Algorithm as 86: The von mises distribution function. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 1975.

[48] Geoffrey W. Hill. Algorithm 518: Incomplete bessel function i0. the von mises distribution
[s14]. ACM Trans. Math. Softw., 1977.

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[50] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and
the "echo state network" approach. GMD-Forschungszentrum Informationstechnik Bonn, 2002.

[51] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[52] Yuwei Wang, Yuanying Qiu, Peitao Cheng, and Junyu Zhang. Hybrid cnn-transformer features
for visual place recognition. IEEE Transactions on Circuits and Systems for Video Technology,
2023.

[53] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[54] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https:
//www.openstreetmap.org, 2017.

[55] R. Bellman, R.E. Bellman, and Rand Corporation. Dynamic Programming. Rand Corporation
research study. Princeton University Press, 1957.

[56] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR), 2015.

13

 https://www.openstreetmap.org
 https://www.openstreetmap.org

[57] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[58] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. IEEE International Conference on
Computer Vision (ICCV), 2015.

14

A Additional Experiment Results

In this section we give additional experiment results for the global localization task on the MGL [11]
and KITTI [51] datasets.

A.1 MGL Dataset Additional Results

Figure 7: Additional example trajectories from the MGL dataset with observations shown in the top row. We
show the current true state and state history (black arrow and black line), the estimated posterior density of the
current state (red cloud, with darker being higher probability) and the the top 3 extracted modes (blue arrows) for
each method. By using the full sequence of observations and actions when computing state posteriors, MDPS is
able to estimate a more accurate and tighter posterior than the forward or backward MDPFs.

Figure 8: Additional example trajectories from the MGL dataset with observations shown in the top row. We
show the current true state and state history (black arrow and black line), the estimated posterior density of the
current state (red cloud, with darker being higher probability) and the the top 3 extracted modes (blue arrows) for
each method. By using the full sequence of observations and actions when computing state posteriors, MDPS is
able to estimate a more accurate and tighter posterior than the forward or backward MDPFs.

15

A.2 Kitti Dataset Additional Results

Figure 9: Additional example trajectories from the KITTI dataset with observations shown in the top row. We
show the current true state and state history (black arrow and black line), the estimated posterior density of the
current state (red cloud, with darker being higher probability) and the the top 3 extracted modes (blue arrows)
for each method.

Figure 10: Additional example trajectories from the KITTI dataset with observations shown in the top row. We
show the current true state and state history (black arrow and black line), the estimated posterior density of the
current state (red cloud, with darker being higher probability) and the the top 3 extracted modes (blue arrows)
for each method.

Figure 11: Additional example trajectories from the KITTI dataset with observations shown in the top row. We
show the current true state and state history (black arrow and black line), the estimated posterior density of the
current state (red cloud, with darker being higher probability) and the the top 3 extracted modes (blue arrows)
for each method.

16

B Pseudocode

Mixture Density Particle Filtering:

Given observations y1:T and actions a1:T with N being the number of particles

1. Initialize particle set {x(:)1 , w
(:)
1 , β} using initial known state or via some other method.

Normalize weights such that
∑N

i=1 w
(i)
1 = 1

2. For t = 2, ..., T and i = 1, ..., N

(a) Resample particle from mixture distribution

x̃
(i)
t ∼ m(x

(:)
t−1, w

(:)
t−1, β), w̃

(i)
t =

1

N

(b) Apply noisy system dynamics to particle:

x
(i)
t = f(x̃

(i)
t , at, η), η ∼ N(0, 1)

(c) Compute particle weight (normalized such that
∑N

i=1 w
(i)
t = 1)

w
(i)
t = w̃

(i)
t · l(x

(i)
t ; yt)

3. Output: {x(:)1:T , w̃
(:)
1:T , w

(:)
1:T , β}

Figure 12: The Mixture Density Particle Filter

Mixture Density Particle Smoothing:

Given observations y1:T and actions a1:T with N being the number of particles
1. Compute forward filter particle sets using Mixture Density Particle Filtering with y1:T and
a1:T :

{−→x (:)
1:T ,
−→
w̃

(:)
1:T ,
−→w (:)

1:T ,
−→
β }

2. Compute backward filter particle sets using Mixture Density Particle Filtering with yT :1 and
aT :1 (with time reversed):

{←−x (:)
1:T ,
←−
w̃

(:)
1:T ,
←−w (:)

1:T ,
←−
β }

3. For t = 1, ..., T and i = 1, ..., N

(a) Define:

q(x) =
1

2
m(x;−→x (:)

1:T ,
−→
w̃

(:)
1:T ,
−→
β) +

1

2
m(x;←−x (:)

1:T ,
←−
w̃

(:)
1:T ,
←−
β)

(b) Sample particles:
←→x (i)

t ∼ q(x)
(c) Compute weights

←→w (i)
t =

l
(←→x (i)

t ; yt,m(←→x (i)
t ;−→x (:)

1:T ,
−→
w̃

(:)
1:T ,
−→
β),m(←→x (i)

t ;←−x (:)
1:T ,
←−
w̃

(:)
1:T ,
←−
β)
)

q(←→x (i)
t)

4. Output: {←→x (:)
1:T ,
←→w (:)

1:T ,
←→
β }

Figure 13: The Mixture Density Particle Smoother

17

C Number of Particles Ablation Study

101 102 103

Number of Particles

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
[%

]

Recall 1m
Recall 3m
Recall 5m
Recall 7m
Recall 10m
Recall 15m

101 102 103

Number of Particles

Recall 1°
Recall 3°
Recall 5°
Recall 15°
Recall 31°
Recall 45°

Figure 14: Recall of position and angle for MDPS using the MGL dataset [11] with varying numbers of particles
at inference time. Here we specify the number of particles N used for the forward and backward filters of MDPS.
The final MDPS posterior density is defined by 2N particles as described in sec. 4. Interestingly, performance
plateaus quickly as we increase the number of particles implying MDPS’s ability to use particles smartly and
efficiently, allowing for fewer particles to be used, lowering the computation and memory requirements neeeded
for effective models.

A key hyper-parameter for particle filters and smoothers is the number of particles to use at inference
time. Using more particles increases performance as shown in fig. 14 but performance can quickly
plateau. As seen in fig. 4, effective models tend to concentrate particles densely in likely regions of
the state space. By using more particles, the particle density of these likely regions is increased but
with diminishing returns. Each additional particle within the dense regions will vary only slightly
from its neighbors, minimally adding to the particle set diversity. Further using more particles
increases computation and memory requirements making smarter models which are more particle
efficient, such as our MDPS, attractive for real world deployment

18

D Additional Experiment Details

D.1 Bearings Only Tracking Task

The Bearings Only Tracking Task adopted from Younis and Sudderth [14] aims to track the state
of a vehicle as it navigates a simple environment. No actions are provided for this task and the
observations are given as noisy bearings to a radar station:

yt ∼ α · Uniform(−π, π) + (1− α) · VonMises(ψ(xt), κ),
where ψ(xt) is the true bearing with α = 0.15 and κ = 50. The velocity of the vehicle varies over
time, changing randomly when selecting a target new way point with 1m/s or 2m/s being equally
likely. During training, ground truth states are provided every 4 time-steps however dense true states
are given at evaluation time. All sequences are of length T = 50 and we use 5000, 1000 and 5000
sequences for training, validation and evaluation respectively.

For all methods we use 50 particle during training and evaluation. For forward-in-time running PF
methods, we initialize the particle set as the true state with small Gaussian noise (σ = 0.01) on the
x-y components of the state. For the angle components of the initial particles we add Von Mises noise
(with concentration κ = 100) to the true state. For backward-in-time running PF methods we set the
initial particle set as random samples drawn uniformly from the state space.

Learning rates are varied throughout the training stages ranging from 0.001 to 0.000001 though we
find that all methods are robust to learning rate selection when using the Adam [49] optimizer, with
sensible learning rate effecting convergence speed but not performance.

For SR-PF [13] we set λ = 0.1.

D.1.1 Model Architectures

All methods (baselines and ours) for the Bearings Only Tracking Task use the same dynamics and
measurement model architectures which are described below.

Dynamics Models. We parameterize the dynamics model as a residual neural network as shown in
figs. 15 and 16. To maintain position in-variance, we mask out the position components of particles
when input into the dynamics model. We also transform the angle component of the state into a
vector representation T (θ) = (sin(θ), cos(θ)) before applying dynamics. Afterwards we transform
the angle component of the state back into an angle representation T (u, v) = atan2(u, v) = θ

Fully Connected (8)

ReLU

x7

Fully Connected (8)

Concatenate

Input: Random NoiseInput: Particles

((Sigmoid*2)-1) *
Scale

Output: Particles

Figure 15: Dynamics model used for the Bearings Only Tracking Task. The output scaling scales the position
components of the residual to be within [−5, 5] and −2, 2 for the positional and angle (in vector representation)
components respectively.

Measurement Models. Figure 17 shows the feed-forward neural network architecture for the
measurement models used for the Bearings Only Tracking Task.

MDPS Forward Backward Combination. For the Bearings Only Tracking Task, the MDPS
smoothed measurement model is very similar to the measurement model using for MDPF but with
additional inputs. The MDPS smoothed measurement model network architecture is shown in fig. 18.

19

Fully Connected (8)

ReLU

x7

Fully Connected (8)

Concatenate

Input: Particles

((Sigmoid*2)-1) *
Scale

Output: Means

Mean + Noise

Noise~𝑁(0, 𝜎)

Output: Particles

Figure 16: Dynamics model used for FFBS in the Bearings Only Tracking Task. The output scaling scales
the position components of the residual to be within [−5, 5] and −2, 2 for the positional and angle (in vector
representation) components respectively. The dynamics model outputs a mean. Using this mean along with
a hand tuned standard deviation allows for simulation from the dynamics model as well as evaluating state
transition probabilities as required for FFBS. Of note: the angle dimension of the state is approximated by a
Normal distribution with bound variance to avoid issues with angular discontinuities. The hand-tuned standard
deviations values used are [1.0, 1.0, 1.25].

Concatenate

Input: Particles

Sigmoid + Scale

Output: Weights

Fully Connected (8)

ReLU
x3

Fully Connected (8)

ReLU
x2

Fully Connected (8)

Fully Connected (8)

ReLU
x3

Input: Observations

Figure 17: Particle filter measurement model used for the Bearings Only Tracking Task. The output scaling
scales the weights to be within [0.00001, 1]

D.2 Global Localization Task with Mapillary Geo-Location Dataset and KITTI Datasets

In this section we give more information about the experiments conducted with the Mapillary
Geo-Location Dataset (MGL)[11] and KITTI [51] datasets.

For all particle filter methods (including ones internal to MDPS) we use 250 particle during training
and evaluation and initialize the filters using 1000 particles. For PF and smoother methods, we
initialize the particle set as the true state with Gaussian noise (σ = 50 meters) on the x-y components
of the state. For the angle components of the initial particles we add Von Mises noise to the true state.

Initial learning rates are varied throughout the training stages ranging from 0.01 to 0.000001 though
we find that all methods are robust to learning rate selection when using the Adam [49] optimizer, with
sensible learning rates effecting convergence speed. For comparison methods, we use the learning
rates as specified by the method authors or select them via a brief hyper-parameter search if they are
not stated.

D.2.1 Mapillary Geo-Location Dataset Additional Details

In the MGL dataset, observations are images captured by various types of handheld or vehicle
mounted cameras. Some cameras capture 360◦ images which require additional processing before
being used as observations. These 360◦ images are cropped to a 90◦ Field-of-View in random viewing
directions, with the same viewing direction being used for the whole observation sequence. All
images are then gravity aligned to produce the observation sequence. A planimetric map of the

20

Concatenate

Input: Particles

Sigmoid + Scale

Output: Weights

Fully Connected (8)

ReLU
x4

Fully Connected (8)

ReLU
x3

Fully Connected (8)

Fully Connected (8)

ReLU
x3

Input: Observations Input:
Forward Posterior

Input:
Backward Posterior

Figure 18: Measurement model used for the Bearings Only Tracking Task when computing the smoothed
particle weights for MDPS. The output scaling scales the weights to be within [0.00001, 1]

environment is also provided via the OpenStreetMap platform [54] at 0.5 meter/pixel resolution, and
all observation images are publicly available under a CC-BY-SA license via the Mapillary platform.
All KITTI data is published under the CC-BY-NC-SA licence.

Unfortunately the creators of the MGL dataset trained their methods on single observations from
the dataset and did not use sequences during training [11]. As such, observations from sequences
are scattered amongst the training and testing splits, preventing effecting training of methods that
require longer uninterrupted sequence data such as MDPF and MDPS. We therefore create custom
train, validation and evaluation splits of the MGL dataset in order to accommodate longer sequences
for training and evaluation.

Due to data integrity and corruption issues we exclude all sequences from the “Vilnius" portion of the
dataset.

D.2.2 MDPF/MDPS Model Architectures

Dynamics Models. The network architecture of the dynamics model used for the MGL and KITTI is
shown in fig. 19 and is similar to that used in the Bearings Only Tracking task, using the same angle
to vector particle transformation. Note for this dynamics model we do not mask out any component
of the state.

Fully Connected (8)

ReLU

x7

Fully Connected (8)

Concatenate

Input: Random NoiseInput: Particles

((Sigmoid*2)-1) *
Scale

Output: Particles

Figure 19: Network architecture for the dynamics model used for the Bearings Only Tracking Task. The output
scaling scales the position components of the residual to be within [−128, 128] and −2, 2 for the positional and
angle (in vector representation) components respectively.

Measurement Models. The measurement model used for MDPF and MDPS uses the Birds-Eye-
View (BEV) feature encoder and the map encoder from the official Dense Search implementation
released by Sarlin et al. [11]. As shown in fig. 1, a Birds-Eye-View (BEV) feature map is estimated
from the observation using a geometric projection [11] where columns of the observation image are
considered polar rays with features binned into course depth planes projected away from the camera
focal plane. This gives a top-down representation of the local area in polar coordinates (bearing and

21

course distance of an image feature from the camera center). The polar representation of the scene
is then sampled into top-down Cartesian coordinates to yield the final BEV feature map. We refer
the reader to Sarlin et al. [11] and the appendix for more details. To compute particle weights, we
compute the alignment, via a dot-product, between the BEV feature map and a local region from
the neural map, cropped and rotated at the current particles location. For l(·) from eqn. 20 we use
fully-connected layers to produce the final smoothed particle weights from the BEV-map dot-product
alignment and the forward and backward filter posterior densities. The map feature encoder is a
U-Net based architecture with a VGG-19 [56] backbone and the BEV feature encoder is based on
a multi-head U-Net with a ResNet-101 [57] backbone as well as a differentiable but un-learned
geometric projection. We refer the reader to Sarlin et al. [11] for more details about the encoders. To
derive the un-normalized particle log-weights, the BEV encoding is compared, via dot-product, to a
local map patch extracted at a specific particle to compute an alignment value. This is akin to the
dense search described in Sarlin et al. [11] but at only a single location determined by the particle.

MDPS Forward Backward Combination. The MDPS smoother measurement model differs from
the measurement models of MDPF as it requires additional inputs as described in eqn 20. We
implement this model as a 4-layered, 64-wide fully-connected feed-forward neural network with
PReLU [58] activation’s shown in fig. 20. Importantly all computed un-normalized weights are
bound to be within [0.0001, 1] using a Sigmoid function with an offset. Input into this network is the
BEV-map feature alignment computed in the same way as the MDPF measurement model as well
as the posterior probability values from the forward and backward filters for the current smoothed
particle.

Concatenate

Input: BEV-Map Alignment

Sigmoid + Scale

Output: Weights

Fully Connected (64)

PReLU
x3

Fully Connected (64)

Input:
Forward Posterior

Input:
Backward Posterior

Figure 20: Network architecture for the MDPS smoothed measurement model used for the MGL and KITTI
datasets.

D.2.3 MDPS Training Procedure Details

As stated in sec. 4, effective training of MDPS requires training in stages. Importantly due to VRAM
constraints, we are unable to train large map and observation encoders on long sequences. Therefore
we train on short sequences before freezing the encoders, training the rest of the models on longer
sequences.

Training procedure for MDPS on the MGL dataset:

1. Train forward and backward MDPFs individually via independent loss functions, sharing
map and observation encoders, on short sequences from the dataset. Here we hold the output
posterior bandwidths fixed to prevent converging to poor local optima where the bandwidth
is widened while the dynamics and measurement models are not informative.

2. Freeze all MDPF models, unfreeze the MDPF output posterior bandwidths and train on long
sequences.

3. Freeze all MDPF models (including bandwidths) and train the MDPS measurement model
and output posterior bandwidth on long sequences.

4. Unfreeze all models except the map and BEV encoders and train MDPS on long sequences.

Due to the small size of the KITTI dataset along with pre-training using the MGL dataset, a special
constrained training procedure is required to prevent immediate over-fitting to the training split.

22

Instead of jointly refining all components simultaneously, we fine-tuning the forward and backward
MDPFs before freezing those models and fine-tuning the MDPS smoothed measurement model:

1. Train the forward and backward MDPFs individually via independent loss functions, sharing
map and observation encoders, on short sequences from the dataset. We hold the output
posterior bandwidths fixed.

2. Freeze BEV and map encoders, training the forward and backward MDPFs individually via
independent loss functions on long sequences.

3. Freeze all MDPF models, unfreeze the MDPF output posterior bandwidths and train on long
sequences.

4. Freeze all MDPF models (including bandwidths) and train the MDPS smoothed measure-
ment model and output posterior bandwidth on long sequences.

5. Freeze all models except for the MDPS output posterior bandwidth and train on long
sequences.

D.2.4 Baseline Implementation Details

Retrieval. The Retrieval [3] baseline as described by Samano et al. [3] encodes individual patches
from the environment global map into the a latent space. This is inefficient if the map patches are
densely sampled and is prohibitive to run for large environments. Instead a dense feature map can
be predicted from the global map in one forward CNN pass to generate dense map encoding for
map patches roughly sized according to the CNN receptive field [11]. We adopt this dense encoding
approach for Retrieval, implementing the Retrieval method as specified by Sarlin et al. [11].

Dense Search. For Dense Search we use the official implementation released by Sarlin et al. [11]
which differs from the text description present in the official paper. In the paper description a location
prior is computed from the provided map which estimates regions of the state space that are likely
to be occupied (e.g. the prior says that rivers and inside buildings are unlikely to be occupied by a
car). The prior is then multiplied with the observation likelihood (probability volume computed via
dense search) to produce the final state posterior. In the official implementation this prior is disabled
making the state posterior simply the observation likelihood. Further we use VGG-19 [56] as our
map encoder backbone.

Retrieval (PF). Zhou et al. [8] embeds standard Retrieval methods within a non-differentiable particle
filter where the dynamics are set as Gaussian Noise:

x
(i)
t ∼ N (x

(i)
t−1 + at, γ) (24)

In our experiments we set γ as 2.5m for the x-y state position components and 15◦ for the angular
state components, chosen via a brief hyper-parameter search. The measurement model is defined as

w
(i)
t = exp

(
−d(i)t

2σ2

)
(25)

where d(i)t is the alignment of the observation latent encoding with the map patch encoding at the
current particles location x(i)t ,computed via the Retrieval method. After a brief hyper-parameter
search we set σ = 2 in our experiments.

Applying baselines to city-scale environments. Due to memory constraints, dense search over the
whole map is not possible (approx. 809 GB is needed for T = 100 length sequence at 0.5m per
pixel resolution). We therefore offer 2 methods for applying this dense search at city scales. Ground
Truth (GT) Cheat Method: using the ground truth state, we extract a small region from the map in
which we do dense search. This greatly reduces the search space, saving memory but also greatly
(and artificially) improves performance. Sliding Window Method: At t = 1 a small region extracted
around the true state is densely searched. At subsequent time-steps, the best alignment from the dense
search of the previous time-step is propagated using at and used as the center of a new small region
which is then searched. Retrieval methods tend to fail when applied to large environments with Zhou
et al. [8] even limiting the search to patches on known road networks. To address this, we limit the
search space of Retrieval like in Dense Search using the GT Cheat and Sliding Window techniques,
considering map patches within small regions.

23

D.2.5 Top 3 Mode Finding via Non-Maximal Suppression

Due to multi-modality of the posterior estimate, simply extracting the top mode to evaluate errors is
not a good gauge of performance. Instead we to extract the top-3 modes from the posterior density
for evaluation. This can be easily achieved via a non-maximal suppression scheme where modes are
extracted before particles around those modes are deleted. Specifically after extracting the top mode,
the distance of all particle to that top mode is calculated. Particle within some threshold of the top
mode are deleted from the particle set and the weights of all remaining particles are re-normalized to
admit a valid probability density after deletion. The next top mode is then extracted and the deletion
process repeated until a total of 3 modes are extracted. In our implementation, we delete particles
that are within 5m and 30◦ of the top mode.

For methods that admit a discrete probability volume (such as Dense Search and Retrieval), we
suppress the values of all probability cells within 5m and 30◦ of the top mode during the deletion step.
Extracting the top mode can be simply achieved by finding the maximum value within the discrete
probability volume.

D.3 Compute Resources

We give an approximation for compute resources needed to run our experiments in tables 1, 2 and
3. Since our experiments are bottle-necked by GPU resources and require only minimal CPU and
memory needs, we report the GPU needs and GPU runtime for each experiment. In addition to the
compute resources stated in this section, we used additional resources over the course of our project
when developing our methods, though the amount of resources used is difficult to quantify and thus
we do not report here.

For evaluation, all methods can comfortably run in under 2 hours for the full evaluation split of MGL
(using a NVIDIA A6000 GPU) and in under 1 hour for Bearings Only (using a NVIDIA RTX 3090
GPU) and KITTI (using a NVIDIA A6000 GPU).

Table 1: Computation needs for training Bearing Only Tracking Task. Of note: none of the methods
require using the whole GPU and thus we usually train 2-3 methods per GPU simultaneously. The
numbers reported assume training each method 11 times sequentially without running in parallel.

Experiment GPU GPU Runtime
TG-PF (Multinomial) 1x NVIDIA RTX 3090 ∼25 hrs
TG-PF (Stratified) 1x NVIDIA RTX 3090 ∼25 hrs
SR-PF (Multinomial) 1x NVIDIA RTX 3090 ∼21 hrs
SR-PF (Stratified) 1x NVIDIA RTX 3090 ∼21 hrs
MDPF (Multinomial) 1x NVIDIA RTX 3090 ∼80 hrs
MDPF (Stratified) 1x NVIDIA RTX 3090 ∼80 hrs
MDPF-Backward 1x NVIDIA RTX 3090 ∼80 hrs
MDPS 1x NVIDIA RTX 3090 ∼160 hrs

Table 2: Computation needs for global localization on the MGL dataset. Retrieval (PF) requires no
training since all trained models are taken from the Retrieval baseline. Similarly MDPF requires no
training as it is trained within MDPS.

Experiment GPU GPU Runtime
Retrieval 1x NVIDIA A6000 ∼12 hrs
Retrieval (PF) – NA (No Training)
Dense Search 4x NVIDIA A6000 ∼48 hrs
MDPF – NA (No Training)
MDPS 3x NVIDIA A6000 ∼72 hrs

24

Table 3: Computation needs for global localization on the KITTI dataset. Retrieval (PF) requires
no training since all trained models are taken from the Retrieval baseline. For MDPF we report
additional resources used during refinement on the KITTI dataset.

Experiment GPU GPU Runtime
Retrieval 1x NVIDIA A6000 ∼1 hrs
Retrieval (PF) – NA (No Training)
Dense Search 4x NVIDIA A6000 ∼18 hrs
MDPF 3x NVIDIA A6000 ∼5 hrs
MDPS 3x NVIDIA A6000 ∼10 hrs

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes the abstract and introduction state the claims we are making in the main
paper text. We backup these claims with experimental results in sec. 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in the main paper text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

25

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We dont have any theoretical results but instead conduct experiments on
existing datasets.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all important information for reproducing our results in the main
text (secs. 4 and 5) and the appendix (supplement).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

26

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code will be released on GitHub if the paper is accepted after some code
cleanup.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Important details needed to understand the results are given in the main paper
(sec. 5) with additional detail given in the appendix (supplement) for more curious readers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]
Justification: Where possible we run experiments multiple times to generate error bars
and other statistics about our methods. Some experiments require significant amounts of
compute and thus we are unable to generate error bars for all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information is provided in the appendix (supplement).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The real world datasets we use are collected in outdoor public environments
and thus contain images of people in public. The dataset owners have taken efforts to blur
faces of all people and other identifiable information. Our work primarily focuses on state
estimation systems for robotics and thus is low risk in terms of safety, ethics and fairness.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

28

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: Our work primarily focuses on state estimation systems for robotics. As such
there is little risk for abuse of our methods without substantial innovation by a bad actor and
thus the broader negative impacts of our work is very limited.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our work focuses on general state prediction models that can be applied to
a range of tasks though we only use synthetic or real world robotics datasets limiting the
ability of our models to be misused.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

29

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all works we reference or use as well as state the copyright
(when available) of datasets in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not create any new data assets. The final trained models are large and
we do not have the hosting capability to make these models freely available online, instead
we will release all code and instructions such that these models can be trained.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: Our work does not involve crowdsourcing or human subjects but rather focuses
on robotics tasks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

30

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our work does not involve crowdsourcing or human subjects but rather focuses
on robotics tasks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Differentiable Particle Filters
	Particle Resampling
	Differentiable Approximations of Discrete Resampling
	Mixture Density Particle Filters

	From Filtering to Smoothing
	Mixture Density Particle Smoothers
	Experiments
	Bearings Only Tracking Task
	City Scale Global Localization Task
	Mapillary Geo-Localization (MGL) Dataset
	KITTI Dataset
	Limitations

	Discussion
	Additional Experiment Results
	MGL Dataset Additional Results
	Kitti Dataset Additional Results

	Pseudocode
	Number of Particles Ablation Study
	Additional Experiment Details
	Bearings Only Tracking Task
	Model Architectures

	Global Localization Task with Mapillary Geo-Location Dataset and KITTI Datasets
	Mapillary Geo-Location Dataset Additional Details
	MDPF/MDPS Model Architectures
	MDPS Training Procedure Details
	Baseline Implementation Details
	Top 3 Mode Finding via Non-Maximal Suppression

	Compute Resources

