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ABSTRACT

The overlap index between two probability distributions has various applications
in statistics, machine learning, and other scientific research. However, approxi-
mating the overlap index is challenging when the probability distributions are un-
known (i.e., distribution-free settings). This paper proposes an easy-to-compute
upper bound for the overlap index without requiring any knowledge of the distri-
bution models. We first utilize the bound to find the upper limit for the accuracy
of a trained machine learning model when a domain shift exists. We additionally
employ this bound to study the distribution membership classification of given
samples. Specifically, we build a novel, distribution-free, computation-efficient,
memory-efficient one-class classifier by converting the bound into a confidence
score function. The proposed classifier does not need to train any parameters and
is empirically accurate with only a small number of in-class samples. The classi-
fier shows its efficacy and outperforms many state-of-the-art methods on various
datasets in different one-class classification scenarios, including novelty detection,
out-of-distribution detection, and backdoor detection. The obtained results show
significant promise toward broadening the applications of overlap-based metrics.

1 INTRODUCTION

The distribution overlap index refers to the area intersected by two probability density functions
(i.e., Fig. 1(a)) and measures the similarity between the two distributions. A high overlap index
value implies a high similarity. Although the overlap index has various applications in many areas,
such as biology (Langøy et al., 2012; Utne et al., 2012), economics (Milanovic & Yitzhaki, 2002),
and statistics (Inman & Bradley Jr, 1989), the literature on approximating it under distribution-
free settings is thin. This work proposes an upper bound for the overlap index with distribution-
free settings to broaden the potential applications of overlap-based metrics. The bound is easy to
compute and contains three terms: a constant number, the norm of the difference between the two
distributions’ means, and a variation distance between the two distributions over a subset. Even
though finding such an upper bound for the distribution overlap index is already valuable, we further
explore two additional applications of our bound as discussed below.

One application of our bound is for domain shift analysis. Specifically, a domain shift is a change
in the dataset distribution between a model’s training dataset and the testing dataset encountered
during implementation (i.e., the overlap index value between the distributions of the two datasets is
less than 1). We calculated the model’s testing accuracy in terms of the overlap index between the
distributions of the training and testing datasets and further found the upper limit of the accuracy
using our bound for the overlap index. Knowing the upper bound for a model’s testing accuracy
helps measure the model’s potential and compare it with other models. We validated the calculated
upper limit accuracy with experiments in backdoor attacks.

Another application of our bound is for one-class classification. Specifically, one-class classifica-
tion refers to a model that outputs positive for in-class samples and negative for out-class samples
that are absent, poorly sampled, or not well defined (i.e., Fig. 1(b)). We propose a novel one-
class classifier by converting our bound into a confidence score function to evaluate if a sample is
in-class or out-class. The proposed classifier has many advantages. For example, implementing
deep neural network-based classifiers requires training thousands of parameters and large memory,
whereas implementing our classifier does not. It only needs sample norms to calculate the confi-
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Figure 1: (a): Overlap of two distributions. (b): One-class classification. (c): Backdoor attack.

dence score. Besides, deep neural network-based classifiers need relatively large amounts of data
to avoid under-fitting or over-fitting, whereas our method is empirically accurate with only a small
number of in-class samples. Therefore, our classifier is computation-efficient, memory-efficient, and
data-efficient. Additionally, compared with other traditional one-class classifiers, such as Gaussian
distribution-based classifier, Mahalanobis distance-based classifier (Lee et al., 2018) and one-class
support vector machine (Schölkopf et al., 2001), our classifier is distribution-free, explainable, and
easy to understand.

Overall, the contributions of this paper include:

• Finding a distribution-free upper bound for the overlap index.
• Applying this bound to the domain shift analysis problem with experiments.
• Proposing a novel one-class classifier with the bound being the confidence score function.
• Evaluating the proposed one-class classifier through comparison with various state-of-

the-art methods on several datasets, including UCI datasets, CIFAR-100, sub-ImageNet,
etc., and in different one-class classification scenarios, such as novelty detection, out-of-
distribution detection, and neural network backdoor detection.

1.1 BACKGROUND AND RELATED WORKS

Measuring the similarity between distributions: Gini & Livada (1943) and Weitzman (1970)
introduced the concept of the distribution overlap index. Other measurements for the similarity
between distributions include the total variation distance, Kullback-Leibler divergence (Kullback &
Leibler, 1951), Bhattacharyya’s distance (Bhattacharyya, 1943), and Hellinger distance (Hellinger,
1909). In psychology, some effect size measures’ definitions involve the concept of the distribution
overlap index, such as Cohen’s U index (Cohen, 2013), McGraw and Wong’s CL measure (McGraw
& Wong, 1992), and Huberty’s I degree of non-overlap index (Huberty & Lowman, 2000). However,
they all have strong distribution assumptions (e.g., symmetry or unimodality) regarding the overlap
index. Pastore & Calcagnı̀ (2019) approximates the overlap index via kernel density estimators.

One-class classification: Moya & Hush (1996) coined the term one-class classification. One-class
classification intersects with novelty detection, anomaly detection, out-of-distribution detection, and
outlier detection. Yang et al. (2021) explains the differences among these detection areas. Khan &
Madden (2014) discusses many traditional non neural network-based one-class classifiers, such as
one-class support vector machine (Schölkopf et al., 2001), decision-tree (Comité et al., 1999), and
one-class nearest neighbor (Tax, 2002). Two neural network-based one-class classifiers are (Ruff
et al., 2018) and OCGAN (Perera et al., 2019). Morteza & Li (2022) introduces a Gaussian mixture-
based energy measurement and compares it with several other score functions, including maximum
softmax score (Hendrycks & Gimpel, 2017), maximum Mahalanobis distance (Lee et al., 2018), and
energy score (Liu et al., 2020a) for one-class classification.

Neural network backdoor attack and detection: Gu et al. (2019) and Liu et al. (2018b) mentioned
the concept of the neural network backdoor attack. The attack contains two steps: during training,
the attacker injects triggers into the training dataset; during testing, the attacker leads the network to
misclassify by presenting the triggers (i.e., Fig. 1(c)). The data poisoning attack (Biggio et al., 2012)
and adversarial attack (Goodfellow et al., 2014) overlap with the backdoor attack. Some proposed
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trigger types are Wanet (Nguyen & Tran, 2021), invisible sample-specific (Li et al., 2021), smooth
(Zeng et al., 2021), and reflection (Liu et al., 2020b). Some methods protecting neural networks
from backdoor attacks include neural cleanse (Wang et al., 2019), fine-pruning (Liu et al., 2018a),
and STRIP (Gao et al., 2019). NNoculation (Veldanda et al., 2021) and RAID (Fu et al., 2022)
utilize online samples to improve their detection methods. The backdoor detection problem also
intersects with one-class classification. Therefore, some one-class classifiers can detect poisoned
samples against the neural network backdoor attack.

Organization of the Paper: We first provide preliminaries and derive the proposed upper bound
for the overlap index in Sec. 2. We next apply our bound to domain shift analysis in Sec. 3. We
then propose, analyze, and evaluate our novel one-class classifier in Sec. 4. We finally conclude the
paper in Section 5.

2 AN UPPER BOUND FOR THE OVERLAP INDEX

2.1 PRELIMINARIES

For simplicity, we consider the Rn space and continuous random variables. We also define P and Q
as two probability distributions in Rn with fP and fQ being their probability density functions.
Definition 1 (Overlap Index). The overlap η : Rn ×Rn → [0, 1] of the two distributions is defined:

η(P,Q) =

∫
Rn

min[fP (x), fQ(x)]dx. (1)

Definition 2 (Total Variation Distance). The total variation distance δ : Rn × Rn → [0, 1] of the
two distributions is defined as

δ(P,Q) =
1

2

∫
Rn

|fP (x)− fQ(x)| dx. (2)

Definition 3 (Variation Distance on Subsets). Given a subset A from Rn, we define δA : Rn×Rn →
[0, 1] to be the variation distance of the two distributions on A, which is

δA(P,Q) =
1

2

∫
A

|fP (x)− fQ(x)|dx. (3)

Remark 1. One can prove that η and δ satisfy the following equation:

η(P,Q) = 1− δ(P,Q) = 1− δA(P,Q)− δRn\A(P,Q). (4)

The quantity δA defined in (3) will play an important role in deriving our upper bound for η.

2.2 THE UPPER BOUND FOR THE OVERLAP INDEX

We now proceed with deriving our proposed upper bound.
Theorem 1. Without loss of generality, assume D+ and D− are two probability distributions on a
bounded domain B ⊂ Rn with defined norm || · || 1 (i.e., supx∈B ||x|| < +∞), then for any subset
A ⊂ B with its complementary set Ac = B \A, we have

η(D+, D−) ≤ 1− 1

2rAc

||µD+ − µD− || − rAc − rA
rAc

δA (5)

where rA = supx∈A ||x|| and rAc = supx∈Ac ||x||, µD+ and µD− are the means of D+ and D−,
and δA is the variation distance on set A defined in Definition 3. Moreover, let rB = supx∈B ||x||,
then we have

η(D+, D−) ≤ 1− 1

2rB
||µD+ − µD− || − rB − rA

rB
δA. (6)

Since (6) holds for any A, a tighter bound can be written as

η(D+, D−) ≤ 1− 1

2rB
||µD+ − µD− || −max

A

rB − rA
rB

δA. (7)

1In this paper, we use the L2 norm. However, the choice of the norm is not unique and the analysis can be
carried out using other norms as well.
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Proof. Let fD+ and fD− be the probability density functions for D+ and D−. From (4), we have
η(D+, D−) = 1− δA(D

+, D−)− δAc(D+, D−). (8)
Using (8), triangular inequality, and boundedness, we obtain

||µD+ − µD− || = ||
∫
B

x (fD+(x)− fD−(x)) dx|| ≤
∫
B

||x(fD+(x)− fD−(x))||dx (9)

=

∫
A

||x|| · |fD+(x)− fD−(x)|dx+

∫
Ac

||x|| · |fD+(x)− fD−(x)|dx (10)

≤ 2rAδA + 2rAcδAc = 2rAδA + 2rAc(1− δA − η(D+, D−)) (11)
which implies (5). Replacing rAc with rB in (11) implies (6).

Remark 2. The only assumption in this theorem is that the probability distribution domain is
bounded. However, almost all real-world applications satisfy the boundedness assumption since
the data is bounded. Therefore, rB can always be found (or at least a reasonable approximation
can be found). Additionally, we can constrain A to be a bounded ball so that rA is also known.
Although the proof of this theorem involves probability density functions, the computation does not
require knowing the probability density functions but only finite samples because we can use the law
of large numbers to estimate ||µD+ − µD− || and δA, which will be shown next.

2.3 APPROXIMATING THE BOUND WITH FINITE SAMPLES

Let g : B → {0, 1} be a condition function2 and define A = {x | g(x) = 1, x ∈ B}. According to
the definition of δA and triangular inequality, we have

δA(D
+, D−) =

1

2

∫
A

|fD+(x)− fD−(x)|dx ≥ 1

2
|
∫
A

fD+(x)− fD−(x)dx| (12)

=
1

2

∣∣∣∣∫
B

fD+(x)g(x)dx−
∫
B

fD−(x)g(x)dx

∣∣∣∣ = 1

2
|ED+ [g]− ED− [g]| . (13)

Calculating ED+ [g] and ED− [g] is easy: one just needs to draw samples from D+ and D−, and then
average their g values. Applying (13) into Theorem 1 gives the following corollary:
Corollary 1. Given D+, D−, B, and || · || used in Theorem 1, let A(g) = {x | g(x) = 1, x ∈ B}
with any condition function g : B → {0, 1}. Then, an upper bound for η(D+, D−) that can be
obtained by our approximation is

η(D+, D−) ≤ 1− 1

2rB
||µD+ − µD− || −max

g

rB − rA(g)

2rB
|ED+ [g]− ED− [g]| . (14)

Given several condition functions {gj}kj=1 and finite sample sets (i.e., {x+
i }ni=1 ∼ D+ and

{x−
i }mi=1 ∼ D−), Alg. 1 shows how to compute the RHS of (14).

Algorithm 1 ComputeBound({x+
i }ni=1, {x−

i }mi=1, {gj}kj=1)

B ← {x+
1 , x

+
2 , ..., x

+
n , x

−
1 , x

−
2 , ..., x

−
m} and rB ← maxx∈B ||x||

∆µ ←
∣∣∣∣ 1

n

∑n
i=1 x

+
i − 1

m

∑m
i=1 x

−
i

∣∣∣∣
for j = 1→ k do

A = {x | gj(x) = 1, x ∈ B} and rA ← maxx∈A ||x||
sj ←

(
1− rA

rB

) ∣∣ 1
n

∑n
i=1 gj(x

+
i )− 1

m

∑m
i=1 gj(x

−
i )

∣∣
end for
Return: 1− 1

2rB
∆µ − 1

2 maxj sj

Remark 3. The choice of condition functions is not unique. In this work, we use the indicator
function g(x) = 1{||x|| ≤ r}, which outputs 1 if ||x|| ≤ r and 0 otherwise. By setting different
values for r, we generate a family of condition functions. The motivation for choosing such indicator
function form is that it is the most simple way to separate a space nonlinearly and it saves compu-
tations by directly applying r into Corollary 1. However, other indicator functions, such as RBF
kernel-based indicator functions, are worth exploring and will be considered in our future works.

2The condition function is an indicator function 1{condition} that outputs 1 when the input satisfies the
given condition and 0 otherwise.
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3 APPLICATION OF OUR BOUND TO DOMAIN SHIFT ANALYSIS

We now apply our bound to domain shift analysis.
Theorem 2. Assume that D and D∗ are two different data distributions (i.e., η(D,D∗) < 1). If a
model is trained on D with p accuracy on D and q accuracy on D∗ \D, then the overall accuracy
of the model on D∗ is pη(D,D∗)+ q(1− η(D,D∗)), which is upper bounded because η(D,D∗) is
upper bounded by (14).
Remark 4. To prove the theorem, let fD and fD∗ be their probability density functions, then

Accuracy =

∫
x∼D∗

(
p
min{fD(x), fD∗(x)}

fD∗(x)
+ q

(
1− min{fD(x), fD∗(x)

fD∗(x)

))
fD∗(x)dx (15)

= pη(D,D∗) + q(1− η(D,D∗)) = (p− q)η(D,D∗) + q. (16)
Without loss of generality, assume p > q. Then (16) shows that a large domain shift (i.e., a small
η(D,D∗)) leads to low overall accuracy of the model on the testing data distribution D∗. If p = 1
and q = 0, then the overall accuracy is equal to η(D,D∗).

Theorem 2 in Backdoor Attack Scenarios: A backdoor attack scenario (Fig. 1(b)) considers that
the model has a zero accuracy on poisoned data distribution as the attack success rate is almost
100%. Define the clean data distribution as D, poisoned data distribution as Dp, and a testing data
distribution D∗ composed by D and Dp, i.e., D∗ = σD+(1− σ)Dp, where σ ∈ [0, 1] is the purity
ratio (i.e., the ratio of clean samples to the entire testing samples). With all the settings above, we
know that q = 0 on Dp and (16) becomes

Accuracy = pη(D,D∗) ≤ p(1− 1

2rB
||µD − µD∗ || −max

g

rB − rA(g)

2rB
|ED[g]− ED∗ [g]|) (17)

= p(1− 1− σ

2rB
||µD − µDp || − (1− σ)max

g

rB − rA(g)

2rB
|ED[g]− EDp [g]|). (18)

(17) shows that the actual model accuracy on the contaminated testing data should be bounded by the
multiplication of its accuracy p on clean data and our upper bound for η(D,D∗) with samples. (18)
shows that the upper limit of the model accuracy on the contaminating data should linearly increase
with the purity ratio σ (i.e., the percentage of clean samples over the entire testing samples).

Validating Theorem 2 in Backdoor Attack Scenarios: The considered datasets are MNIST (Le-
Cun et al., 2010), GTSRB (Stallkamp et al., 2011), YouTube Face (Wolf et al., 2011), and sub-
ImageNet (Deng et al., 2009). We composed the testing datasets D∗ with σ = 0, 0.1, ..., 0.9, 1 and
calculated the upper bound for η(D,D∗) using L1, L2, and L∞ norms in the raw data space, model
output space, and intermediate layer space. The actual model accuracy and corresponding upper
bounds are plotted in Fig. 2. The actual model accuracy is below all the calculated upper limits,
validating Theorem 2. Additionally, the upper limits grow linearly with σ, supporting (18). In other
scenarios except for backdoor attacks, the model accuracy, p, and q may be known, then the lower
bound for η can be estimated by Theorem 2. Theorem 2 can also help in finding q by knowing p,
η, and model accuracy. Therefore, Theorem 2 has practical relevance and usefulness.

4 APPLICATION OF OUR BOUND TO ONE-CLASS CLASSIFICATION

4.1 PROBLEM FORMULATION FOR ONE-CLASS CLASSIFICATION

Given Rd space and n samples {xi}ni=1 that lie in an unknown probability distribution, we would
like to build a test Ψ : Rd → {±1} so that for any new input x, Ψ(x) outputs 1 when x is from
the same unknown probability distribution, and outputs -1, otherwise. Some applications of Ψ are
novelty detection, out-of-distribution detection, and backdoor detection (e.g., Fig. 1(b, c)).

4.2 A NOVEL CONFIDENCE SCORE FUNCTION

Given some in-class samples {xi}ni=1, one can pick several condition functions {gj}kj=1, where
gj(x) = 1{||x|| ≤ rj} for different rj , so that f(x) = ComputeBound({x}, {xi}ni=1, {gj}kj=1)
defined in Alg. 1 is a score function that measures the likelihood of any input, x, being an in-class
sample. Alg. 2 shows the overall one-class classification algorithm. k = 10 in our experiments.

5



Under review as a conference paper at ICLR 2023

Figure 2: The actual model accuracy (dot) vs. (16) (solid) calculated with L1, L2, and L∞ norms in
input, output, and hidden spaces. x: the ratio of clean samples to the entire testing samples.

Algorithm 2 The Novel One-Class Classifier for the Input x
Given in-class samples {xi}ni=1, select several condition functions {gj}kj=1, set a threshold T0

if ComputeBound({x}, {xi}ni=1, {gj}kj=1) ≥ T0 then
x is an in-class sample

else
x is an out-class sample

end if

Remark 5. The score function f measures the maximum similarity between the new input x and the
available in-class samples {xi}ni=1. Different T0 lead to different detection accuracy. However, we
will show that the proposed one-class classifier has an overall high accuracy under different T0.

4.3 COMPUTATION AND SPACE COMPLEXITIES

Our algorithm can pre-compute and store 1
n

∑n
i=1 xi and 1

n

∑n
i=1 gj(xi) with j = 1, 2, ..., k. There-

fore, the total space complexity isO(k+1). Assume that the total number of new online inputs is l;
then, for every new input x, our algorithm needs to calculate ||x|| once and sj for k times. Therefore,
the total computation complexity is O(l(k + 1)). Empirically, we restricted k to be a small number
(e.g., 10) so that even devices without strong computation power can run our algorithm efficiently.
Therefore, our classifier is computation-efficient and memory-efficient.

4.4 EVALUATION

Overall Setup: All the baseline algorithms with optimal hyperparameters, related datasets, and
models were acquired from the corresponding authors’ websites. The only exception is backdoor
detection, in which we created our own models. However, we have carefully fine-tuned the baseline
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Figure 3: The method is listed in the same order as in Table 4.

methods’ hyperparameters to ensure their best performance over other hyperparameter choices. Our
approach used ten indicator functions for all the experiments.

4.4.1 ONE-CLASS CLASSIFICATION FOR NOVELTY DETECTION

We evaluated our classifier on 100 small UCI datasets (UCI; Dua & Graff, 2017) and recorded
the area under the receiver operating characteristic curve (AUROC). Fig. 3 shows the mean and
standard deviation of AUROC for ours and other classifiers. Detailed numerical results can be found
in Table 4 in Appendix A. The implementation code is provided in the supplementary material.

Our classifier is the most consistent with the smallest standard deviation. Except for Gaussian,
K-Nearest Neighbor, and Minimum Covariance Determinant, our classifier outperforms the other
methods by showing the highest AUROC mean and the lowest AUROC standard deviation. Among
Gaussian, K-Nearest Neighbor, and Minimum Covariance Determinant, Gaussian is the best clas-
sifier by having the highest mean and lowest standard deviation of AUROC. However, our method
is comparable to Gaussian by showing a close mean and a smaller standard deviation.

Besides the results, our classifier is distribution-free, computation-efficient, and memory-efficient,
whereas some other classifiers do not. Additionally, our method is also easy to explain and under-
stand: the score measures the maximum similarity between the new input and the available in-class
samples. Therefore, we conclude that our classifier is valid for novelty detection.

4.4.2 ONE-CLASS CLASSIFICATION FOR OUT-OF-DISTRIBUTION DETECTION

We used CIFAR-10 and CIFAR-100 testing datasets (Krizhevsky et al., 2009) as the in-distribution
datasets. The compared methods contain MSP (Hendrycks & Gimpel, 2017), Mahalanobis (Lee
et al., 2018), Energy score (Liu et al., 2020a), and GEM (Morteza & Li, 2022). We used WideResNet
(Zagoruyko & Komodakis, 2016) to extract features from the raw data. The WideResNet models
(well-trained on CIFAR-10 and CIFAR-100 training datasets) and corresponding feature extractors
were acquired from Morteza & Li (2022). All the methods were evaluated in the same feature spaces
with their optimal hyperparameters for fair comparisons. To fit the score function’s parameters for
all the methods, we formed a small dataset by randomly selecting 10 samples from each class.
The out-of-distribution datasets include Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011),
LSUN-Crop (Yu et al., 2015), LSUN-Resize (Yu et al., 2015), and iSUN (Xu et al., 2015). We used
three metrics: the detection accuracy for out-of-distribution samples when the detection accuracy
for in-distribution samples is 95% (TPR95), AUROC, and area under precision and recall (AUPR).

Table 1 shows the average results for CIFAR-10 and CIFAR-100. The details for each individual out-
of-distribution dataset can be found in Table 5 and Table 6 in Appendix B. Our method outperforms
the other methods by using the least memory and showing the highest AUROC on average. Our
approach is also one of the fastest methods: the execution time of our approach for each sample is
less than one millisecond (ms). For the CIFAR-10 case, our method also shows the highest average
TPR95, and the average AUPR of our method is over 92%. For the CIFAR-100 case, the average
TPR95 of our method is 0.3% close to the highest average TPR95, and the average AUPR of our
method is over 85%. For each individual out-of-distribution dataset, our method always outperforms
no less than half of the methods in TPR95 and AUROC, and the total average AUPR of our method
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Table 1: Average performance on various out-of-distribution datasets. Our method can be further
improved with an iterative approach as shown in Table 2.

In-Distributions Method TPR95 AUROC AUPR Time/Sample Memory

CIFAR-10

Ours 72.33% 92.76% 92.32% 0.60ms 1048.22MiB
MSP 50.63% 91.46% 98.07% 0.02ms 1825.21MiB

Mahala. 46.83% 90.46% 97.92% 30.61ms 1983.17MiB
Energy 68.31% 92.32% 97.96% 0.22ms 1830.01MiB
GEM 50.81% 90.45% 97.91% 25.62ms 1983.51MiB

CIFAR-100

Ours 48.08% 87.63% 85.72% 0.60ms 1134.32MiB
MSP 19.87% 75.97% 94.09% 0.02ms 1825.98MiB

Mahala. 48.35% 84.90% 96.37% 56.24ms 1983.81MiB
Energy 27.91% 80.44% 95.15% 0.21ms 1838.23MiB
GEM 48.36% 84.94% 96.38% 56.27ms 1984.77MiB

Figure 4: Improvements with more indicator functions with CIFAR-10 being the in-distribution data.

over all cases is 89.02%. Our method can be further improved with an iterative approach as shown
in Table 2 with details discussed at the end. We noticed that the out-of-distribution datasets are much
smaller in size than the in-distribution datasets. Therefore, although the current AUPR is sufficient
to ensure that our approach is valid, we see a potential improvement in our method to increase
the AUPR for heavily imbalanced problems in our prospective work. On balanced datasets, our
approach shows higher AUPR than the baseline methods as shown in Table 3 with details in Table 7
in Appendix C. Therefore, our approach performs better on balanced datasets than on unbalanced
datasets. We also empirically observed that the compared baseline methods reported errors when
data dimensions are dependent because the compared baseline methods need to calculate the inverse
of the estimated covariance matrices that will not be full rank if data dimensions are dependent. We
have reported this observation in Table 7 in the appendix. In contrast, our approach works since it
does not require finding the inverse of any matrices. Further, Table 1 and Table 3 together show
that the baseline methods perform well only for out-of-distribution detection, whereas our approach
performs well for both out-of-distribution detection and backdoor detection (details are explained in
next subsection). In summary, our classifier is a valid out-of-distribution detector.

Improvement with more indicator functions: Our approach used ten indicator functions in all
experiments. However, we have evaluated our approach by using more indicator functions (i.e., more
ri) and plotted the results in Fig. 4. From the figure, the performance of our approach increases with
more indicator functions being used and eventually converges to a limit. This limit is determined by
the out-of-distribution dataset, the tightness of our bound in Corollary 1, and the form of utilized
indicator functions (i.e., g(x) = 1{||x|| ≤ r} in this work). To increase this limit on a given out-
of-distribution dataset with the current form of our upper bound, a more advanced type of indicator
function is required, which will be our future work as mentioned in Remark 3.

Improvement with an iterative approach: Except for using more indicator functions, our approach
can also be improved by an interative approach with only the original ten indicator functions being
used. Assume that the confidence score of an input x is s(x), then its iterative confidence score,
s′(x), can be calculated by Alg. 1 with the condition function g(x) = 1{s(x) ≤ Ti}, where Ti

represents different thresholds. Table 2 shows the performance of our approach by applying the
iterative score s′(x) to Alg. 2. The results show considerable improvement compared to Table 1 for
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Table 2: Performance of our approach with the iterative approach.
In-Distributions Metrics (%) Texture SVHN LSUN-C LSUN-R iSUN Ave.

CIFAR-10
TPR95 64.20 94.10 83.63 85.41 79.62 81.39

AUROC 92.00 96.88 95.29 95.48 94.46 94.82
AUPR 92.02 98.78 95.45 95.65 94.65 95.31

CIFAR-100
TPR95 42.5 93.75 57.76 88.49 82.15 72.93

AUROC 85.21 96.61 89.23 96.09 94.72 92.37
AUPR 85.22 98.69 89.70 96.19 94.99 92.95

Table 3: Average performance for backdoor detection over various backdoor triggers and datasets.
Metrics (%) Ours STRIP Mahalanobis GEM MSP

TPR95 89.40 39.60 56.97 91.57 39.24
AUROC 96.68 70.30 75.94 58.08 54.92
AUPR 95.42 68.76 76.37 75.88 60.52

the average and to Table 5 and Table 6 for each individual out-of-distribution dataset. Exploring the
potential improvement of our approach with more rounds of iterations will also be our future work.

4.4.3 ONE-CLASS CLASSIFICATION FOR BACKDOOR DETECTION

The utilized datasets are MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009), GTSRB
(Stallkamp et al., 2011), YouTube Face (Wolf et al., 2011), and sub-ImageNet (Deng et al., 2009).
The adopted backdoor attacks include naive triggers, all-label attacks (Gu et al., 2019), moving trig-
gers (Fu et al., 2020), Wanet (Nguyen & Tran, 2021), combination attacks, large-sized triggers, filter
triggers, and invisible sample-specific triggers (Li et al., 2021), as listed in Fig. 5 in Appendix C. The
neural network architecture includes Network in Network (Lin et al., 2014), Resnet (He et al., 2016),
and other networks from (Wang et al., 2019; Gu et al., 2019). For each backdoor attack, we assume
that a small clean validation dataset is available (i.e., 10 samples from each class) at the beginning.
Therefore, the poisoned samples (i.e., samples attached with triggers) can be considered out-class
samples, whereas the clean samples can be considered in-class samples. We used the backdoored
network to extract data features. Then, we evaluated our one-class classifier and compared it with
the previous baseline methods and STRIP (Gao et al., 2019) in the feature space. The metrics used
are the same: TPR95 (i.e., the detection accuracy for poisoned samples when the detection accuracy
for clean samples is 95%), AUROC, and AUPR. Table 3 shows the average performance. Details on
each individual trigger can be found in Table 7 in Appendix C

From the table, our classifier outperforms other baseline methods on average by showing higher
AUROC, and AUPR. As for TPR95, our approach is very close to GEM. Compared with STRIP on
the overall average performance, our classifier is 49.8% higher in TPR95, 26.38% higher in AUROC,
and 26.66% higher in AUPR. For each individual trigger, the TPR95 of our method is over 96% for
most cases, the AUROC of our method is over 97% for most cases, and the AUPR of our method
is over 95% for most cases. It is also seen that our classifier is robust against the latest or advanced
backdoor attacks, such as Wanet, invisible trigger, all label attack, and filter attack, whereas the
baseline methods show low performance on those attacks. Therefore, we conclude that our classifier
is valid for backdoor detection.

5 CONCLUSION

This paper proposes an easy-to-compute distribution-free upper bound for the distribution overlap
index. Two applications of the bound are explored. The first application is for domain shift analy-
sis with a proposed theorem and discussion. The second application is for one-class classification.
Specifically, this paper introduces a novel distribution-free one-class classifier with the bound being
its confidence score function. The classifier is sample-efficient, computation-efficient, and memory-
efficient. The proposed classifier is evaluated on novelty detection, out-of-distribution detection, and
backdoor detection on various datasets and compared with many state-of-the-art methods. The ob-
tained results show significant promise toward broadening the application of overlap-based metrics.
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Figure 5: Pictures under ”Triggers” are poisoned samples regarding different backdoored attacks.
Pictures under ”Clean” are clean samples for each dataset.

A DETAILS FOR NOVELTY DETECTION

The method in Table 4 is in the same order as shown in Fig. 3.

Table 4: Means and standard deviations of AUROC (%) for different methods on 100 UCI datasets.
Ours L1-Ball K-Center Parzen Gaussian K-Mean

79± 15.6 65.4± 25.4 72.2± 17.6 77.6± 18.6 81.1± 16.6 76.3± 17.9
1-Nearest
Neighbor

K-Nearest
Neighbor

Auto-Encoder
Network

Linear
Programming

Principal
Component

Lof
Range

78.8± 18.3 79.2± 18.3 73.7± 17.9 77.5± 18.9 75.1± 18.3 56.5± 30.8
Nearest

Neighbor
Distance

Minimum
Spanning

Tree

Minimum
Covariance
Determinant

Self
Organizing

Map

Support
Vector

Machine

Minimax
Probability
Machine

77.5± 16.6 78.8± 17.4 80.4± 17.1 77.6± 17.4 69.4± 24.6 66.4± 33.3
Mixture

Gaussians
Local Outlier

Factor
Naive
Parzen

Local Correlation
Integral

78.7± 18.1 76.1± 19.7 78.4± 16.2 60.7± 23.9

B DETAILS FOR OUT-OF-DISTRIBUTION DETECTION

Table 5 is for CIFAR-10 case and Table 6 is for CIFAR-100 case.

C DETAILS FOR BACKDOOR DETECTION

Fig. 5 shows the used triggers and the corresponding clean samples. Table 7 shows the details for
backdoor detection.
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Table 5: Results for CIFAR-10 in-distribution case (higher number implies higher accuracy). Bold-
face shows the best performing algorithm, whereas underline shows the second best algorithm.

Out-of-Distribution Datasets Method TPR95 (%) AUROC (%) AUPR (%)

Texture

Ours 58.41 90.97 85.64
MSP 40.75 88.31 97.08

Mahalanobis 62.38 94.46 98.75
Energy Score 47.47 85.47 95.58

GEM 72.61 94.59 98.79

SVHN

Ours 88.31 96.23 98.49
MSP 52.41 92.11 98.32

Mahalanobis 79.34 95.72 99.04
Energy Score 64.20 91.05 97.66

GEM 79 95.65 99.01

LSUN-Crop

Ours 79.45 94.33 94.60
MSP 69.07 95.64 99.13

Mahalanobis 30.06 86.15 97.05
Energy Score 91.89 98.40 99.67

GEM 30.20 86.09 97.03

LSUN-Resize

Ours 69.92 92.03 92.54
MSP 47.45 91.30 98.11

Mahalanobis 35.64 88.12 97.45
Energy Score 71.75 94.12 98.64

GEM 35.45 88.09 97.43

iSUN

Ours 65.60 90.25 90.33
MSP 43.40 89.72 97.72

Mahalanobis 26.77 87.87 97.33
Energy Score 66.27 92.56 98.25

GEM 36.80 87.85 93.33

Average Performance

Ours 72.33 92.76 92.32
MSP 50.63 91.46 98.07

Mahalanobis 46.83 90.46 97.92
Energy Score 68.31 92.32 97.96

GEM 50.81 90.45 97.91
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Table 6: Results for CIFAR-100 in-distribution case (higher number implies higher accuracy). Bold-
face shows the best performing algorithm, whereas underline shows the second best algorithm.

Out-of-Distribution Datasets Method TPR95 (%) AUROC (%) AUPR (%)

Texture

Ours 46.13 87.52 80.57
MSP 16.71 73.58 93.02

Mahalanobis 57.62 90.14 97.62
Energy Score 20.38 76.46 93.68

GEM 57.40 90.17 97.63

SVHN

Ours 90.69 96.41 98.58
MSP 15.66 71.37 92.89

Mahalanobis 51.35 89.25 97.52
Energy Score 14.59 74.10 93.65

GEM 51.51 89.40 97.57

LSUN-Crop

Ours 27.93 80.09 79.32
MSP 33.44 83.71 96.32

Mahalanobis 1.53 58.48 89.73
Energy Score 64.01 93.41 98.59

GEM 1.70 58.42 89.70

LSUN-Resize

Ours 39.80 88.15 86.79
MSP 16.54 75.32 94.03

Mahalanobis 67.20 93.97 98.70
Energy Score 21.38 79.29 94.97

GEM 67.09 94.01 98.70

iSUN

Ours 35.87 86.01 83.37
MSP 17.02 75.87 94.20

Mahalanobis 64.07 92.69 98.32
Energy Score 19.20 78.98 94.90

GEM 64.10 92.73 98.32

Average Performance

Ours 48.08 87.63 85.72
MSP 19.87 75.97 94.09

Mahalanobis 48.35 84.90 96.37
Energy Score 27.91 80.44 95.15

GEM 48.36 84.94 96.38

15



Under review as a conference paper at ICLR 2023

Table 7: Comparison results for backdoor detection (higher number implies higher accuracy).
Datasets Trigger Metrics (%) Ours STRIP Mahalanobis GEM MSP

MNIST All label
TPR95 83.05 2.58 50.83 100 100

AUROC 96.13 44.69 90.78 50.43 50
AUPR 94.20 35.47 86.71 70.94 70.83

MNIST Naive.1
TPR95 100 98.85 99.86 100 5.11

AUROC 97.50 97.32 97.49 53.95 51.64
AUPR 96.17 95.95 96.38 74.74 50.41

MNIST Naive.2
TPR95 96.53 67.46 35.16 100 14.69

AUROC 97.28 93.67 78.63 53.51 58.14
AUPR 95.75 89.85 78.65 74.62 64.16

CIFAR-10 TCA.1
TPR95 100 35.68 100 100 4.38

AUROC 97.50 83.00 97.49 50 49.23
AUPR 95.47 73.22 97.84 76.32 52.64

CIFAR-10 TCA.2
TPR95 100 27.86 100 100 0.02

AUROC 97.50 68.79 97.49 50 29.90
AUPR 97.63 72.41 95.86 67.86 18.05

CIFAR-10 Wanet
TPR95 37.87 0.07 20.35 22.90 100

AUROC 92.74 34.97 50.61 57.81 50
AUPR 89.95 37.42 57.30 68.48 74.87

GTSRB Moving
TPR95 99.99 54

Fail: dependent data dimensionsAUROC 85.39 7.29
AUPR 96.96 89.07

GTSRB Filter
TPR95 85.39 7.29

Fail: dependent data dimensionsAUROC 96.54 38.92
AUPR 95.42 38.81

GTSRB Wanet
TPR95 100 1.24 0.51 100 100

AUROC 97.50 36.31 54.46 50 50
AUPR 97.62 39.53 48.92 75.23 75.23

YouTube Face Sunglasses
TPR95 73.37 83.03 71.64 98.58 13.06

AUROC 95.21 94.80 94.38 84.29 66.55
AUPR 93.00 95.54 94.63 88.83 53.27

YouTube Face Lipstick
TPR95 96.64 90.14 90.88 94.18 3.73

AUROC 97.21 93.15 93.26 80.80 50.14
AUPR 96.30 94.98 95.09 86.53 53.27

sub-ImageNet Invisible
TPR95 100 7.01 0.5 100 51.40

AUROC 97.49 66.26 4.78 50 93.61
AUPR 96.53 62.83 12.27 75.26 92.46

Average Performance
TPR95 89.40 39.60 56.97 91.57 39.24

AUROC 96.68 70.30 75.94 58.08 54.92
AUPR 95.42 68.76 76.37 75.88 60.52
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