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Abstract

To the best of our knowledge, this work introduces the
first framework for clustering longitudinal data by leverag-
ing time-dependent causal representation learning. Clustering
longitudinal data has gained significant attention across var-
ious fields, yet traditional methods often overlook the causal
structures underlying observed patterns. Understanding how
covariates influence outcomes is critical for policymakers and
business leaders seeking actionable and interpretable insights.
Although causal discovery models have advanced from static
to time-series frameworks, their integration with longitudi-
nal data remains underexplored. To address this limitation,
we propose CLOUD-CG (Clustering on Longitudinal Causal
Graphs), a method that leverages Temporal Directed Acyclic
Graphs (T-DAGs), to cluster longitudinal data based on causal
mechanisms represented by T-DAGs. CLOUD-CG preserves
unit-level heterogeneity, enabling the identification of groups
with similar causal structures and delivering interpretable in-
sights. We validate the framework through extensive simu-
lations and demonstrate its practical utility by applying it to
deposit data from commercial banks in Mexico. This appli-
cation reveals how macroeconomic variables causally influ-
ence deposits, providing policymakers with a robust tool to
monitor and enhance financial stability in emerging markets.
Our work contributes to the growing field of clustering and
causal discovery within longitudinal data analysis, offering
new possibilities for understanding complex, time-dependent
relationships across various domains.

Introduction
Clustering longitudinal data has garnered significant atten-
tion in recent years, with applications spanning diverse fields
such as social science (Huang et al. 2011), business (Ha,
Bae, and Park 2002), and environmental studies (Beckers
et al. 2020). Notably, it has been widely adopted in medicine
and healthcare for phenotyping and diagnosing disease pro-
gression patterns (Ali et al. 2021; Birkenbihl et al. 2023).
However, most existing methods focus narrowly on spe-
cific outcome variables and fail to consider the broader, in-
terconnected structure of covariates. For example, two re-
cent review papers on longitudinal data clustering (Lu 2024;
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Den Teuling, Pauws, and van den Heuvel 2021) discuss a
range of models but largely emphasize the trajectories of in-
dividual outcome variables, neglecting scenarios involving
complex relationships between multiple covariates. In many
real-world applications, the goal is not merely to analyze tra-
jectories but to identify cohorts influenced by multiple treat-
ments, mediated through a defined set of intermediate vari-
ables and resulting in multiple outcome variables. Capturing
these intricate causal relationships is essential for advancing
insights in longitudinal data analysis.

In the past decade, causal discovery models have gained
significant traction in identifying key drivers across various
domains, from economics to epidemiology. The evolution of
these models has seen a shift from static approaches, such
as the Peter-Clark (PC) algorithm (Spirtes, Glymour, and
Scheines 2000) and NOTEARS (Zheng et al. 2018), to more
sophisticated time-series discovery methods, exemplified by
the PCMCI+ algorithm (Runge 2020). PCMCI+ algorithm
extends the PC algorithm to time-series settings by integrat-
ing the Momentary Conditional Independence (MCI) test.
However, when the data available are richer, containing tra-
jectories of time series data from different units, there is no
direct way to apply time-series causal discovery algorithms.
One may aggregate such longitudinal data over the dimen-
sion of different units to convert it into a single causal trajec-
tory and apply PCMCI+ or other algorithms to it. However,
such a procedure causes significant information loss on het-
erogeneous causal relationships among units.

One way to address this gap is by learning causal graphs
for each individual unit in a longitudinal dataset. However,
in real-world scenarios, the number of trajectories in a lon-
gitudinal dataset can be immense, making presenting all
the individual causal graphs to decision-makers impractical.
Such an approach could potentially obscure the key data sig-
nals. It is worth noting that longitudinal data with numerous
trajectories often exhibit clustering structures. This observa-
tion motivates us to perform clustering on temporal causal
graphs learned from individual trajectories.

To address these challenges, we introduce the CLOUD-
CG (Clustering on Longitudinal Causal Graphs), designed
to learn temporal causal graphs from longitudinal data and
recover the latent cluster structures within heterogeneous
causal relationships. Specifically, our approach leverages
Temporal Directed Acyclic Graphs (T-DAGs) to represent



the causal relationships between variables. We propose the
first clustering algorithm for T-DAGs to group individuals
with similar causal dynamics into clusters, by leveraging a
novel distance metric between T-DAGs, the Temporal Struc-
tural Hamming Distance (T-SHD).

T-SHD extends the traditional Structural Hamming Dis-
tance (SHD) used in static causal discovery by capturing
both the adjacency information in causal graph topology and
the time lags of causal effects, which are unique to temporal
causal discovery. Unlike SHD, T-SHD introduces differen-
tial penalties for errors in edge time lags and covariate adja-
cency mismatches during the clustering process. Hence, this
approach enables more precise predictions of cluster num-
bers and labels, enhancing the accuracy of clustering out-
comes.

We demonstrate the credibility of our method by conduct-
ing two simulation studies. In the first simulation study, we
focus on the clustering algorithm’s ability to recover true
cluster structures. We propose a novel simulation procedure
to randomly generate synthetic T-DAGs with various set-
tings of cluster numbers, node numbers, time lags, as well as
distances between/within clusters. Our results demonstrate
that the proposed clustering method consistently achieve
high clustering performance across various configurations,
as measured by the Adjusted Rand Index (ARI) against the
true underlying cluster structure. In the second simulation
study, we evaluate the performance of the entire CLOUD-
CG framework, where clustering is performed with the pres-
ence of T-DAG estimation noise. In this study, rather than
clustering on simulated T-DAGs, we first apply a causal dis-
covery algorithm to estimate the temporal causal graph from
simulated data, then cluster on those estimated T-DAGs. The
results indicate that our clustering method maintains high
accuracy, even in the presence of noise introduced during the
learning procedure of T-DAGs. These extensive simulation
studies provide strong evidence of the robustness of our pro-
posed clustering algorithm across various cluster and graph-
ical structures, as well as under different levels of graph es-
timation noise.

To demonstrate the real-world applicability of our
method, we apply it to a comprehensive longitudinal dataset
at the bank level within the Mexican banking market. This
dataset spans 19 years (2006–2024) and includes monthly
observations for 49 banks. It features data on bank deposits
alongside key variables commonly used in macroeconomic
analysis, such as the Mexican Stock Market Index, exchange
rates, interest rates, inflation, unemployment, and economic
indicators for the United States. We use this dataset to in-
vestigate the key factors influencing bank deposits and to
uncover how different banks respond to these macroeco-
nomic factors. Our analysis identifies distinct clusters of
banks characterized by varying driving factors and response
patterns. Our results show that smaller banks are vulnerable
to market volatility, larger institutions are sensitive to unem-
ployment and equity trends, and non-national banks show
resilience to shocks.

Our contributions
• We extend Time Series Causal Discovery to longitudinal

data settings, uncovering heterogeneous causal relation-
ships across units.

• We propose the first clustering method for longitudi-
nal data leveraging time-dependent causal representation
learning, demonstrating robustness to diverse graphical
structures, cluster configurations, and causal discovery
errors through extensive simulation experiments.

• We provide insights into the factors driving deposits at
the institutional level using data from Mexican commer-
cial banks, highlighting heterogeneities that are often
hidden in aggregate analyses.

Clustering on Longitudinal Causal Graphs:
CLOUD-CG

Preliminaries
We focus on the PCMCI+ method (Runge 2020) among
various TSCD methods as our TSCD base algorithm, as it
allows for contemporaneous edges and provides a T-DAG
that quantifies the specific time lags at which variables im-
pact the outcome. This capability is crucial for monitor-
ing financial stability, enabling policymakers to take timely
actions to preserve the financial system’s health. PCMCI+
makes several important assumptions: Causal Sufficiency,
Causal Markov Condition, Adjacency Faithfulness Condi-
tions, Consistent Conditional Independence Test, and Causal
Stationarity. Most of these assumptions are commonly im-
posed in static causal discovery (Spirtes, Glymour, and
Scheines 2000).

In particular, causal stationarity refers to the assumption
that the graph structure remains consistent across all time
points. Formally,

Assumption 1 (Causal Stationarity) For two variables
Xi

t−τ and Xj
t in the temporal data trajectory, if causal rela-

tion Xi
t−τ → Xj

t holds at some time pointt, then Xi
t′−τ →

Xj
t′ for all t′ ̸= t where t, t′ ∈ {1, 2, · · · , T},

where superscripts i, j denote covariate indices, while the
subscript t represents the time point, X refers to an entry
within the discrete-time structural causal system of M vari-
ables Xt = (X1

t , ..., X
M
t ), and T is the entire time horizon

of X .
This assumption is especially important in our work, as

it enables the creation of T-DAGs for each unit within the
longitudinal data, with a specified maximum time lag, τmax.
The resulting T-DAGs for each unit form a tensor with di-
mensions (M,M, τmax + 1).

Multiplex T-DAG
We leverage repeated measurements of units and Assump-
tion 1 to obtain a T-DAG for each unit in the longitudinal
dataset to generate {Gi}Ni=1, where each Gi is the T-DAG
for unit i, collectively forming a multiplex T-DAG. Figure
1 illustrates the distribution concept for these T-DAGs, pro-
viding a visual representation of this framework.



Figure 1: Visualizing the Multiplex T-DAGs under two sce-
narios: with independent inter-unit relationships (left) and
with inter-unit dependencies (right). Each layer represents
a T-DAG for a unit, where nodes are covariates and edges
reflect the learned causal structure. Vertical dotted lines in-
dicate the nodes across T-DAGs corresponding to the same
variables.

TSCD itself cannot be directly applied to the longitudinal
data consisting of multiple units because it is designed for
single time-series trajectories rather than datasets with mul-
tiple units. To address this limitation, the longitudinal data
can be aggregated by taking the mean and quantiles across
all units to transform them into time series data of a sin-
gle trajectory. However, such aggregation reduces the data
size by a factor of 1/N , and interpreting the aggregated data
can be non-intuitive, such as understanding a variable’s ef-
fect on the outcome’s quantile. By studying the full distribu-
tion of T-DAGs, we preserve the heterogeneity of the units,
allowing us to extract more relevant insights. Moreover, in
complex causal systems where causal sufficiency assump-
tions may not hold, including unit-level information can help
recover unobserved confounders that may not be explicitly
visible in the data.

Temporal Structural Hamming Distance: T-SHD
To cluster units in longitudinal data using the estimated
multiplex-T-DAG, we need to define a distance metric suit-
able for T-DAGs. Traditional Structural Hamming Distance
(SHD) is designed for static DAGs without temporal infor-
mation, so directly adopting this metric may not improve
clustering performance in time-series context. Therefore, we
introduce a new distance metric, the Temporal Structural
Hamming Distance (T-SHD), specifically designed for T-
DAGs.

Definition 1 (Temporal-Structural Hamming Distance)
The Temporal-Structural Hamming Distance (T-SHD)
between T-DAGs G1 and G2 of dimention NM×M×T is
defined as:

TSHD =
∑

(i,j,t)∈NM×M×T

w(i,j,t)|v1(i, j, t)− v2(i, j, t)|

Here, the inputs to T-SHD are generalized to weighted ad-
jacency matrices of two graphs, where vg(i, j, t) represents
the edge weight from source node i to target node j with
time-lag t in graph g ∈ {1, 2}. The edge weights can be
obtained by calculating the partial correlation between the
two nodes, fitting the functional regression model of parent-
children nodes, or learning the a conditional probability dis-
tribution. When vg(i, j, t) is binary, it reduces to a traditional
adjacency matrix. The weighting hyper-parameter w(i,j,t)

adjusts the contribution of each edge based on its presence
and time lag, which is defined as:

w(i,j,t) =

{
τ · wt, if (i, j) ∈ A,

wn, if (i, j) /∈ A,

where:

A = {(i, j) | v1(i, j, t1) ̸= 0 and v2(i, j, t2) ̸= 0 for some t1, t2}.

The parameter τ is the minimum time lag difference be-
tween t1 and t2 for edges in A. Here, A is the set of node
tuples that have directed edges in both graphs G1 and G2 ,
irrespective of the time lag. The terms wt and wn are hy-
perparameters that control the weights assigned to time-lag
mismatches and covariate mismatches respectively. When
wt = 0, the T-SHD reduces to the standard SHD by ignor-
ing the temporal dimension mismatch. This highlights that
T-SHD is a generalization of SHD, providing the flexibility
to penalize errors in both time-lag differences and adjacency
mismatches between T-DAGS. In general, we recommend
ensuring that τmax · wt < wn, as mistakes in edge presence
or absence are typically more consequential than discrepan-
cies in the number of lags. Additional tuning details of these
two hyperparameters are in the next section.

CLOUD-CG
In this section, we introduce CLOUD-CG, a method de-
signed to cluster longitudinal causal graphs. The input for
this method consists of multiplex T-DAGs, and the primary
goal is to group units whose causal structures, as represented
in the T-DAGs, are similar.

First, we perform multiple T-DAG estimation using
PCMCI+ on the longitudinal data D. As discussed earlier,
this estimation can be carried out under two settings: one
without inter-unit relationships and one with inter-unit re-
lationships. The choice of setting depends on the structure
of the data and prior knowledge. For instance, if the data is
related to bank transfers between entities, the setting with
inter-unit relationships should be chosen, as there are inter-
actions between units.

While incorporating inter-unit relationships increases the
complexity of the algorithm, this cost can be mitigated
by leveraging prior knowledge about the interactions. Such
prior knowledge can be specified using a tensor P with di-
mensions (M,M, T ), where each entry indicates either the
presence of an edge (including its direction) or the absence
of an edge. In addition, two critical hyperparameters must
be considered: the maximum time lag, τmax, and the signifi-
cance threshold, α. Detailed guidance on selecting these pa-
rameters is provided in Runge (2020).



The next step is T-DAG filtering. When clustering T-
DAGs, researchers may be interested in focusing on specific
aspects of the causal system. For instance, they might ana-
lyze the effects on a particular set of end nodes, denoted as E ,
the impact caused by a specific set of starting nodes, denoted
as S, or the relationships between both. To achieve this, we
employ a breadth-first search algorithm, which allows us to
isolate and explore the relevant parts of the T-DAG. By nar-
rowing the focus to these specific regions of interest, we can
gain deeper insights into targeted sections of the causal sys-
tem, rather than clustering based on the entire T-DAG.

Optionally, we can tune the hyperparameters—the num-
ber of clusters, k, and the realization weight on time lag, wt,
by selecting values from predefined sets K (possible cluster
numbers) and Wt (time lag weights), if these values are not
specified beforehand. To perform the tuning, we calculate
an unsupervised loss function, Lclust, which evaluates the
quality of clustering. Common choices for Lclust include the
Silhouette score (Rousseeuw 1987) and the elbow method
(Thorndike 1953).

Once we get the multiplex T-DAGs estimated, hyperpa-
rameters defined, and relevant nodes filtered, we calculate
the T-SHD for every pair of the N units to form a two-
dimensional distance matrix Z ∈ RN×N . We can then apply
a clustering method fclust : (Z, k) → C to perform the clus-
tering on the T-SHD matrix Z, and obtain the cluster label
vector C = {c1, .., cN} with ci ∈ {1, ..., k}. The clustering
method fclust can be any clustering algorithm that accepts a
pair-wise distance matrix as input, such as hierarchical clus-
tering, DBSCAN, or similar techniques. The full details of
the algorithm is in Algorithm 1.

Algorithm 1: CLOUD-CG

1: Input: D, fclust, Lclust, τmax, α, S(optional),
E(optional), P(optional), k(optional), wt(optional)

2: Estimate {G}Ni=1 = PCMCI+(D, τmax, α,P) with or
without inter-unit relationship

3: if k or wt are not predefined then
4: for (k,wt) ∈ K ×Wt do
5: Create {G′

i}Ni=1 by T-DAG filtering using S, E
6: Compute Z

(k,wt)
i,j = T -SHD(Gi, Gj , wt) for

all (i, j) to construct Z(k,wt)

7: Compute C(k,wt) = fclust(Z
(k,wt), k)

8: Compute L(k,wt)
clust (C(k,wt),Z(k,wt))

9: end for
10: end if
11: return C(k∗,w∗

t ) where

(k∗, w∗
t ) = argmin(k,wt)L

(k,wt)
clust

Simulation Study
We perform two simulation studies to investigate the per-
formance of the proposed clustering algorithm. In the first
simulation, we investigate whether the CLOUD-CG algo-
rithm can recover the true cluster labels on randomly gen-
erated T-DAGs. Our results show the clustering algorithm

is robust to various graph parameters and cluster structures.
In the second simulation study, we investigate the perfor-
mance of the proposed CLOUD-CG algorithm on estimated
T-DAGs, where the true underlying T-DAGs are unknown.
That is, the causal graphs are first estimated by performing
time series causal discovery on longitudinal data for each
unit. Then, we run the clustering algorithm to assign a clus-
ter label to each estimated T-DAG. The results demonstrate
that the proposed framework returns accurate clustering re-
sults in most settings despite the estimation errors in causal
discovery.

Simulation study 1: Performance of Clustering on
true T-DAGs
We first specify the generating procedure of simulated clus-
ters of T-DAGs. In the simulation, cluster centers are ran-
domly created, then the T-DAGs belonging to each cluster
are generated around the cluster centers. When generating
k clusters, each cluster center is a T-DAG with M nodes
following the Erdős–Rényi (ER) model. Specifically, edges
between nodes are independently generated based on a fixed
probability. Each edge is then randomly assigned with a time
lag between 0 and the max time lag τmax, transforming the
DAGs from ER model into T-DAGs. The k cluster centers
are generated sequentially such that the T-SHD (wt = 1 by
default) between each pair of cluster center T-DAGs needs to
exceed a distance lower-threshold dbetween−min. The list of
T-DAG members within each cluster is created by randomly
flipping or removing dwithin number of edges of the cen-
ter T-DAG, such that the distance between cluster center and
member is dwithin. In summary, the key hyper-parameters
of the simulated T-DAG clusters include graph parameters
such as node number M and max time lag τmax, as well as
clustering structure parameters such as number of clusters
k, within-cluster distance dwithin and minimum threshold
for between-cluster distance dbetween−min. Pseudo code of
T-DAGs generation is in Algorithm 2.

In this study, we test the robustness of the proposed clus-
tering algorithm by varying cluster number k, max time lag
τmax, within-cluster distance dwithin and node number M ,
corresponding to four separate experiments. When generat-
ing the simulated T-DAGs, the number of T-DAGs per clus-
ter is 50. Since the true number of clusters is not provided
to the clustering procedure, the optimal cluster number and
weight wt for T-SHD are selected by maximizing Silhou-
ette scores during clustering. Candidate lists for weight wt in
T-SHD and cluster number are {0, 0.25, 0.5, 0.75, 1.0} and
{2, 3, · · · , 14, 15}, respectively. Agglomerative clustering, a
commonly used hierarchical clustering algorithm, is applied
to obtain the cluster labels. After performing the clustering,
the predicted cluster labels are evaluated using ARI against
the true underlying cluster structure. The results of the four
experiments are shown in Figure 2.

The results in Figure 2 show that the proposed cluster-
ing algorithm is robust to various cluster and graph set-
tings. In most settings, the ARI of the proposed algorithm
is above 0.85, except in extreme cases of within-cluster
distance dwithin and node number M . In Figure 2c, when
dwithin reaches 32, the average distance from center mem-



Algorithm 2: Random T-DAG Generation

1: Input: Node number M , Edge number Medge, Max
time lag τmax, Cluster number k, Graph number list
{Nj}kj , Distance within center dwithin, Minimum dis-
tance between center dbetween−min, Random ER graph
generator ER(M,Medge), empty list lḠ for cluster cen-
ters, empty list lG for T-DAGs,, T-SHD weight wt (op-
tional, default is wt = 1)

2: Generate a T-DAG Ḡ1 ∼ ER(M,Medge) from ER
graph and save it to lḠ

3: Generate N1 T-DAGs by randomly remove or alternate
dwithin edges from Ḡ1, then save them to lG

4: for i ∈ {2, · · · , k} do
5: Repeatly generate Ḡi ∼ ER(M,Medge) until it sat-

isfies ∀Ḡj ∈ lḠ, T -SHD(Ḡi, Ḡj , wt) ≤ dbetween−min

6: Add Ḡi to lḠ
7: Generate Ni T-DAGs by randomly remove or alter-

nate dwithin edges from Ḡi, then add them to lG
8: end for
9: return The list of T-DAGs lG

ber to cluster center is nearly half of the average distance be-
tween cluster centers. This extreme case of dwithin is inher-
ently difficult for clustering, as boundaries of clusters over-
lap with each other. This explains why ARI drops signifi-
cantly at large dwithin in Figure 2c. Similarly, in Figure 5d
of Appendix B, when node number is smaller than 8, it re-
duces the average distance between centers, leading to the
same effect as extreme dwithin in Figure 2c. Detailed discus-
sion is in Appendix B. Apart from clustering accuracy, the
cluster number selected by the Silhouette score is always the
same as the true cluster number, except for the two extreme
cases discussed above.

Simulation study 2: Performance of Clustering on
Estimated T-DAGs
In the second simulation study, we evaluated the clustering
results on estimated causal graphs recovered from simulated
longitudinal data. The clusters of T-DAGs are generated fol-
lowing the same procedure described in the previous sec-
tion. Then each T-DAG is randomly assigned with positive
or negative edge weights with magnitudes from (0.5, 2.0).
Longitudinal data is then generated corresponding to each
T-DAG, where the time horizon is the same for the datasets
of all T-DAGs. The variables are generated according to
the edges in T-DAG, following a linear structural equation
model (SEM) with Gaussian noises. Rather than providing
the true T-DAGs to the clustering algorithm, we first apply
PCMCI+ to recover an estimated T-DAG, as described in Al-
gorithm 1. Then we use the agglomerative clustering algo-
rithm on estimated causal graphs to return the cluster labels.

In this experiment, we mainly investigate whether
CLOUD-CG is robust to the noises caused during the es-
timation of the true T-DAGs. We vary the cluster number of
underlying clusters k, max time lag τmax of T-DAGs, and
time horizon of generated data for each T-DAG. Apart from
the ARI score for clustering accuracy, we also report the nor-

malized SHD for the causal discovery process. Normalized
SHD measures the distance between the T-DAG estimated
from the longitudinal data and the true underlying T-DAG.
A normalized SHD close to 0 is desirable. The experiment
results of clustering performance and causal discovery accu-
racy are in Figure 3.

Results of Figure 3 show that clustering results of
CLOUD-CG achieve an ARI score above 0.8 in most cases.
In the extreme case of τmax = 2 in Figure 3b, the normal-
ized SHD is above 0.053, indicating 16 edges are falsely
learned in the causal discovery procedure on average. The
total expected edge number for all graphs is around 30, such
that edges with learning error are more than half of the
true edges in true underlying graphs in this extreme case.
Such extreme causal graph learning errors are large enough
to affect the boundary of clusters and significantly increase
the difficulty of clustering. In all other settings, despite that
causal discovery doesn’t perfectly recover the true T-DAGs,
our proposed Algorithm 1 is still robust to such causal dis-
covery errors by achieving high ARI score and always se-
lecting the correct cluster number.

Application of CLOUD-CD to Deposit Data of
Mexican Commercial Banks

Data and Preprocessing
We applied our methodology to 49 commercial banks in the
Mexican market to identify the macroeconomic variables
that most significantly influence their deposits. The specific
macroeconomic variables considered are detailed in Table
1 of Appendix C. These macroeconomic variables were se-
lected because they are the ones considered by the Central
Bank of Mexico during stress testing (Banxico 2024). Addi-
tionally, we categorized deposits based on the type of coun-
terparty and the deposit term (short-term or long-term), as
outlined in Table 2 in Appendix C. Our analysis primarily
focuses on demand deposits from natural persons as Dia-
mond and Dybvig (1983) explains how banks provide liq-
uidity to individuals through demand deposits and highlights
why this structure makes banks vulnerable to bank runs.
The dataset records monthly data points, covering the period
from January 2006 to July 2024. Before conducting the anal-
ysis, we performed several data preprocessing steps, includ-
ing adjusting for inflation and transforming relevant time se-
ries variables to achieve stationarity, for which the details
are in Appendix C.

Motivation
While previous studies on the financial health of commer-
cial banks in emerging markets focus on country-level panel
data, we believe it is not sufficient to monitor the entire
financial activity in the system. Specifically, such aggre-
gated data fails to reveal interbank transactions, as those
do not alter the overall total but significantly impact indi-
vidual bank-level deposits. For instance, Figure 11 presents
the aggregated PCMCI+ results at the system level. Notably,
a single edge is observed pointing to individual deposits
(min vista), originating from the USDMXN exchange



(a) Experiment on cluster numbers (b) Experiment on time lags (c) Experiment on distances within cluster

Figure 2: Results of clustering on simulated T-DAGs.

(a) Experiment on cluster numbers (b) Experiment on time lags (c) Experiment on the horizon of data

Figure 3: Results of clustering accuracy on estimated causal graphs recovered from simulated data. Clustering accuracy (ARI
score) is shown in a blue straight line against the scale on the left vertical. Causal discovery accuracy (normalized SHD) is
shown in the green dashed line against the scale on the right vertical axis.

rate (Tipo Cambio). This relationship is further corrob-
orated by the regression results in Table 3 in Appendix D.

However, attributing deposits solely to the exchange rate
would be an oversimplification. In Figure 12, we present
the T-DAG for deposits across seven major banks after con-
trolling for relevant macroeconomic variables. Notably, sev-
eral positive edges are observed between these banks. A key
factor to consider here is the extent of customer overlap.
When there are substantial overlaps, a customer receiving
funds in Bank A may transfer those funds to Bank B to pay
credit card bills or loans. This interbank activity underscores
the interconnectedness of the financial system and explains
the observed positive relationships between deposits across
banks. Analyzing only aggregated data obscures these inter-
bank transactions, emphasizing the need to examine deposit
patterns at the institutional level for a more comprehensive
understanding.

Implementation Details
As described in the previous section, edges between units
are significant, and we opted for a setting that accounts for
inter-unit relationships. Furthermore, it is reasonable to as-
sume that the direction of causality flows from the macroe-
conomic variable to the deposit, as the reverse direction of
causal impact is significantly less likely. To account for this,
we incorporate this prior knowledge into the discovery al-
gorithm, ensuring that individual bank deposit data do not
influence macroeconomic variables.

Before clustering, we tune the number of clusters k and
the weight parameter wt using the Silhouette score as the

evaluation metric. As illustrated in Figure 9 in Appendix,
the maximum Silhouette score is achieved at k = 4 and
wt = 0.25. Additionally, we applied T-DAG filtering to in-
clude only the nodes that ultimately lead to the natural per-
son’s deposit. For additional details on the implementation,
including the choice of maximum time lag and relevant fig-
ures, please refer to Appendix E.

Results
We use the calculated T-SHD matrix with k = 4, wt = 0.25,
and wn = 1. The results of the clustering can be seen in Fig-
ures 4. Figure 4 is a simplified aggregated T-DAG for insti-
tutions that belong to this cluster. If two or more institutions
have the same edge, the edge weight is averaged and the
width indicates the number of institutions sharing the edge.
To maintain confidentiality, we have omitted the names of
the banks involved. We have provided a distribution of bank
characteristics for each cluster, highlighting their headquar-
ters’ locations and business models, as shown in Figure 13
of Appendix.

Our findings are summarized as follow: the drivers for de-
posits (node min vista in the graph) in Cluster 0 predomi-
nantly consists of Domestic Systemically Important Banks,
with unemployment (node Desempleo in the graph) and the
Dow Jones (DJ) Index at a four-month lag identified as the
primary influencing factors. Cluster 1 includes all North
American-based banks among those four clusters, alongside
several large national banks with greater asset sizes com-
pared to those in Clusters 2 and 3. This cluster appears to
be more sensitive to shocks from multiple macroeconomic



(a) Results for Cluster 0 (b) Results for Cluster 1

(c) Results for Cluster 2 (d) Results for Cluster 3

Figure 4: Combined Results for Clusters 0, 1, 2, and 3

variables, reflecting its central role in the financial system.
Cluster 2 comprises smaller banks in terms of assets, where
the Volatility Index (VIX) emerges as the dominant driver
for deposits. Lastly, Cluster 3 consists of national commer-
cial banks with a significant proportion of U.S. equities in
their portfolios, where unemployment and the DJ Index with
no time lag are identified as the strongest influencing factors
for natural persons’ deposits. For additional details on the
results, please refer to Appendix F.

Interestingly, banks without causal edges from macroe-
conomic variables to deposits, which are less prone to
shocks, are predominantly non-national institutions, with
only 26.7% being national banks. This observation high-
lights how our clustering method effectively captures vari-
ations in resilience driven by differences in business models
and exposure to macroeconomic factors. It is important to

emphasize that while causal discovery algorithms provide a
valuable framework for generating potential hypotheses and
gaining insights into underlying relationships, their findings
should be further validated through additional studies to en-
sure robustness and reliability.

Future Work

Future work for CLOUD-CG may include two directions.
First, the algorithm components of our framework can be
enhanced by incorporating more recent causal discovery and
clustering algorithms. Second, CLOUD-CG’s clustering la-
bels can also serve as proxies for some hidden categorical
variables, potentially improving downstream tasks such as
causal inference.
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Appendix A: Related Work
Time Series Causal Discovery (TSCD) Previous work on
causal discovery methods includes Granger-causality-based
methods (Granger 1969; Tank et al. 2022; Cheng et al.
2024), constraint-based methods (Runge 2020; Sun et al.
2023; Gong et al. 2022), and state space-based methods
(Brouwer et al. 2021). In this work, we focus on (Runge
2020) because it provides detailed information on the num-
ber of lags, a critical factor for monitoring financial stability.

Longitudinal Data Clustering A recent paper reviews
clustering methods for longitudinal data (Lu 2024). Model-
based methods (Nagin 1999; Proust-Lima, Philipps, and Li-
quet 2017) are based on finite mixture models (McLach-
lan and Peel 2004). Algorithm-based approaches include
K-means (Lloyd 1982) and hierarchical clustering (Zhou,
Zhang, and Tu 2023), using the trajectory function. Func-
tional clustering approaches (James and Sugar 2003; Chiou
and Li 2007; Ren et al. 2023) use functional data analysis
(FDA), where data are treated as functions from an infinite-
dimensional space, unlike longitudinal data analysis, which
views data as individual points. To the best of our knowl-
edge, this is the first work on clustering longitudinal data us-
ing T-DAGs to identify sets of units based on how outcomes
are affected by multiple covariates in a lag-specific manner.

Determinants of Deposits in Emerging Markets This
work also contributes to the literature on the determinants of
institution-level deposit outflows in emerging markets. The
existing literature is relatively limited, largely due to con-
fidentiality in commercial bank deposit data. Kohlscheen,
Murcia Pabón, and Contreras (2018) analyzed bank prof-
itability across 19 emerging market economies, conclud-
ing that higher long-term interest rates enhance profitability.
De Bock and Demyanets (2012) find that macroeconomic
factors significantly impact bank asset quality in emerg-
ing markets. Stepanyan and Guo (2011) examine the de-
terminants of bank credit in these economies, concluding
that strong economic fundamentals, favorable external con-
ditions, and accommodative domestic monetary policy drive
credit growth. While these studies provide valuable insights,
their reliance on country-level panel data often obscures crit-
ical variations among individual banks. Our findings under-
score the heterogeneity at the institutional level, highlighting
the importance of analyzing granular deposit flows. Such de-
tailed analysis can equip policymakers with the necessary in-
formation to make informed decisions and effectively main-
tain financial stability.

Appendix B: Discussion of Simulation Results
on Extreme Cluster Settings

The results in Figure 5 show that the proposed clustering
algorithm is robust to various cluster and graph settings. In
most settings, the ARI of the proposed algorithm is above
0.85, except in two extreme cases in Figure 5c and 5d. In par-
ticular, in the experiment on within-cluster distance dwithin,
the average distance between cluster centers is around 60
in terms of T-SHD with wt = 1 for all seven settings in
Figure 5c. In general, enlarging dwithin increases the dif-
ficulty of clustering. When dwithin reaches 32, ARI drops

below 0.75. In this case, our proposed clustering algorithm
selects wt = 0 in T-SHD to minimize the distances caused
by the time lag difference between member T-DAGs within
a cluster. Still, this cluster structure is inherently challeng-
ing for all clustering methods, as the distance between the
center member and the cluster center is larger than half of
the average distance between cluster centers, causing the
boundaries of clusters to overlap. This explains why ARI
drops significantly when dwithin is beyond 32. Similarly, in
Figure 5d, the ARI around 0.75 for node number M = 8
is also due to such a high intra-cluster distance structure.
When node number M decreases, the space of all possible
T-DAGs, NM×M×T shrinks, causing cluster centers to be
closer to each other. In the experiment on node numbers,
dwithin = 22 for all settings. When M = 8, dwithin is
roughly half of the average distance between cluster centers,
causing ambiguous cluster boundaries. Apart from cluster-
ing accuracy, the cluster number selected by the Silhouette
score is always the same as the true cluster number, except
for the two extreme cases discussed above.

Appendix C: Data Description and
Preprocessing

We utilize deposit data (Table 2), commercial bank loans
(vig real) provided by Banco de México (the Central
Bank of Mexico), and macroeconomic variables (Table 1).
While most macroeconomic variables are publicly avail-
able, the total real outstanding balance of commercial bank
loans is not. The selection of macroeconomic variables is in-
formed by their use in stress testing conducted by Banco de
México.

To adjust nominal deposit values to real terms, we use the
Índice Nacional de Precios al Consumidor (INPC), Mexico’s
official Consumer Price Index (CPI). This adjustment stan-
dardizes all nominal values by converting them to a com-
parable base period. Specifically, we transform each deposit
using the following formula:

D∗
t = Dt

INPCt

INPCT

where D∗
t is the inflation-adjusted deposit value at time t,

Dt is the nominal value of the deposit at time t, INPCt is
the INPC at time t, and T represents the base period, here
set to July 2024. After applying this transformation, all de-
posit values are expressed in terms of July 2024 purchas-
ing power, making them directly comparable across differ-
ent time points.

To meet the stationarity requirement for PCMCI+, we test
each variable using the Augmented Dickey-Fuller (ADF)
test (Cheung and Lai 1995). If the ADF test indicates non-
stationarity, we first apply simple differencing and then reap-
ply the ADF test. If the series remains non-stationary, we
perform seasonal differencing with a time period of 12
months. The aggregated deposit value for the entire system
before differencing is shown in Figure 6 and after differenc-
ing in Figure 7.



(a) Experiment on cluster numbers

(b) Experiment on time lags

(c) Experiment on distances between cluster component and
cluster centers

(d) Experiment on node numbers

Figure 5: Results of clustering on simulated T-DAGs.

Variable Description
IGAE Global Indicator of Economic Activity

measures Mexico’s monthly economic ac-
tivity.

TipoCambio USD/MXN exchange rate.
Cetes28 Mexican 28-day treasury bill rate, an indi-

cator of short-term interest rates.
Inflacion Inflation rate measures the rate of increase

in consumer prices.
Desempleo Unemployment rate indicates the percent-

age of the unemployed labor force.
IPC Mexican Stock Market Index (Índice de

Precios y Cotizaciones), reflects the stock
performance of large companies listed in
Mexico.

DJ Dow Jones Industrial Average, a US stock
market index tracking 30 prominent com-
panies.

TB3M US 3-month Treasury Bill rate represents
short-term interest rates in the US.

IPI US Industrial Production Index in the US mea-
sures the output of the US industrial sector.

WTI West Texas Intermediate crude oil price is
an indicator of oil prices.

TB10y US 10-year Treasury bond yield represents
long-term interest rates in the US.

VIX Volatility Index measures the market’s ex-
pectation of volatility (often associated
with the S&P 500).

vig real Total real outstanding balance of com-
mercial bank loans (including commer-
cial, consumer, housing, and government
loans).

Table 1: Description of Macroeconomic Variables

Variable Description
ef plazo Term deposits from financial institutions.
ef vista Demand deposits from financial institu-

tions.
gob plazo Term deposits from government entities.
gob vista Demand deposits from government enti-

ties.
min plazo Term deposits from individuals (natural

persons).
min vista Demand deposits from individuals (natural

persons).
ot plazo Term deposits from other entities, primar-

ily legal entities (corporations).
ot vista Demand deposits from other entities, pri-

marily legal entities (corporations).

Table 2: Descriptions of Deposits by Counterparty and Term

Appendix D: Results on aggregated deposit
Table 3 complements the results shown in Figure 11, indicat-
ing that the USDMXN exchange rate is the sole determinant



Figure 6: System Deposit Levels Before Differencing

Figure 7: System Deposit Levels After Differencing

of system deposits. However, as discussed in the motivation
section, this oversimplification may fail to capture the gran-
ular complexities of the financial system at an aggregated
level, and basing decisions solely on this finding could lead
to misleading conclusions.

Variable Coef. Std. Err. t P > |t|
const 25170 28700 0.878 0.381
igae -2208.93 2406.55 -0.918 0.360
TipoCambio 36770 12400 2.966 0.003***
Cetes28 1193.90 5861.55 0.204 0.839
inflacion -1793.52 4144.50 -0.433 0.666
desempleo -12950 22400 -0.577 0.564
IPC -0.355 1.309 -0.271 0.786
DJ 13.678 8.938 1.530 0.127
TB3M -1799.45 7708.46 -0.233 0.816
IPI US 2451.00 2328.12 1.053 0.294
WTI -283.91 294.06 -0.965 0.335
TB10y -3812.70 9740.50 -0.391 0.696
VIX 315.16 870.24 0.362 0.718
vig real -0.0067 0.032 -0.208 0.836

Table 3: Regression Results for min vista

There are several reasons why the exchange rate might
influence individuals’ deposits. One key factor is that many
banks hold deposits in Mexican pesos (MXN) and U.S. dol-
lars (USD), with MXN deposits being more prevalent. To
calculate the total deposit value, the exchange rate is used to

aggregate the amounts in both currencies, creating a direct
dependency. Furthermore, Mexico is one of the largest recip-
ients of remittances globally. According to the World Bank,
Mexico received USD 66.2 billion in remittances in 2023,
ranking second worldwide after India (WorldBank 2024).
The volume of remittances is directly affected by fluctua-
tions in the exchange rate.

Appendix E: Implementation Details
To determine the maximum time lag, τmax, we performed a
bivariate lagged conditional independence test for all pairs
of covariates (8). Notably, the most significant lags occur
within the first four months. Additionally, as shown in Fig-
ure 11, most lags are contemporaneous, which aligns with
the nature of demand deposits as liquid assets, where the ef-
fects typically manifest quickly.

Appendix F: Discussion on Results for
Application of CLOUD-CD to Deposit Data of

Mexican Commercial Banks
Our analysis reveals that all clusters exhibit a posi-
tive contemporaneous relationship between unemployment
(desempleo) and deposits. This observation aligns with
the International Monetary Fund’s findings that economic
downturns lead to increased household saving rates (Mody,
Ohnsorge, and Sandri 2012).

Regarding the Dow Jones Index (DJ), only Cluster 1 in-
cludes a North America-based bank, which shows a positive
contemporaneous relationship within this cluster. Cluster 3
is directly influenced by DJ, with two commercial banks
holding significant U.S. equity in their investment portfo-
lios, thereby attracting more clients.

Cluster 2 is primarily driven by the Volatility Index (VIX).
Notably, this cluster comprises eight relatively small banks,
none of which are classified as D-SIBs (Domestic Systemi-
cally Important Banks). This suggests a potential research
avenue: exploring whether unemployment impacts larger
banks more significantly, while VIX affects smaller banks.
In contrast, Cluster 0 contains three of the seven D-SIBs
banks in Mexico.

This result reveals valuable insights into which banks may
require closer supervision during economic downturns that
impact specific macroeconomic variables. By identifying the
relationships between macroeconomic indicators and indi-
vidual banks, policymakers can proactively allocate super-
visory resources to institutions that are more susceptible to
particular economic conditions, thereby enhancing financial
stability.

Notably, while over 60% of banks are national institu-
tions, only 26.7% of banks without a causal relationship
from macroeconomic variables to deposits are national 13.
This finding suggests that banks headquartered outside Mex-
ico may be more resilient to macroeconomic shocks than
national banks. One contributing factor is that a significant
portion of non-national banks conduct more business with
legal entities. It is noteworthy that our clustering method ef-
fectively incorporates these characteristics into the results.



Figure 8: Bivariate, lagged conditional independence test

Figure 9: Tuning k and wt based on Silhouette distance
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Iyer, Fabrizio López Gallo Dey, Song Lu, Habib Saraya
Jean, and Kaicheng Wu (listed in alphabetical order) for
their valuable comments and suggestions, which greatly im-



Figure 10: Normalized T-SHD Matrix Heatmap
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Figure 13: Distribution of Headquarters’ Continents and Business Models Across Clusters


