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Abstract

Large language models (LLMs) have shown im-001
pressive few-shot generalization on many tasks002
via in-context learning (ICL). Despite their003
success in showing such emergent abilities, the004
scale and complexity of larger models also005
lead to unprecedentedly high computational006
demands and deployment challenges. In007
reaction, researchers explore transferring the008
powerful capabilities of larger models to more009
efficient and compact models by typically010
aligning the output of smaller (student) models011
with that of larger (teacher) models. Existing012
methods either train student models on the013
generated outputs of teacher models or imitate014
their token-level probability distributions.015
However, these distillation methods pay little016
to no attention to the input, which also plays017
a crucial role in ICL. Based on the finding018
that the performance of ICL is highly sensitive019
to the selection of demonstration examples,020
we propose Bidirectional Alignment (BiAlign)021
to fully leverage the models’ preferences for022
ICL examples to improve the ICL abilities of023
student models. Specifically, we introduce024
the alignment of input preferences between025
student and teacher models by incorporating026
a novel ranking loss, in addition to aligning the027
token-level output distribution. With extensive028
experiments and analysis, we demonstrate that029
BiAlign can consistently outperform existing030
baselines on various tasks involving language031
understanding, reasoning, and coding.032

1 Introduction033

With the recent advancements in model scale and034

pretraining data, large language models (LLMs)035

have demonstrated impressive few-shot learning036

capabilities via in-context learning (ICL). With037

ICL, the LLM generates an output for a given038

query by conditioning on a few demonstration039

examples and optionally a task description, and040

it does so without any parameter updates (Brown041

et al., 2020). Despite the success of ICL in few-shot042

generalization, the high computational demands 043

and deployment challenges posed by the size of the 044

LLMs hinder their widespread application. Serving 045

an LLM with 175B parameters requires at least 046

350GB GPU memory (Hsieh et al., 2023), which 047

is far beyond what is affordable in most real-world 048

settings. Also, the serving cost increases with 049

model size – it costs 1-2 FLOPs per parameter 050

to infer on one token (Kaplan et al., 2020). 051

To alleviate this issue, researchers have proposed 052

a number of methods to transfer the emergent 053

capabilities of larger (teacher) models to more 054

efficient and compact smaller (student) models, 055

an approach commonly known as knowledge 056

distillation (Hinton et al., 2015). In this approach, 057

the student models are trained to align their output 058

space with that of the teachers. This is typically 059

achieved by either training on the generated outputs 060

of the teacher models (Hsieh et al., 2023; Wang 061

et al., 2022; Xu et al., 2023a) or by imitating their 062

token-level probability distributions (Agarwal et al., 063

2023; Huang et al., 2023b; Gu et al., 2024).1 064

While existing distillation methods demonstrate 065

improved ICL results, they pay little attention to 066

the input, specifically the demonstrations, which 067

have been shown to have a significant impact 068

on the performance of ICL (Zhao et al., 2021; 069

Xie et al., 2022; Qin et al., 2024). Indeed, 070

selecting different sets of demonstration examples 071

can yield performance ranging from almost random 072

to better than state-of-the-art fine-tuned models 073

(Gao et al., 2021; Lu et al., 2022), indicating that 074

the model has different preferences for different 075

inputs. Inspired by this finding, we propose 076

Bidirectional Alignment (BiAlign), a simple yet 077

effective framework for improving the ICL abilities 078

1Different from the conventional strong-to-weak general-
ization, Burns et al. (2023) recently introduce weak-to-strong
generalization, which explores leveraging weaker (smaller)
models to elicit “superalignment” from the stronger (larger)
models. This paper however considers the conventional strong-
to-weak approach.

1



Output

Generate

Fine-tune

Teacher 
Model

Student 
Model

KL divergence

Output and Input

KL divergence

Input 
Preference 
Alignment

Figure 1: Comparison between different types of approaches to aligning student models. Existing methods typically
fine-tune student models on generated outputs of teacher models or to match their token-level output probability
distributions (left part). In contrast, our method (BiAlign) considers the models’ preferences for different inputs (the
more helpful an input is for generating the target, the more the model prefers that input) to achieve input preference
alignment (right part).

of student models (Figure 1). Specifically, BiAlign079

introduces the alignment of input preferences080

between student and teacher models through the081

incorporation of a novel ranking loss, in addition to082

aligning the token-level output distributions. Our083

main hypothesis is that for an effective knowledge084

distillation, the student model should align with085

not only the teacher model’s output distribution086

but also its input preference (i.e., the more helpful087

an input is for generating the target, the more the088

model prefers that input).2 BiAlign allows student089

models to obtain more fine-grained supervision090

from teacher models by fully leveraging their091

preferences for different demonstrations in ICL.092

Empirical results on tasks spanning language093

understanding, symbolic reasoning, mathematical094

reasoning, logical reasoning, and coding show095

that BiAlign can consistently outperform previous096

baselines. In summary, our main contributions are:097

• To the best of our knowledge, we for the first time098

consider aligning student models with teacher099

models from an input preference perspective.100

We propose Bidirectional Alignment (BiAlign)101

to fully leverage the models’ preferences for102

different demonstration examples to improve the103

ICL capabilities of student models.104

• With extensive experiments and analysis, we105

demonstrate the effectiveness of BiAlign on a106

variety of tasks. For example, it brings about 20%107

2Our hypothesis is closely related to preference learning in
RLHF, where the reward model learns ‘which outputs should
be preferred’. After learning, a well-trained reward model can
rank model responses with expertise comparable to humans.

relative improvement on GSM8K (Cobbe et al., 108

2021) and 18% on LogiQA (Liu et al., 2020). 109

Our code base is available at <redacted>. 110

2 Related Work 111

This work concerns how to improve the ICL ability 112

of student models by aligning the student and 113

teacher models’ preferences for different few-shot 114

demonstrations. In light of this, we review three 115

lines of work that form the basis of this work: few- 116

shot learning, in-context learning, and alignment. 117

2.1 Few-shot Learning 118

Few-shot learning (FSL) aims to learn tasks with 119

only a few labeled examples, which faces the 120

challenge of over-fitting due to the scarcity of 121

labeled training data. Existing methods to address 122

this challenge can be mainly divided into three 123

categories: (i) reducing the hypothesis space 124

with prior knowledge (Triantafillou et al., 2017; 125

Hu et al., 2018), (ii) optimizing the strategy for 126

searching the best hypothesis in whole space (Ravi 127

and Larochelle, 2017; Finn et al., 2017), and 128

(iii) augmenting the few-shot data (Gao et al., 129

2020; Qin and Joty, 2022; Ding et al., 2023). 130

More recently, LLMs have achieved promising 131

performance on various few-shot tasks via in- 132

context learning (ICL). 133

2.2 In-context Learning (ICL) 134

By conditioning on a prompt that includes several 135

demonstration examples and optionally a task 136

description, a frozen LLM, by virtue of ICL, 137

showcases impressive few-shot generalization 138
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(Brown et al., 2020). ICL has drawn a great deal139

of attention from the research community in recent140

days. Chen et al. (2022); Min et al. (2022a);141

Wei et al. (2023a) have explored ways to enhance142

the ICL capabilities of language models by either143

self-supervised or supervised training. In parallel,144

extensive analytical studies have been conducted to145

understand factors influencing the performance of146

ICL (Zhao et al., 2021; Wei et al., 2022a; Yoo et al.,147

2022; Min et al., 2022b; Wei et al., 2023b; Zhang148

et al., 2024), as well as to elucidate the underlying149

mechanisms that contribute to the success of ICL150

(Olsson et al., 2022; Xie et al., 2022; Pan, 2023;151

Li et al., 2023a; Dai et al., 2023). Furthermore,152

there is a series of ongoing research dedicated to153

various aspects of ICL: (i) demonstration designing154

strategies, including demonstration organization155

(Liu et al., 2022; Rubin et al., 2022; Wang et al.,156

2023b; Qin et al., 2024; Wang et al., 2024) and157

demonstration formatting (Wei et al., 2022c; Wang158

et al., 2022; Zhang et al., 2023; Zhou et al.,159

2023), (ii) multi-modal ICL (Huang et al., 2023a;160

Wang et al., 2023c,a; Zhu et al., 2023), and161

(iii) applications of ICL (Ding et al., 2022; Meade162

et al., 2023; Zheng et al., 2023; Long et al., 2024).163

2.3 Alignment164

Existing work on alignment can be mainly divided165

into two parts based on the objectives: aligning166

with humans and aligning with teacher models.167

To align with humans, reinforcement learning168

from human feedback (RLHF) (Christiano et al.,169

2017; Ouyang et al., 2022) explores how human170

feedback can be used to train language models to171

better align with human preferences and values172

using reinforcement learning algorithms such as173

PPO (Schulman et al., 2017). Several recent174

studies have introduced lightweight alternatives of175

PPO, including RRHF (Yuan et al., 2023), DPO176

(Rafailov et al., 2023), ReMax (Li et al., 2023b),177

IPO (Azar et al., 2024) and KTO (Ethayarajh178

et al., 2024). Alignment with teacher models,179

also known as distillation (Hinton et al., 2015),180

aims to transfer the powerful capabilities of large181

teacher models to more efficient and compact182

student counterparts. It has emerged as a powerful183

solution to reduce the high computational demands184

and serving challenges posed by large models.185

Current distillation methods typically train student186

models on generated outputs of teacher models187

(Hsieh et al., 2023; Wang et al., 2022; Xu et al.,188

2023a) or to imitate teacher models’ token-level189
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Figure 2: In the upstream ICL alignment stage, we align
a student model with a teacher on the source tasks. Then
in the downstream evaluation stage, we evaluate the ICL
performance of the aligned student model on a held-out
set of target tasks, which are different from the source
tasks.

probability distributions (Sanh et al., 2019; Jiao 190

et al., 2020; Agarwal et al., 2023; Huang et al., 191

2023b; Gu et al., 2024), i.e., these approaches 192

focus on aligning the output of student models 193

with that of teachers. However, they pay little 194

attention to the input demonstrations which also 195

significantly influence the performance of ICL (Qin 196

et al., 2024). In contrast to these methods, our 197

proposed method (BiAlign) leverages the models’ 198

preferences for different in-context examples to 199

achieve input preference alignment. 200

3 Methodology 201

3.1 Problem Setting 202

Given a training set Dtrain consisting of a set of 203

source tasks T src, the goal of ICL alignment is to 204

align the ICL ability of a student model S with that 205

of a teacher model T. Upon successful alignment, 206

the model S is expected to show improved ICL 207

ability on a held-out set of target tasks T tgt. We 208

divide the whole process into two stages, as 209

illustrated in Figure 2. 210

• Upstream ICL alignment on T src: In this 211

alignment stage, the model has access to T src. 212

We formalize samples in Dtrain in the k-shot 213

ICL format {X̂i = (x1, y1), ..., (xk, yk), (x̂i, ŷi)}, 214

where (xj , yj), 1 ≤ j ≤ k denotes the k 215

demonstration examples and (x̂i, ŷi) is the test 216

sample. We concatenate these examples to form an 217

ICL training sample X̂i. We then align the student 218

model S with the teacher model T on this formatted 219

ICL data. 220

• Downstream ICL evaluation on T tgt: Follow- 221

ing the upstream ICL alignment stage, we evaluate 222

the ICL ability of the aligned model S∗ on T tgt, 223

where T tgt has no overlap with T src. For every 224

target task Tk, we evaluate the model performance 225

using both the default ICL demonstrations, as per 226
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convention, and their variants.227

3.2 Bidirectional Alignment (BiAlign)228

Based on the finding that the performance of229

ICL is highly sensitive to the selection of230

demonstration examples (Zhao et al., 2021), we231

propose Bidirectional Alignment (BiAlign) to fully232

leverage the models’ preferences for different233

demonstration examples with the goal of improving234

the ICL ability of the student model. Our approach235

is illustrated in Figure 3.236

Aligning Token-level Distributions Given the237

ICL training examples in the concatenated form238

{X̂i = (x1, y1), ..., (xk, yk), (x̂i, ŷi)} as discussed239

above, to achieve token-level output distribution240

alignment on X̂i, we minimize a KL divergence241

loss between the student model and teacher model242

for the whole sequence instead of only ŷi following243

Gu et al. (2024).3 More formally,244

LKL =
∑m

i=1

∑t
j=1DKL(Pj(V|X̂i, θT )||Pj(V|X̂i, θS))

(1)245

where m is the number of ICL training samples246

in Dtrain, t is the number of tokens in X̂i, V is the247

models’ common vocabulary of tokens; θT and θS248

are the parameters of the teacher model and the249

student model, respectively.250

Aligning Preferences for Demonstrations In-251

tuitively, for the student and teacher models to252

be well-aligned, the demonstrations preferred by253

the teacher model should also be preferred by the254

student, i.e., to truly emulate the teacher model,255

the student needs to learn “what to output” as256

well as “which input demonstrations should be257

preferred” in order to generate high-quality outputs.258

This is similar in spirit to the scenario where a259

reward model is trained to align with preferences260

over model responses given by human experts261

(Ouyang et al., 2022). To this end, we introduce262

input preference alignment to align the student263

and teacher models’ preferences for different264

demonstrations.265

For simplicity, let Ri = {(x1, y1), ..., (xk, yk)}266

denote the k-shot demonstrations in each ICL train-267

ing sample X̂i = (x1, y1), ..., (xk, yk), (x̂i, ŷi).268

To rank the model’s preferences for different269

demonstration examples, we first need to obtain270

a set Drank = {Rij , (x̂i, ŷi)}Nj=1, where Rij is271

3Training on the whole sequence can ensure a large number
of tokens in a batch, which is crucial to maintaining the basic
in-weights capability (Chan et al., 2022).

a subset of Ri and N is the number of subsets 272

considered for ranking. Modeling on the full subset 273

space of Ri can be computationally prohibitive as 274

it grows exponentially with |Ri|. Therefore, we 275

set N ≪ |P(Ri)|, where P(Ri) is the power set 276

of Ri. Zhao et al. (2024) highlights the impact of 277

similar examples in the demonstrations. Building 278

on this insight, we categorize all demonstrations 279

in Ri into two groups, namely Gsim and Gdissim, 280

based on their similarity to the test example (x̂i, ŷi) 281

(see Appendix A.1 for details). Subsequently, 282

we sample N subsets from P(Ri) with different 283

numbers of similar examples. 284

We use both the student and teacher models 285

to measure their preferences for each subset Rij , 286

which we estimate using the prediction probability 287

of ŷi given Rij and x̂i as input:4 288

QT(Rij) = P (ŷi|Rij , x̂i, θT );Q
S(Rij) = P (ŷi|Rij , x̂i, θS)

(2) 289

where QT and QS are the preference scores 290

of the teacher and student models, respectively. 291

Intuitively, the more helpful the subset Rij is for 292

generating the target ŷi, the more the model prefers 293

this subset. 294

To align the preferences of the student and 295

teacher models for different subsets, we introduce 296

a novel ranking loss: 297

Lrank =

m∑
i=1

∑
R+,R−∈Rall

i

max{0,

logQS(R−)− logQS(R+)

maxR′∈Rall
i
logQS(R′)−minR′∈Rall

i
logQS(R′)︸ ︷︷ ︸

Left

+
1

N − 1
(rank(QT(R−))− rank(QT(R+)))︸ ︷︷ ︸

Right

}

(3) 298

where Rall
i = {Rij}Nj=1 contains all subsets 299

sampled for the test example (x̂i, ŷi), (R+, R−) 300

refers to the pair of positive and negative subsets 301

determined by the preference score of the teacher 302

model (the subset with the higher preference score 303

is considered as the positive one), and rank() 304

stands for the function that measures the relative 305

ranking of subset scores which ranges from 1 (most 306

preferred) to N (least preferred). The left part of 307

Lrank measures the difference in preference scores 308

of the student model for the pair (R+,R−) and the 309

4Under the assumption that the prior P (Rij |x̂i, θ) is
uniform, it is easy to show using the Bayes rule: Q(Rij) ∝
P (Rij |ŷi, x̂i, θ) =

P (ŷi|Rij ,x̂i,θ)P (Rij |x̂i,θ)∑
j P (ŷi|Rij ,x̂i,θ)P (Rij |x̂i,θ)
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Figure 3: Illustration of our Bidirectional Alignment (BiAlign) framework. It attains token-level output distribution
alignment by minimizing the KL divergence loss between the student and teacher models on the constructed ICL
samples. Furthermore, after sampling several subsets from the set of all demonstrations, it optimizes a ranking loss
for input preference alignment to align the student and teacher models’ preferences for different demonstration
examples.

right part reflects the relative ranking difference310

between R+ and R− (see more analysis of Lrank in311

Section 5.2). Therefore, Lrank allows the student312

model to obtain more fine-grained supervision313

from the teacher model by matching the relative314

ranking of their preference scores for different315

demonstration examples in ICL.316

The overall loss that BiAlign optimizes for317

alignment is: L = LKL + λLrank, where λ is the318

weight of the ranking loss. Besides, we illustrate319

the whole learning process in Appendix A.2.320

4 Experimental Setup321

In this section, we first describe the tasks and322

datasets, and then introduce methods compared323

in our work.324

4.1 Tasks and Datasets325

In this work, we use CrossFit (Ye et al., 2021),326

a large and diverse collection of few-shot tasks327

covering various types including classification,328

question answering and generation, as the source329

tasks T src (see Appendix A.3 for details of source330

tasks). For each task in CrossFit, we combine the331

original training and validation data as the new332

training data which is then randomly partitioned333

into a set of ICL samples with 4 ≤ k ≤ 10334

demonstration examples. For each ICL example, 335

we sample N = 4 subsets from the set of all 336

demonstrations for calculating the ranking loss. 337

After the preprocessing, we obtain 12K ICL 338

examples in total. 339

We evaluate the ICL performance of the 340

aligned model on 5 target tasks spanning language 341

understanding, symbolic reasoning, mathematical 342

reasoning, logical reasoning, and coding: MMLU 343

(Hendrycks et al., 2021), BBH (Suzgun et al., 344

2022), GSM8K (Cobbe et al., 2021), LogiQA (Liu 345

et al., 2020) and HumanEval (Chen et al., 2021). 346

Note that there is no overlap between CrossFit 347

and target tasks, and we obtain all outputs from 348

the models using greedy decoding following Xu 349

et al. (2023b). For each target task, we perform 350

evaluations three times using different prompts 351

and report the average results. Details of different 352

target tasks and implementation are provided in 353

Appendix A.4 and A.5, respectively. 354

4.2 Methods Compared 355

We mainly experiment with Llama 2-7B (Touvron 356

et al., 2023) as the student model and Llama 2-13B 357

or 70B as the teacher model. For Llama 2-70B, 358

we use the quantized version TheBloke/Llama- 359

2-70B-GPTQ (TheBloke, 2023) due to resource 360
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Method MMLU BBH GSM8K LogiQA HumanEval Average

No Alignment Baselines
Vanilla 45.4±0.6 39.5±0.5 15.2±0.3 30.3±0.4 14.6±0.4 29.0±0.3
FT 46.4±0.5 39.8±0.5 15.6±0.4 31.7±0.3 14.2±0.4 29.5±0.4
C-Pretrain 46.0±0.4 38.5±0.6 15.9±0.4 31.4±0.4 13.4±0.5 29.0±0.4

Llama 2-13B Teacher
Teacher 55.3±0.5 47.8±0.4 27.8±0.3 37.8±0.4 18.3±0.3 37.4±0.3
Output-Align 46.3±0.4 39.3±0.4 15.4±0.2 32.2±0.3 14.0±0.2 29.4±0.2
BiAlign 47.5±0.4 41.0±0.3 16.8±0.3 33.9±0.4 15.6±0.4 31.0±0.3

Llama 2-70B Teacher
Teacher 67.2±0.6 64.2±0.4 53.3±0.4 48.0±0.5 26.8±0.4 51.9±0.4
Output-Align 47.1±0.5 39.8±0.4 16.4±0.3 33.2±0.3 14.6±0.4 30.2±0.3
BiAlign 49.5±0.3 43.2±0.5 18.3±0.4 35.7±0.4 16.6±0.3 32.7±0.3

Table 1: Performance (%) of different methods on 5 target tasks. We use Llama 2-7B as a student and Llama 2-13B
or 70B as a teacher model. The rows with “Teacher" (grey) indicate the corresponding teacher model’s performance
on the target tasks. Bold indicates the best result for Llama 2-7B (student). BiAlign is consistently better than all
previous baselines.

constraints. We compare BiAlign with the361

following methods:362

• Vanilla simply evaluates the ICL performance363

of the student model on target tasks without any364

alignment, serving as the baseline for all other365

approaches.366

• Fine-tuning (FT) tunes the student model on the367

12K ICL examples constructed from CrossFit368

using a multi-task learning scheme, which is369

indeed the meta-training in Min et al. (2022a).370

• Continual Pretraining (C-Pretrain) simply371

performs continual pretraining, i.e., next token372

prediction for the whole sequence, of the student373

model on the 12K samples.374

• Output Alignment (Output-Align) trains the375

student model to align token-level output376

distributions with the teacher model (Huang et al.,377

2023b; Gu et al., 2024).378

Additionally, we show the connection between379

BiAlign and In-Context Pretraining (Shi et al.,380

2024) in Section 5.2, and discuss how BiAlign can381

be integrated with the latest ICL demonstration382

selection methods or reverse KL divergence in383

Appendix A.6 and A.7.384

5 Results and Analysis385

5.1 Main Results386

Table 1 shows the performance scores of different387

methods on all investigated target tasks. From the388

results, we can observe that389

ASDiv SVAMP GSM8K AQUA-RAT

Vanilla 46.6 41.2 15.2 24.4
BiAlign 49.4 43.5 16.8 27.2

Relative Gain 6.0 5.6 10.5 11.5

Table 2: Relative gain (%) of BiAlign on math reasoning
tasks of varying difficulty levels.

• Our proposed BiAlign consistently outperforms 390

baseline approaches on all datasets with different 391

sizes of teacher models, demonstrating its 392

superiority. Simply pretraining the model on 393

source tasks does not improve the average 394

performance since there is no overlap between 395

source and target tasks. While fine-tuning 396

brings marginal improvement, token-level output 397

distribution alignment with a stronger (70B) 398

teacher model can achieve better performance. 399

Thanks to incorporating input preference alignment 400

(see Section 5.2 for analysis of computational 401

overhead), BiAlign yields about 2.0% performance 402

boost on average when using a 13B teacher model, 403

and this gain is 3.7% for a 70B teacher. Besides, 404

when examining the effects of scaling up the 405

teacher model, the performance of BiAlign sees 406

an improvement on all tasks. 407

• In particular, BiAlign using a 13B teacher 408

model achieves relative performance improvements 409

of 11.9% on LogiQA and 10.5% on GSM8K 410

compared with Vanilla, while using the 70B 411

teacher, it achieves 17.8% on LogiQA and 20.4% 412

on GSM8K. These results indicate that BiAlign can 413

better improve the performance of tasks requiring 414

more fine-grained reasoning; see appendix A.21 for 415

an example in LogiQA. This is because BiAlign 416
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Method 7B 13B

Output-Align 30.2 38.8
BiAlign 32.7 40.9

Table 3: Average results (%) of Output-Align and
BiAlign with different sizes of student models (Llama
2-70B as the teacher).

Method Vanilla FT C-Pretrain Output-Align BiAlign

Llama 3-8B 60.4 61.0 60.5 61.7 63.9
Phi-3-mini (3.8B) 66.7 67.1 66.5 67.4 69.1

Table 4: Average results (%) across 5 tasks of all
methods with two different backbones. We use Llama
3-70B as the teacher for Llama 3-8B and Phi-3-medium
(14B) as the teacher for Phi-3-mini (3.8B).

allows the student model to obtain more fine-417

grained supervision from the teacher model by fully418

leveraging their preferences for different inputs.419

To better support our claim, we further conduct420

experiments on four mathematical reasoning tasks421

ranging from low to high difficulty: ASDiv (Miao422

et al., 2020), SVAMP (Patel et al., 2021), GSM8K423

(Cobbe et al., 2021), and AQUA-RAT (Ling et al.,424

2017a). The comparison between BiAlign and425

Vanilla, as illustrated in Table 2, demonstrates426

that BiAlign is indeed more beneficial for more427

complex reasoning tasks.428

• Both fine-tuning and output alignment429

sometimes hurt the zero-shot learning capability430

of the model as shown by the performance on431

HumanEval. In contrast, BiAlign brings an432

average relative improvement of about 10.3% on433

HumanEval. We speculate that this is due to the434

subset sampling in input preference alignment,435

which helps the model generalize better to the436

unseen zero-shot setting.437

5.2 Analysis438

Larger Student Model We further experiment439

with a larger student model to verify the440

effectiveness of BiAlign. Specifically, we use441

Llama 2-13B as the student model and Llama442

2-70B as the teacher model. We employ443

QLoRA (Dettmers et al., 2023) to fine-tune the444

student model with consideration of computational445

resource limitations. The results averaged over the446

5 tasks are reported in Table 3, which demonstrate447

the consistent superiority of BiAlign across model448

scales.449

Different Backbone Models Our experiments450

and analysis so far use Llama 2 as the backbone451

Default Variant

BiAlign 31.0 30.5

Table 5: Average results (%) of BiAlign with different
ranking loss formulations.
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Figure 4: Preference score consistency (%) of different
methods.

model. To verify whether the performance gain 452

of BiAlign is consistent across different backbone 453

models, we extend the experiments to Llama 3 454

(Dubey et al., 2024) and Phi 3 (Abdin et al., 455

2024). For Llama 3, we use the 8B model as the 456

student and the 70B model as the teacher. For 457

Phi 3, we use Phi-3-mini (3.8B) as the student 458

and Phi-3-medium (14B) as the teacher. From the 459

average results shown in Table 4, we can see that 460

BiAlign still outperforms all baseline approaches 461

when using other language models as the backbone, 462

showing its robustness to model types. In addition, 463

we show the scalability of BiAlign across more 464

model scales using Qwen-2.5 (Yang et al., 2024) in 465

Appendix A.8. 466

Comment on Training-time Computational 467

Overhead Smaller models are a preferred choice 468

for resource-constrained deployments, where the 469

inference cost matters the most. BiAlign does 470

not introduce any additional cost during inference. 471

The additional computational overhead only occurs 472

once during model training. To quantify the 473

increase in computational overhead caused by the 474

ranking loss, we use DeepSpeed Flops Profiler 475

(Rasley et al., 2020) to calculate the training FLOPs 476

of Output-Align and BiAlign, which are 3.3×1017 477

and 7.6×1017 respectively (about 2.3 times). 478

Therefore, we further design two experiments to 479

compare BiAlign and Output-Align under the same 480

training FLOPs: (i) we combine the original ICL 481

training examples with the sampled subset data 482

and conduct Output-Align on the combined data 483

(roughly the same FLOPs as BiAlign), which 484

performs (29.5) similarly to the original Output- 485

7



Align method (29.4), verifying the superiority of486

BiAlign; (ii) we reduce the training epochs of487

BiAlign from 4 to 2 (roughly the same FLOPs488

as Output-Align) and assess the final checkpoint.489

There is no significant performance degradation490

(from 31.0 to 30.8), which also demonstrates that491

BiAlign can outperform baselines under the same492

training FLOPs.493

Different Ranking Loss Formulations In the494

right part of Equation 3, we employ the rank()495

function to represent the relative ranking of the496

model’s preference scores instead of relying on497

the scores themselves. This approach is grounded498

in the idea that the primary objective of input499

preference alignment is to match the rankings500

of the subset scores, rather than their specific501

values. By focusing on rankings, we can reduce the502

impact of potential variations in score magnitudes,503

allowing the model to prioritize the relative ranking504

of preferences. We further conduct experiments505

with an alternative ranking loss formulation that506

does not incorporate rank(), while maintaining all507

other implementation details. The average results508

reported in Table 5 underscore the importance of509

using rank() for alignment.510

Connection with In-Context Pretraining Shi511

et al. (2024) propose In-Context Pretraining (ICP)512

which pretrains language models on a sequence of513

related documents. BiAlign mainly differs from it514

in the following two aspects: (i) ICP focuses on515

the pretraining stage while BiAlign is specifically516

designed for more lightweight supervised fine-517

tuning. (ii) The objective of ICP is to design more518

effective pretraining data. In contrast, BiAlign519

leverages distillation to improve the capabilities520

of the student model. Therefore, BiAlign can be521

seamlessly integrated with ICP to further improve522

the ICL ability.523

Effect of Demonstration Numbers As men-524

tioned in Section 4.1, each constructed ICL training525

sample contains 4 ≤ k ≤ 10 demonstration526

examples, which could enhance the model’s527

ability to generalize to different numbers of528

demonstrations. To investigate the effect of529

demonstration numbers in source tasks, we further530

conduct training on examples containing a fixed531

number k ∈ {5, 8, 10} of demonstrations. The532

average results of the 5 target tasks are reported533

in Table 6. We can see that training with a fixed534

number of demonstrations results in performance535

Method Demonstration number

Default (4 ≤ k ≤ 10) 5 8 10

BiAlign 31.0 30.8 30.4 30.5

Table 6: Average results (%) of BiAlign with different
k (demonstration number) for constructed ICL training
samples.

degradation to a certain degree, justifying our 536

training set construction strategy. 537

Preference Score Consistency As illustrated 538

in Section 3.2, Lrank enables the student model 539

to match the relative ranking of the preference 540

scores for different ICL demonstrations with that 541

of the teacher model. To verify this, we report the 542

preference score consistency comparison between 543

BiAlign and Output-Align in Figure 4. Specifically, 544

we randomly select 500 examples from MMLU 545

(see results on other datasets in Appendix A.9). 546

For each example, we randomly sample 5 subsets 547

from the set of all demonstrations and obtain 548

their preference scores using different models. 549

The preference score consistency of different 550

methods is then calculated as the proportion of the 551

highest/lowest scoring subsets that are consistent 552

between the corresponding student model and 553

the teacher model. From the results, we can 554

see that BiAlign can indeed achieve much higher 555

preference score consistency than Output-Align, 556

indicating the effectiveness of Lrank. 557

In addition, for interested readers, we show 558

further justification of input preference alignment, 559

more cross-task generalization experiments, the 560

results with different subset sampling methods, 561

different numbers of subsets and different source 562

task selections, the analysis of KL divergence 563

calculation, training steps and additional training 564

data, the influence of ranking loss weight, the 565

effect of contrastive pair selection, and a case 566

study of model output in Appendix A.10 ∼ A.20, 567

respectively. 568

6 Conclusion 569

In this work, we have introduced Bidirectional 570

Alignment (BiAlign) that can improve the ICL 571

capabilities of student models by aligning the 572

input preferences between student and teacher 573

models in addition to aligning the token-level 574

output distributions. Extensive experimental 575

results and analysis show that BiAlign consistently 576

outperforms previous baseline approaches. 577
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Limitations578

As the first work on input preference alignment,579

one limitation of our paper is the additional580

computational overhead introduced by the ranking581

loss. A further improvement could be to explore582

more efficient input alignment methods to improve583

the ICL capabilities of student models.584
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Algorithm 1 Learning process of BiAlign

Input: ICL training set DICL = {X̂i =
(x1, y1), ..., (xk, yk), (x̂i, ŷi)}, teacher model θT ,
student model θS , number of subsets N , weight of
ranking loss λ

1: for mini-batch B in DICL do
2: CALCULATE the KL divergence loss LKL

on B using Equation 1
3: for X̂i ∈ B do
4: SAMPLE N subsets {Rij}Nj=1 for the test

sample (x̂i, ŷi)
5: MEASURE preferences QT and QS for

{Rij}Nj=1 using Equation 2
6: end for
7: CALCULATE the ranking loss Lrank on B

using Equation 3
8: UPDATE θS by back-propagating with L =

LKL + λLrank

9: end for

CrossFit MMLU BBH GSM8K LogiQA HumanEval

# Samples 12K 15K 6.5K 8.5K 651 164
# Shot 4∼10 5 3 8 5 0

Table 7: Details of different datasets. # refers to ‘the
number of’. CrossFit (Ye et al., 2021) is used to
construct training data and other tasks are used for
evaluation.

A Appendix1851

A.1 Details of Splitting Groups by Similarity1852

We use Sentence-BERT (Reimers and Gurevych,1853

2019) to obtain contextual representations of the1854

examples and employ cosine similarity to measure1855

the similarity between these representations. Based1856

on the similarity to the test example, we categorize1857

all demonstrations into two groups, Gsim and1858

Gdissim, ensuring an approximately equal split1859

between the two groups (i.e., a 1:1 ratio).1860

A.2 Algorithm1861

The learning process of BiAlign is illustrated in1862

Algorithm 1.1863

A.3 Details of Source Tasks1864

We report the full list of source tasks used in our1865

work in Table 22. All tasks are taken from CrossFit1866

(Ye et al., 2021).1867

A.4 Details of Target Tasks1868

In this work, we construct the in-context learning1869

evaluation suite based on the following datasets:1870

KATE MMR IDS

SelectionVanilla 18.1 17.4 19.2
SelectionBiAlign 20.2 19.3 20.8

Table 8: Integration of BiAlign with ICL demonstration
selection methods.

Output-Align BiAlign

Llama 3-8B 62.5 65.3

Table 9: Integration of BiAlign with reverse KL
divergence.

• MMLU: The MMLU (Massive Multitask Lan- 1871

guage Understanding) benchmark (Hendrycks 1872

et al., 2021) consists of 57 diverse tasks covering 1873

various fields like computer science, history and 1874

law, aiming to evaluate the knowledge obtained 1875

during pretraining. Following its original setup, 1876

we use 5-shot ICL demonstrations for evaluation. 1877

• BBH: The BBH (BIG-Bench Hard) (Suzgun 1878

et al., 2022) includes several types of reasoning 1879

tasks that are believed to be difficult for current 1880

language models. Following the guidelines in 1881

Suzgun et al. (2022), we conduct the evaluation 1882

using 3-shot ICL demonstration examples with 1883

chain-of-thought prompting (Wei et al., 2022b). 1884

• GSM8K: The GSM8K (Cobbe et al., 2021) 1885

dataset encompasses 8.5K grade school math 1886

word problems, aiming to evaluate the multi-step 1887

mathematical reasoning capabilities. We evaluate 1888

the ICL performance on it using 8-shot in-context 1889

examples with chain-of-thought prompting. 1890

• LogiQA: LogiQA (Liu et al., 2020) is a 1891

logical reasoning benchmark sourced from 1892

logical examination papers intended for reading 1893

comprehension. Following Jiao et al. (2023), we 1894

conduct 5-shot evaluation. 1895

• HumanEval: HumanEval (Chen et al., 2021) 1896

consists of 164 programming challenges for 1897

evaluating coding capabilities. We follow the 1898

official zero-shot setting in Chen et al. (2021) to 1899

verify whether bidirectional alignment hurts the 1900

zero-shot learning ability of models. 1901

We summarize the details of all used datasets in 1902

Table 7. 1903

A.5 Implementation Details 1904

Our methods are implemented with the PyTorch 1905

and Transformers library (Wolf et al., 2020). Model 1906
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1.5B 3B 7B 14B

Output-Align 35.2 35.9 36.2 36.7
BiAlign 36.9 38.0 38.8 40.1

Table 10: Results for different teacher model sizes with
a fixed 0.5B student (Qwen-2.5).

0.5B 1.5B 3B 7B

Output-Align 36.7 51.4 59.6 70.9
BiAlign 40.1 54.3 62.7 73.4

Table 11: Results for different student model sizes with
a fixed 14B teacher (Qwen-2.5).

training is conducted utilizing DeepSpeed (Rasley1907

et al., 2020; Rajbhandari et al., 2020) on 4 NVIDIA1908

A100 GPUs. During the training phase, we set1909

the learning rate to 1e−6 and the batch size to1910

64. The weight λ for the ranking loss is set to 1.0.1911

For evaluation, we train the student model on the1912

constructed ICL data for 4 epochs and assess the1913

final checkpoint.1914

A.6 Combination with ICL Demonstration1915

Selection Methods1916

BiAlign is complementary to ICL demonstration1917

selection methods and can be seamlessly integrated1918

with them to further improve ICL performance. To1919

validate this, we investigate three demonstration1920

selection methods: KATE (Liu et al., 2022), MMR1921

(Ye et al., 2023), and IDS (Qin et al., 2024).1922

For each method, we evaluate the following two1923

variants: selecting demonstrations and performing1924

ICL using the vanilla model (SelectionVanilla), and1925

selecting demonstrations and performing ICL using1926

the model after BiAlign (SelectionBiAlign). We1927

conduct experiments on GSM8K and report the1928

results in Table 8, demonstrating that BiAlign1929

consistently boosts performance across all three1930

selection methods. Furthermore, BiAlign (18.3)1931

surpasses both KATE (18.1) and MMR (17.4),1932

highlighting its superiority over several ICL1933

demonstration selection approaches.1934

A.7 Combination with Reverse KL1935

Divergence1936

Gu et al. (2024) reveals that reverse KL divergence1937

is more suitable for knowledge distillation in1938

generative LLMs, as it helps prevent the student1939

model from overestimating low-probability regions1940

of the teacher’s distribution. Building on this1941

insight, we investigate the integration of BiAlign1942

Vanilla Output-Align BiAlign

BBH 31.4 33.8 45.3
GSM8K 24.7 28.4 38.6
LogiQA 29.1 32.3 44.7

Table 12: Average preference score consistency (%)
comparison between different methods.

Output-Align BiAlign

BBH 40.2 43.3

Table 13: Performance on BBH for models trained on
MMLU.

with reverse KL divergence. Specifically, we 1943

replace the forward KL divergence in both Output- 1944

Align and BiAlign with reverse KL divergence 1945

and conduct experiments using Llama 3-70B as 1946

the teacher model and Llama 3-8B as the student 1947

model. As shown in Table 9, BiAlign continues 1948

to significantly outperform Output-Align with 1949

reverse KL divergence, further demonstrating its 1950

effectiveness. 1951

A.8 Scalability to More Model Scales 1952

We investigate the scalability of BiAlign across 1953

different model scales using Qwen-2.5 (Yang et al., 1954

2024). Specifically, we conduct experiments on 1955

five model scales: 0.5B, 1.5B, 3B, 7B, and 14B. 1956

Our evaluation follows two settings: (i) Varying 1957

teacher model sizes: We fix the student model at 1958

0.5B and experiment with teacher models ranging 1959

from 1.5B to 14B. (ii) Varying student model sizes: 1960

We fix the teacher model at 14B and test student 1961

models ranging from 0.5B to 7B. The results for 1962

both settings are presented in Table 10 and 11, 1963

respectively. We can see that: 1964

• BiAlign consistently outperforms Output-Align 1965

with different sizes of teacher models. 1966

• BiAlign benefits more from increasing the size of 1967

the teacher model compared to Output-Align. 1968

• BiAlign is both applicable and robust across 1969

student models of different sizes. 1970

A.9 Average Preference Score Consistency 1971

We report the average preference score consistency 1972

(%) comparison between different methods on the 1973

other three datasets (BBH, GSM8K and LogiQA) 1974

in Table 12. From the results, we can see that 1975

BiAlign consistently outperforms Output-Align 1976

across all datasets. 1977
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Default Variant

BiAlign 31.0 30.3

Table 14: Comparison between different subset
sampling methods.

Method Subset number

3 4 5 6

BiAlign 30.7 31.0 30.8 31.1

Table 15: Average performance (%) of BiAlign with
different numbers of subsets N .

A.10 Further Justification of Input Preference1978

Alignment1979

We outline the justification for input preference1980

alignment from the following perspectives.1981

(i) Impact of ICL Demonstrations on Model1982

Performance. ICL demonstrations have been1983

shown to have a significant impact on the1984

performance of ICL (Liu et al., 2022; Qin et al.,1985

2024). Selecting different sets of demonstration1986

examples can yield performance ranging from1987

almost random to better than state-of-the-art fine-1988

tuned models, indicating that the model has1989

different preferences for different inputs. For the1990

student and teacher models to be well-aligned, the1991

demonstrations preferred by the teacher model1992

should also be preferred by the student, i.e., to1993

truly emulate the teacher model, the student1994

model needs to learn “what to output” as well1995

as “which input examples should be preferred”.1996

This is closely related to preference learning in1997

RLHF, where the reward model learns "which1998

outputs should be preferred". After learning, a well-1999

trained reward model can rank model responses2000

with expertise comparable to humans. To this end,2001

we introduce input preference alignment to align2002

the student and teacher models’ preferences for2003

different demonstrations.2004

(ii) Explanatory Mechanisms of ICL. Another2005

perspective supporting input preference alignment2006

stems from the way LLMs process and prioritize2007

information during ICL. Kossen et al. (2024)2008

discover that LLMs do not treat all available2009

information equally; instead, they exhibit a natural2010

tendency to prioritize information closer to the2011

query. This selective attention mechanism suggests2012

that LLMs inherently favor contextually relevant2013

details over more distant or less relevant ones.2014
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Figure 5: Average performance (%) of BiAlign with
different numbers of source tasks.

Method Type

Whole Sequence Label Only

BiAlign 31.0 30.8

Table 16: Average performance (%) of BiAlign using
different types of KL divergence calculation methods.

Building on this insight, our proposed input 2015

preference alignment ensures that the student 2016

model learns to replicate the teacher model’s 2017

information prioritization strategy. By aligning 2018

the student’s input selection process with that 2019

of the teacher, we make the learning process 2020

more effective. This joint alignment ultimately 2021

enables the student model to utilize information 2022

in a manner consistent with the teacher model’s 2023

intrinsic preferences, thereby improving its overall 2024

ICL performance. 2025

A.11 More Cross-Task Generalization 2026

Experiments 2027

To further verify the cross-task generalization 2028

ability of BiAlign, we train the model on MMLU 2029

and evaluate it on BBH. Specifically, we use Llama 2030

2-7B as the student model and Llama 2-70B as the 2031

teacher model. The results reported in Table 13 2032

highlight the superiority of BiAlign over Output- 2033

Align. 2034

A.12 Different Subset Sampling Methods 2035

To investigate the influence of subset sampling 2036

methods, we replace the original method with 2037

‘Randomly sample N subsets’ which does not 2038

consider similarity. The comparison between the 2039

two methods is shown in Table 14. We can observe 2040

a noticeable performance drop, highlighting the 2041

crucial role of incorporating example similarity in 2042

the sampling process. 2043
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Method 25% 50% 100%

Output-Align 29.1 29.3 29.4
BiAlign 30.3 30.8 31.0

Table 17: Comparison between BiAlign and Output-
Align at different proportions of training steps.

A.13 Different Numbers of Subsets2044

While we use N = 4 subsets for calculating the2045

ranking loss, we also evaluate the effectiveness2046

of BiAlign with different N . Specifically, we2047

conduct controlled experiments with {3, 5, 6}2048

subsets and report the average results of the2049

5 target tasks in Table 15. We can observe2050

that increasing the number of subsets does not2051

always improve performance. BiAlign achieves2052

the best performance (31.1) with 6 subsets and the2053

performance with 4 subsets (31.0) is comparable.2054

Besides, all variants consistently outperform2055

baseline methods in Table 1, demonstrating the2056

effectiveness of our designed input preference2057

alignment.2058

A.14 Different Source Task Selections2059

We hypothesize that the diversity of source2060

tasks has a considerable influence on target task2061

performance. To verify this, we study the effect2062

of the number of source tasks by conducting2063

controlled experiments on {50, 100} randomly2064

selected source tasks. From the results in Figure 5,2065

we can observe that the performance of BiAlign2066

keeps improving as the number of source tasks2067

increases, indicating the importance of source task2068

diversity.2069

A.15 Whole Sequence vs. Label Only2070

To maintain the basic in-weights capability of the2071

student model, we minimize the KL divergence2072

loss for the whole sequence instead of only the2073

label following Gu et al. (2024). In Table 16, we2074

show the performance comparison between using2075

the whole sequence and using only the label. We2076

can see that using the whole sequence also results2077

in slightly better average performance.2078

A.16 Different Proportions of Training Steps2079

Table 17 reports the performance comparison2080

between BiAlign and Output-Align at different2081

proportions (roughly 25%, 50%, and 100%) of2082

training steps. We can observe that BiAlign2083

consistently outperforms Output-Align at different2084

Method λ

0.2 0.5 1.0 2.0 5.0

BiAlign 30.8 31.2 31.0 30.9 29.9

Table 18: Average performance (%) of BiAlign with
different λ for the ranking loss Lrank.

Method Pair number

3 4 5 All (6)

BiAlign 30.2 30.8 30.7 31.0

Table 19: Average results (%) of BiAlign with different
numbers of contrastive pairs.

steps. 2085

A.17 Additional Training Data 2086

The analysis in Section 5.2 shows that conducting 2087

Output-Align on the combination of the original 2088

ICL training examples and the sampled subset 2089

data achieves similar performance to the original 2090

Output-Align method. We further experiment 2091

with the fine-tuning approach. However, the 2092

performance becomes even worse (from 29.5 2093

to 29.3), once again demonstrating that simply 2094

increasing training data does not necessarily lead 2095

to better performance. 2096

A.18 Ranking Loss Weights 2097

To further investigate the influence of the ranking 2098

loss Lrank (Equation 3), we conduct experiments 2099

with different weights λ and report the results in 2100

Table 18. All variants except the variant with λ = 2101

5.0 (too large) outperform baseline approaches by 2102

a large margin, which demonstrates the superiority 2103

of Lrank. 2104

A.19 Contrastive Pair Selection 2105

While we use all C(N, 2) (N = 4 is the number of 2106

subsets) pairs of positive and negative subsets for 2107

input preference alignment, we also investigate the 2108

effect of contrastive pair selection. Specifically, 2109

we conduct controlled experiments on {3, 4, 5} 2110

randomly selected contrastive pairs and report the 2111

average results in Table 19. The best performance 2112

is achieved using all pairs, justifying our selection 2113

strategy. 2114

A.20 Case Study 2115

We select GSM8K as a representative task and 2116

show several examples of output in Table 20. 2117
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Compared with Vallina, BiAlign is able to generate2118

more precise and fine-grained reasoning paths, e.g.,2119

BiAlign can successfully understand the meaning2120

of ‘pair’ and generate the rationale ‘10 pairs of2121

socks is 10 * 2 = 20 socks’ while Vallina fails to do2122

so.2123

A.21 Example in LogiQA2124

We show the reasoning path required to solve a2125

sample in LogiQA in Table 21, which is quite fine-2126

grained.2127
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Answer the following questions.
Few-shot demonstrations
Question: Lindsay is doing the laundry, and thinks she has missed some socks. There are 50 socks that need washing. If
she washes 10 pairs of socks and 15 loose socks, how many socks has Lindsay missed?
Answer:

Vanilla: Lindsay started with 50 socks. She washed 10 pairs of socks and 15 loose socks. So she had 50 - 10 - 15 = 25
socks left. So the answer is 25. ✗

BiAlign: Lindsay started with 50 socks. She washed 10 pairs of socks and 15 loose socks. 10 pairs of socks is 10 * 2 = 20
socks. 15 loose socks is 15 * 1 = 15 socks. So she missed 50 - 20 - 15 = 15 socks. So the answer is 15. ✓

Table 20: Output examples of Vanilla and BiAlign on GSM8K. The upper part is the input to LLMs, including
few-shot demonstrations, and the lower part is the generated response. We color correct outputs in green and wrong
outputs in red.

Context: There is no doubt that minors should be prohibited from smoking. However, we cannot explicitly ban the use of
automatic cigarette vending machines in order to prevent minors from smoking. This ban is just like setting up roadblocks
on the road to prohibit driving without a license. These roadblocks naturally prohibit driving without a license, but also
block more than 99% of licensed drivers.
Question: In order to evaluate the above argument, which of the following questions is the most important?
Options:
A: Does the proportion of underage smokers in the total number of smokers exceed 1%?
B: How much inconvenience does the ban on the use of automatic vending machines bring to adult cigarette buyers?
C: Whether the proportion of unlicensed drivers in the total number of drivers really does not exceed 1%?
D: Is the harm of minor smoking really as serious as the public thinks?

Reasoning path:
To evaluate the argument effectively, the focus should be on understanding the impact and justification of the proposed ban
on cigarette vending machines, especially in the context of preventing minors from smoking. The argument draws a
parallel between the proposed ban and the hypothetical scenario of setting up roadblocks to prevent driving without a
license, suggesting that while the measure may target a minority (in this case, underage smokers or unlicensed drivers), it
disproportionately inconveniences the majority (licensed drivers or adult smokers).

The most important question to evaluate the argument is: B: How much inconvenience does the ban on the use of
automatic vending machines bring to adult cigarette buyers?

This option directly addresses the central issue of the argument—the balance between the inconvenience caused to
the majority by the ban and the intended benefit of preventing a minority (minors) from engaging in harmful behavior
(smoking). It’s critical to assess whether the inconvenience to adult smokers (who are the majority of cigarette consumers)
is justified by the potential benefits of reducing underage smoking. The comparison with roadblocks for unlicensed drivers
emphasizes the argument’s concern with the proportionality and fairness of broad preventive measures.

Option A concerns the proportion of underage smokers but doesn’t directly address the balance of convenience versus
benefit. Option C relates to the analogy used but does not directly help in evaluating the effectiveness and appropriateness
of the vending machine ban. Option D questions the severity of the problem (minor smoking) but does not specifically
help in assessing the argument’s concern about the consequences of the ban on the majority.

Therefore, understanding the extent of inconvenience to adult smokers is crucial in determining whether the proposed
solution is proportionate and justified, making Option B the most relevant and important question for evaluating the
argument.

Table 21: Reasoning path for an example in LogiQA.
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Task Name Reference

eli5-eli5 (Fan et al., 2019)
ethos-race (Mollas et al., 2020)
tweet_qa (Xiong et al., 2019)
tweet_eval-stance_hillary (Barbieri et al., 2020)
piqa (Bisk et al., 2020)
acronym_identification (Pouran Ben Veyseh et al., 2020)
wiki_split (Botha et al., 2018)
scitail (Khot et al., 2018)
emotion (Saravia et al., 2018)
medical_questions_pairs (McCreery et al., 2020)
blimp-anaphor_gender_agreement (Warstadt et al., 2020)
sciq (Welbl et al., 2017)
paws (Zhang et al., 2019)
yelp_review_full (Zhang et al., 2015); (link)
freebase_qa (Jiang et al., 2019)
anli (Nie et al., 2020)
quartz-with_knowledge (Tafjord et al., 2019b)
hatexplain (Mathew et al., 2020)
yahoo_answers_topics (link)
search_qa (Dunn et al., 2017)
tweet_eval-stance_feminist (Barbieri et al., 2020)
codah (Chen et al., 2019)
lama-squad (Petroni et al., 2019, 2020)
superglue-record (Zhang et al., 2018)
spider (Yu et al., 2018)
mc_taco (Zhou et al., 2019)
glue-mrpc (Dolan and Brockett, 2005)
kilt_fever (Thorne et al., 2018)
eli5-asks qa (Fan et al., 2019)
imdb (Maas et al., 2011)
tweet_eval-stance_abortion (Barbieri et al., 2020)
aqua_rat (Ling et al., 2017b)
duorc (Saha et al., 2018)
lama-trex (Petroni et al., 2019, 2020)
tweet_eval-stance_atheism (Barbieri et al., 2020)
ropes (Lin et al., 2019)
squad-no_context (Rajpurkar et al., 2016)
superglue-rte (Dagan et al., 2005)
qasc (Khot et al., 2020)
hate_speech_offensive (Davidson et al., 2017)
trec-finegrained (Li and Roth, 2002; Hovy et al., 2001)
glue-wnli (Levesque et al., 2012)
yelp_polarity (Zhang et al., 2015); (link)
kilt_hotpotqa (Yang et al., 2018)
glue-sst2 (Socher et al., 2013)
xsum (Narayan et al., 2018)
tweet_eval-offensive (Barbieri et al., 2020)
aeslc (Zhang and Tetreault, 2019)
emo (Chatterjee et al., 2019)
hellaswag (Zellers et al., 2019)
social_i_qa (Sap et al., 2019)
kilt_wow (Dinan et al., 2019)
scicite (Cohan et al., 2019)
superglue-wsc (Levesque et al., 2012)
hate_speech18 (de Gibert et al., 2018)
adversarialqa (Bartolo et al., 2020)
break-QDMR (Wolfson et al., 2020)
dream (Sun et al., 2019)
circa (Louis et al., 2020)
wiki_qa (Yang et al., 2015)
ethos-directed_vs_generalized (Mollas et al., 2020)
wiqa (Tandon et al., 2019)
poem_sentiment (Sheng and Uthus, 2020)
kilt_ay2 (Hoffart et al., 2011)
cosmos_qa (Huang et al., 2019)
reddit_tifu-title (Kim et al., 2019)
superglue-cb (de Marneffe et al., 2019)
kilt_nq (Kwiatkowski et al., 2019)
quarel (Tafjord et al., 2019a)
race-high (Lai et al., 2017)
wino_grande (Sakaguchi et al., 2020)
break-QDMR-high-level (Wolfson et al., 2020)
tweet_eval-irony (Barbieri et al., 2020)
liar (Wang, 2017)
openbookqa (Mihaylov et al., 2018)
superglue-multirc (Khashabi et al., 2018)
race-middle (Lai et al., 2017)
quoref (Dasigi et al., 2019)
cos_e (Rajani et al., 2019)
reddit_tifu-tldr (Kim et al., 2019)
ai2_arc (Clark et al., 2018)
quail (Rogers et al., 2020)
crawl_domain (Zhang et al., 2020)
glue-cola (Warstadt et al., 2019)
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Task Name Reference

art (Bhagavatula et al., 2020)
rotten_tomatoes (Pang and Lee, 2005)
tweet_eval-emoji (Barbieri et al., 2020)
numer_sense (Lin et al., 2020a)
blimp-existential_there_quantifiers_1 (Warstadt et al., 2020)
eli5-askh qa (Fan et al., 2019)
ethos-national_origin (Mollas et al., 2020)
boolq (Clark et al., 2019)
qa_srl (He et al., 2015)
sms_spam (Almeida et al., 2011)
samsum (Gliwa et al., 2019)
ade_corpus_v2-classification (Gurulingappa et al., 2012)
superglue-wic (Pilehvar and Camacho-Collados, 2019)
ade_corpus_v2-dosage (Gurulingappa et al., 2012)
tweet_eval-stance_climate (Barbieri et al., 2020)
e2e_nlg_cleaned (Dušek et al., 2020, 2019)
aslg_pc12 (Othman and Jemni, 2012)
ag_news Gulli (link)
math_qa (Amini et al., 2019)
commonsense_qa (Talmor et al., 2019)
web_questions (Berant et al., 2013)
biomrc (Pappas et al., 2020)
swag (Zellers et al., 2018)
blimp-determiner_noun_agreement_with_adj_irregular_1 (Warstadt et al., 2020)
glue-mnli (Williams et al., 2018)
squad-with_context (Rajpurkar et al., 2016)
blimp-ellipsis_n_bar_2 (Warstadt et al., 2020)
financial_phrasebank (Malo et al., 2014)
sick (Marelli et al., 2014)
ethos-religion (Mollas et al., 2020)
hotpot_qa (Yang et al., 2018)
tweet_eval-emotion (Barbieri et al., 2020)
dbpedia_14 (Lehmann et al., 2015)
ethos-gender (Mollas et al., 2020)
tweet_eval-hate (Barbieri et al., 2020)
ethos-sexual_orientation (Mollas et al., 2020)
health_fact (Kotonya and Toni, 2020)
common_gen (Lin et al., 2020b)
crows_pairs (Nangia et al., 2020)
ade_corpus_v2-effect (Gurulingappa et al., 2012)
blimp-sentential_negation_npi_scope (Warstadt et al., 2020)
lama-conceptnet (Petroni et al., 2019, 2020)
glue-qnli (Rajpurkar et al., 2016)
quartz-no_knowledge (Tafjord et al., 2019b)
google_wellformed_query (Faruqui and Das, 2018)
kilt_trex (Elsahar et al., 2018)
blimp-ellipsis_n_bar_1 (Warstadt et al., 2020)
trec (Li and Roth, 2002; Hovy et al., 2001)
superglue-copa (Gordon et al., 2012)
ethos-disability (Mollas et al., 2020)
lama-google_re (Petroni et al., 2019, 2020)
discovery (Sileo et al., 2019)
blimp-anaphor_number_agreement (Warstadt et al., 2020)
climate_fever (Diggelmann et al., 2020)
blimp-irregular_past_participle_adjectives (Warstadt et al., 2020)
tab_fact (Chen et al., 2020)
gigaword (Napoles et al., 2012)
glue-rte (Dagan et al., 2005)
tweet_eval-sentiment (Barbieri et al., 2020)
limit (Manotas et al., 2020)
wikisql (Zhong et al., 2017)
glue-qqp (link)
onestop_english (Vajjala and Lučić, 2018)
amazon_polarity (McAuley and Leskovec, 2013)
blimp-wh_questions_object_gap (Warstadt et al., 2020)
multi_news (Fabbri et al., 2019)
proto_qa (Boratko et al., 2020)
wiki_bio (Lebret et al., 2016)
kilt_zsre (Levy et al., 2017)
blimp-sentential_negation_npi_licensor_present (Warstadt et al., 2020)

Table 22: List of all source tasks.
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