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ABSTRACT

Continual Instruction Tuning (CIT) enables Large Multimodal Models (LMMs)
to rapidly adapt to new tasks without retraining, but it suffers from the catas-
trophic forgetting problem. By adding new branches, model extension provides
a great idea to accommodate novel knowledge while causing huge memory con-
sumption. To jointly address forgetting and memory explosion, we propose the
Compression–Integration–Learning (CIL) pipeline, which draws on the memory
consolidation processes during human sleep. Compression streamlines old pa-
rameters to release capacity. Integration merges knowledge from similar tasks to
restore the performance loss due to compression. For example, based on LLaVA-
7B, the forgetting is reduced from 11.29 to 5.09. Learning reallocates released
capacity for new task-relevant parameters. Next, based on the characteristics of
LMMs at different learning stages, we establish the progressive learning process,
further reducing forgetting from 5.09 to 3.39. Moreover, to adapt this process,
we decompose LoRA into a set of rank vectors and introduce an extremely fine-
grained architecture, LoRA Rank Pool (LRP), with the goal of flexible knowl-
edge employment and editing. Finally, we combine all components, and yield
Progressively Compressed LoRA (PCLR). Extensive experiments demonstrate
that PCLR owns a memory budget close to non-extension methods while outper-
forming extension methods in performance. The implementation code is available
at https://github.com/SII-HITclearlove777/PCLR.

1 INTRODUCTION

Large Multimodal Models (LMMs) have gained widespread adoption due to their exceptional cross-
modal comprehension and generation capabilities (Lu et al., 2024; Zheng et al., 2023). The training
process follows a two-stage paradigm: Pre-Training (PT) and Supervised Fine-Tuning (SFT) (Bai
et al., 2025; Chen et al., 2024c). Within SFT, instruction tuning markedly improves the ability of
models to follow human intent and become an industry standard practice (Dai et al., 2023; Achiam
et al., 2023). However, with continuously evolving data sources and task requirements, the need for
frequent retraining is costly and impractical (Scialom et al., 2022; Luo et al., 2023). Thus, Continual
Instruction Tuning (CIT) becomes a promising way to learn evolving knowledge for LMMs (Chen
et al., 2024a; Xie et al., 2025).

CIT methods include static-structure (non-extension) and model extension (extension) (Yu et al.,
2024a). Static methods alleviate forgetting by constraining parameter updates, but they suffer from
the trade-off between stability and plasticity (Li & Hoiem, 2017; Aljundi et al., 2018; Zhu et al.,
2024). Extension methods append task-specific modules to isolate interference (Wang et al., 2022a;
Yu et al., 2024b), but this incurs unbounded memory with tasks growing.
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Figure 1: Radar chart of comparisons on Final Accuracy between baseline (LoRA) and ours.

To mitigate memory growth, recent methods focus on conditional extension, assuming task interfer-
ence correlates with feature distribution differences. Before training, feature distribution similarities
between previous tasks and the new task are measured. If no similar previous tasks, an independent
parameter group is instantiated to avoid interference; otherwise, the task is assigned to the clus-
ter whose feature distribution is closest to the new task and the corresponding parameter group is
trained within a regularization constrained update scheme (He et al., 2023; Qiao et al., 2025a). With
treating parameter groups as routing experts, these frameworks mitigate high-interference tasks and
reduce the need for extension. Nevertheless, they only implicitly postpone structural extension, and
memory will still undergo unbounded growth with a long sequence of tasks.
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Figure 2: From TextVQA to VizWiz,
⟨VizWiz,GQA⟩ represents 38.2% ranks
in VizWiz’s LoRA are redundant versus
GQA. Details are shown in Appendix N.

The memory overhead of the model extension is in
fact unnecessary. During continual learning, the LoRA
parameters from distinct tasks contain linearly depen-
dent rank vectors (as shown in Figure 2), and these
rank vectors are compressible. However, current ex-
tension methods ignore fine-grained rank-level relation-
ships, which constitute the key driver of memory ex-
plosion. To address the problem, we develop a fine-
grained Mixture-of-Experts structure, LoRA Rank Pool
(LRP), which is inspired by AdaLoRA (Zhang et al.,
2023) and L2P series (Wang et al., 2022c;b; Smith et al.,
2023b) (Appendix M). LRP decomposes LoRA into
rank experts, providing maximal flexibility for knowl-
edge employment and editing. This design reduces stor-
age overhead by minimizing parameter extension dur-
ing training and pruning parameters post-training.

To save memory, we introduce Compression after ex-
tension: pruning redundant rank experts in LRP to re-
lease capacity. Inspired by hippocampal reactivation
during sleep that consolidates memory (Wilson & McNaughton, 1994; Stickgold, 2005; Srinivasan
et al., 2025), we propose off-learning-phase Integration: using knowledge distillation to reactivate
learned experts and fuse their internal knowledge, thereby mitigating the performance degradation
induced by compression. Combined with Learning on new tasks, this yields the Compression-
Integration-Learning (CIL) pipeline. The memory saved by compression is set equal to that added
by learning, aiming to fundamentally eliminate the issue of unbounded extension. Finally, we es-
tablish the progressive learning process, effectively mitigating catastrophic forgetting in long-term
CIT. Different from previous work, our approach allows all experts to contribute to new task learn-
ing, which promotes knowledge transfer and integration. In our method, task-specific experts that
support a single task are progressively transformed into mixture-of-experts that support multiple
tasks, during continual learning. The evolution is visualized in Appendix F.

We evaluate the proposed method on LLaVA-1.5 (Liu et al., 2024) and Qwen-VL (Bai et al., 2023b)
by using the Continual Instruction Tuning benchmark (Chen et al., 2024a). Furthermore, we extend
our evaluation to a long-term multimodal CIT benchmark, Continual-NExT. Experimental results
demonstrate that PCLR significantly enhances the continual learning capabilities of LMMs. In sum-
mary, the contributions of this work are as follows:
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• We develop the Compression–Integration–Learning (CIL) pipeline to balance stability,
plasticity, and memory efficiency in CIT. Additionally, it can be combined with other reg-
ularization strategies to further improve the long-term CIT performance.

• We propose an extremely fine-grained Mixture-of-Experts (MoE) structure, LoRA Rank
Pool (LRP), enabling maximal freedom to employ and edit knowledge.

• To the best of our knowledge, PCLR achieves state-of-the-art performance with significant
baseline improvements (as shown in Figure 1). In addition, it also owns the superior per-
formance on Continual-NExT (15 tasks), the longest known multimodal CIT benchmark.

2 RELATED WORK

Large Multimodal Models: Benefiting from the advanced understanding and generation capabili-
ties of LLMs (Bai et al., 2023a; Touvron et al., 2023b; Dubey et al., 2024), LMMs achieve rapid de-
velopment (Zhan et al., 2024; Wang et al., 2024; Team, 2024; Ge et al., 2024), particularly in Visual
Large Language Models (VLLMs) (Chen et al., 2024b; Bai et al., 2025; Li et al., 2024a). VLLMs
employ linear projection layers (Touvron et al., 2023a; Bai et al., 2023a) and Q-Former (Liu et al.,
2023; Zhu et al., 2023) as cross-modal bridge modules to connect visual encoders to LLM back-
bones (Touvron et al., 2023a; Bai et al., 2023a), enhancing multimodal reasoning.

Multimodal Continual Instruction Tuning: CIT methods can be categorized into three paradigms.
Regularization methods constrain gradients or parameters during training (Smith et al., 2023a; Zhu
et al., 2024). Structure-based methods enhance performance through architectural modification and
dynamic extension (Yan et al., 2021; Jha et al., 2024; Yu et al., 2024b). Replay methods mitigate
catastrophic forgetting by replaying high-quality historical samples (Chaudhry et al., 2018; 2019;
Yoon et al., 2021; Zhang et al., 2024). To support multimodal CIT research, the CoIN (Chen et al.,
2024a) benchmark is introduced. Representative methods: Model Tailor (Zhu et al., 2024) updates
critical parameters via sparse masking. Eproj (He et al., 2023) and LCIA (Qiao et al., 2025a) imple-
ment grouped parameter learning based on task similarity. Specifically, Eproj introduces similarity-
driven dynamic regularization, while LCIA incorporates the dynamic exponential moving average.

3 PRELIMINARY

Problem Definition: Given the LMM M , a series of tasks T = {T1, T2, · · · , Tn} and the cor-
responding instruction datasets D = {D1, D2, · · · , Dn}, multimodal continual instruction tuning
refers to sequentially training M on each new task Tt (1 ≤ t ≤ n) with access only to Dt (or limited
access to previous datasets), where Dt = {V t

i ,M
t
i , I

t
i}

nt

i=1, nt denotes the size of the training set
for the t-th task, and V t

i , M t
i , Iti denote the visual inputs, the textual messages, and the instruction

for sample i, respectively. The objective is to acquire new knowledge while preserving performance
on previous tasks during continual learning.

LoRA Tuning: LoRA directly interacts with the frozen weights of the original model and has
strong performance on complex tasks (Hu et al., 2022). It uses matrix factorisation ∆W = βABT

to represent weight updates during fine-tuning, where β is a scaling factor, ∆W ∈ Rdin×dout ,
A ∈ Rdin×r, B ∈ Rdout×r, and din, dout, r represent the input dimension, output dimension, and
latent dimension, respectively. The forward process is defined as: y = xW + βxABT .

MoE for CIT: The Mixture-of-Experts (MoE) architecture inherently excels in multi-task learning
due to its sparse activation mechanism (Guo et al., 2025). Recent methods leverage data features as
queries for sequence-level routing: Eproj (He et al., 2023) encodes visual-textual features to assign
the task-specific routing expert, while LCIA (Qiao et al., 2025a) identifies instruction patterns to
allocate experts. The general formulation can be shown as:

y = xW + β

t∑
i=1

gate(s(x), k)ixAiB
T
i , (1)

where s(x) ∈ Rt denotes the expert routing scores, t is the number of total experts, k is the number
of activated experts, and Ai, Bi are the LoRA weights of the i-th expert. The operator gate(v, k)
selects the top-k entries of vector v, setting those positions to 1 and others to 0. Moreover, to

3



Published as a conference paper at ICLR 2026

LoRA-A

LLM

Linear Module

LoRA-B

Score

  Key Pool

Query

Cosine 
Similarity VIT Encoder LLM Embedding

Connect

Hidden Embedding Input

[CLS] Token Average of Sequence

What is the object in the image?

Hidden Embedding Output

      Frozen Param           Training Param

Input

1 2 3 4 R-1 R…

Gate (Score)

Shared Rank

Opened Rank

Closed Rank

Output
Recreational vehicle

Figure 3: The pipeline of LRP. First, extract the query from inputs. Next, compute similarity scores
with the key pools and gate the scores. Then, apply scores jointly with LRP weights in the forward
pass. LRP is semi-frozen during training: new parameters are trained while previous ones are frozen.

accommodate continuously growing knowledge, the MoE can be extended by adding new experts,
and we refer to this as Dynamic MoE in this paper.

4 METHOD

4.1 OVERVIEW

Our method comprises two coupled components: the LoRA Rank Pool (LRP) architecture and the
Compression–Integration–Learning (CIL) pipeline. LRP factorizes LoRA adapters into rank vec-
tors, each paired with a learnable key, forming an atomic expert that is inserted into linear lay-
ers. LRP is similar to Dynamic MoE, which uses static features to activate experts and preserves
past knowledge during training by freezing parameters (as shown in Figure 3). For the learning
paradigm, we design CIL to emulate the memory cycle of human lifelong learning (as shown in
Figure 4). Compression, prunes experts at a preset retention rate to release capacity. Integration,
applies an improved distillation algorithm to align the post-compression LRP with its original state,
thereby compensating for compression-induced loss by merging similar experts. Learning, trains
new experts with the released capacity, and initializes them with similar previous experts to enhance
forward transfer. Finally, we build a progressive synergy mechanism combining the CIL pipeline and
the CIT process to enhance long-term CIT performance (the algorithm is shown in Appendix U.1).

4.2 LORA RANK POOL

Although Dynamic MoE achieves outstanding performance on CIT, its experts tend to acquire over-
lapping (redundant) knowledge. To address this problem, we decompose experts to the atomic by
splitting the LoRA weight A into a column vector set {a1, a2, · · · , an}, and the weight BT into a
row vector set

{
bT1 , b

T
2 , · · · , bTn

}
. Then, we introduce globally shared components As, Bs to accu-

mulate global knowledge. Thus, we obtain the LoRA Rank Pool formulation from Eq.(1):

y = xW + βsxAsB
T
s + βm

n∑
i=1

gate(s(x), r)ixaib
T
i , (2)

where n is the number of total rank experts, r is the number of activated rank experts, βs is the factor
of the shared ranks part, βm is the factor of the mixture-of-experts part.

Next, we define the score function s(x) = Kq, where K ∈ Rn×d, q ∈ Rd are the L2-regularized
key pool and query. For each input x, we construct q (query) by concatenating the mean-pooling of
text embeddings with the visual output ([CLS] token or mean-pooling). Each rank expert in the LRP
is assigned a learnable key, and all keys form K (key pool). We use cosine similarity scores and
gating to select top-r relevant experts. This enables the model to employ distinct experts to acquire
different knowledge and selectively activate them during inference.
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Figure 4: Compression-Integration-Learning (CIL) pipeline. Compression is a training-free process
that streamlines the original LRP. Integration is a distillation process that aligns the compressed LRP
with the original LRP. Learning is a supervised fine-tuning process that initializes the LRP from the
integration-processed LRP and then adapts to the new task.

In Eq.(2), the mixture-of-experts part forms an n-term matrix polynomial. Sequential execution of
all terms would cause significant computational overhead, making parallelization necessary. We
aggregate the discrete ranks into Am and Bm. We broadcast the scoring vector s(x) to match the
dimensions of xAm and derive a parallelized formulation:

y = xW + βsxAsB
T
s + βmF

(
xAm, gate (Kq, r)

T
)
BT

m, (3)

where the operator F (U, v) broadcasts v ∈ Rb to match the shape of U ∈ Ra×b, resulting in two
matrices with identical dimensions, followed by an element-wise multiplication.

To jointly improve downstream task performance and learn the keys of labeled experts within the
LRP, we combine the cross-entropy loss with the query–key cosine similarity loss:

L (θ) = − 1

T

T∑
t=1

log Pθ (yt | x, y<t, q) +
λ

l

l∑
i=1

∥1r − topr(Ki)q∥1 , (4)

where λ is a balancing hyperparameter, and l denotes the number of key pools, which equals the
LMMs layer count. To preserve previous knowledge, we freeze all previous keys and ranks while
optimizing only the newly added ones.

4.3 COMPRESSION-INTEGRATION-LEARNING

Conventional learning faces the dilemma of whether to learn within the previous parameter space
or to allocate a new one. The former suffers from the trade-off between stability and plastic-
ity, whereas the latter leads to unbounded memory growth. To address this problem, we propose
the Compression-Integration-Learning (CIL) pipeline, which compresses previous knowledge when
learning new tasks. We decompose each CIT task into three main phases: compressing, integrating
past knowledge, and learning new knowledge (as shown in Figure 4). Notice that CIL is initiated
once the total rank reaches a predefined value.

Compression: At this phase, we introduce a compression retention rate α ∈ (0, 1], discarding
a portion of redundant rank experts and their corresponding keys. As a result, the pruned LRP
maintains its rank and key count at α times the values of the original one. Although compression
may lead to performance loss, it is crucial for alleviating the memory pressure of the learning system.
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Integration: Removing key-value pairs will degrade knowledge from previously learned tasks. To
compensate for this loss, we perform integration on the current dataset to adapt the LRP using the
distillation loss (Hinton et al., 2015; Huang & Wang, 2017; Gou et al., 2021). Specifically, we for-
mulate the Query-based Kullback-Leibler Divergence Loss (QKLD Loss) to align the compressed
LRP with the original one. The process freezes the teacher model (LRP before compression) and up-
dates the student model (LRP after compression). Through distillation, rank experts in LRP absorb
the knowledge from pruned experts, and the common representations across different tasks flow into
the shared knowledge space, ultimately mitigating the knowledge loss caused by compression. The
pseudo algorithm of compression and integration can be referred to in Appendix U.3.

LRP activates specific rank experts based on the query of the input. However, the datasets from
previous tasks are not accessible during integration. Considering that we optimize the query–key
cosine similarity during learning, and its optimum is achieved when each new key equals the mean
of all queries for the corresponding task. Therefore, the learned keys can serve as surrogates for the
queries from previous tasks, and we define them as fake queries. During integration, we compute
Kullback-Leibler Divergence (KLD) to quantify the performance loss associated with the fake query:

DKL (q) =
1

T

T∑
t=1

Pθori (xt | x<t, q) log

(
Pθori (xt | x<t, q)

Pθzip (xt | x<t, q)

)
, (5)

where θori is the original LRP, θzip is the compressed LRP, x is the input. To emphasize optimization
for tasks with larger performance degradation, we define the sampling probability of fake query:

P (q) =

√
DKL (q)∑

q∈Kori

√
DKL (q)

, (6)

where Kori is the original key pool. Finally, we define the QKLD Loss:

L (θzip) = Eq∼P [DKL (q)] =
∑
q∈K

P (q)DKL (q) . (7)

Learning: During the learning phase, shared and previous ranks are frozen to preserve past knowl-
edge, while new key–value pairs (rank experts and their corresponding keys) are trained using the
capacity released through compression to optimize the new task. By decomposing LoRA into rank
vectors, we enhance forward transfer: new parameters are initialized using ranks from similar tasks.
This is achieved by computing the queries of a subset of training samples before learning, taking
their mean as an identifier to match to key-value pairs in the LRP, and initializing the new rank
components with the values corresponding to the keys that exhibit the top-r cosine similarity scores.
The pseudo algorithm of learning can be referred to in Appendix U.2.

4.4 PROGRESSIVE LEARNING PROCESS

In this section, we introduce the progressive learning process to further improve the continual learn-
ing performance of LMMs. In the early CIT, the rank space has not attained its allotted capacity,
rendering compression an unnecessary expense. Thus, we disable compression until the capacity
is filled. This optimization reduces training cost and avoids unnecessary performance degradation
without altering the final number of rank experts and the model memory.

As the number of tasks increases, LMMs accumulate more knowledge and strengthen their capa-
bilities. This means that when learning new tasks, the number of additional trainable parameters
progressively decreases, because much of the relevant knowledge has already been encountered.
Consequently, the learning focus shifts from acquiring entirely new knowledge to organizing and
consolidating acquired knowledge. In the CIL pipeline, overlap between new tasks and earlier
knowledge (reusable knowledge) increases. Meanwhile, internal representation becomes increas-
ingly compact and resistant to further compression (high knowledge density).

Accordingly, in the later CIT, we allocate fewer new ranks and employ a lighter, high-retention
compression scheme to minimize performance degradation. This encourages LMMs to rely more on
frozen knowledge during the late learning phase and has negligible impact on new task performance.
The progressive learning process, through deliberate planning of the learning path for LMMs, further
enhances stability, plasticity, memory efficiency, and temporal efficiency of its evolution.
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Table 1: Comparisons between ours and baselines on LLaVA-1.5-7B, CoIN benchmark.
Method Venue Accuracy on Each Task Overall Results

1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAv2 8-OCRVQA Avg.ACC(↑) Forgetting(↓) New.ACC(↑)
Zero-shot - 49.91 2.88 0.33 2.08 0.90 0.00 0.68 0.17 7.12 - -
Multi-Task - 56.77 49.35 95.55 56.65 53.90 30.09 59.50 55.65 57.18 - -
LoRA (Hu et al., 2022) ICLR’22 21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08 28.74 37.29 61.36
LwF (Li & Hoiem, 2017) TPAMI’16 63.14 39.60 8.90 34.83 14.53 2.48 40.67 62.35 33.31 22.32 52.58
EWC (Kirkpatrick et al., 2017) PNAS’17 67.41 40.41 8.18 35.05 37.88 2.67 41.27 61.02 36.74 20.51 54.68
MoELoRA (Chen et al., 2024a) NIPS’24 58.92 38.59 8.85 37.10 44.25 2.45 41.40 55.35 35.86 25.71 58.36
AdaLoRA (Zhang et al., 2023) ICLR’23 73.40 51.29 35.47 44.53 46.75 0.93 55.86 62.03 46.28 23.99 63.27
MT (Zhu et al., 2024) ICML’24 79.63 55.47 35.64 58.70 44.37 32.20 62.21 61.59 53.73 14.03 66.00
PGP (Qiao et al., 2025b) ICLR’24 85.17 56.85 32.26 61.74 49.43 32.74 65.74 62.20 55.77 12.94 67.09
CIA∗ (Qiao et al., 2025a) ICML’25 75.63 54.47 43.64 60.70 43.37 36.00 65.21 63.59 55.33 7.04 61.49
SEFE (Chen et al., 2025) ICML’25 75.35 58.66 83.10 54.25 48.85 16.75 65.35 66.25 58.57 11.94 69.02
ProgLoRA (Yu et al., 2025) ACL’25 74.84 51.83 83.90 49.93 53.87 31.19 62.71 64.44 59.09 7.53 65.68
EProj (He et al., 2023) ArXiv’23 78.51 57.53 92.35 55.93 44.67 36.59 63.74 57.00 60.79 5.42 65.54
PCLR - 78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92 62.19 3.39 65.16

4.5 INTEGRATION WITH REGULARIZATION METHODS

To further enhance the performance of our proposed PCLR on long-term CIT while minimizing
unnecessary performance degradation and training overhead, we integrate it with regularization
methods. Specifically, the long sequence of tasks is partitioned into groups of contiguous tasks.
Within each group we perform continual learning in a unified rank space combined with regulariza-
tion methods, while across groups we retain the CIL process, thereby avoiding unnecessary exten-
sion and compression. This optimization enhances the long-term CIT performance of PCLR while
markedly reducing training overhead. We present cases of the integration of PCLR with LwF (Li &
Hoiem, 2017) in the experiments, and the pseudo algorithm can be referred to in Appendix U.4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

CoIN Benchmark: To verify the performance of our method in challenging scenarios, we adopt
LLaVA-1.5 (Liu et al., 2023)/Qwen-VL (Bai et al., 2023b) as the base model, and insert the PCLR
module into the linear layers of the LLM backbone network and the cross-modal bridge. We use
the CoIN (Chen et al., 2024a) benchmark and keep the order of ScienceQA (Lu et al., 2022),
TextVQA (Singh et al., 2019), ImageNet (Russakovsky et al., 2015), GQA (Hudson & Manning,
2019), VizWiz (Gurari et al., 2018), Grounding (Mao et al., 2016), VQAv2 (Goyal et al., 2017), and
OCRVQA (Mishra et al., 2019). These visual language datasets encompass a diverse range of task
types, including selection, classification, grounding, and open-ended question answering.

Continual-NExT Benchmark: In order to further verify our method in the long-term CIT setting,
we use the Continual-NExT (Xie et al., 2025) benchmark, and keep the order of ArXivQA (Li et al.,
2024b), GeoChat (Kuckreja et al., 2024), IconQA (Lu et al., 2021), ClevrMath (Lindström & Abra-
ham, 2022), CodeQA (Liu & Wan, 2021), ImageNet (Russakovsky et al., 2015), Flickr30k (Plum-
mer et al., 2015), DocVQA (Mathew et al., 2021), TextVQA (Singh et al., 2019), MathQA (Amini
et al., 2019), ChartQA (Masry et al., 2022), PathVQA (He et al., 2020), Grounding (Mao et al.,
2016), ScienceQA (Lu et al., 2022), and WikiQA (Yang et al., 2015). These visual language and
pure language datasets cover multiple fields such as coding, mathematics, remote sensing and med-
ical images. The experimental setup is shown in Appendix B.

Comparison Methods: Compared baselines include LoRA (Hu et al., 2022), zero-shot and multi-
task; regularization methods: (1) LWF (Li & Hoiem, 2017), (2) EWC (Kirkpatrick et al., 2017),
(3) GEM (Lopez-Paz & Ranzato, 2017), (4) MT (Zhu et al., 2024), (5) PGP (Qiao et al., 2025b),
(6) CIA* (w/o Instruction Grouping) (Qiao et al., 2025a), (7) SEFE (Chen et al., 2025); static-
structure method: (1) MoELoRA (Chen et al., 2024a), (2) AdaLoRA (Zhang et al., 2023); extension
methods: (1) Eproj (He et al., 2023), (2) CIA (Qiao et al., 2025a), (3) ProgLoRA (Yu et al., 2025);
replay method: (1) Experience Replay (Rolnick et al., 2019). The experiments all adopt the setting
of training each task for 1 epoch. The method details are provided in Appendix S.

Evaluation Metrics: We utilize three popular evaluation metrics: the average accuracy (Avg.ACC),
the forgetting (Forgetting) and the new accuracy (New.ACC), which are shown in Appendix E.

5.2 MAIN RESULTS

As shown in Table 1, we discover that PCLR achieves the highest overall performance on the CoIN
benchmark. Compared to the former best regularization method SEFE, the Avg.ACC improves by
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Table 2: Comparisons between ours and baselines on LLaVA-1.5-hf, Continual-NExT benchmark.

Method Venue Accuracy on Each Task & Overall Results
1-ArxivQA 2-GeoChat 3-IconQA 4-ClevrMath 5-CodeQA 6-ImageNet 7-Flickr30k 8-DocVQA 9-TextVQA

Zero-shot - 36.99 67.67 18.77 20.27 0.26 18.10 17.27 14.58 57.39
Multi-Task - 64.08 96.40 60.60 70.50 10.81 97.06 20.52 23.18 65.44
LoRA (Hu et al., 2022) ICLR’22 53.99 92.23 47.23 44.86 4.36 67.84 17.16 16.47 47.70
LwF (Li & Hoiem, 2017) TPAMI’16 51.04 87.33 30.97 39.20 4.74 84.89 16.26 16.56 54.09
EWC (Kirkpatrick et al., 2017) PNAS’17 55.16 91.73 47.17 49.30 4.38 82.03 16.71 16.88 51.73
GEM (Lopez-Paz & Ranzato, 2017) NIPS’17 55.30 91.03 49.13 48.30 4.76 76.20 16.21 15.85 51.33
Replay-100 (Rolnick et al., 2019) NIPS’19 54.85 94.40 51.73 40.07 4.48 94.61 9.36 14.65 54.70
MoELoRA (Chen et al., 2024a) NIPS’24 56.00 91.36 48.76 48.90 3.82 82.19 17.77 16.33 59.51
CIA* (Qiao et al., 2025a) ICML’25 56.35 93.41 48.76 48.20 4.23 83.00 16.54 16.98 51.32
PCLR - 59.00 78.20 51.30 37.17 7.86 85.19 18.68 20.00 64.10
PCLR-LwF (PCLR variant) - 61.16 96.37 62.40 64.70 8.68 97.46 20.63 19.84 63.97

10-MathQA 11-ChartQA 12-PathVQA 13-Grounding 14-ScienceQA 15-WikiQA Avg.ACC(↑) Forgetting(↓) New.ACC(↑)
Zero-shot - 0.44 9.60 33.29 28.28 66.19 17.54 27.11 - -
Multi-Task - 36.01 20.76 58.61 72.03 86.21 23.38 53.71 - -
LoRA (Hu et al., 2022) ICLR’22 33.80 18.04 50.98 69.52 89.46 22.27 45.06 11.62 55.91
LwF (Li & Hoiem, 2017) TPAMI’16 30.05 18.64 52.79 64.11 87.95 24.96 44.24 12.29 55.70
EWC (Kirkpatrick et al., 2017) PNAS’17 35.41 19.00 50.92 69.92 89.51 24.17 46.93 9.72 56.01
GEM (Lopez-Paz & Ranzato, 2017) NIPS’17 35.28 17.68 51.38 67.23 89.86 23.85 46.23 10.19 55.74
Replay-100 (Rolnick et al., 2019) NIPS’19 31.42 14.40 49.64 56.98 85.62 23.85 45.38 11.41 56.03
MoELoRA (Chen et al., 2024a) NIPS’24 34.17 18.52 49.04 67.65 88.28 22.59 46.99 8.06 54.51
CIA* (Qiao et al., 2025a) ICML’25 32.56 17.62 50.47 69.86 89.37 23.54 46.81 8.30 54.55
PCLR - 36.42 20.96 58.48 69.76 89.65 22.27 47.94 7.71 55.14
PCLR-LwF (PCLR variant) - 37.22 19.84 58.42 62.83 83.09 33.49 52.67 4.58 56.89

3.62 and the Forgetting decreases by 8.55, demonstrating strong continual learning ability. Addition-
ally, some early approaches (e.g., LwF and EWC) tend to overemphasize the mitigation of forgetting,
while they suffer from severe plasticity reduction. Recent methods (such as MT and EProj) place
greater importance on maintaining plasticity, contributing to significant improvements in New.ACC.
However, these methods still struggle to achieve an optimal balance between New.ACC and Forget-
ting. Notably, our proposed method, PCLR, achieves the highest New.ACC and the lowest Forget-
ting among all compared approaches, demonstrating its superior performance. Furthermore, PCLR
surpasses both the previous best extension method (EProj) and the leading dynamic update method
(CIA*). To validate PCLR’s stability and scalability on larger models and diverse architectures, we
conduct evaluations on LLaVA-1.5-13B and Qwen-VL. Detailed results are provided in Appendix A.
Additionally, we present several visualizations in Appendix C.

As shown in Table 2, our method exceeds the best of other methods (MoELoRA), improving
Avg.ACC by 0.95 and reducing Forgetting by 0.35, demonstrating that PCLR sustains strong per-
formance on the long-term Continual-NExT benchmark. To further enhance PCLR’s efficiency and
performance, we merge it with LwF to form PCLR-LwF. Specifically, we group adjacent tasks and
perform LwF fine-tuning within each group (details are shown in Appendix B and Appendix K). This
integration with a simple baseline yields notable gains over the original PCLR, improving Avg.ACC
by 4.73 and reducing Forgetting by 3.13. Additionally, the results of Qwen2.5-VL-Instruct (Bai
et al., 2025) are provided in Appendix A. The visualization is shown in Appendix G.

5.3 ROBUST EXPERIMENTS

To verify that PCLR exhibits strong robustness under different CIT settings, we conduct two sets of
experiments on instruction templates and learning orders. Note that, in double-row tables, the upper
row denotes the immediate accuracy (evaluate after the current task), and the lower row denotes the
final accuracy (evaluate after the final task).

Table 3: Results of LLaVA-1.5-7B on different instruction templates.

Type Accuracy on Each Task Overall Results
1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAV2 8-OCRVQA Avg.ACC Forgetting New.ACC

Origin 83.47 61.29 96.50 59.97 58.32 34.02 65.75 61.92 62.19 3.39 65.16
78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92

Diverse 83.47 61.36 96.57 60.03 58.53 34.23 65.83 61.96 62.00 3.71 65.25
76.92 56.46 86.36 57.93 57.54 33.06 65.75 61.96

10Type 84.58 60.89 96.40 59.59 58.21 34.14 65.67 60.99 61.98 3.52 65.06
80.24 58.62 84.81 57.85 56.59 32.29 64.44 60.99

Different Instruction Templates: As part of the text input, different instructions can influence
query encoding and current task learning. We select three instruction templates (details are shown
in Appendix I) for comparison, as shown in Table 3. We observe that changes in the instructions
incur only a negligible effect, and our method can be adapted to different instruction templates.

Different Learning Order: In CIT, interfering tasks suffer from severe catastrophic forgetting when
learned in adjacent order without parameter grouping. PCLR smoothly transitions task-specific ex-
perts to mixture-of-experts through the CIL pipeline, which can resist this interference phenomenon
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Table 4: Results of LLaVA-1.5-7B on different task orders.

Order Accuracy on Each Task Overall Results
1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAV2 8-OCRVQA Avg.ACC Forgetting New.ACC

Origin 83.47 61.29 96.50 59.97 58.32 34.02 65.75 61.92 62.19 3.39 65.16
78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92

1-OCRVQA 2-VQAV2 3-Grounding 4-VizWiz 5-GQA 6-ImageNet 7-TextVQA 8-ScienceQA Avg.ACC Forgetting New.ACC

Reverse 58.97 65.06 34.40 58.42 61.08 96.61 60.40 83.68 62.18 3.03 64.83
56.78 62.66 26.68 55.85 57.00 94.02 60.74 83.68

1-GQA 2-Grounding 3-ImageNet 4-OCRVQA 5-ScienceQA 6-TextVQA 7-VizWiz 8-VQAV2 Avg.ACC Forgetting New.ACC

Alphabet 60.14 33.10 96.69 61.49 83.97 60.52 57.10 64.34 60.62 4.63 64.67
59.70 27.32 83.88 50.15 82.72 59.94 56.89 64.34

to a certain extent. In order to verify that PCLR has strong adaptability to different CIT orders, we
compare three settings with different task orders. As shown in Table 4, task order changes induce
slight knowledge conflicts, and have minor impact on the overall continual learning performance.

5.4 ABLATION STUDY

To evaluate each PCLR component, we start from the LoRA baseline, add components incre-
mentally, and compare continual instruction tuning performance. Results are shown in Table 5.
The experimental results demonstrate that each proposed component is effective in enhancing ac-
curacy and reducing forgetting of LMMs. To validate the superiority of the LRP architecture,
we compare the LoRA baseline with the LRP (which only performs compression and learning).

Table 5: Ablation study results.
Method Avg.ACC(↑) Forgetting(↓) New.ACC(↑)
LoRA(Baseline) 28.74 37.29 61.36
w/o Integration Process 54.66 11.29 64.54
w/o Progressive Process 60.78 5.09 65.23
PCLR(Ours) 62.19 3.39 65.16

We can observe that the introduction of
the LRP architecture increases Avg.ACC
(+25.92) and reduces Forgetting (-26).
In addition, we retain LRP and com-
pare the Compression-Integration-Learning
(CIL) and Compression-Learning (CL) pro-
cesses to validate the effectiveness of the integration process, and the results show that integration
increases Avg.ACC (+6.12) and reduces Forgetting (-6.2). Moreover, we observe that the introduc-
tion of the progressive process further increases Avg.ACC (+1.41) and reduces Forgetting (-1.7). In
summary, compared with the baseline, PCLR increases Avg.ACC (+33.45) and New.ACC (+3.8),
reduces Forgetting (-33.9), and achieves an optimal balance between plasticity and stability.

5.5 THE IMPACT OF PROGRESSIVE LEARNING

To investigate the impact of different compression strategies on CIT, we designed five methods: Ag-
gressive (non-progressive), Conservative (non-progressive), Reverse Progressive, Centralized Com-
pression, and Progressive Compression (Ours). These methods differ only in their compression
strategies while maintaining the same memory usage (details are shown in Appendix J).

Table 6: Results of LLaVA-1.5-7B on different compression strategies.

Strategy Final Accuracy on Each Task Overall Results
1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAV2 8-OCRVQA Avg.ACC Forgetting New.ACC

Aggressive 76.02 57.03 82.61 55.84 57.24 30.71 63.86 62.92 60.78 5.09 65.23
Conservative 81.37 59.23 92.28 58.77 54.55 25.88 64.16 59.03 61.91 1.77 63.43

Reverse 79.13 58.79 87.41 58.51 53.39 25.67 64.44 62.76 61.26 3.21 64.07
Centralized 77.72 53.78 88.93 60.05 55.71 28.71 62.93 60.16 61.00 3.38 64.37

Ours 78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92 62.19 3.39 65.16

As shown in Table 6, Aggressive Compression improves performance on new tasks but lacks the
ability to consolidate old knowledge (stability), with Forgetting increased (+1.7). Conservative
Compression reduces forgetting but limits the ability to learn new tasks (plasticity), with New.ACC
decreased (-1.73). Reverse Progressive Compression exhibits subpar performance in both stability
and plasticity, with Avg.ACC decreased (-0.93). Centralized Compression also demonstrates overall
lower performance, with Avg.ACC decreased (-1.19). In contrast, Progressive Compression dynam-
ically adjusts the compression retention rate, outperforming other strategies in reducing forgetting
(Forgetting = 3.39) and enhancing new task learning ability (New.ACC = 65.16), achieving the best
overall performance (Avg.ACC = 62.19). By optimizing the learning trajectory based on changes in
task knowledge density, Progressive Compression strikes a balance between stability and plasticity,
providing an effective design solution for our system development.
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Table 7: The results of LLaVA-1.5-13B on different integration data usage. For the double-row
table, the upper row denotes the final accuracy, and the lower row denotes the integration cost.

IDU Accuracy and Integration Cost on Each Task Evaluation Metrics
1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAV2 8-OCRVQA Avg.ACC Forgetting Avg.ICost

0 81.63 60.84 56.55 55.83 52.95 34.51 67.64 65.27 59.40 8.86 -
- - - - - - - -

5k 83.49 61.33 91.09 58.11 54.41 35.92 67.47 64.17 64.50 3.11 11 min
- - - 14 min 7 min 12 min 10 min -

10k 83.33 61.35 93.15 58.39 55.94 35.76 67.29 64.12 64.92 2.61 20 min
- - - 26 min 13 min 23 min 18 min -

20k 83.57 61.47 94.34 58.90 56.82 34.31 66.88 64.82 65.14 2.27 38 min
- - - 49 min 24 min 45 min 35 min -

Origin 83.82 61.99 93.98 59.49 57.98 36.03 66.09 64.67 65.51 2.08 115 min
- - - 173 min 24 min 121 min 141 min -

5.6 EFFICIENCY ANALYSIS

All LRP computations are fully parallelizable with the training cost close to the MoELoRA with one
expert (Appendix L). For PCLR, the primary additional cost arises from the integration. We control
the integration strength by varying the amount of integration data usage. Specifically, Integration
Data Usage (IDU) is set to 5 levels: 0, 5k, 10k, 20k samples, and Origin. Here, 0 denotes no
integration, and Origin refers to the full dataset for the current task. Experiments are conducted on
LLaVA-1.5-13B. Results are reported in Table 7 (Avg.ICost denotes the average integration-phase
cost in minutes). In this paper, we use the Origin level to obtain the best performance.

In conclusion, PCLR does not incur significant time cost, and appropriately reducing the IDU will
not cause serious performance degradation. When computing resources are sufficient, the IDU can
be increased to pursue the best final performance.

6 CONCLUSION

In this work, we introduce PCLR, which provides an extremely fine-grained LoRA Rank Pool (LRP)
with a Compression–Integration–Learning (CIL) pipeline to balance stability, plasticity, and mem-
ory efficiency during CIT. LRP provides maximal flexibility for expert employment and editing. CIL
progressively compresses LRP, trading off a minor performance drop to eliminate unlimited model
extension. On CoIN and Continual-NExT benchmarks across multiple LMMs, it delivers superior
overall performance to former regularization methods while remaining competitive with extension
methods. Robustness studies demonstrate the stability of the method. Ablation experiments confirm
the necessity of each component. Efficiency analyses guide our selection of the optimal amount of
integration data usage, balancing performance and speed. Owing to computing resource limits, we
currently focus on image–text CIT. In the future, we aim to extend our method to modality extension
scenarios. Additionally, we will design effective spatial structures in a block-wise manner to further
improve memory efficiency (feasibility can be found in Appendix D).
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A SUPPLEMENTARY RESULTS OF CONTINUAL INSTRUCTION TUNING

Table 8: Comparisons with baselines on LLaVA-1.5-13B, CoIN benchmark.

Method Venue Accuracy on Each Task Overall Results
1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAv2 8-OCRVQA Avg.ACC(↑) Forgetting(↓) New.ACC(↑)

LoRA (Hu et al., 2022) ICLR’22 60.03 41.19 10.62 31.03 32.67 2.60 46.33 61.00 35.68 32.90 64.47
MT (Zhu et al., 2024) ICML’24 80.43 60.72 46.70 60.35 49.19 33.16 63.74 65.44 57.47 11.26 67.32
PGP (Qiao et al., 2025b) ICLR’24 82.50 60.64 49.15 62.53 49.43 37.37 65.57 65.82 59.13 10.11 67.98
EProj (He et al., 2023) ArXiv’23 77.65 58.93 92.31 60.22 38.27 33.77 64.39 65.80 61.42 5.84 66.53
CIA (Qiao et al., 2025a) ICLR’24 83.94 61.40 97.05 62.61 43.99 39.72 66.29 65.78 65.10 2.31 67.12
Ours - 83.82 61.99 93.98 59.49 57.98 36.03 66.09 64.67 65.51 2.08 67.32

Table 9: Comparisons with baselines on Qwen-VL, CoIN benchmark.
Method Venue Accuracy on Each Task Overall Results

1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAv2 8-OCRVQA Avg.ACC(↑) Forgetting(↓) New.ACC(↑)
LoRA (Hu et al., 2022) ICLR’22 31.05 42.45 29.57 55.57 15.30 40.33 67.75 47.80 41.23 19.36 58.17
EWC (Kirkpatrick et al., 2017) PNAS’17 64.30 58.67 44.04 57.73 38.16 48.04 66.98 41.76 52.46 8.68 60.06
PGP (Qiao et al., 2025b) ICLR’24 66.42 41.33 32.16 49.83 36.05 24.22 58.60 43.96 44.07 5.90 48.30
Ours - 77.84 65.36 67.84 60.47 53.83 68.54 69.37 61.42 65.58 4.21 69.27

Table 10: Comparisons with baselines on Qwen2.5-VL-Instruct, Continual-NExT benchmark.

Method Venue Accuracy on Each Task & Overall Results
1-ArxivQA 2-GeoChat 3-IconQA 4-ClevrMath 5-CodeQA 6-ImageNet 7-Flickr30k 8-DocVQA 9-TextVQA

Zero-shot - 70.23 67.53 28.60 81.93 3.63 35.62 8.97 82.09 68.94
LoRA (Hu et al., 2022) ICLR’22 71.39 89.00 73.40 96.80 2.05 78.77 20.92 85.04 68.94
LwF (Li & Hoiem, 2017) TPAMI’16 72.60 92.33 58.56 95.40 3.49 76.53 21.42 83.77 71.86
EWC (Kirkpatrick et al., 2017) PNAS’17 73.28 92.00 67.87 89.20 3.53 76.06 20.53 80.61 53.82
Replay (Rolnick et al., 2019) NIPS’19 71.37 87.57 78.37 98.83 2.45 83.29 20.81 86.32 71.28
MoELoRA (Chen et al., 2024a) NIPS’24 72.19 91.53 74.36 97.66 2.65 90.75 21.08 85.51 79.55
PCLR - 74.72 92.13 88.10 97.27 8.45 74.06 21.93 86.27 80.63
PCLR-LwF (PCLR variant) - 74.43 92.23 88.60 97.80 8.93 88.42 20.75 86.19 80.38

10-MathQA 11-ChartQA 12-PathVQA 13-Grounding 14-ScienceQA 15-WikiQA Avg.ACC(↑) Forgetting(↓) New.ACC(↑)
Zero-shot - 0.03 75.00 33.22 72.23 82.95 2.90 47.59 - -
LoRA (Hu et al., 2022) ICLR’22 34.81 73.88 7.96 86.60 80.08 4.87 58.30 9.36 67.04
LwF (Li & Hoiem, 2017) TPAMI’16 50.72 67.28 7.57 87.60 91.44 16.27 59.79 10.98 70.04
EWC (Kirkpatrick et al., 2017) PNAS’17 48.31 67.36 13.26 86.99 87.05 15.64 58.37 11.89 69.47
Replay (Rolnick et al., 2019) NIPS’19 45.50 74.72 8.66 86.11 90.90 16.11 61.49 6.40 67.46
MoELoRA (Chen et al., 2024a) NIPS’24 2.14 74.80 6.35 87.68 80.90 16.90 58.94 11.81 69.96
PCLR - 42.85 76.76 39.44 86.24 87.27 7.74 64.26 5.18 69.08
PCLR-LwF (PCLR variant) - 45.16 76.08 44.43 85.53 88.38 9.32 65.78 3.74 69.26

As shown in Table 8, we discover that PCLR achieves the highest overall performance on the CoIN
benchmark, LLaVA-1.5-13B. Compared to the former best regularization method PGP (Qiao et al.,
2025b), the Avg.ACC improves by 6.38 and the Forgetting decreases by 8.03, demonstrating strong
continual learning ability. Furthermore, our method outperforms the extension methods Eproj (He
et al., 2023) and CIA (Qiao et al., 2025a). Experimental results show that our method is robust
across model scales and maintains strong performance on larger and powerful models.

As shown in Table 9, we discover that PCLR achieves the highest overall performance on the CoIN
benchmark, Qwen-VL. Compared to the former best regularization method EWC (Kirkpatrick et al.,
2017), the Avg.ACC improves by 13.12 and the Forgetting decreases by 4.47, demonstrating strong
continual learning ability. Experimental results show that our method is robust across models of
different architectures and maintains strong performance even when the base architecture varies.

As shown in Table 10, our method exceeds the best of other methods (Replay), improving Avg.ACC
by 2.77 and reducing Forgetting by 1.22, which demonstrates that PCLR sustains strong perfor-
mance on the long-term Continual-NExT benchmark, Qwen2.5-VL-Instruct. Similar to the main
paper, we introduce PCLR-LwF, which divides the whole task sequence into five consecutive groups,
and applies LwF in each group. This integration with simple baseline yields notable gains by im-
proving Avg.ACC by 1.52 and reducing Forgetting by 1.44, while preserving the same parameter
number as PCLR.

In summary, extensive experiments on Large Multimodal Models (LMMs), including LLaVA-1.5-
7B, LLaVA-1.5-13B and Qwen-VL on the CoIN benchmark, LLaVA-1.5-hf and Qwen2.5-VL-
Instruct on the Continual-NExT benchmark, demonstrate the superiority of PCLR. The method
achieves an effective balance between plasticity, stability and memory efficiency. Importantly, PCLR
prevents unbounded parameter growth via the Compression–Integration–Learning (CIL) pipeline.
Moreover, its modular design enables seamless integration with regularization methods such as LwF,
as demonstrated by the PCLR-LwF variant, which further improves training efficiency without sac-
rificing performance. These results establish PCLR as a scalable, efficient and robust framework for
multimodal continual instruction tuning in LMMs.
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B DETAILS OF EXPERIMENTAL SETTING

Overall Setting: For each dataset, we set the training epoch to 1. The LLM backbone and cross-
modal modules are incorporated into the PCLR framework. Throughout all phases, only the inserted
PCLR modules are trainable, and the LMM remains frozen. During learning, the learning rate is set
to 2× 10−4 for LLaVA series, 2× 10−5 for Qwen-VL, 1× 10−4 for Qwen2.5-VL-Instruct. During
integration, only data from the current task is used, the learning rate is set to 5 × 10−5 for LLaVA-
1.5, 1 × 10−5 for Qwen-VL, while 2 × 10−6 for LLaVA-1.5-hf and Qwen2.5-VL-Instruct. Weight
decay is set to 0. The maximum input embedding length is fixed as 2048. We employ gradient
checkpointing and mixed-precision training using TF32 and BF16. We use DeepSpeed ZeRO-2
for distributed training. All experiments are conducted on 4 × 80-GB GPUs. During learning, we
employ a rank-64 extension and later switch to a rank-32 extension. During compression, we adopt
a retention rate of 100% (no compression) for the first three tasks, then set it to 75%, and finally
adjust it to 87.5%.

LoRA Rank Configuration: In the main paper, all baselines are fine-tuned using LoRA with rank
128. However, due to the MoE architecture of PCLR, it is infeasible to ensure a fair comparison
of both total and activated ranks simultaneously. To balance parameter efficiency and memory cost
while preserving the MoE structure, we adopt: total rank 256, activated rank 64 (activated during
forward passes in both training and inference), and optional shared rank 32 (activated during forward
passes in both training and inference, trainable during Integration and frozen during Learning). This
setting balances total rank and activated rank to maximize overall fairness.
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Figure 5: PCLR-LwF Overview. In long-term CIT, the task sequence is divided into several groups,
with the tasks in each group being contiguous in the original sequence. Within each group, we apply
LwF for learning. Between the groups, the CIL process is adopted.

Combination with LwF: In the main paper, we propose an optimization for long-term continual
instruction tuning: instead of running CIL after each task, we perform constrained updates in the
newly extended rank space using regularization methods such as LwF (Li & Hoiem, 2017), for a
subset of tasks. As described in the main paper, on the Continual-NExT benchmark, we group
consecutive tasks into a cluster and apply LwF for constrained updates within each cluster, with a
weight of 0.1. This approach reduces training cost and improves performance while maintaining the
same total rank as the standard PCLR. The PCLR-LwF pipeline is shown in figure 5.

Equivalent Setting for Fake Query Sampling: The main paper states that fake queries are sam-
pled from the key pool. However, during continual compression, the number of keys from earlier
tasks decays exponentially. This produces unfair sampling of synthetic task-related queries. Af-
ter completing each task, we average its newly generated keys and place the resulting mean vector
into a global task key pool. Each task thus retains a single representative fake query, which keeps
cross-task sampling balanced during the integration.
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C THE CASES OF CONTINUAL INSTRUCTION TUNING

In this section, we present evaluation cases after completing the CoIN (Chen et al., 2024a) bench-
mark by using Pretrain, MoELoRA, PCLR, and Ground-Truth.

Which ocean is highlighted?
A.the Atlantic Ocean
B.the Indian Ocean
C.the Arctic Ocean
D.the Southern Ocean
Answer with the option's letter 
from the given choices directly.

Model after continual tuning, test on ScienceQA

Which centre is featured on the plane?
Reference OCR token: FXQ, THE, 
SOARING, CENTRE, HUSBANDS, 
BOSWORTH, PuCHACZ
Answer the question using a single 
word or phrase.

Model after continual tuning, test on TextVQA

What is the object in the image?
Give the object in the image in 
the form of a single word or a 
concise phrase.

Model after continual tuning, test on ImageNet
The object in the image is a dog.

Answer from Pretrain

dog.

Answer from MoELoRA

Pomeranian.

Answer from PCLR

Pomeranian

Answer from Ground-Truth

A

A

A

A

The plane features the FXQ centre.

Answer from Pretrain

Soaring Centre Husband & Bosworth

Answer from MoELoRA

soaring centre

Answer from PCLR

the soaring centre

Answer from Ground-Truth

A

A

A

A

The correct answer is C. the Arctic 
Ocean.

Answer from Pretrain

A

Answer from MoELoRA

C

Answer from PCLR

C

Answer from Ground-Truth

A

A

A

A

Q

Q

Q

Figure 6: From top to bottom, these are cases on ScienceQA, TextVQA, and ImageNet after learning
the final task of the CoIN benchmark.
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Which kind of fast food is on the plate?

What type of clothing in the picture is striped?

What kind of clothing is black?

What type of baked good is to the right of the hot dog that is on the left?

What is the man to the right of the fence holding?

What is the vegetable that is to the right of the tomato that is on the left?

Hot dog.

Hot dogSandwiches Hot dog

The shirt that the person is wearing is striped.

The shorts that the person is wearing are black.

There is no baked good to the right of the hot dog that is on the left.

The man to the right of the fence is not holding anything.

There is no vegetable to the right of the tomato that is on the left.

None ShirtShirt

None PantsJeans

None BunBun

Hot dog PlatePlate

Onion OnionOnion

Q
A

Q

Q

Q

Q

Q

A

A

A

A

A

Answer from Pretrain

Answer from MoELoRA

Answer from PCLR

Answer from Ground-Truth

Figure 7: The case on GQA after learning the final task of the CoIN benchmark. This is a case of
multiple rounds of dialogue.

19



Published as a conference paper at ICLR 2026

Question1: Can you tell me what the error 
message is on the Windows screen?
When the provided information is insufficient, 
respond with 'unanswerable’.
Answer the question using a single word or phrase.

Pretrain: unanswerable
MoELoRA: unanswerable
PCLR: starting windows
Ground-Truth: starting windows

Question2: What is the title of this book?

Pretrain: I'm sorry, but I cannot answer your 
question as there is no book visible in the provided 
image. Please provide a different image or 
question.
MoELoRA: Windows 7: The Missing Manual
PCLR: unanswerable
Ground-Truth: unanswerable

Question2: Give the bounding box 
coordinates as described in the 
sentence: top left bunch.

Pretrain: I'm sorry, but I cannot 
provide the bounding box 
coordinates for the sentence \"top 
left bunch\" as it is not clear what 
region or object is being described. 
Please provide more context or a 
specific sentence for me to assist 
you.
MoELoRA: [0.4,0.52,0.61,0.69]
PCLR: [0.0,0.24,0.25,0.49]
Ground-Truth: [0.0,0.22,0.24,0.4]

Question1: Identify and provide the 
coordinates of the bounding box 
described in the sentence: bananas in 
the middle.

Pretrain: I'm sorry, but I cannot 
provide the bounding box coordinates 
for the sentence \"bananas in the 
middle\" as it is not clear what region 
or object is being described. Please 
provide more context or a specific 
sentence for me to assist you.
MoELoRA: [0.4,0.52,0.61,0.69]
PCLR: [0.32,0.39,0.67,0.76]
Ground-Truth: [0.35,0.4,0.64,0.76]

Model after continual tuning, 
test on VizWiz

Model after continual tuning, 
test on Grounding

Figure 8: From top to bottom, these are cases on VizWiz and Grounding after learning the final task
of the CoIN benchmark.
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D LAYER SENSITIVITY ANALYSIS IN PCLR

In this section, we investigate the sensitivity of different LMM layers to compression and integration
in PCLR for continual learning. Based on the 40-layer LLaVA-1.5-13B Transformer architecture, we
divide it into 5 groups of 8 consecutive layers (Lower: layers 1–8, Middle-Lower: layers 9–16, Mid-
dle: layers 17–24, Middle-Upper: layers 25–32, Upper: layers 33–40). In each experiment, we skip
the Compression and Integration stages for one group (opened group), while keeping the other four
groups unchanged. The results in Table 11 show that task-specific sensitivity varies across layers,
with the highest performance degradation observed in upper layers compression (-0.53@Avg.ACC)
and the lowest in mid-level layers compression (-0.15@Avg.ACC). This observation highlights the
layer-specific characteristics in PCLR.

Table 11: The results of LLaVA-1.5-13B on different opened groups.

Layers Accuracy on Each Task Evaluation Metrics
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCRVQA Avg.ACC Forgetting

Origin 83.82 61.99 93.98 59.49 57.98 36.03 66.09 64.67 65.51 2.08
Lower 86.02 62.28 94.28 60.40 56.80 35.33 66.51 63.99 65.70 1.56

Middle-Lower 86.02 63.18 94.59 60.43 56.54 36.21 66.05 62.93 65.74 1.36
Middle 83.99 62.49 94.89 59.87 58.76 34.93 66.14 64.19 65.66 1.73

Middle-Upper 83.80 62.04 95.07 59.58 58.44 36.70 66.16 64.31 65.76 1.67
Upper 83.85 61.89 96.46 60.02 59.23 36.13 66.15 64.56 66.04 1.32

We hypothesize that lower layers focus on input comprehension, mid-level layers focus on reason-
ing, and upper layers focus on instruction-following output generation. Since reasoning processes
across tasks often share a high degree of similarity (general logic patterns), mid-level compres-
sion causes minimal interference. However, upper layers face significant task-specific divergence
in output generation (single-choice answers in ScienceQA v.s. classification answers in ImageNet
v.s. bounding-box answers in Grounding), leading to pronounced conflicts during compression-
integration. Notably, the compression of lower layers is especially sensitive to ScienceQA because
its inputs mix text-only and image–text samples, unlike tasks that are exclusively image–text. This
indicates that heterogeneous modality distributions can amplify compression-induced performance
drops in the lower layers.

Our findings motivate a layer-aware compression strategy for future CIL optimization: applying
maximal compression retention ratio to upper layers (high conflict), moderate compression retention
ratio to lower layers (moderate conflict), and minimal compression retention ratio to mid-level layers
(low conflict). This optimization is expected to achieve further performance improvements while
maintaining a similar memory budget.

E EVALUATION METRICS

We emphasize that our evaluation of prediction accuracy is based on a comparison between the
outputs of LMMs and the corresponding ground-truth annotations. This evaluation protocol in Chen
et al. (2024a), provides a rigorous and consistent criterion. For short textual outputs we apply
Truth Alignment, and for longer textual outputs we compute semantic similarity using Sentence-
Transformers (Reimers & Gurevych, 2019) and accept when the similarity score is at least 0.8.

We adopt 3 primary metrics to comprehensively evaluate continual instruction tuning performance:

Average Accuracy (Avg.ACC) measures the average test accuracy across all datasets, reflecting the
overall performance of models throughout the continual learning process.

Forgetting (FOR) quantifies the decline in performance on previously learned datasets after training
on new datasets. It serves as an indicator of stability (retaining previous knowledge).

New Accuracy (New.ACC) computes the average test accuracy on newly introduced datasets. It
serves as an indicator of plasticity (adapting to new tasks).
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Overall, these metrics are generally defined as follows:

Avg.ACC =
1

T

T∑
i=1

AT,i, (8)

FOR =
1

T − 1

T−1∑
i=1

(
max
j∈[i,T ]

Aj,i −AT,i

)
, (9)

New.ACC =
1

T

T∑
i=1

Ai,i, (10)

where T denotes the total number of datasets, AT,i represents the accuracy of the i-th dataset eval-
uated on the model after training on the T -th (final) dataset, Aj,i is the accuracy of the i-th dataset
on the model after training on the j-th dataset, and Ai,i is the accuracy of the i-th dataset evaluated
immediately after its own training.

F VISUALIZATION OF EXPERT TRANSITION DURING CIT

In this section, we visualize the expert transition process during continual instruction tuning (CIT)
within the PCLR method. We follow the task sequence defined by the CoIN benchmark: ScienceQA
→ TextVQA → ImageNet → GQA → VizWiz → Grounding → VQAv2 → OCRVQA. We present
the rank experts activation patterns on the last five tasks. Specifically, the invocation rate of the rank
experts on the current task and previously learned tasks is shown as below.
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Figure 9: The invocation rate of rank experts after learning the 4-th task GQA.
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Figure 10: The invocation rate of rank experts after learning the 5-th task VizWiz.
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Figure 11: The invocation rate of rank experts after learning the 6-th task Grounding.
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Figure 12: The invocation rate of rank experts after learning the 7-th task VQAv2.
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Figure 13: The invocation rate of rank experts after learning the 8-th task OCRVQA.

G THE RESULTS OF CONTINUAL-NEXT BENCHMARK

We present the performance of PCLR and its variant PCLR-LwF on the Continual-NExT bench-
mark, and we visualize the final accuracies of two representative models (LLaVA-1.5-hf and
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(a) Comparison on LLaVA-1.5-hf
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(b) Comparison on Qwen2.5-VL-Instruct

Figure 14: Radar chart of comparisons on Accuracy between baseline (LoRA) and ours.

Qwen2.5-VL-Instruct) using radar charts. As shown in Figure 14, PCLR achieves significant base-
line improvements. Notably, PCLR-LwF incorporates LwF (Li & Hoiem, 2017) which is regularized
to reduce the compression demand, achieving improved computational efficiency while further im-
proving the performance of PCLR. Thus, PCLR enables compatibility with other continual learning
algorithms, offering a practical solution for deployment in real-world applications.

H THREE TYPES OF TUNING ORDER SEQUENCES

To evaluate robustness under different Continual Instruction Tuning orders, we employ three task
ordering strategies:

1. Original Order: Tasks are presented in the default sequence: ScienceQA, TextVQA, Im-
ageNet, GQA, VizWiz, Grounding, VQAv2, OCRVQA.

2. Reverse Order: The sequence is reversed relative to the original: OCRVQA, VQAv2,
Grounding, VizWiz, GQA, ImageNet, TextVQA, ScienceQA.

3. Alphabetical Order: Tasks are sorted alphabetically: GQA, Grounding, ImageNet,
OCRVQA, ScienceQA, TextVQA, VizWiz, VQAv2.

I THREE TYPES OF INSTRUCTION TEMPLATES

To evaluate robustness under different instruction templates, we adopt three types of instruction
templates. Detailed examples of these templates are provided in Table 20.

1. Original Instruction Template: Each task is associated with a single instruction, and
multiple tasks may share identical instruction formats. This setting reflects minimal prompt
diversity.

2. Diverse Instruction Template: Each task uses a single, uniquely designed instruction.
Instructions are carefully tailored to reflect the semantic and structural characteristics of
individual tasks, maximizing prompt diversity.

3. 10Type Instruction Template: Each task is assigned approximately ten distinct instruction
variants. While instructions are diverse within each task, certain templates may be shared
across related tasks, simulating a balanced scenario between diversity and generalization.
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J DETAILED SETTINGS FOR DIFFERENT COMPRESSION STRATEGIES

All settings are maintained at total rank = 256, activated rank = 64, and share rank = 32.

Aggressive: The compression retention rate is fixed at 75%, and the number of new rank experts is
fixed at 64.

Conservative: The compression retention rate is fixed at 87.5%, and the number of new rank experts
is fixed at 64.

Reverse: The compression retention rate changes from 87.5% → 75%, with the number of new rank
experts fixed at 32 → 64.

Centralized: The first eight tasks are not compressed, and after all tasks are learned, a 50% retention
rate compression is applied (forgetting is calculated based on 8 tasks). In terms of integration data,
compared to the Ours (integrating on the current dataset after each learning cycle), it is relatively
singular (the last integration only shows OCRVQA data).

Ours: The compression retention rate changes from 75% → 87.5%, with the number of new rank
experts fixed at 64 → 32.

The dynamic adjustment strategy we adopt is based on the distillation loss during the integration
phase: if, within the 50th–70th training steps of the integration process, at least 25% of the fake
queries (i.e., 25% of the learned tasks) exhibit KL divergence losses exceeding a predefined thresh-
old (set to 0.05 in this paper), it is determined that the current compression intensity is too high,
causing significant knowledge conflicts between tasks. This occurs because the optimization ob-
jectives of different tasks generate severe discrepancies over the same rank components, leading to
interference in task-specific information.

In such cases, the system increases the retention rate and re-executes the compression-integration
process, reducing the degree of information fusion between tasks to mitigate the loss of historical
knowledge. Simultaneously, during the learning phase of subsequent tasks, the number of newly
added ranks is correspondingly reduced (e.g., from 64 to 32) to maintain the total parameter capacity
constant.

K TASK GROUPING OF PCLR-LWF

Task Grouping for LLaVA-1.5-hf:

Group 1: 1-ArxivQA, 2-GeoChat, 3-IconQA
Group 2: 4-ClevrMath
Group 3: 5-CodeQA, 6-ImageNet
Group 4: 7-Flickr30k, 8-DocVQA, 9-TextVQA
Group 5: 10-MathQA, 11-ChartQA, 12-PathVQA
Group 6: 13-Grounding, 14-ScienceQA, 15-WikiQA

Using a compression retention ratio of 66.67%, the final PCLR consists of 256 expert ranks.

Task Grouping for Qwen2.5-VL-Instruct:

Group 1: 1-ArxivQA, 2-GeoChat, 3-IconQA
Group 2: 4-ClevrMath, 5-CodeQA, 6-ImageNet
Group 3: 7-Flickr30k, 8-DocVQA, 9-TextVQA
Group 4: 10-MathQA, 11-ChartQA, 12-PathVQA
Group 5: 13-Grounding, 14-ScienceQA, 15-WikiQA

Using a compression retention ratio of 80%, the final PCLR consists of 256 expert ranks.

This different grouping strategy is motivated by the observation that the LLaVA-1.5-hf after training
on ImageNet performs worse on ClevrMath. To address this, we place the ClevrMath task in a
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dedicated group. The memory budget can be mitigated by either reducing the compression retention
ratio or increasing the number of compression times.

L COMPARISON OF TRAINING COST WITH MOELORA

Table 12: The Training Cost of LLaVA about different numbers of experts.

Number Training Cost on Each Task (Unit: Minutes)
1-ScienceQA 2-TextVQA 3-ImageNet 4-GQA 5-VizWiz 6-Grounding 7-VQAV2 8-OCRVQA Average

1 10.05 33.55 91.22 118.12 17.78 79.58 93.44 135.68 72.43
2 17.73 50.97 130.61 173.58 27.94 115.71 136.53 188.86 105.24
4 21.25 68.14 189.05 245.97 35.25 169.12 205.52 286.92 152.65

Ours 8.86 34.43 94.82 115.49 19.85 93.68 121.87 177.12 83.27

As discussed in the main paper, all computations in our fine-grained LRP, are fully parallelizable. On
LLaVA-13B, we compare LRP (total rank 256, activated rank 64, shared rank 32) with MoELoRA
(total and activated rank of 128) variants having 1, 2, and 4 experts, as summarized in Table 12.

The forward computation of MoELoRA is defined as:

y = xW + β

t∑
i=1

s(x)ixAiB
T
i , (11)

where s(x) ∈ Rt denotes the expert routing scores, t is the number of total experts, k is the number
of activated experts, and Ai, Bi are the LoRA weights of the i-th expert.

The proposed LRP forward computation in the main paper is formulated as:

y = xW + βsxAsB
T
s + βmF

(
xAm, gate (Kq, r)

T
)
BT

m, (12)

where As, Bs represent the globally shared components, and Am, Bm represent the mixture expert
components. The operator F (U, v) broadcasts v ∈ Rb to match the shape of U ∈ Ra×b, followed
by an element-wise multiplication. Here, K ∈ Rn×d, q ∈ Rd are the L2-regularized key pool and
query, n is the number of total rank experts, r is the number of activated rank experts.

MoELoRA consistently activates all ranks and performs serial summation across experts, whereas
LRP avoids serial computation by directly integrating expert scores into the LoRA formulation.
Specifically, we set the number of experts to match the LoRA rank to align the expert score dimen-
sion with the LoRA rank. This design enables parallel integration of expert scores into the LoRA
forward computation. This yields efficiency comparable to MoELoRA with one expert because
GPU matrix multiplication is faster than serial multiplication and summation over smaller matrices
at the same total rank.

M INSPIRATIONS FROM ADALORA AND THE L2P SERIES

AdaLoRA (Zhang et al., 2023) converts each LoRA adapter into a SVD-style representation, en-
abling dynamic rank adjustment under a fixed parameter budget and thereby improving computa-
tional allocation efficiency. The L2P series (Wang et al., 2022c;b; Smith et al., 2023b) decomposes
conventional prompts or prefixes into subcomponent representations paired with learnable keys. It
further introduces a dynamic parameter allocation mechanism, markedly improving performance
and efficiency in continual learning for the vision domain (Krizhevsky et al., 2009; Peng et al.,
2019).

Inspired by AdaLoRA, we likewise decompose LoRA updates into rank vectors but remove explicit
rank constraints, and adopt an L2P-like key–value matching scheme, we associate each rank vector
with a learnable key and allow dynamic extension during CIT. This simultaneously (i) extends the
L2P series to the more parameter-efficient LoRA paradigm, facilitating adaptation to LMMs, and (ii)
generalizes adaptive rank allocation principle of AdaLoRA to a Mixture-of-Experts (MoE) structure
tailored for continual learning. In summary, we introduce the LoRA Rank Pool (LRP), an extremely
fine-grained MoE architecture that offers maximum flexibility for knowledge employment and edit-
ing to enhance stability and plasticity.
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N EXPLANATION OF RELATIVE REDUNDANCY RANK

In this section, we provide a detailed definition of the relative redundancy rank, namely the relative
redundancy rank of M to N for the LoRA pair ⟨M,N⟩. We select an arbitrary identically named
weight pairs {(AM , BM ), (AN , BN )}i and perform an orthogonal triangle decomposition on AN :

QR = AN , (13)

where AM , AN ∈ Rdin×r, Q ∈ Rdin×r, and Q is a set of orthogonal vectors of AN . Subsequently,
we apply L2 normalization to every column of AM , producing ÃM . For each a ∈ Rdin×1 in ÃM ,
we use Q to reconstruct:

a∗ = QQTa, (14)

Therefore, we can obtain the reconstruction loss for the part ⟨a,AN ⟩:

La = 1− ∥a∗∥22. (15)

La ∈ [0, 1] reflects the degree of linear dependence between a and the vectors in AN , a smaller value
indicates a higher degree of linear dependence. When La = 0, a and AN are linearly dependent.
When La = 1, the inner product between a and every v ∈ AN is zero.

Similarly, we can obtain the reconstruction loss for the part of ⟨b, BN ⟩, Lb ∈ [0, 1]. Next, we define
the reconstruction loss for the rank (a, b) ∈ (AM , BM ) with respect to LoRA (AN , BN ):

L = La ∗ Lb, (16)

L ∈ [0, 1] reflects the degree of linear dependence between the rank component (a, b) ∈ (AM , BM )
and the LoRA weight pair (AN , BN ). According to the theoretical insights from LoRA (Hu et al.,
2022) and AdaLoRA (Zhang et al., 2023), rank components that are linearly dependent are redun-
dant, and they carry knowledge similar to other rank components, which is the knowledge redun-
dancy referred to in the main text.

We define the threshold σ = 0.001. For each rank component (a, b) ∈ (AM , BM ) relative to
the LoRA weight (AN , BN ), if its score L < σ, this component is deemed a redundant rank.
Next, we obtain the redundancy rank ratio of (AM , BM ) relative to (AN , BN ) (the corresponding
LoRA weight pairs {(AM , BM ), (AN , BN )}i). Finally, by computing L of all attention modules,
we obtain the relative redundancy rank ratio for ⟨M,N⟩ (M relative to N ).

O THE EFFECT OF EPOCH ON PCLR

To verify the impact of epoch count on PCLR’s performance and forgetting resistance, we conducted
experiments on the LLaVA-1.5-7b model and the CoIN benchmark, setting training cycles of 1, 3,
and 5 epochs to compare the performance of PCLR and PGP:

Table 13: Results of LLaVA-1.5-7B on PGP and PCLR methods with different epochs.

Methods-Epoch Final Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCRVQA Avg.ACC Forgetting New.ACC

PGP-1 85.17 56.85 32.26 61.74 49.43 32.74 65.74 62.20 55.77 12.94 67.09
PGP-3 85.38 57.14 32.59 62.15 49.68 33.12 66.06 62.43 56.07 12.76 67.24
PGP-5 85.50 57.43 32.75 62.31 49.88 33.46 66.22 62.67 56.28 12.63 67.33

PCLR-1 78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92 62.19 3.39 65.16
PCLR-3 84.56 59.73 91.66 57.31 58.12 35.65 65.03 62.06 64.27 2.75 66.68
PCLR-5 86.04 59.24 93.29 55.64 57.81 36.82 64.41 61.69 64.37 2.36 66.43

Note: To ensure fairness, the integration data usage (IDU) for PCLR-1, PCLR-3, and PCLR-5
remains the same.

PGP shows limited improvement over longer epochs: Although PGP restricts updates through gra-
dient constraints, during longer epoch training, the trainable parameters gradually skew toward the
optimal solution for the current task, leading to overwriting of historical knowledge and maintaining
high forgetting rates (12.94 → 12.76 → 12.63).

PCLR’s CIL mechanism demonstrates stronger performance over longer epochs: During training
with 3 and 5 epochs, PCLR’s forgetting rate remains significantly lower than PGP (2.75 v.s. 12.94,
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2.36 v.s. 12.63), and the Avg.ACC. continues to improve (62.19 → 64.27 → 64.37), the Forgetting
continues to reduce (3.39 → 2.75 → 2.36).

We can analyze the reasons for the performance improvement from the perspective of CIL. Learn-
ing phase: New tasks only update newly added rank experts, avoiding interference with historical
knowledge, so increasing training epochs does not lead to forgetting. Integration phase: A well-
learned set of parameters has less noise, and it is easier for compatible representations to emerge
across different tasks, which is beneficial for integration. Knowledge distillation merges new and
old knowledge, ensuring stability improvement. The time spent in this phase has a positive feedback
relationship with the effectiveness of forgetting resistance.

In summary, PCLR’s design not only adapts to tasks with varying training lengths but also excels in
multi-epoch training, ensuring efficient knowledge integration and low forgetting rates.

P MORE ABLATION EXPERIMENTS

In this section, we discuss how to balance CIT performance and memory efficiency from two per-
spectives: knowledge density and memory scale. For more intuitive comparisons, we use total rank
experts + shared ranks to measure the static storage parameters (SSP) and activated rank experts
+ shared ranks to measure the inference activated parameters (IAP).

Table 14: Results of LLaVA-1.5-7B on different knowledge density.

Method Rank Allocation Final Accuracy on Each Task Overall Results
SSP IAP ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCRVQA Avg.ACC Forgetting New.ACC

Dense Space 192+32 64+32 72.01 53.68 88.32 58.19 55.20 30.82 64.38 63.40 60.75 4.83 64.98
Sparse Space 320+32 64+32 80.71 59.36 90.81 56.82 56.05 31.32 65.13 62.50 62.84 2.65 65.16

Dynamic Space 384+32 64+32 81.54 59.37 93.05 56.44 57.05 30.80 64.46 62.80 63.19 2.06 65.00
Ours 256+32 64+32 78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92 62.19 3.39 65.16

Dense Space: With total rank experts = 192, the initial compression retention rate is adjusted to
66.67%, and the compression strategy is 66.67% → 88.33%, with new ranks changing from 64 →
32. 1/3 of the experts are activated during inference, resulting in dense knowledge compression
and significant overlap among rank experts. Consequently, Avg.ACC decreases (60.75), Forgetting
increases (4.83), and SSP reduces by 22.22% compared to ours.

Sparse Space: With total rank experts = 320, the initial compression retention rate is adjusted to
80%, and the compression strategy is 80% → 90%, with new ranks changing from 64 → 32. 1/5 of
the experts are activated during inference, with weaker sharing among rank experts. Consequently,
Avg.ACC increases (62.84), Forgetting decreases (2.65), and SSP rises by 22.22% compared to ours.

Dynamic Space: Total rank experts dynamically change from 256 → 384, with 32 ranks compressed
and 64 ranks added at each step. This setting achieves the highest Avg.ACC (63.19), the lowest
Forgetting (2.06), and the largest final SSP.

The data shows that forgetting largely depends on the knowledge density of the PCLR parameter
space (activated rank experts / total rank experts). Higher values tend to favor knowledge integration,
while lower values favor expert specialization. Knowledge density is a flexible parameter designed
to balance memory efficiency and continual learning capability. It can be adjusted based on memory
constraints (there is no universally optimal setting; it depends on memory conditions).

In summary, the optimal compression strategy involves a transition from aggressive to conserva-
tive, and the initial compression rate can be adjusted as needed. We do not recommend treating
it as a fixed parameter.

Table 15: Results of LLaVA-1.5-7B on different memory scale.

Method Rank Allocation Final Accuracy on Each Task Overall Results
SSP IAP ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCRVQA Avg.ACC Forgetting New.ACC

Small-Scale 128+0 32+0 78.87 58.23 82.16 56.77 53.81 30.76 63.86 60.14 60.58 4.13 64.19
No Shared 256+0 64+0 78.59 58.09 88.57 56.93 55.29 31.96 64.41 62.40 62.03 3.63 65.21

Ours 256+32 64+32 78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92 62.19 3.39 65.16

Small-Scale Parameter Space: Compared to No Shared, memory usage is halved, but performance
declines across the board: Avg.ACC (62.03 → 60.58), Forgetting (3.63 → 4.13), and New.ACC
(65.21 → 64.19). This reflects insufficient plasticity and severe parameter contention, leading to
increased forgetting.
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No Shared Ranks: Compared to ours, the lack of shared ranks during integration prevents the
absorption of global knowledge, resulting in higher forgetting (3.39 → 3.63).

The data in the table indicates that the scale of the parameters is positively correlated with model
performance. Small-Scale, despite having the same total parameter space as regularization-based
methods, only utilizes 1/4 of the activated/trained parameters, yet it still outperforms PGP (55.77)
and SEFE (58.57), which are among the best regularization-based methods. Both No Shared and
Ours, with fewer activated parameters and a fixed memory budget, surpass the extension-based
method Eproj (60.79) in performance.

Q MEMORY EFFICIENCY COMPARISON

Using the LLaVA-1.5-7b model on the CoIN benchmark, we further compared PGP, Eproj, PCLR-
small (0 shared, 32 active, 128 total), and PCLR-ours (32 shared, 64 active, 256 total), trainable
parameters, and final performance (all statistics exclude the base model and focus solely on the
adapter components).

Table 16: PGP, parameters and accuracy across tasks.

Metric Tasks
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCRVQA

Total Params 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M
Activated Params 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M
Trainable Params 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M
Final Accuracy 85.17 56.85 32.26 61.74 49.43 32.74 65.74 62.20

Table 17: Eproj, parameters and accuracy across tasks.

Metric Tasks
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCRVQA

Total Params 340.80M 660.61M 980.43M 980.43M 980.43M 1300.24M 1300.24M 1300.24M
Activated Params 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M
Trainable Params 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M 340.80M
Final Accuracy 78.51 57.53 92.35 55.93 44.67 36.59 63.74 57.00

Table 18: PCLR-small, parameters and accuracy across tasks.

Metric Tasks
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCRVQA

Total Params 85.79M 171.58M 257.37M 343.16M 343.16M 343.16M 343.16M 343.16M
Activated Params 85.79M 85.79M 85.79M 85.79M 85.79M 85.79M 85.79M 85.79M
Trainable Params 85.79M 85.79M 85.79M 85.79M 85.79M 85.79M 42.90M 42.90M
Final Accuracy 78.87 58.23 82.16 56.77 53.81 30.76 63.86 60.14

Table 19: PCLR-ours, parameters and accuracy across tasks.

Metric Tasks
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCRVQA

Total Params 171.58M 343.16M 514.74M 686.31M 766.70M 766.70M 766.70M 766.70M
Activated Params 171.58M 171.58M 171.58M 171.58M 251.97M 251.97M 251.97M 251.97M
Trainable Params 171.58M 171.58M 171.58M 171.58M 171.58M 171.58M 85.79M 85.79M
Final Accuracy 78.33 58.24 86.08 58.14 57.61 33.04 64.17 61.92

PCLR imposes a strict upper bound on total ranks, halting parameter growth after early expansion
via compression-integration. In contrast, Eproj expands continuously, risking parameter explosion.
PCLR outperforms both PGP and Eproj in average accuracy (62.19 v.s. 55.77 / 60.79) and forget-
ting (3.39 v.s. 12.94 / 5.42), demonstrating its ability to control memory while maintaining strong
continual learning performance.

When the total parameter count is constrained to a level similar to PGP, PCLR still achieves com-
petitive performance with an Avg.ACC of 60.58, close to Eproj (60.79) and significantly higher
than PGP (55.77). These results demonstrate that PCLR can effectively utilize limited resources,
providing robust performance even under strict parameter budget constraints.
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R MODELS

LLaVA-1.5 (Liu et al., 2024): LLaVA-1.5 is a foundational Large Multimodal Model (LMM) that
integrates Vicuna (Chiang et al., 2023) as its large language model (LLM) backbone and CLIP-
ViT (Radford et al., 2021) as the visual encoder. The cross-modal bridge module employs linear
projection layers to align visual features with linguistic representations. Specifically, CLIP-ViT
extracts image embeddings, which are then projected through a linear transformation to match the
hidden dimension of Vicuna. This design enables efficient fusion of visual and textual information
for downstream tasks such as visual question answering (VQA) and image captioning. In this paper,
we use LLaVA-1.5-7B1, LLaVA-1.5-13B2, and LLaVA-1.5-7B-hf3 (a fine-tuned version of LLaVA-
1.5-7B).

Qwen-VL (Bai et al., 2023b): Qwen-VL4 is a Visual-Large Language Model (VLLM) developed
by Alibaba Cloud, combining QwenLM (Bai et al., 2023a) as its LLM backbone and a Vision Trans-
former (ViT) for visual encoding. Its cross-modal bridge module utilizes Q-Former (a transformer-
based architecture) designed for multi-modal feature fusion. The Q-Former attends to visual and
textual tokens, enabling context-aware interaction between modalities.

Qwen2.5-VL (Bai et al., 2025): Qwen2.5-VL is an advanced version of Qwen-VL (Bai et al.,
2023b), featuring Qwen2.5-LM (Yang et al., 2025) as its LLM backbone and a cross-modal ar-
chitecture. Its cross-modal bridge module works as follows: RMSNorm first normalizes the visual
features, followed by a three-layer MLP that projects them into the linguistic space. This replaces
the Q-Former in Qwen-VL with a lightweight yet powerful structure, enabling more efficient pa-
rameter allocation. Qwen2.5-VL-Instruct5 builds upon Qwen2.5-VL through supervised fine-tuning
on curated, high-quality instruction data, improving its adaptability to downstream tasks.

S METHODS

LoRA (Base) (Hu et al., 2022): LoRA is a parameter-efficient fine-tuning method that introduces
low-rank decomposition matrices into the weight matrices of pretrained models. By freezing the
original model weights and using low-rank matrices to capture task-specific information, LoRA
significantly reduces the number of trainable parameters while preserving the model’s generalization
ability. It is widely applied in natural language processing and computer vision due to its low
memory consumption, fast training speed, and support for multi-task adaptability.

MoELoRA (Chen et al., 2024a): MoELoRA combines the Mixture-of-Experts (MoE) mechanism
with Low-Rank Adaptation (LoRA) to enhance adaptability in dynamic task environments. It dy-
namically allocates expert resources and adjusts modality-specific adaptation weights, achieving
improved multi-task performance. In our CIT setting, the number of experts is set to 2 per MoE
layer. It is static-structure-based.

Learning Without Forgetting (LwF) (Li & Hoiem, 2017): LwF addresses catastrophic forgetting
through knowledge distillation. A pretrained model guides the current model to retain historical
task knowledge without requiring access to old datasets. It enforces alignment between the output
distribution of the current model and the teacher model by combining next-token prediction loss and
distillation loss with a weighted sum of two losses of two losses. It is regularization-based.

Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017): EWC introduces a regularization
term based on the Fisher Information Matrix (FIM) to protect critical parameters from previous
tasks. By computing parameter importance (diagonal elements of FIM) and imposing constraints
during new task training, EWC balances old and new task performance. It is regularization-based.

Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017): GEM prevents forgetting
by maintaining episodic memory of historical task samples and enforcing gradient constraints.
It projects the current task gradient into a subspace compatible with all historical gradients via

1https://huggingface.co/liuhaotian/llava-v1.5-7b
2https://huggingface.co/liuhaotian/llava-v1.5-13b
3https://huggingface.co/llava-hf/llava-1.5-7b-hf
4https://huggingface.co/Qwen/Qwen-VL
5https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
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quadratic programming, ensuring new task updates do not degrade old task performance. It is
regularization-based and replay-based. We set 100 samples per task for replay.

Experience Replay (Rolnick et al., 2019): Experience Replay mitigates catastrophic forgetting by
replaying subsets of historical data during new task training. A replay buffer stores representative
samples, and the model alternates between learning new data and reinforcing old knowledge through
mixed training. It is replay-based. We set 100 samples per task for replay.

Prompt Gradient Projection (PGP) (Qiao et al., 2025b): PGP proposes a gradient projection
approach that enforces model parameter updates to be orthogonal to the previous feature subspace,
thereby preserving historical knowledge and enabling adaptation to new tasks. It is regularization-
based.

Model Tailor (MT) (Zhu et al., 2024): MT restricts training to the critical parameters while com-
pensating for variations in the trainable parameters. It is regularization-based.

Eproj (He et al., 2023): Eproj is an advanced dynamic model adaptation method. It groups high-
conflict tasks and handles low-conflict tasks via regularization. It is extension-based.

Dynamic EMA (CIA*) (Qiao et al., 2025a): CIA* derives optimal balance weights from the trade-
off premise and EMA update, satisfying plasticity-stability conditions. The weights are adaptively
determined by gradients and learned parameters. It is regularization-based.

Dynamic EMA + Instruction Grouping (CIA) (Qiao et al., 2025a): CIA extends CIA* by intro-
ducing instruction grouping to avoid high-conflict tasks. Based on instruction semantic similarity,
it determines whether to retrain or extend parameters and allocates the most suitable parameters for
testing instances. It is extension-based.

PCLR (Ours): PCLR introduces two key innovations to address the challenges of continual instruc-
tion tuning (CIT) in Large Multimodal Models (LMMs). First, we decompose LoRA weights into
LoRA Rank Pool (LRP), enabling fine-grained control over expert ranks and achieving flexible pa-
rameter allocation. This design supports arbitrary compression ratios while preserving task-specific
adaptability. Then, we propose the Compression-Integration-Learning (CIL) pipeline, which bal-
ances plasticity and stability through three stages:

(1) Compression: It prunes rank experts to reserve space for new task learning.
(2) Integration: It fuses knowledge from similar experts via distillation to enhance synergy.
(3) Learning: It trains new experts in the released space without memory explosion.

PCLR-LwF (A Simplified Variant of PCLR) To further enhance the performance of PCLR on
long-term CIT while minimizing unnecessary performance degradation and training overhead, we
propose PCLR-LwF, a simplified variant that combines PCLR with LwF (Li & Hoiem, 2017). We
group consecutive tasks into clusters, we apply LwF within each cluster for continual instruction
tuning. This approach preserves the core advantages of PCLR and significantly reducing the cost of
integration.

T DATASETS

ScienceQA (Lu et al., 2022): ScienceQA is a multimodal science question-answering dataset de-
signed to evaluate the ability of models to perform reasoning by integrating visual and textual in-
formation. The training dataset comprises 12,726 samples, with 6,218 instances in the image-text
modality and 6,508 in the text-only modality. The testing dataset contains 4,241 samples, distributed
as 2,017 image-text instances and 2,224 text-only instances.

TextVQA (Singh et al., 2019): TextVQA targets text recognition in visual question-answering. The
dataset includes real-world images with diverse text formats (handwritten, printed). The training
dataset comprises 34,602 samples, all of which belong to the image-text modality. The testing
dataset contains 5,000 samples, all of which are in the image-text modality.

ImageNet (Russakovsky et al., 2015): ImageNet is a large-scale image classification dataset. The
training dataset comprises 129,833 samples, all of which belong to the image-text modality. The
testing dataset contains 5,050 samples, all of which are in the image-text modality.
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GQA (Hudson & Manning, 2019): GQA emphasizes real-world visual reasoning. It evaluates un-
derstanding of object relationships and perform multi-step inference. The dataset includes both
synthetic and real-world images with scene graphs for structured reasoning. The training dataset
comprises 72,140 samples, all of which belong to the image-text modality. The testing dataset con-
tains 12,578 samples, all of which are in the image-text modality.

VizWiz (Gurari et al., 2018): VizWiz is a visual question-answering dataset for visually impaired
users. The dataset focuses on practical, everyday visual queries. The training dataset comprises
20,523 samples, all of which belong to the image-text modality. The testing dataset contains 4,319
samples, all of which are in the image-text modality.

Grounding (Mao et al., 2016): The Grounding tests the ability of models to align natural language
instructions with objects in images. It includes image-text pairs where the text describes object
locations or attributes, and the task is to predict the corresponding bounding boxes. The training
dataset comprises 55,885 samples, all of which belong to the image-text modality. The testing
dataset contains 30,969 samples, all of which are in the image-text modality.

VQAv2 (Goyal et al., 2017): VQAv2 is a foundational visual question-answering dataset. It em-
phasizes balanced answer distributions and diverse topics. The training dataset comprises 82,783
samples, all of which belong to the image-text modality. The testing dataset contains 214,354 sam-
ples, all of which are in the image-text modality.

OCRVQA (Mishra et al., 2019): OCRVQA combines optical character recognition with visual
question-answering. It evaluates models’ ability to parse text from images and generate answers
based on the extracted content. The training dataset comprises 165,348 samples, all of which belong
to the image-text modality. The testing dataset contains 99,926 samples, all of which are in the
image-text modality.

ArXivQA (Li et al., 2024b): ArXivQA is a multi-modal dataset for scientific paper analysis. It in-
cludes images, formulas, and text from arXiv papers, with questions requiring cross-modal reason-
ing for tasks such as figure interpretation or explaining derivations. The training dataset comprises
90,000 samples, all of which belong to the image-text modality. The testing dataset contains 10,000
samples, all of which are in the image-text modality.

GeoChat (Kuckreja et al., 2024): GeoChat focuses on geospatial reasoning using maps. It includes
map images and natural language questions about locations, terrain features, or symbols. The train-
ing dataset comprises 25,362 samples, all of which belong to the image-text modality. The testing
dataset contains 3,000 samples, all of which are in the image-text modality.

IconQA (Lu et al., 2021): IconQA targets abstract icon understanding. It contains icon-text pairs
where models must match icons to their descriptions, testing semantic parsing of symbolic visual
elements. The training dataset comprises 29,859 samples, all of which belong to the image-text
modality. The testing dataset contains 3,000 samples, all of which in the image-text modality.

ClevrMath (Lindström & Abraham, 2022): ClevrMath includes synthetic images and math prob-
lems (geometry, arithmetic) and requires models to perform compositional logic and computation.
The training dataset comprises 40,000 samples, all of which belong to the image-text modality. The
testing dataset contains 3,000 samples, all of which are in the image-text modality.

CodeQA (Liu & Wan, 2021): CodeQA is a programming question-answering dataset. It pairs code
snippets with questions, testing the ability of models to understand and explain code logic across
multiple programming languages. The training dataset comprises 150,896 samples, all of which
belong to the text-only modality. The testing dataset contains 18,997 samples, all of which in the
text-only modality.

Flickr30k (Plummer et al., 2015): Flickr30k is an image captioning dataset. It supports fine-grained
visual-linguistic alignment tasks. The training dataset comprises 30,000 samples, all of which be-
long to the image-text modality. The testing dataset contains 1,783 samples, all of which are in the
image-text modality.

DocVQA (Mathew et al., 2021): DocVQA focuses on document understanding. It includes scanned
documents with questions that require text localization and semantic interpretation in complex lay-
outs. The training dataset comprises 39,463 samples, all of which belong to the image-text modality.
The testing dataset contains 5,349 samples, all of which are in the image-text modality.
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MathQA (Amini et al., 2019): MathQA is a mathematical problem solving dataset with text-based
questions. It emphasizes interpretability and logical reasoning for algebraic and geometric problems.
The training dataset comprises 29,837 samples, all of which belong to the text-only modality. The
testing dataset contains 2,985 samples, all of which are in the text-only modality.

ChartQA (Masry et al., 2022): ChartQA evaluates quantitative reasoning on charts. Questions
involve trend analysis and numerical comparisons. The training dataset comprises 28,299 samples,
all of which belong to the image-text modality. The testing dataset contains 2,500 samples, all of
which are in the image-text modality.

PathVQA (He et al., 2020): PathVQA is a medical pathology dataset. It focuses on disease identifi-
cation and cellular structure analysis for clinical applications. The training dataset comprises 19,654
samples, all of which belong to the image-text modality. The testing dataset contains 6,719 samples,
all of which are in the image-text modality.

WikiQA (Yang et al., 2015): WikiQA is an open-domain question-answering dataset with question-
answer pairs from Wikipedia. The training dataset comprises 20,360 samples, all of which belong
to the text-only modality. The testing dataset contains 633 samples, all of which are in the text-only
modality.
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Table 20: The list of instructions for each task.

Task Original Diverse 10Type

ScienceQA
Answer with the option’s

letter from the given
choices directly.

Answer with the option’s
letter from the given

choices directly.

Answer with the option’s letter from the given choices directly.
Select the correct answer from the given choices and respond with the letter of the chosen option.
Determine the correct option from the provided choices and reply with its corresponding letter.
Pick the correct answer from the listed options and provide the letter of the selected option.
Identify the correct choice from the options below and respond with the letter of the correct option.
From the given choices, choose the correct answer and respond with the letter of that choice.
Choose the right answer from the options and respond with its letter.
Select the correct answer from the provided options and reply with the letter associated with it.
From the given choices, select the correct answer and reply with the letter of the chosen option.
Identify the correct option from the choices provided and respond with the letter of the correct option.
From the given choices, pick the correct answer and respond by indicating the letter of the correct option.

TextVQA
Answer the question

using a single
word or phrase.

Capture the essence of
your response in a single
word or a concise phrase.

Answer the question with just one word or a brief phrase.
Use one word or a concise phrase to respond to the question.
Answer using only one word or a short, descriptive phrase.
Provide your answer in the form of a single word or a brief phrase.
Use a single word or a short phrase to respond to the question.
Summarize your response in one word or a concise phrase.
Respond to the question using a single word or a brief phrase.
Provide your answer in one word or a short, descriptive phrase.
Answer the question with a single word or a brief, descriptive phrase.
Capture the essence of your response in one word or a short phrase.
Capture the essence of your response in a single word or a concise phrase.

ImageNet
Give the object in the image

in the form of a single
word or a concise phrase.

Express the object in
the image in a single

word or a short,
descriptive phrase.

Summarize the object in the image in a single word or a brief phrase.
Provide the object in the image using a single word or a brief phrase.
Give the object in the image in the form of a single word or a concise phrase.
Express the object in the image with one word or a short, descriptive phrase.
Identify the type of content in the image using one word or a concise phrase.
Respond to the object in the image with a single word or a short, descriptive phrase.
Describe the content of the image using one word or a concise phrase.
Express the object in the image in a single word or a short, descriptive phrase.
Use a single word or a short phrase to categorize the image content.
Classify the image content using only one word or a brief phrase.
Use one word or a short phrase to classify the content of the image.

GQA
Answer the question

using a single
word or phrase.

Respond to the question
briefly, using only one

word or a phrase.

Respond to the question with a single word or a short phrase.
Respond to the question using only one word or a concise phrase.
Answer the question with a single word or a brief phrase.
Respond with one word or a short phrase.
Provide your answer in the form of a single word or a concise phrase.
Respond to the question with just one word or a brief phrase.
Answer the question using a single word or a concise phrase.
Provide your response using only one word or a short phrase.
Respond to the question with a single word or a brief phrase.
Respond to the question using just one word or a concise phrase.
Answer the question with one word or a short phrase.

VizWiz
Answer the question

using a single
word or phrase.

Provide a succinct
response with a single

word or phrase.

Answer the question using only one word or a concise phrase.
Respond to the question using only one word or a concise phrase.
Respond to the question with a single word or a brief phrase.
Provide your answer using just one word or a short phrase.
Respond with one word or a concise phrase.
Answer the question with just one word or a brief phrase.
Use a single word or a short phrase to answer the question.
Provide your answer in the form of one word or a brief phrase.
Reply to the question using one word or a concise phrase.
Answer with a single word or a short phrase.
Use one word or a brief phrase to answer the question.

Grounding
Please provide the bounding
box coordinate of the region

this sentence describes.

Please provide the bounding
box coordinate of the region

this sentence describes.

Identify and provide the bounding box coordinates that match the description given in this sentence.
Extract and provide the bounding box coordinates based on the region described in the sentence.
Please provide the bounding box coordinate of the region this sentence describes.
Find and provide the bounding box coordinates for the region mentioned in the sentence.
Provide the coordinates of the bounding box that correspond to the region described in the sentence.
Give the bounding box coordinates as described in the sentence.
Determine and provide the bounding box coordinates based on the description in the sentence.
Identify and provide the coordinates of the bounding box described in the sentence.
Provide the coordinates for the bounding box based on the region described in the sentence.
Extract and provide the coordinates for the bounding box described in the sentence.
Identify and give the coordinates of the bounding box as described by the sentence.

VQAv2
Answer the question

using a single
word or phrase.

Answer the question
using a single

word or phrase.

Answer the question using a single word or phrase.
Answer the question with a single word or a brief phrase.
Use one word or a short phrase to respond to the question.
Answer the question using just one word or a concise phrase.
Provide your answer to the question using only one word or a brief phrase.
Use a single word or phrase to answer the question.
Provide an answer using only one word or a brief phrase.
Answer the question succinctly with one word or a brief phrase.
Answer the question with just one word or a short phrase.
Respond to the question using a single word or a concise phrase.

OCRVQA
Answer the question

using a single
word or phrase.

Condense your answer for
each question into a single

word or concise phrase.

Respond to the question with a single word or a short phrase.
Answer the question using a single word or a concise phrase.
Provide your response using only one word or a short phrase.
Use one word or a brief phrase to answer the question.
Reply to the question using one word or a concise phrase.
Use a single word or a short phrase to answer the question.
Use a single word or phrase to answer the question.
Provide an answer using only one word or a brief phrase.
Provide your answer to the question using only one word or a brief phrase.
Respond to the question using a single word or a concise phrase.
Answer the question using a single word or phrase.
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U ALGORITHM

Algorithm 1: PCLR

Input: Pretrained LMM F , number of task N , training set {{xt
i, y

t
i}

nt
i=1}

T
t=1, learning rate η1,

η2, learning loss function L1, integration loss function L2, progressive compression
retention ratio function α, preset total rank number rm.

Output: LRP module M .
Initialize: LRP module M = ∅, fake query pool TK = ∅.
for t = 1, ..., N do

1. M = L(F, {xt
i, y

t
i}

nt
i=1,M, η1,L1). # Learning (L).

2. Collect all trained keys and calculate their mean qk.
3. TK = TK ∪ {qk}.
if rank(M) ≥ rm then

M = CI(F, {xt
i, y

t
i}

nt
i=1, TK ,M, α(t), η2,L2). # Compression and Integration (CI).

end
end

Algorithm 2: Learning (L)
Input: Pretrained LMM F , current task dataset D, LRP module Mold, learning rate η1,

learning loss function L1 according to Eq.(4).
Output: LRP module M .
Initialize: Mnew.
if Mold ̸= ∅ then

1. Sample a subset from D and calculate their average query q.
2. Compute the cosine similarity scores between the keys in Mold and the query q, select

the top-r indices based on the scores (where r represents the rank of Mnew), and Mnew is
set to the value of the corresponding vector set.

end
Extend rank space M = cat[Mold,Mnew], freeze the old part, and activate the new part.
for epoch = 1 do

for t = 1, ..., T do
1. Draw a mini-batch B = {xt

i, y
t
i}

b
i=1.

2. Calculate l = L1(F,M,B).
3. Using l to backward.
4. Update M with learning rate η1.

end
end

Algorithm 3: Compression and Integration (CI)
Input: Pretrained LMM F , visible datasets D, task key pool K, original LRP M , retention

ratio α, learning rate η2, integration loss function L2 according to Eq.(5).
Output: post-integration LRP M̃ .
Initialize: Load K as fake query pool, initialize probability table P of fake query, freeze F and
M , using α to get post-compression M to initialize M̃ .

for epoch = 1 do
for t = 1, ..., T do

1. Draw a mini-batch B = {xt
i, y

t
i}

b
i=1.

2. Sample q from K with probability table P .
3. Calculate integration Loss l = L2(F,M, M̃,B, q).
4. Using l to update P by Eq.(6).
5. Using l to backward.
6. Update M̃ with learning rate η2.

end
end
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Algorithm 4: PCLR-LwF

Input: Pretrained LMM F , number of task N , training set {{xt
i, y

t
i}

nt
i=1}

T
t=1, learning rate η1,

η2, learning loss function L1, integration loss function L2, progressive compression
retention ratio function α, preset total rank number rm, LwF weight β, Conflict
detection function E.

Output: LRP module M .
Initialize: LRP module M = ∅, fake query pool TK = ∅, n = 0.
for t = 1, ..., N do

if E(F,M) then
1. M = L(F, {xt

i, y
t
i}

nt
i=1,M, η1,L1). # Learning (L).

2. n = 0.
end
else

1. M = LLwF(F, {xt
i, y

t
i}

nt
i=1,M, η1,L1, n, β). # Learning with LwF (LLwF).

2. n = n+ 1.
end
1. Collect all trained keys and calculate their mean qk.
2. TK = TK ∪ {qk}.
if M ≥ rm then

M = CI(F, {xt
i, y

t
i}

nt
i=1, TK ,M, α(t), η2,L2). # Compression and Integration (CI).

end
end

Algorithm 5: Learning (LLwF)
Input: Pretrained LMM F , current task dataset D, LRP module M , learning rate η1, learning

loss function L1 according to Eq.(4), continual LwF number n, LwF weight β.
Output: LRP module M .
Initialize: Copy M as Mold, and freeze it, set KLD Loss LKL, L2 regularization function l2.
for epoch = 1 do

for t = 1, ..., T do
1. Draw a mini-batch B = {xt

i, y
t
i}

b
i=1.

2. Calculate l = L1(F,M,B) + βLKL(F,M,Mold, B).
3. Using l to backward.
4. Update M with learning rate η1.

end
end
1. Take out all the keys Kold of Mold and all the keys K of M .
2. For all (kold,i, ki) ∈ (Kold,K), ki = l2(n ∗ kold,i + ki).
3. Assign all ki ∈ K back.
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