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Abstract

Current paradigms for multi-track music generation and assessment notably over-
look two perceptually crucial elements—beat stability and cross-track synchroniza-
tion—despite their demonstrated impact on listener experience. This paper presents
three novel evaluation metrics for multi-track music generation, establishing a com-
prehensive evaluation framework for multi-track music quality compared with
existing standards. Moreover, we propose a synchronous multi-track waveform
generation model, SyncTrack. Experiments demonstrate that SyncTrack achieves
superior performance on both conventional and newly proposed metrics, validating
the effectiveness of our model and the utility of our evaluation framework.

1 Introduction

Multi-track music generation has attracted researchers for its ability to enable individual track editing.
However, beat stability and synchronization are not considered in the evaluation and generation of
multi-track music. Temporal prediction errors caused by irregular beats or inter-track asynchrony
lead to persistent violations of auditory expectations, inducing listener discomfort Mas-Herrero
et al. (2018). Current works assess the quality of multi-track audio generation using the Fréchet
Audio Distance (FAD) merely. FAD is designed to measure the similarity between generated and
reference audio samples by compressing the file into VGGish embeddings Kilgour et al. (2018). Over-
compression of temporal information renders it impossible to assess stability and synchronization.

In this paper, we propose three novel metrics, Inner-track Rhythm Stability (IRS), Cross-track Beat
Synchrony (CBS) and Cross-track Beat Dispersion (CBD) to assess stability and synchronization.
Specifically, IRS evaluates the rhythmic stability of an audio track based on the variance of its beat
intervals. CBS quantifies the proportion of rhythmically aligned beats using a sliding tolerance win-
dow. CBD computes the timing errors between aligned beats, providing a more refined measurement
of beat synchrony. Combining these metrics with FAD enables a more comprehensive and accurate
evaluation of multi-track music generation quality.

Moreover, we propose a synchronous multi-track waveform music generation model named Sync-
Track. To capture cross-track beat synchrony, we design two types of cross-track attention modules: 1)
a cross-track attention module that calculates attention weights across distinct temporal segments and
spectral bands; 2) a time-specific cross-track attention module that calculates attention weights across
spectral bands within specific temporal segments. Intuitively, the time-specific module achieves
finer-grained beat synchronization within localized temporal windows. To facilitate effective model
training, we introduce shared parameters for cross-track knowledge transfer. Additionally, we design
track-specific parameters enabled by conditioning to preserve track uniqueness.

* Equal contribution, † Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI for Music.



2 SyncTrack: Synchronous Multi-track Music Generation Model
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Figure 1: Illustration of Overall Framework of SyncTrack

Overall Framework. As shown in Fig 1, due to the highly structured nature, we compress the audio
data {xs}Ss=1 into latent representation in two steps: 1) audio data to Mel-spectrogram using Short-
Time Fourier Transform (STFT) and a Mel filter bank; 2) Mel-spectrogram to latent representation
using a pre-trained Variational Autoencoder (VAE) Kingma, Welling (2013). The compression
process of s-th track xs is formulated as follows:

zs0 := VAEenc(STFT&MelFB(xs
)) → RC→T→F , (1)

where T and F are the time and frequency bins. Temporal and frequency information are reserved .

We denote SyncTrack as ωω, which utilizes a U-Net backbone to learn the distribution of zs0 from zsl
(l is uniformly sampled from {1, · · · , L}). The training objective is as follows:

L(ω) = Eω↑N (0,I),{zs}Ss=1,l

∥∥∥ε↑ εε({zsl }Ss=1, l)
∥∥∥
2
. (2)

SyncTrack utilizes two designed cross-track attention modules to better capture the relationships
between multiple tracks, enhancing beat synchronization. Besides, we design shared and track-
specific parameters to capture the cross-track common information and track-wise uniqueness.

In the sampling phase, we utilize the trained SyncTrack to approximate the distribution of zs0. Then
the samples ẑs0 are decoded into audio by VAE decoder and HiFi-GANKong et al. (2020) vocoder:

x̂s
= HiFiGAN (VAEdec(ẑ

s
0)) . (3)

More details regarding the architecture of SyncTrack can be referred in Appendix A.

Cross-Track Information Extraction. We leverage the 2D U-Net as the backbone. However, 2D
U-Net only conduct inner-track attention. Thus, we design two types of cross-track attention modules,
named cross-track attention and time-specific cross-track attention.

1) Cross-Track Attention. To capture global synchrony and interactions across tracks, such as
beat alignment and harmonic coordination, we introduce a cross-track attention module. Take the
representation zst,f → RC in the f -th frequency bin, t-th time bin of the s-th track as an example. We
aggregate information from all time bin and frequency bin of all tracks:

Attncross(z
s
t,f ) = Attn(WQzst,f ,W

Kz1:S1:T,1:F ,W
V z1:S1:T,1:F ). (4)

2) Time-Specific Cross-Track Attention. While global cross-track attention enables broad coordina-
tion, finer-grained rhythmic alignment—such as precise beat synchronization—may require context
localized in time. To this end, we introduce a time-specific cross-track attention module, which
computes attention across all tracks and spectral bands for each time step t:

Attntime_cross(z
s
t,f ) = Attn(WQzst,f ,W

Kz1:St,1:F ,W
V z1:St,1:F ). (5)

Here, the query, key, and value are restricted to features at the same time index t, but across all tracks
and frequencies. This mechanism emphasizes beat-level synchronization by allowing the model to
fuse information between instruments in localized temporal windows.

Learnable Instrument Prior. We design a learnable instrument prior to serve as track-specific
parameters. First, we leverage the one-hot vectors V to represent different tracks. Then, we feed the
vectors into SyncTrack as extra input.

ε̂ = SyncTrack({zsl }Ss=1, l, V ). (6)
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V is first encoded via positional encoding Mildenhall et al. (2021) and subsequently transformed by
a two-layer neural network. Finally, the embedding of V is concatenated with time embedding of n.
Our experiments show that it allows for robust generalization and performance improvement.

3 Evaluation Metrics for Rhythmic Stability and Synchronization

To address the rhythmic stability and synchronization issue for multi-track music generation, we
provide three different metrics. These metrics directly capture whether beats are synchronized across
tracks S for all samples N , which provide a reproducible and interpretable way to assess multi-track
music generation results across different methods.

Inner-Track Rhythm Stability (IRS). For music with stable rhythm, beat intervals should remain
consistent within each track. IRS quantifies temporal consistency by averaging standard deviation of
Inter-Beat IntervalDannenberg (1987); Robertson (2012) across all samples for each track s:

IRS = Es,n [std(Isn)] , (7)

where Isn denotes the beat intervals for for the track s in sample n, whose element is defined as time
difference between two consecutive beats.

Cross-Track Beat Synchrony (CBS). CBS measures rhythmic alignment among multiple tracks.
Inspired by the tolerance window concept in beat tracking Dixon (2001), we divide the timeline into
multiple windows and compute the proportion of tracks that contain at least one beat within each
window. Only tracks with non-empty content are considered. CBS is defined as:

CBS = En

[ ∑T
i=1 ri,n∑T

i=1 I(ri,n > 0)

]
, (8)

where ri,n is the ratio of tracks containing at least one beat within the i-th window, and we utilize
I(ri,n > 0) to exclude windows where no beat occurs in any track..

Cross-Track Beat Dispersion (CBD).The CBD metric quantifies rhythmic consistency in multi-track
music by measuring the dispersion of beat alignment across all pairs of tracks. Drawing inspiration
from GOTO’s method Goto, Muraoka (1997), which evaluates alignment errors between estimated
and reference beats using beat error sequences, CBD extends this concept to multi-track scenarios.

We select each track as reference in turn and compute the beat error sequence with respect to all other
tracks. For track s in sample n, let bsn,t denote the t-th beat in the reference track. For each bsn,t, we
find the matching beats in the other tracks and extract error sequence, denoted as e(bsn,t). The CBD
metric is defined as the mean or other statistics of the beat error sequence:

CBD(mean) = Es,n,t

[
e(bsn,t)

]
. (9)

Note that, to eliminate the influence of tempo variations, we use beat interval to normalize
e(bsn,t). Since matching beats of bsn,t are within the two intervals

[
↑Isn,t↑1/2 + bsn,t, b

s
n,t

]
and[

bsn,t, b
s
n,t + Isn,t/2

]
, we divided e(bsn,t) by the corresponding interval length Isn,t↑1/2 or Isn,t/2.

4 Experiments

Experimental Setup. We adopt the Slakh2100 dataset Manilow et al. (2019), following the common
subset of four tracks: bass, drums, guitar, and piano. All audios are resampled to 16 kHz and
segmented into 10.24-second clips. We use MusicLDM Chen et al. (2024) as our backbone and adopt
the publicly available checkpoints to initialize the shared parameters. We extract beat for each track
using madmom library Böck et al. (2016). The detailed comparisons of different parameter settings
in beat extraction tools and their impact are provided in the Appendix.

Analysis of Inner Track Stability. We first evaluate the rhythm stability of each generated track.
High-quality music must possess a stable beat, especially for rhythmic instruments such as drums. To
this end, our proposed IRS metric quantified the variance of inter-beat intervals for each track.

As shown in Table 1, all instruments exhibit low IRS values in ground truth, with percussion (drums)
tracks achieving the lowest IRS. This aligns with the intuition that rhythmic instruments are expected
to demonstrate greater beat stability. SyncTrack outperforms MSG-LD and MSDM in IRS across all
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Table 1: Track-wise IRS and FAD Scores

Track Metrics Ground Truth SyncTrack MSG-LD MSDM

Bass IRS↓ 0.015 0.021 0.041 0.050
FAD↓ - 0.682 1.050 6.304

Drum IRS↓ 0.005 0.011 0.040 0.036
FAD↓ - 0.698 0.980 6.721

Guitar IRS↓ 0.016 0.024 0.039 0.034
FAD↓ - 1.388 1.830 4.259

Piano IRS↓ 0.015 0.023 0.039 0.046
FAD↓ - 1.011 2.040 5.563

tracks. Notably, the improvement is most significant for drums, demonstrating SyncTrack’s superior
modeling of rhythmic patterns.

Although FAD compresses detailed information and does not cover all dimensions of music quality,
it remains indicative of the overall gap between generated and real music. We observe that lower IRS
is consistently accompanied by lower FAD scores.

Analysis of Cross-track Synchronization. To analyze rhythmic consistency across tracks in multi-
track music generation. We employ CBS and CBD as evaluation metrics. As shown in Table 2,
SyncTrack achieves the best performance, indicating tighter rhythmic synchronization across tracks.

Table 2: Cross-track Synchronization Metrics Scores

Metrics Ground Truth SyncTrack MSG-LD MSDM

CBS (w=0.15)↑ 0.5740 0.5206 0.3861 0.4694
CBD (mean)↓ 0.2412 0.2681 0.3714 0.3127
CBD (std)↓ 0.1578 0.2131 0.2642 0.2217

CBD (median)↓ 0.2066 0.2258 0.3545 0.2811
Paired Ratio↑ 0.5643 0.7059 0.7182 0.3487

A key challenge in multi-track evaluation is the trade-off between synchronization and content
richness. Some models (e.g., MSDM) generate many empty tracks, which can artificially improve
alignment metrics but at the cost of musical richness. To address this, we introduce the Paired Ratio
metric. SyncTrack achieve Paired Ratio of 0.7059, close to MSG-LD (0.7182), and much higher than
MSDM (0.3487), demonstrating SyncTrack balances synchronization with generation diversity.

Analysis of Mixture Music Quality. In multi-track music generation, the most widely used metric
for evaluating overall audio quality is the FAD computed on the mixture of all tracks. The mixture
FAD is closely related to our proposed metrics. When individual tracks are rhythmically stable and
well synchronized, the resulting mixture is more musically coherent, leading to lower FAD scores.
This trend is consistent with our previous analysis of rhythm stability and synchronization. As shown
in Table 3, SyncTrack achieves the lowest FAD.

Table 3: FAD Scores of Mixture Music

Metrics MSDM MSG-LD SyncTrack w/o cross-track attention SyncTrack

FAD↓ 6.55 1.31 1.74 1.26

5 Conclusion

Current multi-track audio generation and evaluation systems face significant challenges, particularly
in addressing beat stability and synchronization. Our work introduce three specialized assessment
metrics, thereby completing the quality evaluation system for generated multi-track music compo-
sitions. Furthermore, we introduce a synchronous multi-track waveform music generation model
called SyncTrack, significantly improving the quality of multi-track audio generation in terms of the
completed evaluation system.
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