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Abstract
Imaging the electrical activity of the heart can be
achieved with invasive catheterisation. However,
the resulting data are sparse and noisy. Mathe-
matical modelling of cardiac electrophysiology
can help the analysis but solving the associated
mathematical systems can become unfeasible. It
is often computationally demanding, for instance
when solving for different patient conditions. We
present a new framework to model the dynamics
of cardiac electrophysiology at lower cost. It is
based on the integration of a low-fidelity physical
model and a learning component implemented
here via neural networks. The latter acts as a
complement to the physical part, and handles all
quantities and dynamics that the simplified phys-
ical model neglects. We demonstrate that this
framework allows us to reproduce the complex
dynamics of the transmembrane potential and to
correctly identify the relevant physical parameters,
even when only partial measurements are avail-
able. This combined model-based and data-driven
approach could improve cardiac electrophysiolog-
ical imaging and provide predictive tools.

1. Introduction
Despite the fact that biophysically detailed cardiac elec-
trophysiology (EP) models (such as (Ten Tusscher et al.,
2004)) can accurately reproduce electrical behaviour of car-
diac cells, these models are complex and computationally
expensive, and have many hidden variables which are impos-
sible to measure, making model parameters difficult to per-
sonalise. The phenomenological models (FitzHugh, 1961;
Nagumo et al., 1962; Aliev & Panfilov, 1996; Nash & Pan-
filov, 2004; Mitchell & Schaeffer, 2003), simplified models
derived from biophysical models, have fewer parameters
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and are therefore especially useful for rapid computational
modelling of wave propagation at the organ level. However,
they are less realistic and therefore need a complementary
mechanism to fit them to the measured data. Machine learn-
ing and in particular deep learning (DL) approaches could
help providing such a correction mechanism. The com-
bination of rapid phenomenological models and machine
learning components could then allow the development of
rapid and accurate models of transmembrane dynamics (as
in (Fresca et al., 2021; Sahli Costabal et al., 2020)). Never-
theless, the majority of existing coupled approaches bases
on high-fidelity physical models and fits them to the data.
This could be computationally expensive and cannot man-
age large discrepancies between simulated and real data.

To alleviate this limitation, we propose a framework to
learn complex cardiac electrohysiology dynamics from data,
based on a fast low-fidelity (or incomplete) physical model.
This framework has two components which decompose the
dynamics into a physical and a data-driven term. The data-
driven deep learning component is designed so as to capture
only the information that cannot be modeled by the incom-
plete physical model. The proposed model closely follows
the approach of (Yin et al., 2021). But in contrast to this
work, that considers fully-observable dynamics and simple
test use cases, cardiac electrophysiology dynamics have
a high complexity and represent simultaneously multiple
underlying processes. Furthermore, most cardiac electro-
physiology models lack measurements for some variables,
which makes them partially-observable and requires infer-
ring the dynamics from incomplete observations only. Fig. 1
presents the general framework of our approach. Training
amounts to identifying the physical model parameter (in-
verse problem) and learning the neural network parameters
(direct problem) together. After training, the model can be
used for forecasting at multiple horizons.

2. Learning Framework
To learn cardiac electrophysiology dynamics (Xt) we solve
an optimisation problem via a physics-based data-driven
Our framework’s name framework. This framework com-
bines a physical model (Fp) representing an incomplete
description of the underlying phenomenon and a neural net-
work (Fd) which will complement the physical model by
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Figure 1. General Our framework’s name framework scheme. Dur-
ing the training phase two-component framework learn the param-
eters for the physical (Fp) and the data-driven (Fd) components
from data. Then via an ODE solver the framework can forecast
further the learned dynamics.

capturing the information that cannot be modeled by the
physics component:

min
Fp∈Fp,Fd∈Fd

∥Fd∥ subject to

∀X ∈ D,∀t, dXt

dt
= F (Xt) = (Fp + Fd)(Xt).

(1)

Our incomplete physical model is the two-variable (v, h)
model (Mitchell & Schaeffer, 2003) for cardiac EP sim-
ulations, as described by equations (2). The variable v
represents a normalised (v ∈ [0, 1]) dimensionless trans-
membrane potential, while the “gating” variable h controls
the repolarisation phase (i.e., the gradual return to the initial
resting state):

∂tv =
hv2(1− v)

τin
− v

τout
+ Jstim

∂th =

{
1−h
τopen

if v < vgate
−h

τclose
if v > vgate

(2)

where Jstim is a transmembrane potential activation func-
tion, which is equal to 1 during the time the stimulus is
applied (tstim).

This physical model has been successfully used in patient-
specific modelling (Relan et al., 2011), covering general
EP dynamics. Furthermore, in contrast to the very detailed
ionic/cellular models, this model is flexible in terms of spa-
tial and temporal steps set in the numerical analysis.

The data-driven component (Fd) of the framework was im-
plemented via a neural network. The choice of a neural
network depends on the application problem and the dimen-
sion of the data. In this work, we used a ResNet network (He
et al., 2016), because it could accurately reproduce complex
cardiac EP dynamics (Ayed et al., 2019; Kashtanova et al.,
2021). However, a simpler neural network could also be
used for more rapid computations.

Instead of solving the ODE in Eq. (1), we use an integral
trajectory-based approach which is robust and less sensitive

Algorithm 1 Our framework’s name training
Initialisation: θ0, λ0 ≥ 0, τ > 0;
for epoch = 1 : Nepochs do

for batch in 1 : B do
Ltraj(θj) =

∑N
i=1

∑T/∆t
h=1 ||X(i)

h∆t − X̃
(i)
h∆t||

θj+1 = θj −∇ [λjLtraj(θj) + ∥Fd∥]
end for
λj+1 = λj+ τLtraj(θj+1)

end for

to the time resolution (Yin et al., 2021). We compute the
next state X̃(i)

h∆t from the initial state X(i)
0 as an approximate

solution of the integral
∫X

(i)
0 +h∆t

X
(i)
0

(F
θp
p +F θa

a )(Xs) dXs ob-

tained by a differentiable ODE solver (Chen et al., 2018;
2021). The Our framework’s name training uses an algo-
rithm adapted from (Yin et al., 2021).

3. Experiments and Results
In our previous work, using in silico data, we demonstrated
ability of the framework to reproduce the complex dynamics
of transmembrane potential including a case where noise is
present in the data.

Here, in order to test the performance of our Our frame-
work’s name framework and to further show its capability
to reproduce transmembrane potential dynamics of different
complexities, we performed a series of real data experiments.
Using optical fluorescence imaging data of action potentials
recorded ex vivo on explanted porcine hearts, we aimed to
show that our framework can be easily personalised on real
data and can identify key physical parameters for different
anatomical zones having abnormal electrical function.

The details of data collection used for the experiments are
presented in detail below.

3.1. Data collection

We tested Our framework’s name framework performance
on ex vivo datasets from optical fluorescence imaging of ac-
tion potential. Briefly, the optical signals were recorded ex
vivo on an heart explanted from a juvenile swine ( 25kg in
weight). The heart was attached to a Langendorff perfusion
system and a voltage sensitive dye (i.e., di-4-ANEPPS) was
injected into the perfusate. In order to avoid cardiac mo-
tion artifacts during the electrophysiological recordings, the
heart contraction was suppressed by a bolus of saline and
Cytochalasin D, an electro-mechanical uncoupler. All op-
tical images were acquired epicardially using a high-speed
CCD camera (MICAM02, BrainVision Inc. Japan), with
high-temporal resolution (3.7ms) as well as a high-spatial
resolution (i.e., pixel size 0.7mm x 0.7mm). The action
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potential was then derived at each pixel from the relative
change in the intensity of fluorescence signal. The experi-
ments are described in more detail in (Pop et al., 2009).

For this experiment, we used a heart with an ischaemic
region. We manually selected two rectangular regions of in-
terest (ROIs) with different action potential dynamics across
time (see Figure 2). Next, we normalised the optical signal,
to obtain a [0, 1] min/max interval for transmembrane po-
tential, while keeping the noise in the data. We took a first
full cardiac cycle and removed the parts with zero poten-
tial, keeping only time-sequences of 300 ms per experiment.
Then, we saved a time sequence for each pixel from each
ROI in separate files, creating two databases (ROI A and
ROI B) containing each about 10 and 5 time-sequences for
training and validation respectively.

Figure 2. Example of optical mapping data (tracings of denoised
action potential waves) recorded ex vivo in a porcine heart. ROI B
represents an ischaemic region characterised by a shorten action
potential duration (APD) compared to the normal APD recorded
in ROI A.

The optical data were considered here as the ground truth.
Our specific objective was to learn the complex dynamics of
measured action potential, and then to identify the relevant
physical parameters for different parts of the heart.

3.2. Results

Using optical imaging mapping data, our Our framework’s
name framework was able to reproduce the observed action
potential dynamics for different ROIs within the heart, iden-
tifying the 3 major physical dynamics parameters (τin, τout
and τclose). Figures 3 and 4 demonstrate that the framework
correctly estimated the difference in value for the parameter
τclose, which either increased APD or shortened it, respec-
tively.

Table 1 summarises the quantitative results for our frame-
work forecasting on train and validation data samples, in
comparison to baseline methods trained on the same data.
To calculate this error, for each data sample, we fed the
framework with only one initial measurement, then let it
predict 300 ms forward without any additional information.

The obtained MSE is relatively small for both ROI, and,
despite the use of a limited dataset for training, the Our
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Figure 3. Validation results of the framework trained on ROI A
data, identified parameters: τin = 0, 613, τout = 4, 1, τclose =
284. Ground truth (GT) data, prediction of the framework (Predic-
tion FW), decomposition of prediction on physical (Fp) and DL
(Fdl) parts.
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Figure 4. Validation results of the framework trained on ROI B
data, identified parameters: τin = 0.745, τout = 5, τclose = 183.
Ground truth (GT) data, prediction of the framework (Prediction
FW), decomposition of prediction on physical (Fp) and DL (Fdl)
parts.

framework’s name framework achieved forecasting the dy-
namics with good accuracy for new data samples from the
validation dataset. Furthermore, our framework clearly out-
performed the physical model for every dataset, while the
contribution of Fd component was still minimal. Despite
having a good results on ROI B, the pure data-driven model
encountered difficulties to learn the dynamics from ROI A
data.
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Table 1. Mean-squared error, MSE (x 10−3) of the normalised
transmembrane potential (adimensional) forecasting (forecasting
horizon of 300 ms). Baseline models: the Physical model (2) and
a fully data-driven model (EP-Net 2.0 (Kashtanova et al., 2021))
trained on the same dataset as Our framework’s name.

DATASET METHOD TRAINING
DATA

VALIDATION
DATA

ROI A Our frame-
work’s name

9.12 5.72

FRAMEWORK
WITH RESNET
(||Fd||2)

(0.16) (0.08)

Our frame-
work’s name

9 5.37

FRAMEWORK
WITH MLP
(||Fd||2)

(0.0785) (0.077)

PHYSICAL
MODEL

14 10

DATA-DRIVEN
MODEL

20 9.78

ROI B Our frame-
work’s name

10 8

FRAMEWORK
WITH RESNET
(||Fd||2)

(0.08 ) (0.07)

Our frame-
work’s name

8.79 7

FRAMEWORK
WITH MLP
(||Fd||2)

(0.18) (0.21)

PHYSICAL
MODEL

14.5 9.3

DATA-DRIVEN
MODEL

7.78 6.79

4. Conclusion
In this article we successfully demonstrated the ability of
a novel Our framework’s name framework to learn real
cardiac EP dynamics from data. The main advantage of
our proposed framework is its coupled architecture, which
allowed us to use a simplified low-fidelity EP model as a
physical component of the framework, along with a neural
network as a data-driven correction mechanism for the EP
model. Our original framework opens up several possibili-
ties in order to introduce prior knowledge in deep learning
approaches through explicit equations, as well as to correct
the physical model errors from assimilated data.

This combined physics-based data-driven approach may
improve cardiac electrophysiology modeling by providing a

robust biophysical tool for predictions.
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