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Abstract

Unsupervised Domain Adaptation (UDA) leverages labeled source data to train models
for unlabeled target data. Given the prevalence of multivariate time series (MTS) data
across various domains, the UDA task for MTS classification has emerged as a critical
challenge. In this work, we identify a key property of MTS: multivariate correlations vary
significantly across domains, and further formalize this phenomenon as a novel type of
domain shift, termed correlation shift. To mitigate correlation shift, we propose a scalable
and parameter-efficient Correlation Adapter for MTS (CATS). Designed as a plug-and-
play technique compatible with various Transformer variants, CATS employs temporal
convolution to capture local temporal patterns and a graph attention module to model the
changing multivariate correlation. The adapter reweights the target correlations to align
the source correlations with a theoretically guaranteed precision. A correlation alignment
loss is further proposed to mitigate correlation shift, bypassing the alignment challenge
from the non-i.i.d. nature of MTS data. Extensive experiments on four real-world datasets
demonstrate that (1) compared with vanilla Transformer-based models, CATS increases
over 10% average accuracy while only adding around 1% parameters, and (2) all Transformer
variants equipped with CATS either reach or surpass state-of-the-art baselines.

1 Introduction
Multivariate time series classification (MTS) is a fundamental task with applications spanning diverse
fields, including finance (Zhao et al., 2023; Shahi et al., 2020; Mondal et al., 2014; LeBaron et al., 1999),
healthcare (Zeger et al., 2006; Touloumi et al., 2004; Dockery & Pope, 1996; Bernal et al., 2017), climate
science (Yoo & Oh, 2020; Ghil et al., 2002; Belda et al., 2014; Baranowski et al., 2015), transportation
(Rezaei & Liu, 2019; MontazeriShatoori et al., 2020; Vu et al., 2018) and power systems (Hoffmann et al.,
2020; Fütterer et al., 2017; Susto et al., 2018). Recently, deep learning models (Vaswani, 2017; Liu et al.,
2023; Wu et al., 2022) have demonstrated remarkable capability in capturing temporal dependencies for MTS,
showcasing significant promise in numerous applications.

However, the deployment of these models often encounters a critical challenge: domain shifts (Koh et al., 2021;
Luo et al., 2019; Zhang et al., 2013) between the labeled source domain data during training and the target
domain data during testing. The domain shift often leads to a notable degradation in model performance on
the target domain. Moreover, obtaining labels for the test data is quite hard in most real-world scenarios
(Ganin et al., 2016; Long et al., 2015). As a result, the UDA problem on MTS (He et al., 2023; Wilson et al.,
2020) has emerged as a critical research area (He et al., 2023; Wilson et al., 2020), aiming to leverage the
labeled source domain data to enhance the model performance on the unlabeled target domain.

Previous studies on UDA for MTS primarily focus on learning domain-invariant features through adversarial
training (Wilson et al., 2020; 2023), contrastive learning (Ozyurt et al., 2022) or divergence metrics (He
et al., 2023; Cai et al., 2021). However, these approaches have notable limitations: (1) Model architecture
perspective: existing UDA methods exhibit limited adaptability across model architectures. Most
prior approaches are tightly coupled with specific backbone networks, typically built on lightweight RNNs or
CNNs (Liu & Xue, 2021; Wilson et al., 2020; He et al., 2023; Li et al., 2022b; Wilson & Cook, 2020). This
coupling limits their scalability and applicability to more expressive and modern MTS analysis models, such
as iTransformer (Liu et al., 2023) and Crossformer (Zhang & Yan, 2023). Compared with existing UDA
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backbone networks, these models are typically Transformer variants1 with larger parameter capacities and
are better suited for modeling rich and complex temporal patterns in real-world time series. However, these
architectures are not well supported by existing UDA frameworks. This gap motivates the key question: Can
we develop model-agnostic UDA methods that effectively enhance the adaptability of powerful general MTS
models? (2) Data distribution perspective: Prior works lack architectural designs for addressing
the variance of multivariate correlations across domains. We observe consistent and significant
shifts in inter-variable dependencies, i.e., correlations, across domains, and we term this new type of domain
shift as correlation shift. Although a few existing studies (Wang et al., 2024a; Cai et al., 2021) implicitly
acknowledge this issue, their primary focus has been on designing loss functions for alignment, with little
discussion on how architectural modules can be tailored to fundamentally mitigate correlation shift. This
oversight in model design leaves significant room for improvement on this challenge.

To overcome these limitations, we seek to align the correlation distributions between domains from both the
model architecture and the training objective perspectives. At the model level, we propose a scalable and
parameter-efficient adapter, termed Correlation Adapter for Multivariate Time Series (CATS). Specifically,
to capture temporal dependencies, CATS employs depthwise convolutions along the temporal dimension
for both down-projection and up-projection. Compared to traditional adapters that rely on linear matrices,
convolutions demonstrate superior capability in capturing local temporal patterns. Building on this, CATS
incorporates a Graph Attention Network (GAT) to adaptively reweight inter-variable dependencies in the
hidden layers. Theoretically, proper reweighting can align the correlation distributions across domains,
thus mitigating correlation shift. To adapt CATS to the unlabeled target domain, we introduce a novel
correlation alignment loss. This loss function not only effectively reduces correlation shift but also circumvents
the limitations of divergence metrics, which often fail on the non-i.i.d. (non-independent and identically
distributed) time series data. By integrating CATS with this tailored loss function, we present a more effective
and efficient solution for unsupervised domain adaptation in multivariate time series.

In summary, our main contributions are as follows:

• Problem. We are the first to empirically validate and mathematically define the concept of correlation
shift in MTS data. As a unique and important property of MTS data, correlation shift introduces a
distinct perspective for addressing UDA challenges.

• Model. We propose the first scalable and parameter-efficient MTS adapter, CATS, designed to be
highly adaptable across different model architectures. Empirically and theoretically, CATS effectively
mitigates correlation shifts while capturing local temporal patterns for classification.

• Training objective. We introduce a novel correlation alignment loss, which directly addresses
correlation shift and circumvents the alignment challenge posed by the non-i.i.d. MTS data.

• Evaluation. We conduct extensive experiments on four real-world time series domain adaptation
datasets. The results demonstrate that CATS consistently enhances the performance of MTS
analysis models, achieving a 10%+ average accuracy improvement, even under large domain shifts.
Furthermore, MTS analysis models equipped with CATS outperform SOTA baselines by around 4%
average accuracy, showcasing the superb effectiveness and adaptability of CATS.

2 Preliminaries

Multivariate time series classification. In the task of multivariate time series (MTS) classification, the
dataset is comprised of a collection of time series samples along with their corresponding labels, denoted
as D = {(Xi, yi)}n

i=1 with n being the sample number. Here, the i-th sample Xi ∈ RD×T represents an
individual time series that contains readouts of D observations over T time points, and yi is the associated
label. In this paper, we use X[j] to represent the j-th variable of the sample X.

1As general MTS models are mostly Transformer-based, our discussion in this paper mainly focuses on Transformer variants.
However, CATS can be easily extended to other block-wise non-Transformer architectures like TimesNet.
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Adapters for large models. Recently, large-scale Transformers have achieved great success in various
domains, including natural language processing (Vaswani, 2017; Devlin, 2018; Brown et al., 2020), computer
vision (Radford et al., 2021; Alexey, 2020), and time series analysis (Liu et al., 2023; Wu et al., 2022).
However, their large parameter size makes it impractical to fine-tune a separate model for every downstream
task. To overcome this, a variety of parameter-efficient fine-tuning (PEFT) methods have been proposed
(Han et al., 2024; Hu et al., 2021; Xu et al., 2023). Among them, adapters have attracted particular interest
for their ability to transfer the knowledge of pretrained models to new tasks using only a small number of
additional parameters.

Given the high similarity between the objectives of adapters and UDA, many studies (Zhang et al., 2021;
Malik et al., 2023) have leveraged adapters to transfer knowledge learned from the source domain to the
target domain. Such domain adapters are embedded between two consecutive Transformer blocks to adapt
the model’s learned representations to the target domain. Mathematically, these adapters can be expressed
as:

H(k)
O = H(k)

I + σ(H(k)
I W(k)

↓ )W(k)
↑ (1)

where σ(·) represents the activation function, and W(k)
↓ ∈ RT ×r and W(k)

↑ ∈ Rr×T are the two linear matrices
for down-projection and up-projection with r being a small hyperparameter. Here, H(k)

I is the input of the
k-th adapter block, and H(k)

O is the output of the k-th adapter, i.e., the input of the (k + 1)-th Transformer
block.

Unsupervised domain adaptation. The goal of UDA is to leverage information from a labeled source
domain Ds = {(Xi,s, yi,s)}ns

i=1 to enhance the model’s understanding of an unlabeled target domain Dt =
{Xi,t}nt

i=1. Generally, source and target samples are independently sampled from their respective distributions,
i.e., Ds ∼ Ps(Xs, ys) and Dt ∼ Pt(Xt, yt). However, these distributions often exhibit significant shifts.
There are two widely studied shifts: feature shift (Zhang et al., 2013) and label shift (Azizzadenesheli et al.,
2019). Specifically, feature shift occurs when the distribution of features changes across domains, while the
relationship between features and labels remains consistent. In contrast, label shift arises when the label
distributions differ between domains, even if the feature distributions are similar.

3 Correlation Shift

Although label shift and feature shift are the two most commonly analyzed types of domain shifts in UDA
tasks, focusing solely on these shifts is insufficient for MTS classification. A key characteristic of MTS is
the interaction between different variables, such as the interplay between blood glucose levels and insulin in
the human body (Basu et al., 2009; Wang et al., 2018). Correlation effectively models this inter-variable
dependencies, thus making it central to many statistical and deep learning models for MTS (Box et al., 2015;
Bollerslev, 1990; Wu et al., 2021).

Despite its importance, to our best understanding, no prior work has provided systematic research on the
correlation distribution across domains for MTS data. To bridge this gap, we introduce a novel domain shift
tailored specifically for MTS: correlation shift.
Definition 1 (Correlation shift). Suppose the source multivariate data Xs ∈ RD×T and the target multivaraite
data Xt ∈ RD×T follow the source distribution Ps and the target distribution Pt, respectively. Here, D denotes
the number of variables and T represents the feature dimension. Then, correlation shift occurs when the
multivariate correlations between the source and target domains differ, formally defined as:

Corr(Xs) ̸= Corr(Xt) (2)

where the correlation structure Corr (·) is given by:

Corr(X) := diag(Σ)−1/2Σdiag(Σ)−1/2

Σ = EX∼P
[
(X − EX)(X − EX)T

] (3)

This phenomenon naturally arises from discrepancies in inter-variable dependencies across domains. A
practical example of the correlation shift can be observed in healthcare analytics. For example, in non-diabetic
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individuals, there is typically a synchronous peak in blood glucose and insulin levels following sugar intake
while in diabetic patients, the increase in insulin occurs with a noticeable delay after the peak in blood
glucose (Basu et al., 2009; Wang et al., 2018). This delay represents a clear correlation shift when considering
blood glucose and sugar intake as two interacting variables. Another widely-existing example comes from the
weather data. Extensive studies (Draper & Long, 2004; Weissman et al., 2002; Back & Bretherton, 2005) have
shown that the relationship between wind speed and precipitation varies geographically and this relationship
tends to be significantly stronger in humid regions compared to arid areas. The widespread occurrence of
correlation shifts impacts the transferability of learned representations, ultimately leading to deteriorated
performance on target domains

Figure 1: Rates of target domains with corre-
lation shifts per source domain. The x-axis
represents the source domain index while
the y-axis indicates the rate of correlation
shifts among the rest 29 domains. The red
line marks the average rate of 78%.

To further validate the universality of correlation shifts, we
conduct an empirical analysis on a real-world Human Activity
Recognition (HAR) dataset (Anguita et al., 2013), to demon-
strate the discrepancy in the correlation across different domains.
Specifically, we iterate through the 30 domains in HAR, treat-
ing each domain as the source domain while considering the
remaining 29 domains as target domains. For each source-target
domain pair, we apply the Mann-Whitney U test (McKnight
& Najab, 2010), a non-parametric hypothesis testing method,
to determine whether there is a significant correlation shift
between the source and the target domains. A detailed explana-
tion for this correlation shift test is provided in Appendix A. We
compute the rate of target domains suffering from significant
correlation shifts for each source domain, and the results are
shown in Figure 1, where the orange bars indicate the rate
of target domains with significant correlation shifts. The red
dashed line in Figure 1 marks the average rate of correlation
shift, which is 78%. These findings provide clear evidence that
correlation shifts are indeed prevalent in MTS datasets, thereby
calling for solutions to mitigate them.

4 Methodology
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Figure 2: The main framework of CATS. CATS is integrated after each attention block of any Transformer
variant, with only CATS trained and the backbone frozen. The training objective involves three loss functions:
(1) classification loss on the labeled source domain, (2) forecasting loss on the unlabeled target domain, and
(3) layer-wise correlation alignment loss to align these two domains.

In this section, we introduce our solution to mitigate correlation shift. We first propose CATS in Section 4.1,
which demonstrates superior representation learning capabilities for MTS compared to traditional adapters.
By reweighting multivariate correlation, CATS enjoys theoretical guarantees for mitigating correlation shift.
In Section 4.2, we propose a novel training objective for CATS on unlabeled target domains, centered on
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the correlation alignment loss to address correlation shift effectively. The overall framework of CATS is
visualized in Figure 2.

4.1 CATS: Temporal-aware Correlation Adapter

MTS data exhibit two prominent properties: temporal dependencies and inter-variable dependencies. To
model these properties, we first introduce up-project and down-project modules for time series adapters in
Section 4.1.1 to capture temporal dependencies effectively. In Section 4.1.2, we further propose a reweighting
module to adaptively refine inter-variable dependencies, thereby mitigating the impact of correlation shift.
By integrating these components, we propose CATS which effectively enhances the model’s adaptability in
domain adaptation tasks involving multivariate time series classification.

4.1.1 Temporal Project via Convolution

As discussed in Section 2, adapters hold significant potential for addressing domain adaptation challenges
in Transformer models. However, these previous adapters often rely on the assumption that the data are
i.i.d. (independent and identically distributed), which does not hold for MTS. A key property of MTS is
that temporally adjacent data points often exhibit strong similarity. However, the use of linear matrices in
existing adapters fails to capture this local similarity, leading to noticeable declines in performance. Inspired
by temporal convolution network (TCN) (Fan et al., 2023; Farha & Gall, 2019; Hewage et al., 2020), we posit
that convolutions on temporal dimension could better leverage local similarity on MTS, thus serving as a
better substitute as project layer, compared with linear matrices in adapters from Eq. equation 1.

One potential drawback of using convolutions along the temporal dimension is the increase of the number
of trainable parameters. On previous adapters in Eq. equation 1, the parameter complexity of the linear
matrices are O(T × r). In contrast, convolutions have a parameter complexity of O(D2 × r), where r is the
kernel size. When the hidden layer dimension D approaches or exceeds the time length T , the number of
trainable parameters for convolutions can become quite large. To address this issue, we adopt depthwise
convolutions (Chollet, 2017), where each variable is convolved with its own kernel. This approach reduces
the parameter complexity to O(D × r), significantly improving efficiency. Note that depthwise convolutions
ignore multivariate correlations. We will address this issue in Section 4.1.2.

Figure 3: The accuracy comparison on HAR
dataset between the typical adapter and the
TDC-based adapter. With the backbone
(TimesNet) pretrained on the domain 1, both
adapters are trained on the domain 10.

To empirically validate the superiority of temporal depthwise
convolutions (TDC), we compare the performance between a
typical adapter in Eq. equation 1 and a TDC-based adapter
which only uses temporal depthwise convolutions instead of
the linear layers. Specifically, given a backbone pretrained
on the source dataset, we will train these two adapters on
the target domain. Note that the task is designed to assess
the representation learning ability of different adapters on
time series rather than focusing solely on domain adaptation.
Therefore, we use the labels from the target domain when
training adapters. A detailed experimental setting is provided
in Appendix B. The experiment results, illustrated in Figure
3, indicate that the TDC-based adapter demonstrates signifi-
cantly higher accuracy (around 10% improvement) after both
adapters converge. This clearly supports the premise that,
for time series data, temporal convolutions are a superior
alternative to traditional linear matrices.

4.1.2 Correlation Alignment via Reweighting

In this section, our objective is to identify an effective reweighting module to mitigate the correlation shift.
Since correlation shift arises from discrepancies in multivariate correlations between the source and target
domains, a natural approach to addressing it is to adaptively reweight the correlations in the target domain.
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Interestingly, in the case of Gaussian variables, we prove that a simple linear mapping2 is sufficient to serve
as an optimal reweighting function to align not only the correlation but also the joint distribution between
variables. Mathematically, this finding could be formalized as Proposition 1. All proofs in this section are
postponed to Appendix C.
Proposition 1 (Gaussian Probability Alignment). Suppose source data Xs ∈ RD×T and target data
Xt ∈ RD×T follow Ns(µs,Σs) and Nt(µt,Σt), respectively. There exists a reweighting matrix A ∈ RD×D

and a bias vector b ∈ RD, such that the multivariate joint probability of the reweighted target domain perfectly
aligns with that of the source domain, that is for every i, j = 1, 2, ..., D

Pr (Xs[i],Xs[j]) = Pr (Y[i],Y[j])

where Y = AXt + b and b = 0 for most MTS data.

This insight offers a promising direction for designing effective solutions without resorting to complex and
computationally expensive methods. Importantly, even when the distributions of random variables are
complex and difficult to characterize precisely, this simple linear mapping approach can still perfectly match
the correlation between variables, thereby effectively mitigating correlation shifts, as shown in the following
proposition.
Proposition 2 (Correlation Alignment). Suppose source data Xs ∈ RD×T and target data Xt ∈ RD×T

follow the source distribution Ps and the target distribution Pt, respectively. There exists a reweighting matrix
A ∈ RD×D, such that the correlation of the source distribution and target distribution can be perfectly aligned,
formally expressed as:

Corr(Xs) = Corr(AXt) (4)

Intuitively, the interaction between variables can be considered as a fully-connected graph, where each node
represents a variable and edges model the inter-variable dependency, and the reweighting matrix A serves
as the adjacency matrix of the graph. However, in practical scenarios, solving the reweighting matrix A
is often computationally expensive and non-trivial, particularly when the distributions of the variables are
highly complex. To address this, we leverage a Graph Attention Network (GAT) (Velickovic et al., 2017)
to adaptively approximate the matrix A. Mathematically, we formalize this insight through the following
theorem:
Theorem 1 (Attention Approximation). The optimal reweighting matrix A in Proposition 2 can be approx-
imated by an attention matrix Ã with an arbitrary precision, where Ã is generated by a one-layer Graph
Attention Network with an infinite hidden dimension.

By integrating the GAT and TDCs, we finally propose CATS to both well capture temporal dependencies
and solve correlation shift. Mathematically, the CATS layer ϕ(·) could be expressed as:

ϕ(X) =X + TDC↑ (σ(GAT (TDC↓ (X)))) (5)

where TDC↓ and TDC↑ represent the temporal convolution layers for down-project and up-project, respectively.
Here, GAT represents one GAT layer on a fully connected graph. We prove in Appendix C.4 that CATS in
Eq. equation 5 could also approximate the reweighting matrix A in a manner similar to a one-layer GAT.

Similar to typical domain adapters in Eq. equation 1, we integrate CATS within two consecutive blocks of a
Transformer-based model. Since Transformers always consist of multiple blocks, this allows each instance
of CATS to make minor adjustments to the target domain’s distribution. Cumulatively, these incremental
adjustments are capable of mitigating large domain shift from the final block. The idea of gradually reducing
domain shift is conceptually similar to but bears subtle difference from gradual domain adaptation (He et al.,
2024). Gradual domain adaptation leverages intermediate domains for supervision, which are often predefined.
In contrast, CATS does not rely on any intermediate domain, making it a more flexible and efficient solution
for UDA.

2Although adapters in Eq. equation 1 contains linear matrices, it is not a linear mapping due to the existence of the activation
function.
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4.2 Training Procedures

This section introduces the training objective for CATS on the unlabeled target domain. The goal is to
preserve the pre-trained model’s rich knowledge for accurate time series classification while leveraging CATS
to effectively minimize distribution shifts across domains.

To achieve this, we first propose the correlation alignment loss, specifically designed to address correlation
shift. Given CATS’s ability to adaptively reweight multivariate correlation, as discussed in Section 4.1.2,
our objective is to align the correlation distribution of the source domain with that of the target domain
transformed by CATS. Specifically, given the output of the k-th block H(k)

s and H(k)
t from the source domain

and the target domain respectively, we minimize the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) of the correlation distribution between H(k)

s and ϕ(H(k)
t ). Mathematically, the correlation alignment

loss can be expressed as:

Lcorr =
K∑

k=1

∑
H(k)

s

H(k)
t

MMD
(

corr
(
H(k)

s

)
, corr

(
ϕ
(

H(k)
t

)))

where corr(H) = vec
(

HHT

∥H∥2
F

)
, MMD(·, ·) denotes the MMD loss, vec(·) denotes the vectorization operator

and ϕ(·) represent our CATS adapter defined in Eq. 5.

Compared to directly aligning hidden features using MMD, the correlation alignment loss offers a unique
advantage in terms of optimization difficulties. This is primarily because MMD assumes that data distributions
are i.i.d., while time series data inherently exhibit non-i.i.d. characteristics. Consequently, directly applying
MMD to align feature distributions often increases the difficulty of optimization, potentially leading to
suboptimal performance. In contrast, correlation alignment loss focuses on aligning correlations rather
than directly aligning raw features. Within the same domain, these correlations across variables tend to
be more stable compared to the feature distributions. For instance, in a financial time series dataset, the
correlation between stock prices of two closely related companies might remain consistent over time, even
though the individual stock price values fluctuate significantly (Kim & Baginski, 2016). Thus, within a single
domain, if we consider the correlation of MTS data as a new “feature", this “feature" tends to exhibit higher
similarity across different samples. Consequently, using MMD to align correlations becomes less challenging in
terms of optimization. Therefore, this property makes correlation alignment loss a more stable and effective
approach for reducing distributional discrepancies, particularly in MTS tasks, where temporal dependencies
and multivariate correlation play a crucial role

In addition to mitigating correlation shift, it is crucial to enhance CATS’s ability to understand the task
and data accurately. To ensure that the features extracted by CATS are beneficial for the classification
task, we compute a classification loss Lc on the labeled source domain. Furthermore, to improve CATS’s
understanding of the input features from the unlabeled target domain, we introduce a forecasting loss Lf on
the target domain, encouraging CATS to accurately capture local temporal patterns. These two losses are
discussed in Appendix D in detail. To sum up, the final loss can be computed as follows:

L = Lc + λcorrLcorr + λfLf (6)

where λf and λcorr are two hyperparameters.

5 Experiments

5.1 Experimental Settings

Datasets. We conduct experiments on 4 real-world datasets, including HAR (Anguita et al., 2013), WISDM
(Weiss, 2019), HHAR (Stisen et al., 2015), and Boiler (Cai et al., 2021). For HAR, HHAR, and WISDM
datasets, we rank all possible source-target domain pairs based on the magnitude of domain shift, dividing
them into 10 groups in the ascending order. From each group, we select one source-target domain pair for
evaluation. For Boiler, due to its limited number of domains, we choose the domain pairs with the largest
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Table 1: Main accuracy results for MTS classification on the UDA task. The higher the accuracy is, the
better. For three Transformer variants, the columns of ‘w/o CATS’, ‘w/ CATS’ and ‘∆’ represent the
accuracy without CATS, the accuracy with CATS, and the accuracy improvement due to CATS. Bold
font indicates the best performance across all the methods, and underline symbol represents the best
performance among UDA baselines.

Dataset UDA Baseline Transformer TimesNet Crossformer iTransformer
Source → Target CORAL Raincoat CLUDA SASA UDApter w/o CATS w/ CATS ∆ w/o CATS w/ CATS ∆ w/o CATS w/ CATS ∆ w/o CATS w/ CATS ∆

HAR 24 → 27 78.76 96.88 82.14 86.72 96.46 91.81 98.23 6.42 93.69 97.34 3.65 80.53 93.80 13.27 82.30 99.11 16.81
HAR 3 → 13 63.63 91.67 77.55 78.78 90.90 79.79 98.98 19.19 84.96 87.86 2.90 84.84 96.96 12.12 75.75 97.97 22.22
HAR 16 → 13 47.47 71.87 69.39 61.61 66.67 73.96 77.78 3.82 67.67 83.84 16.17 69.69 87.87 18.18 74.74 85.86 11.12
HAR 3 → 8 51.76 78.13 78.57 64.70 71.76 54.11 75.12 21.01 64.70 92.92 28.22 61.17 62.35 1.18 74.11 91.77 17.66
HAR 19 → 2 61.53 76.56 60.00 69.23 59.34 53.84 73.52 19.68 53.84 82.41 28.57 48.35 53.84 5.49 59.34 84.61 25.27
HAR 11 → 28 60.86 73.95 64.91 76.52 66.95 66.95 77.40 10.45 70.43 80.00 9.57 47.82 78.26 30.44 57.39 77.40 20.01
HAR 16 → 10 50.56 71.88 68.42 56.17 61.79 35.95 68.54 32.59 62.92 72.91 9.99 61.79 78.26 16.47 67.41 87.64 20.23
HAR 25 → 10 19.10 57.81 57.89 56.18 56.18 48.31 57.40 9.09 46.06 65.17 19.11 52.80 71.91 19.11 47.19 65.17 17.98
HAR 18 → 10 37.07 48.43 57.89 37.07 46.06 35.95 59.55 23.60 38.20 69.66 31.46 44.94 62.92 17.98 40.44 48.51 8.07
HAR 19 → 10 44.94 50.21 49.12 39.32 43.82 37.07 49.48 12.41 42.94 46.56 3.62 66.29 64.04 -2.25 37.07 50.56 13.49
HAR Average 51.57 71.74 66.59 62.63 65.99 57.77 73.59 15.22 62.54 77.87 15.33 61.82 75.02 13.20 61.57 78.86 17.29
WISDM 12 → 9 82.71 91.35 82.50 75.30 83.95 82.50 85.19 2.69 72.83 92.60 19.77 66.67 91.36 24.69 66.67 90.12 23.45
WISDM 5 → 31 59.03 80.72 82.93 75.90 82.93 75.90 74.70 -1.20 81.92 81.92 0.00 67.46 93.97 26.51 65.06 83.13 18.07
WISDM 25 → 31 48.19 61.44 53.66 43.47 59.03 56.62 61.44 4.82 57.83 60.24 2.41 37.34 43.47 6.13 44.57 59.03 14.46
WISDM 0 → 30 65.04 61.16 62.75 63.10 59.03 58.22 60.19 1.97 58.22 61.16 2.94 62.13 77.66 15.53 58.25 62.14 3.89
WISDM 10 → 22 61.67 73.33 76.67 51.66 71.67 71.67 76.67 5.00 73.00 76.67 3.67 66.67 91.67 25.00 56.67 78.33 21.66
WISDM 12 → 2 36.59 53.65 63.41 58.53 41.46 48.78 62.19 13.41 48.78 46.34 -2.44 51.21 81.70 30.49 51.21 67.07 15.86
WISDM 6 → 11 43.42 56.57 56.10 47.36 41.46 43.36 42.10 -1.26 56.57 59.21 2.64 42.10 62.10 20.00 27.63 63.15 35.52
WISDM 11 → 21 28.84 38.46 58.54 40.38 30.76 18.84 19.23 0.39 38.46 59.61 21.15 30.76 58.54 27.78 17.30 55.76 38.46
WISDM 19 → 3 7.69 15.38 51.22 50.00 23.07 19.23 38.46 19.23 23.07 42.30 19.23 11.53 53.84 42.31 19.92 19.23 -0.69
WISDM 3 → 11 38.16 21.36 48.78 25.00 15.78 17.10 18.42 1.32 15.78 60.52 44.74 15.79 22.36 6.57 13.15 18.42 5.27
WISDM Average 47.13 55.34 63.66 53.07 50.91 49.22 53.86 4.64 52.65 64.06 11.41 45.17 67.67 22.50 42.04 59.64 17.60
HHAR 7 → 3 55.57 94.08 85.09 79.86 86.87 61.26 88.96 27.70 83.58 94.96 11.38 74.17 95.19 21.02 84.87 92.24 7.37
HHAR 6 → 7 56.99 84.37 76.15 58.24 83.50 74.15 84.55 10.40 58.87 89.56 30.69 62.42 81.00 18.58 75.15 93.32 18.17
HHAR 6 → 3 48.14 74.33 65.79 66.52 65.86 57.55 83.58 26.03 62.36 75.27 12.91 64.55 81.83 17.28 67.36 84.47 17.11
HHAR 6 → 5 45.47 75.58 45.47 61.70 45.64 47.38 66.54 19.16 49.90 70.98 21.08 49.32 75.43 26.11 42.15 76.40 34.25
HHAR 7 → 5 36.75 63.47 48.06 57.05 45.64 43.52 63.63 20.11 54.35 66.53 12.18 35.97 66.53 30.56 43.32 70.99 27.67
HHAR 0 → 7 41.97 68.32 33.89 34.34 62.83 44.25 71.81 27.56 38.20 68.47 30.27 51.15 70.35 19.20 56.57 66.97 10.40
HHAR 4 → 0 22.54 23.66 34.73 25.16 25.16 23.72 24.94 1.22 23.63 28.67 5.04 21.88 37.20 15.32 27.32 31.29 3.97
HHAR 3 → 0 26.70 17.41 35.15 22.10 22.10 9.63 23.20 13.57 17.25 20.56 3.31 23.41 28.22 4.81 25.16 29.54 4.38
HHAR 2 → 7 5.42 54.68 26.36 32.98 41.33 34.65 58.89 24.24 41.54 69.10 27.56 43.63 58.03 14.40 44.25 63.63 19.38
HHAR 1 → 0 36.19 57.32 47.65 45.90 44.30 41.27 58.69 17.42 44.30 60.97 16.67 19.47 31.29 11.82 48.95 64.28 15.33
HHAR Average 37.57 61.44 49.83 48.39 52.32 43.74 62.48 18.74 47.40 64.51 17.11 44.60 62.51 17.91 51.51 67.31 15.80
Boiler 1 → 2 93.76 97.05 97.29 97.33 92.64 91.98 97.86 5.88 97.86 98.15 0.29 94.92 98.11 3.19 91.51 98.15 6.64
Boiler 3 → 2 87.16 95.02 87.16 96.05 92.17 90.83 98.15 7.32 92.17 97.84 5.67 97.68 98.11 0.43 97.47 98.15 0.68
Boiler Average 90.46 96.03 92.22 96.69 92.41 91.41 98.00 6.59 95.02 98.00 2.98 96.30 98.11 1.81 94.49 98.15 3.66

or the smallest domain shift. Detailed descriptions of datasets and domain pair selection are provided in
Appendix E and F, respectively.

Baselines. We compare CATS with three different types of UDA methods, including (1) correlation-related
UDA: CORAL, (2) MTS UDA: SASA, CLUDA, and Raincoat, and (3) adapter-based UDA: UDApter.
Descriptions of baseline methods are in Appendix G

Parameter settings. Unless otherwise specified, we use default hyperparameter settings in the released
code of corresponding publications. For CATS, we use TDCs with a kernel size r = 5 and a padding of 2.
For training, we use Adam optimizer with a learning rate of 1e-4, and set λc = 0.5 and λf = 0.5. We evaluate
the performance of CATS on three different Transformer-based MTS models: Crossformer(Zhang & Yan,
2023), Transformer (Vaswani, 2017), TimesNet (Wu et al., 2022), and iTransformer (Liu et al., 2023). The
implementation details are provided in Appendix I.

5.2 Experimental Results

Main results. The main evaluation results of the accuracy are presented in Table 1. On each dataset in
the table, the difficulty of UDA tasks for source-target domain pairs increases progressively from top to
bottom. The experimental results reveal three noteworthy conclusions: (1) CATS significantly enhances
the UDA classification performance of general MTS models. Specifically, on four datasets CATS
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(a) Parameter curve with varying T (b) FLOP curve with varying T (c) Parameter curve with varying D (d) FLOP curve with varying D

Figure 4: The parameter (FLOP) curve of CATS on Transformer with varying variable number D and time
length T . The three red curves represent the parameter counts (or FLOPs) of the full Transformer model,
while the three blue curves represent CATS alone. In Figure (c), the three red curves overlap due to their
relatively small differences compared to the large overall values.

improves the average accuracy of Transformer, TimesNet, Crossformer, and iTransformer on the target
domain by 18.56%, 17.60%, 15.80%, and 3.66% accuracy, respectively. Please note that although CATS
are initially designed for Transformers, it still performs well on TimesNet (a CNN model), which highlights
CATS’s high adaptability across different architectures. (2) CATS could have stable performance even
under large shifts. Even under scenarios with the largest domain shifts, such as HAR 19 → 10 and HHAR
1 → 10, CATS demonstrates robust performance, delivering 6.82% and 15.31% improvement on average
for all four models. These results clearly validate the effectiveness of CATS, even in scenarios with large
domain shifts. (3) CATS-enhanced MTS models outperform state-of-the-art (SOTA) baselines in
classification accuracy. Across all four datasets, CATS-enhanced models achieve the best performance,
with average accuracy improvements of 7.12%, 0.40%, 5.87%, and 1.46% accuracy, respectively, compared to
SOTA baselines. These results highlight the superiority of CATS in addressing UDA challenges for MTS
data.

Scalability evaluation. To validate the scalability of CATS, we adjust the time series length T and
the number of variables D of the Transformer, recording the parameter count and FLOPs (Floating Point
Operations per Second) for CATS and the full model. The experimental results are shown in Figure 4. The
results reveal that, regardless of the values of T and D, CATS consistently requires two orders of magnitude
fewer parameters and FLOPs compared to the full model. Interestingly, as the hidden layer dimension D
increases, the parameter count and FLOPs of the Transformer exhibit quadratic growth, whereas CATS
scales linearly. This observation confirms CATS’s suitability for large-scale MTS tasks with varying input
dimensions.

(a) Step-by-Step accuracy improve-
ment on HAR 3 → 13 scenario from
vanilla Transformer to Transformer
enhanced by CATS.

Scenario Vanilla Corr CATS
24 → 27 91.81 97.34 98.23
16 → 13 73.96 77.78 77.78
19 → 2 53.84 70.33 73.52
16 → 10 39.95 64.00 68.54
18 → 10 35.95 58.43 59.55
Average 59.10 73.58 75.52

(b) Loss ablation study. Vanilla de-
notes only using classification loss,
Corr introduces additional corre-
lation loss, and CATS represents
using all the losses in this paper.

Scenario Vanilla GAT TDC CATS
24 → 27 91.81 96.46 96.46 98.23
16 → 13 73.96 76.10 78.40 77.78
19 → 2 53.84 70.33 72.53 73.52
16 → 10 39.95 66.29 62.91 68.54
18 → 10 35.95 58.43 57.30 59.55
Average 59.10 73.52 73.52 75.53

(c) Module ablation study. Vanilla repre-
sents original models, GAT / TDC using
a GAT / TDC module as the adapter, and
CATS denotes using our adapter.

Figure 5: Ablation study on the HAR dataset.
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Ablation Study. To validate the effectiveness of CATS and the proposed loss in Eq. equation 6, we perform
ablation studies on the HAR dataset using a Transformer backbone. We first present stepwise results on the
3 → 13 scenario, incrementally adding components from the vanilla Transformer to the CATS-enhanced
version (details in Appendix H). As shown in Figure 5a, each component yields consistent improvements
in target domain accuracy. Furthermore, we performed a detailed loss ablation study by fixing the model
architecture to the CATS-enhanced Transformer, with results shown in Figure 5b. We also conducted a
module ablation study using the full set of loss functions, with results reported in Figure 5c. Together, these
analyses comprehensively demonstrate that each design in CATS consistently contributes to improved UDA
performance across diverse scenarios.

6 Related Works
Unsupervised Domain Adaptation. Unsupervised domain adaptation (UDA) leverages labeled data from
a source domain to make predictions on an unlabeled target domain and has gained traction across various
fields (Ganin & Lempitsky, 2015; Zhang et al., 2018; Ramponi & Plank, 2020; Liu et al., 2021). Existing
UDA methods generally fall into three categories: (1) Adversarial training uses a domain discriminator to
distinguish domains while training the model to extract domain-invariant features (Hoffman et al., 2018;
Long et al., 2018; Tzeng et al., 2015); (2) Multi-task supervision introduces auxiliary tasks, such as data
augmentation (Volpi et al., 2018) or reconstruction (Ghifary et al., 2016; Zhuo et al., 2017), to guide feature
learning; (3) Statistical divergence methods reduce domain gaps using metrics like MMD (Yan et al., 2017;
Zhang & Wu, 2020; Yan et al., 2019), optimal transport (Courty et al., 2017; 2016), or contrastive domain
discrepancy (CDD) (Kang et al., 2019). CORAL-based methods (Sun & Saenko, 2016; Lee et al., 2019; Li
et al., 2022a) also align feature correlations. However, unlike CATS, these approaches ignore the temporal
structure of MTS and the importance of aligning distribution means, as discussed in Appendix J.

Unsupervised domain adaptation for time series. While adaptation methods have achieved significant
success in computer vision, relatively fewer approaches have been developed to address the unique challenges
of domain adaptation for time series data. CoDATS (Wilson et al., 2020) employ domain discriminators for
temporal feature alignment. SASA (Cai et al., 2021) aligns invariant unweighted spare associative structures
for time series data. RainCoat (He et al., 2023) utilizes MMD to minimize frequency feature distribution in a
polar coordinate across domains. Additionally, CLUDA (Ozyurt et al., 2022) leverage contrastive learning to
enhance model robustness with data augmentations, while LogoRA (Zhang et al., 2024) combines global and
local feature analysis to maintain domain-invariant representations for complex time series structures. More
discussion on related works are provided on Appendix K.

7 Conclusion

In this paper, we study the problem of unsupervised domain adaptation for multivariate time series clas-
sification. We begin by identifying a previously overlooked domain shift in MTS data: correlation shift,
where correlations between variables vary across domains. To mitigate this shift, we propose a scalable and
parameter-efficient adapter, CATS, serving as a plug-and-play technique compatible with various Transformer
variants. Supported by a solid theoretical foundation for mitigating correlation shift, CATS effectively
captures dynamic temporal patterns while adaptively reweighting multivariate correlations. To further reduce
correlation discrepancies, we introduce a correlation alignment loss, which aligns multivariant correlations
across domains, addressing the non-i.i.d. nature of MTS data. Extensive evaluations on real-world datasets
demonstrate that CATS consistently and significantly improves the accuracy of Transformer backbones while
introducing minimal additional parameters.

Broader Impact Statement

This work focuses exclusively on addressing the technical challenge of domain adaptation for multivariate time
series classification. All experiments are conducted using publicly available benchmark datasets, ensuring full
transparency and reproducibility. Because the study does not involve any human participants, private data,
or personally identifiable information, it poses no ethical, privacy, or societal risks.
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In this manuscript, generative AI tool is used to edit and improve the quality of the text, including checking
the spelling, grammar, punctuation and clarity.
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A Empirical Evidence of Correlation Shift

In this section, we conduct an empirical analysis on the Human Activity Recognition (HAR) dataset (Anguita
et al., 2013) to demonstrate the prevalence of correlation shift. The HAR dataset consists of 30 domains.
Then we iterate through the 30 domains in HAR, treating each domain as the source domain while considering
the remaining 29 domains as target domains. Our objective is to examine whether multivariate correlations
differ significantly between samples from the source and target domains.

For each sample from either the source or the target domain, we compute the multivariate correlation matrix,
which is an D × D high-dimensional structure with D being the number of variables. However, directly
analyzing such high-dimensional matrices is challenging. Hence, we calculate the element-wise mean of the
correlation matrices for each domain. Mathematically, if the mean values for the correlation matrices from
the source and target domains come from different distributions, it implies a significant difference in the
distribution of the overall correlations.

To formally test this, we set the null hypothesis H0 : the mean distributions of the source and target domains
originate from the same underlying distribution. We then apply the Mann-Whitney U test (McKnight &
Najab, 2010) to verify H0. If the p-value is less than 0.05, it indicates a statistical confidence of over 95% in
rejecting H0. This rejection implies that the mean values are from different distributions, confirming the
statistical significance of the correlation shift between the source and target domains.

Finally, for every source domain, we calculate the rate of target domains with a significant correlation shift
among the rest 29 domains. The experiment result is provided in Figure 1. The x-axis represents the source
domain ID, and the y-axis values of the orange bars indicate the rate of target domains with significant
correlation shifts. The red dashed line in Figure 1 marks the average rate of correlation shift, which is 78%.
These findings provide clear evidence that correlation shifts are prevalent in multivariate time series datasets,
highlighting the need to address such shifts.

B Empirical Comparison Between TDC and Linear Matrices

To assess the representative learning ability between TDC and linear matrices in adapters, we compare the
performance of these two adpaters on HAR dataset with the domain 1 being the source domain and domain
10 being the target domain. Furthermore, we leverege TimesNet as the backbone, and set both the time
length T and the hidden dimension D as 128 to make their parameters compatible. Then after pretraining
the backbone on the source domain, we only train these adapters on the target domain with accessible labels.
We use Adam optimizer with a learning rate of 1e-4 during training.

C Theoretical Analysis of Correlation Shift

C.1 Proof of Correlation Alignment

Proposition 2 (Correlation Alignment). Suppose source data Xs ∈ RD×T and target data Xt ∈ RD×T

follow the source distribution Ps and the target distribution Pt, respectively. There exists a reweighting matrix
A ∈ RD×D, such that the correlation of the source distribution and target distribution can be perfectly aligned,
formally expressed as:

Corr(Xs) = Corr(AXt) (4)

Proof. Let Σt = EXt∼Pt

[
(Xt − EXt) (Xt − EXt)T

]
and Σ̂t = EY

[
(Y − EY) (Y − EY)T

]
where Y = AXt.

Then based on the spectral theorem, we can decompose the covariance matrices Σs and Σt:

Σs = UsΛsUT
s (7)

Σt = UtΛtUT
t (8)
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Then since Y = AX, the covariance matrix Σ̂t could be expressed as

Σ̂t = AΣtAT

= AUtΛtUT
t AT

(9)

Let A = UsΛ
1
2
s Λ− 1

2
t UT

t . Then we have

Σ̂t = AUtΛtUT
t AT

= UsΛ
1
2
s Λ− 1

2
t UT

t UtΛtUT
t UtΛ

− 1
2

t Λ
1
2
s UT

s

= UsΛsUT
s

= Σs

(10)

Therefore, with the reweighting matrix, the covariance matrix of Y on the target domain could equal to the
covariance matrix of Xs on the source domain. Then, since the correlation matrix is only defined by the
covariance matrix as shown in Eq. equation 3, the correlation matrices for Y on the target domain and Xs

on the source domain are totally the same.

C.2 Proof of Gaussian Probability Alignment.

Proposition 1 (Gaussian Probability Alignment). Suppose source data Xs ∈ RD×T and target data
Xt ∈ RD×T follow Ns(µs,Σs) and Nt(µt,Σt), respectively. There exists a reweighting matrix A ∈ RD×D

and a bias vector b ∈ RD, such that the multivariate joint probability of the reweighted target domain perfectly
aligns with that of the source domain, that is for every i, j = 1, 2, ..., D

Pr (Xs[i],Xs[j]) = Pr (Y[i],Y[j])

where Y = AXt + b and b = 0 for most MTS data.

Proof. Based on Proposition 2, it is obvious that Σs = Σ̂t where Σ̂t is the covariance matrix of Y. Then the
mean of Y could be expressed as

E[Y] = AE[X] + b (11)

Therefore, as long as b = (I − A)EX, we will have EY = EX. In the real world, it is quite common to
normalize the MTS data during data preprocessing (Liu et al., 2023; Wu et al., 2022; Wang et al., 2024b).
Under this circumstance, the expectation of normalized data would be zero, and hence b = 0.

Finally, since the covariances and means of two Gaussian distribution is the same, then these two distribution
are also the same. Therefore, we have Pr(Xs[i],Xs[j]) = Pr(Y[i],Y[j]).

C.3 Proof of Attention Approximation

Theorem 1 (Attention Approximation). The optimal reweighting matrix A in Proposition 2 can be approx-
imated by an attention matrix Ã with an arbitrary precision, where Ã is generated by a one-layer Graph
Attention Network with an infinite hidden dimension.

Proof. Our proof proceeds as follows: First, we leverage the universal approximation theorem to establish
that an infinitely wide Multi-Layer Perceptron (MLP) can effectively approximate the reweighting matrix A.
Then, we demonstrate that a one-layer GAT possesses the same learning capacity as an infinite-width MLP
under appropriate conditions. This equivalence allows us to conclude that a one-layer GAT can effectively
learn and approximate the matrix A, thereby completing the proof.

Step 1. Revisit the Universal Approximation Theorem. First, the Universal Approximation Theorem
(Leshno et al., 1993; Hornik, 1991; Hornik et al., 1989) states:
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Let f : Rn → R be a continuous function defined on a compact subset, and let σ(·) be a nonlinear, measurable
activation function. For any ϵ > 0, there exists a MLP F (t; θ) with a single hidden layer of infinite width,
such that:

sup
t∈T

|f(t) − F (t; θ)| < ϵ (12)

where T is the compact input space, and θ represents the network parameters.

Step2. Approximate the reweighting matrix by an MLP. Now, let us consider a continuous,
differentiable function f : R → R such that f(i ·D + j) = A[i, j], where i, j are indices of the reweighting
matrix A and D is the matrix dimension. Based on the Universal Approximation Theorem, we can approximate
f(·) using an MLP with a single hidden layer of dimension M , when M is quite large:

f(t) ≈ F (t) = wT
2 σ(w1t) (13)

where w1 ∈ RM and w1 ∈ RM are two learnable parameters. By stacking the approximated elements, we
can have a reconstructed matrix Amlp[i, j] = F (i ·D + j) ≈ A[i, j]. Therefore, the reweight output Ymlp in
Proposition 2 could be expressed as:

Ymlp[i] = (AmlpX) [i]

=
D∑

d=1
Amlp[i, d]X[d]

=
D∑

d=1
wT

2 σ(w1ti,d)X[d]

(14)

where ti,d is the the input for the row index i and column index d.

Step3. Relating an MLP with a GAT. Then we aim to show that a GAT layer has the same learning
ability as an MLP. Let X and Ygat represent the input and output of the GAT layer, respectively. To align
with the notations used in the original GAT paper (Veličković et al., 2017), we denote xi as the i-th row of
X, i.e., xi = X[i]. Then, The formula of a GAT layer could be expressed as follows:

Ygat[i] =
∑

j

αi,jWxj , (15a)

αi,j =
exp

(
LeakyReLU

(
aT [Wxi||Wxj ]

))∑
k exp (LeakyReLU (aT [Wxi||Wxk])) (15b)

where W ∈ RM×M and a ∈ RM with M being the input dimension. Here, || represents the concatenation
operation, and ||k represents the concatenation operation over all the possible element with the subscripts k.

By defining a special nonlinear, measurable activation function σ̃([xi||xj∥k ̸=i,jxk]) =
exp(LeakyReLU([xi||xj ]))∑
k

exp(LeakyReLU([xi||xk]))
, we could further simplified the attention coefficient into the following

expression:

αi,j =
exp

(
LeakyReLU

(
aT [Wxi||Wxj ]

))∑
k exp (LeakyReLU (aT [Wxi||Wxk]))

= σ̃
([

aT Wxi||aT Wxj ||k ̸=i,jaT Wxk

])
= σ̃

(
aT W [xi,xj ,x1 . . . ,xk, . . . ,xD]

)
(where k ̸= i, j)

= σ̃
(
ãT Ti,j

)
(16)

where [xi,xj ] represents the matrix stacked by the vector xi and xj along a new dimension. Here, ã =
WT a ∈ RM and Ti,j = [xi,xj ,x1 . . . ,xk, . . . ,xD] ∈ RM×D. Hence, the output Ygat could be simplified as:

Ygat[i] =
D∑

j=1
σ̃
(
ãT Ti,j

)
Wxj

=
D∑

d=1
σ̃
(
ãT Ti,d

)
WX[d]

(17)
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Obviously, Eq. equation 17 shares a strong similarity with Eq. equation 14. Intuitively, this similarity
suggests that a GAT layer could exhibit learning behavior analogous to that of an MLP, making it capable
of approximating the linear reweighting matrix A. It would be totally fine to stop here and conclude the
proof, but we can still go a step further to rigorously show that the outputs of these two neural networks are
element-wise equivalent.

Step 4. Element-wise comparison between the outputs. First, let us expand the expression of Ymlp

as follows:

Ymlp =
D∑

d=1
wT

2 σ(w1ti,d)X[d]

=
D∑

d=1

M∑
m=1

w2[m]σ (w1[m]ti,d) X[d]

(18)

Similarly, we can also expand the expression of Ygat as follows:

Ygat =
D∑

d=1
σ̃
(
ãT Ti,d

)
WX[d]

=
D∑

d=1
Wσ̃

(
M∑

m=1
ã[m]Ti,j [m]

)
X[d]

(19)

It is evident that the outputs of the GAT and MLP are essentially identical. The only difference lies in
the order of summation and activation functions in Eq. equation 18 and Eq. equation 19. However, since
the Universal Approximation Theorem imposes no constraints on the order of summation and activation
functions, GAT also adheres perfectly to the universal approximation theorem, enabling it to approximate
the reweighting matrix A with arbitrary precision.

C.4 Proof of CATS Approximation

Theorem 2 (CATS Approximation). Given a linear CATS module with an infinite hidden dimension, i.e.,

ϕ(X) = X + TDC↑ (GAT (TDC↓ (X))) , (20)

then ϕ(X) could approximate Y = AX in Propositions 2 with an arbitrary precision.

Proof. When using a depthwise convolution with a stride of 1, zero-padding, and a convolution kernel where
only the first element is 1 while all others are 0, the convolution operation automatically degenerates into the
identity mapping f(x) = x. Under this circumstance, Eq. equation 20 would be further simplified as

ϕ(X) = X + GAT(X) (21)

Then, since Theorem 1 has no requirement on the approximated matrix X, we could leverage a GAT layer
with a infinite hidden dimension to approximate the matrix A − I with an arbitrary precision. Therefore, the
formula of CATS would be expressed as

ϕ(X) = X + GAT(X)
≈ X + (A − I)X = AX

(22)
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D Training Objectives

In this section, we aim to propose an effective unsupervised training strategy for CATS. Our training strategy
is designed to meet three critical objectives: (1) enable the model to effectively extract features from target
domain samples; (2) maintain strong classification capabilities; and (3) align feature distributions between
the source and target domains. To meet these objectives, we introduce three distinct loss functions that
collectively guide the effective training of CATS. The third objective has already been proposed in Section
4.2. Therefore, we only address the first two objectives here.

First, to improve the model’s understanding of the target domain, prior UDA works (He et al., 2023; Ghifary
et al., 2016; Zhuo et al., 2017) often rely on reconstruction loss, which serves as an additional supervision for
the classification on unlabeled target domain. Reconstruction loss ensures that the decoded output closely
resembles the input on the target domain, requiring the encoded features to preserve all information from
the target domain. However, the usage of reconstruction loss could be harmful to MTS classification. In
MTS classification tasks, temporal properties, such as periodicity and trends, are more strongly correlated
with the labels whereas local noise may be detrimental to classification performance. But reconstruction
loss, by design, does not differentiate between meaningful features and noise, making it a suboptimal choice
for such tasks. To address this issue, we propose the use of forecasting loss as an alternative. Forecasting
tasks inherently require the model to focus more on temporal properties like trends and periodicity, while
ignoring local random fluctuations. Consequently, features extracted for forecasting naturally transfer well to
the classification task.

However, directly applying the forecasting loss presents challenges since the forecasting task requires the
time series data to be sliced into adjacent historical and future segments. To address this, given a sample
Xt

i ∈ RD×T from the target domain, we first slice the samples into overlapping time windows Wt
i,k = Xt

i[:, k :
k + L], k ∈ {1, . . . , T − L} 3 with L being the window length, and then use those sliced time windows as the
training inputs. Specifically, given a model integrated with CATS, we leverage all the blocks without the
last classification head as the feature extractor fCATS(·) and introduce a new forecasting projection head gf(·).
Then the forecasting loss could be represented as:

Lf =
nt∑

i=1

T −2L∑
k=1

MAE(gf(fCATS(Wt
i,k)),Wt

i,k+L) (23)

where MAE represent the mean absolute error. Here, Wi,k and Wi,k+L are two adjacent time windows,
indicating the history information and future, respectively.

Second, to ensure that CATS maintains the classification capabilities of the pretrained model, we perform a
classification task using the labeled data from the source domain. To make the temporal dimension align
with the previous forecasting task, we calculate the cross-entropy loss for each sliced time window:

Lc =
ns∑

i=1

T −L∑
k=1

ℓCE(gc(fCATS(Ws
i,k)), ys

i ) (24)

where ℓCE is the cross-entropy loss function, gc is the classification head, and Ws
i,k is the sliced time window

from the source domain. During the inference phase, we randomly sample m time windows from the entire
time series and use a majority voting scheme to predict the label for the entire sequence based on the
predictions from the sliced windows.

To sum up, we combine the classification loss Lc on the source domain, the forecasting loss Lf on the target
domain, and the correlation alignment loss Lcorr across these two domains to formulate the final loss function.
This unified objective ensures that the model not only learns discriminative features for classification but also
captures temporal properties and reduces correlation shift effectively. Mathematically, the loss function can
be expressed as:

L = Lc + λfLf + λcorrLcorr (25)
where λfct and λcor are two hyperparameters

3We use X[:, t1 : t2] to represent a sliced segment from time t1 to time t2 of X. All the slicing notations follow Python
standards.
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E Dataset Description

Table 2: The statistics of datasets.

Dataset # Domains # Timestamps # Variables
HAR 30 128 9

WIDSM 36 128 3
HHAR 9 128 3
Boiler 3 128 20

In this paper, we validate the effectiveness of CATS on four different datasets, HAR (Anguita et al., 2013),
WISDM (Weiss, 2019), HHAR (Stisen et al., 2015), and Boiler (Cai et al., 2021). The statistics of datasets
are provided in Table 2, and the detailed information is listed below.

• HAR dataset. The Human Activity Recognition Dataset has been collected from 30 subjects
performing six different activities (Walking, Walking Upstairs, Walking Downstairs, Sitting, Standing,
Laying). It consists of inertial sensor data that was collected using a smartphone carried by the
subjects.

• WISDM dataset. WISDM Smartphone and Smartwatch Activity and Biometrics Dataset collects
raw accelerometer and gyroscope sensor data from the smartphone and smartwatch at a rate of 20Hz.
It is collected from 51 test subjects as they perform 18 activities for 3 minutes apiece.

• HHAR dataset. The Heterogeneity Dataset for Human Activity Recognition contains the readings
of two motion sensors commonly found in smartphones. Reading were recorded while nine users
executed six different activities scripted in no specific order carrying smartwatches and smartphones.

• Boiler dataset. The boiler data consists of sensor data from three boilers from 2014/3/24 to
2016/11/30. There are 3 boilers in this dataset and each boiler is considered as one domain. We slice
the original time series data with a time window of 128 and a stride of 32.

F Domain Pair Selection

In this study, we utilize four datasets, each containing a large number of domains. As a result, exhaustively
evaluating all possible source-target domain pairs is impractical (for example, 900 pairs for the HAR dataset).
Therefore, selecting reasonable and effective source-target domain pairs becomes critically important.

To address this, we adopt the following domain pair selection mechanism: For each source-target domain
pair, we compute the Wasserstein distance between samples sharing the same label in the source and target
domains. We then sum the distances across all possible labels. Mathematically, this distance can be expressed
as:

d =
∑
y∈Y

Wass(Py
S ,P

y
T ) (26)

where Py
S and Py

T represent the distributions of samples with label y in the source domain S and target
domain T , respectively, and Wass(·, ·) denotes the Wasserstein distance. This distance d quantifies the
similarity between the source and target domains: the smaller the distance, the smaller the domain shift, and
the lower the difficulty of domain adaptation.

For HAR, HHAR and WISDM datasets, we divide all domain pairs into 10 groups, sorted by increasing the
distance d. From each group, we sample one domain pair. This strategy ensures that the selected domain
pairs represent varying levels of domain adaptation difficulty, from small to large domain shifts. For the
Boiler dataset, due to its quite limited domain pairs (3 domains and 6 domain pairs in total), we only choose
the domain pair with the largest d and the smallest d, respectively.

The experimental results, summarized in Table 1, demonstrate the performance of our method across these
selected domain pairs. Note that within each dataset, the domain pairs from the top to the bottom in Table
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1 are ordered by increasing d, indicating progressively higher domain adaptation difficulty (e.g., in the HAR
dataset, the pair 24 → 27 represents the smallest difficulty, while 19 → 10 represents the largest difficulty).

G Description of Baselines

In this paper, we compare CATS with 5 different baselines. These baselines could be roughly divided into
three different categories.

First, correlation-related UDA method is

• CORAL (Sun & Saenko, 2016) learn a nonlinear transformation that aligns correlations of layer
activations in deep neural networks.

Second, MTS-related UDA methods include

• Raincoat (He et al., 2023) uses time and frequency-based encoders on the polar coordinate of
frequency to learn domain-invariant time series representations.

• SASA (Cai et al., 2021) introduces the intra-variables and inter-variables sparse attention mechanisms
to extract associative structure time-series data with considering time lags for domain adaptation.

• CLUDA (Ozyurt et al., 2022) proposes a contrastive learning framework to learn domain-invariant,
contextual representation for UDA of time series data.

Third, we introduce an adapter-related UDA method:

• UDApter (Malik et al., 2023) adds a domain adapter to learn domain-invariant information and
a task adapter that uses domain-invariant information to learn task representations in the source
domain.

H Step-by-step Incremental Adjustment

In the ablation study, we progressively adjusted the vanilla Transformer to the CATS-enhanced Transformer,
resulting in a significant improvement in accuracy from 79.79% to 98.98%. Specifically, we introduced the
following six incremental adjustments:

1. + Adapter (Eq. 1). We incorporate the adapter defined in Eq. equation 1 into the vanilla
Transformer and trained it using the classification loss function Lc in Eq. 24 on the source domain.
This modification results in an accuracy improvement of 1.01%.

2. + correlation loss. We optimize the adapter using a combination of classification loss and correlation
alignment loss. This step further enhances accuracy by 9.89%.

3. Adapter → CATS. We replace the adapter in Eq. 1 with CATS and train it with the combined
classification and correlation alignment loss. This substitution improved accuracy by 2.02%.

4. + window slicing. To align with the setting of forecasting loss, we slice the original samples with a
length of 128 into overlapping time windows with a length of 48 and used these sliced windows as
inputs to train CATS. This adjustment yields an additional accuracy gain of 2.89%.

5. forecasting loss. We introduce the forecasting loss, which uses consecutive time windows as input
and their corresponding ground truth for prediction. The final loss function L in Eq. equation 6 is
then leveraged to train CATS, resulting in an accuracy improvement of 0.8%.

6. + max voting. We apply a max-voting method to assign the label of the original sample based on
predictions from its sliced time windows. This final step further boosted accuracy by 3.32%.
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Table 3: Hyperparameters of backbone models.

Hyperparameter e_layers d_model d_ff top_k epoch (pretrain)
Value 3 128 256 3 10

I Implementation Details

We use the code from Time-Series-Library repository 4 to construct three different Transformer variants as
backbone models, Transformer, TimesNet, and iTransformer. The hyperparameters for these three models
follow the default configuration on Time-Series-Library repository, as shown in Table 3. For CATS, we use
the TCNs with a kernel size r = 5 and a padding of 2. We use Xavier initialization for the down-project
TDC and GAT, and zero initialization for the up-down TDC. For training, we set the length of sliced time
windows as 48 and set the number of sampled windows m for max voting as 16. We use Adam optimizer
with a learning rate of 1e-4, and set λc = 0.5 and λf = 0.5.

J Comparison Between Correlation Alignment Loss and CORAL Loss

CORAL loss (Sun & Saenko, 2016) is one widely-used domain adaptation loss, which focuses on minimizing
the covariance between the source samples and the target samples. In this section, we will demonstrate that
the correlation alignment loss offers advantages over the CORAL loss. Furthermore, we show that under
certain simplified conditions, the correlation alignment loss can be reduced to the CORAL loss, providing a
unified perspective on both approaches.

Our correlation alignment loss aim to use MMD to minimize the mean of the distributions of corr (Hs)
and corr (Ht). Let the distributions of corr (Hs) and corr (Ht) be denoted as Cs and Ct, respectively.
Mathematically, we aim to optimize the following equation.

Lcorr = MMD(Cs, Ct)
=
∥∥E [ψ (corr (Hs))] − E

[
ψ
(
corr

(
Ht
))]∥∥

2
(27)

where ψ(·) is one feature mapping function and corr(H) = vec
(

(H)(H)T

∥H∥2
F

)
. Here, let us relax this feature

mapping function to be the identity function, i.e., ψ(X) = X. Then our optimization objective could be
further deduced:

Lcorr =
∥∥E [corr (Hs)] − E

[
corr

(
Ht
)]∥∥

2

=
∥∥∥E [ĥs(ĥs)T

]
− E

[
ĥt(ĥt)T

]∥∥∥
2

=
∥∥∥∥E [(ĥs − E

[
ĥs
])(

ĥs − E
[
ĥs
])T

]
− E

[(
ĥt − E

[
ĥt
])(

ĥt − E
[
ĥt
])T

]
+E

[
ĥs
(

ĥs
)T
]

− E
[
ĥt
(

ĥt
)T
]∥∥∥∥

2

(28)

where ĥs and ĥt are the normalized vector from vec(Hs) and vec(Ht), i.e., ĥs = vec(Hs)
∥ vec(Hs)∥2

and ĥt = vec(Ht)
∥ vec(Ht)∥2

.
Due to the triangle inequality, we have

Lcorr ≤ LCORAL + Lmean,

where LCORAL =
∥∥∥∥E [(ĥs − E

[
ĥs
])(

ĥs − E
[
ĥs
])T

]
− E

[(
ĥt − E

[
ĥt
])(

ĥt − E
[
ĥt
])T

]∥∥∥∥
2

and Lmean =
∥∥∥∥E [ĥs

(
ĥs
)T
]

− E
[
ĥt
(

ĥt
)T
]∥∥∥∥

2

(29)

4https://github.com/thuml/Time-Series-Library
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Here, LCORAL represents the original loss proposed by CORAL (Sun & Saenko, 2016), and Lmean minimizes
the discrepancy between the mean distributions of the source and target domains. Thus, the correlation
alignment loss not only aligns the multivariate correlation between the source and target domains, as CORAL
does, but also reduces the mean differences between the two domains.

Compared to CORAL and its following works, the correlation alignment loss simultaneously supervises
both covariance and mean alignment, ensuring more precise domain alignment. Notably, when the mean
distributions of the source and target domains coincide, the correlation alignment loss naturally reduces to
the CORAL loss.

K More Related Works

Graph Neural Networks. GNNs are effective for capturing dependencies within graphs. Graph Con-
volutional Networks (GCNs) (Zhang et al., 2019; Kipf & Welling, 2016) aggregate neighbor information by
utilizing a localized first-order approximation of spectral graph convolutions. Graph Attention Networks
(GATs) (Veličković et al., 2017) implement attention mechanisms that dynamically weigh the contributions of
neighboring nodes. GRAND (Feng et al., 2020) learns node representations by randomly dropping nodes to
augment data and enforcing the consistency of predictions among augmented data. GraphSAGE (Hamilton
et al., 2017) generates embeddings for unseen nodes by sampling and aggregating features from the local
neighborhood. For more recent works on GNNs, see (Sharma et al., 2024; Ju et al., 2024; Khoshraftar & An,
2024; Shao et al., 2024).

Multivariate Time Series Classification. Several recent works have sought to advance multivariate time
series classification (MTSC) by improving interpretability, efficiency, and adaptability. LAXCAT (Hsieh et al.,
2021) employs a CNN with dual attention to simultaneously identify the most informative variables and the
temporal intervals that drive predictions, yielding both state-of-the-art accuracy and built-in explainability.
DSN (Xiao et al., 2022) uses sparse connections learned via dynamic sparse training to cover multiple
scales without extensive hyperparameter tuning. TimeMIL (Chen et al., 2024) formulates classification as a
time-aware MIL problem and leverages a time-aware pooling mechanism and a wavelet-positional transformer
to better localize sparse, anomalous patterns in long series. LightTS (Campos et al., 2023) compresses
ensembles into lightweight student models by learning teacher-specific weights and identifying Pareto-optimal
trade-offs.

L Limitations

Despite offering a concise and effective solution to the UDA problem in multivariate time series (MTS), our
approach still faces two key limitations: (1) CATS is specifically designed under the assumption that there
exists a significant correlation shift between domains. If the domain shift is primarily temporal shift, i.e.,
involving only changes in temporal patterns without notable differences in inter-variable correlations, CATS
may offer only limited performance gains. (2) In real-world scenarios, time series data often suffer from
missing values or irregular sampling. CATS does not incorporate specialized mechanisms to handle such
inconsistencies, which may hinder its effectiveness and limit its applicability in these settings.
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