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Abstract

With the rapid development of generative Al
and the explosive growth of Internet, a large
amount of multimodal misinformation has been
spreading wantonly. Zero-shot claim verifica-
tion is crucial for combating this issue. Check-
ing a claim requires multi-hop reasoning across
evidence with multiple modalities. Conse-
quently, we design a framework called ES4CV,
which utilizes Embedding Screening for multi-
modal multi-hop Claim Verification. It consists
of two modules: one for zero-shot evidence
screening and another for zero-shot claims ver-
ification. Within the evidence screening mod-
ule, we employ a General Multimodal Embed-
der(GME) to project both multimodal evidence
and claims into a unified semantic space, where
evidence is screened based on similarity. In
the zero-shot claim verification module, the fil-
tered evidence and claims are ultimately fed
into a Vision Language Model (VLM) for final
judgment. We conduct extensive comparative
and ablation experiments on the recently re-
leased multimodal multi-hop dataset MMCV
to demonstrate our method’s effectiveness and
superiority.

1 Introduction

With the rapid emergence of new-generation gen-
erative artificial intelligence (GAI) represented
by large language models (LLMs) and vision-
language models (VLMs)(Huang et al., 2025;
Zhang et al., 2024), coupled with the accelerated
development of social media, massive amounts
of GAl-generated synthetic content are flooding
the internet, distorting public perception. This
phenomenon has been particularly exacerbated in
recent years by advanced diffusion models, ex-
emplified by DALL-E(Ramesh et al., 2021) and
Stable Diffusion(Rombach et al., 2022), which
significantly amplify the scale and realism of
Al-generated misinformation.Claim verification is
an essential approach in combating misinforma-
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Figure 1: An instance of redundant information in mul-
timodal evidence affecting a model’s judgment is veri-
fying the claim: "The team with a deer and antlers in
its logo, among those in the 2014 NBA draft lottery,
has never won a championship." Actually, just provid-
ing the Milwaukee Bucks’ logo suffices, as the model
can judge based on its prior knowledge. Excessive text
may confuse the model, even causing hallucinations and
impacting the final judgment.

tion, verifying the authenticity of claim often re-
quires integrating multimodal evidence from di-
verse sources(Yang et al., 2018), demanding de-
tection systems with multimodal and multi-hop
information processing capabilities. Meanwhile,
given the complexity and time-sensitive nature
of information on contemporary social media
platforms(Tasnim, 2020), while domain-specific
models may demonstrate strong performance in
claim verification within their trained domains,
they often fall short when dealing with real-world



claims and evidence that have complex composi-
tions.Therefore, zero-shot capability in misinfor-
mation detection has become a critical evaluation
criterion for detection systems.

To achieve zero-shot multimodal multi-hop
claim verification, LLMs and VLMs are often used
for their rich general-domain prior knowledge(Liu
et al., 2024a).However, the multimodal evidence
implies more noise information.As shown in Fig-
ure 1, to verify the claim "The team with a deer and
antlers in its logo, among those in the 2014 NBA
draft lottery, has never won a championship”, it is
only necessary to provide the VLM with the im-
age evidence of the Milwaukee Bucks’ logo. The
model can then make a judgment based on this im-
age and its prior knowledge. In the textual evidence,
only the phrase "won one league title (1971)" is
useful for the model’s judgment. The remaining
information serves as irrelevant noise, which can
induce hallucinations and mislead the model’s judg-
ment.

To address this issue, we propose ES4CV, a
Embedding Screening based framework for multi-
modal multi-hop Claims Verification. This frame-
work employs general-domain embedding models
to embed claims and multimodal evidence. By fil-
tering the evidence based on similarity, it retains
only the evidence highly relevant to the claim. This
process effectively cleans the noise in the evidence,
thereby improving the model’s judgment accuracy.
In summary, our contributions are as follows:

e We propose an Embedded Screening based
multimodal Multi-hop Claims Verification
framework called ES4CV.We uniformly em-
bed the information to be detected and mul-
timodal evidence, and screen the multimodal
evidence based on the similarity of these em-
beddings to reduce the impact of information
noise when the model makes judgments.

e During the embedding process,we introduced
a General Multimodal Embedder(GME)
based on VLM construction, which leveraged
the powerful semantic and image understand-
ing capabilities of VLM for embedding. It
can map text and images to the same semantic
space under zero-shot conditions.

e We demonstrated the effectiveness of our
method through comprehensive comparative
experiments and ablation experiments, and

analyzed in detail the reasons for the halluci-
nations that occurred when the model made
judgments on claims verification.

2 Related Work

In this section, we introduce relevant work on mul-
timodal multi-hop claims verification, including re-
lated datasets and research progress on methods. In
2.1, we present the newly proposed MMCYV dataset
for multimodal multi-hop claims verification. In
2.2 and 2.3, we’ll respectively cover feature ex-
traction based and VLM based claims verification
methods, along with their inapplicability to real-
world claims verification.

2.1 MMCYV Dataset

In recent years, numerous scholars have con-
structed challenging datasets in order to assess
model capabilities in multimodal multi-hop mis-
information detection. Several teams have de-
veloped multimodal claim verification datasets,
including FakeNewsNet(Shu et al., 2019), COS-
MOS(Aneja et al., 2021)and Mocheg(Yao et al.,
2023). However, these datasets lack multi-hop rea-
soning components, thus failing to adequately eval-
uate models" inference capabilities across sequen-
tial information chains.Other research teams have
developed multi-hop reasoning datasets, such as
QAngaroo(Welbl et al., 2018), ComplexWebQues-
tion(Talmor and Berant, 2018), and HoVer(Jiang
et al., 2020). However, these frameworks predom-
inantly focus on unimodal contexts, failing to ac-
count for multimodal contextual information and
consequently limiting their evaluation to single-
modality reasoning capabilities. In contrast, The
MMCYV dataset(Wang et al., 2025) was proposed
by integrating considerations of both multimodality
and multi-hop, enabling a comprehensive assess-
ment of multi-hop reasoning capabilities within a
multimodal context.

The MMCYV dataset comprises 15k multihop
claims paired with multimodal evidence for SUP-
PORT/REFUTE. It assesses models’ ability to com-
bine multimodal evidence for multihop reasoning.
The dataset distribution is shown in the Table 1,
where n-hop means each claim has n pieces of
evidence proving partial truth, requiring n-hop rea-
soning.

When evaluating VLM on it, we found that mul-
timodal evidence often brings extra noise, causing
hallucinations and affecting judgment. Thus, we
proposed the ES4CV framework to filter evidence,



Data 1-hop 2-hop 3-hop 4-hop
# Claims 5,884 8485 804 396
Ave. # Tokens in Claim  21.7 2532 2544 26.17

Max. # Tokens in Claim 48 58 51 63
# Text Evidence 2,590 7,323 1,142 760
# Image Evidence 1,979 2,948 634 512

# Table Evidence 1,315 6,699 636 312
# SUPPORT Labels 2,824 4,030 349 158
# REFUTE Labels 3,060 4455 455 238

Table 1: Data Distribution of MMCV.

retaining high - quality data for model judgment
with prior knowledge. To our knowledge, no other
team has tested methods on this dataset.

2.2 Claims Verification Method based on
feature extraction

Before the introduction of LLMs and VLMs, most
research on claim verification focused on using neu-
ral networks to extract potential information from
multimodal evidence and represent it comprehen-
sively to assist models in determining the authen-
ticity of claims(Liu et al., 2023b; Chen et al., 2023;
Khattar et al., 2019). For instance, Safe(Zhou et al.,
2020) and BTIC(Zhang et al., 2021) enhanced the
representation of multimodal evidence by setting
appropriate loss functions. Even after the advent
of LLMs and VLMs, this approach has continued
to attract numerous researchers due to its excellent
performance. Currently, the mainstream method in-
volves aligning the features of entities in claims and
evidence to determine the authenticity of claims.
CAFE (Chen et al., 2022) calculates the ambigu-
ity between different modal elements using KL
divergence, while FND-CLIP (Zhou et al., 2023)
achieves outstanding results through element-level
semantic detection. Some studies have gone fur-
ther by leveraging the connections between entities
to achieve more precise judgments on the claims
verification(Ma et al., 2024). However, the prereq-
uisite for these methods to achieve high accuracy
is that they have been comprehensively trained on
datasets, and they cannot perform well in a zero-
shot setting. Additionally, these methods have poor
interpretability, as the models mainly make judg-
ments based on the consistency of features between
evidence and claims rather than true reasoning at
the level of factual consistency between evidence
and claims.

2.3 Claims Verification Method based on
VLM

Visual Language Model (VLM) has demonstrated
outstanding capabilities in various downstream
tasks. Capitalizing on the rich prior knowledge
embedded in LLMs and VLMs, research teams
have begun exploring Verification frameworks uti-
lizing these large-scale parameterized models(Liu
et al., 2024a). Some studies have pointed out the
significant potential of multimodal language mod-
els in claims verification(Liu et al., 2024b), and
some studies have utilized the semantic understand-
ing ability and prior knowledge of VLM to extract
more features from the text to be detected(Zheng
et al., 2025), in order to assist the classifier in
making the final authenticity judgment. However,
these studies merely directly make judgments on
the claim to be detected, without involving the use
of the provided evidence to enable the model to
conduct multimodal multi-hop reasoning to reach
the final result. In contrast, our method directly
employs VLM for the final judgment, effectively
leveraging the powerful reasoning ability of VLM
to summarize the multimodal evidence, and reduc-
ing the influence of noise on the model through
evidence screening, thereby improving the accu-
racy of the model’s prediction.

3 Method

In this section, we introduce the Embedded Screen-
ing based multimodal multi-hop Claims Verifica-
tion framework(ES4CV) that we propose. Firstly,
we provide a simple definition of the task (3.1) and
give an overview of our method (3.2). Then, we
elaborate on how our Zero-shot Evidence Screen-
ing Module operates (3.3), and how we construct
the Zero-shot Claim Verification Module(3.4).

3.1 Task Definition

The problem of multimodal multi-hop claims verifi-
cation is a typical multimodal binary classification
problem. Given a set of cross-modal sample pairs
consisting of claims to be detected and a collection
of multimodal evidence for reference, the goal of
the task is to determine the claim to be detected
based on the evidence in the evidence set (which
may consist of 1 to 3 pieces), and to provide the
final detection result (SUPPORT or REFUTE). Our
focus is on detecting metaphors in image-text pairs,
so the task can be expressed as:

Y = F(xen, E) ey
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Figure 2: An overview of ES4CV.The ES4CV framwork has two parts: a Zero-shot Evidence Screening Module
based on GME Model and a VLM - based Zero-shot Claim Verification Module.

where x., represents the claim to be detected,
and the subscript n indicates that this piece of
information requires n pieces of evidence for
its judgment, meaning that the model needs n
steps of thinking to reach the final judgment.
FE is the set of evidence required to detect this
piece of information, and it is given by E =
Dteys Ptess Pit s Pigs Ptays Ptass -++y Ptem s Pin > Ptay»
where py.,, is the mth piece of text evidence in the
evidence set,p;,, is the nth piece of image evidence,
and py,, is the kth piece of table evidence. For
all three types of evidence, 1 < m+n+k <4
exists. Y represents the classification result of
the detected claim, and there are two results:
SUPPORT and REFUTE. The focus of our work
is to optimize method F' to make the model’s
prediction results as close as possible to the real
results.

3.2 Method Overview

Our method overview is shown in Figure 2.
ES4CV consists of two parts:the Zero-shot Evi-
dence Screening Module based on GME Model and
the Zero-shot Claims Verification Module based on
VLM. In the Zero-shot Evidence Screening Mod-
ule, the claim to be detected and multimodal evi-
dence are sent to the GME model for unified fea-
ture encoding. This obtains separate encodings for
the claim and evidence in a unified semantic space.

Then, cosine similarity between claim and evidence
embeddings is calculated. Based on this, evidence
with much noise info is excluded.The screened evi-
dence set and claim are sent to the Zero-shot Calim
Verification Module for final judgment. In the Zero
- shot Claim Verification module, the claim and
screened evidence are sent to the VLM. It uses the
VLM'’s rich prior knowledge and reference multi-
modal evidence to get the final result.

3.3 Zero-shot Evidence Screening Module

To reduce the impact of noise on the model’s
judgment ability, we construct a Zero-shot Evi-
dence Screening Module based on the multimodal
retrieval model General Multimodal Embedder
(GME). Through the multimodal embedding layer
of GME, we uniformly embed multimodal evi-
dence and claims, and calculate their cosine simi-
larity. Then, we screen the evidence based on the
similarity, retaining those with a higher similarity
to the claim to be detected (i.e., evidence carrying
information highly relevant to the claim and with
less noise), and filtering out those with a lower
similarity (i.e., evidence carrying more noise and
having a lower relevance to the claim), thereby re-
ducing the impact of noise on the model to a certain
extent.



3.3.1 GME model for multimodal evidence
alignment

The General Multimodal Embedder (GME)(Zhang
et al., 2025) is an instruction-based embedding
framework, built on the backbone of multimodal
large language models (MLLMs), and constructed
on the powerful Qwen2-VL series of vision-
language models (VLMs). It supports cross-modal
retrieval under a unified paradigm, including text,
images, visual documents, and fused modalities
(i.e., image-text composites). By using the GME
model to uniformly embed multimodal evidence
sets and claims, it can leverage the general-domain
semantic understanding capabilities of its backbone
VLM to map these multimodal data into a unified
semantic space under zero-shot conditions, laying
a solid foundation for various downstream tasks.

We innovatively applied the GME model to
aligning semantic features of claims and multi-
modal evidence. Leveraging its prior knowledge
and semantic understanding, we achieve zero-shot
multimodal feature embedding.The embedding for-
mula of GME is as follows:

fcap?eaﬁi)P?a = GME(xmpt&pivpta) (2)

where T, pre, P, and py, are the feature vectors ob-
tained after embedding the claim, textual evidence,
image evidence, and tabular evidence respectively.

3.3.2 Multimodal Information Noise Filtering
Based on Similarity Screening

After obtaining the embeddings corresponding to
the claim and the multimodal evidence set through
GME, we perform filtering based on the cosine
similarity. The formula for cosine similarity is as
follows:

S abi

\/E?:l a; \/E?:l b7
3)
where vector a and vectorb are both feature vec-
tors of dimension d. The higher the cosine similar-
ity between the two vectors, the closer the distance
and direction of the two vectors in the semantic
space are, which means the semantic similarity of
the two vectors is higher. In the context of evi-
dence screening, the evidence vector with a higher
similarity to the claim represents that this piece of
evidence carries more evidence information related
to the claim.
In order to improve the efficiency of vector
calculations, we first perform normalization on

cosine_similarity =

the obtained vectors: For a vector a, the vector
Qnormalized Obtained by normalizing its L2 norm
can be expressed as:
a
Qnormalized = T 1 (4)
ally

where ||al|, is the L2 norm of the vector a, and the
calculation formula is:

&)

Finally, the dot product is calculated for the two
normalized vectors to determine the cosine similar-
ity between the two vectors:

d
cosine_similarity = Z a;b; (6)
i=1

By plugging z. and the embedded evidence set
E into the formula, we can obtain the similarity set
S1 between the claim and the evidence from each
modality in the evidence set E:

{Sctela Scte2s -5 Sctem Scils Sci2s -+ Scins
Sctals Scta2 -+ Sctak}

_

= cosine_similarity(z,, F)

(N

where Sctems Scin, and Sqiqk rESpeEctively represent
the similarity of the corresponding textual evidence,
image evidence, and table evidence in the claim
and evidence sets. The similarities smaller than
z (where z is an adjustable hyperparameter) in S
are filtered out. The resulting filtered similarity set
S is obtained. Then, based on the mapping rela-
tionship between the similarity and the evidence,
the corresponding evidence in the evidence set is
filtered out to obtain the filtered evidence set Fs. Fi-
nally, set E/; would be sent to the Zero-shot Claim
Verification Module to make judgments, and the
final output result is obtained.

3.4 Zero-shot Claim Verification Module

In order to achieve multimodal multi-hop claim
verification under the zero-shot condition, we use
VLM to make judgments on the claims to be de-
tected. Similar to LLM, during the training process,
VLM usually uses a large amount of image-text
pairs of data for learning to discover the correla-
tions and mapping relationships between vision and



language, thereby achieving accurate descriptions
of images and visual understanding of text. The
rich training data enables VLM to possess a large
amount of prior knowledge without fine-tuning,
and even without providing an evidence set, VLM
can already achieve a relatively high accuracy rate
for claim verification. Therefore, we chose it as the
final judgment model to achieve false information
detection under the zero-shot condition, as shown
in the following formula:

Y = VLM (zen, E) (8)

In the zero - shot claim verification module, we
send the filtered evidence set E and the claim to be
checked to the VLM. The evidence filtered by the
Zero-shot Evidence Screening Module is highly
relevant to the claim and has less noise information.
This allows the VLM to use the information more
efficiently to assist in claim verification, thereby
improving the accuracy of zero - shot claim verifi-
cation.

4 Experiments and Results

4.1 Setup
4.1.1 Baselines

Since there are no other models available for
multimodal multi-hop misinformation detection at
present, we adopted the method of directly using
VLM for judgment as our baseline for compari-
son. We selected several state-of-the-art VLMs:
GPT-40(OpenAl et al., 2024) and Gemini 1.5
Flash(Team et al., 2025). Additionally, we in-
cluded LLaVA-V1.5-7B(Liu et al., 2023a) as a
representative of open-source models in the experi-
ment. The temperature of all VLMs was set to 0.0,
and the maximum token value was set to 5000.

4.1.2 Details

Retrieval modes We set up two different Re-
trieval modes for comparison, namely the open-
book mode, the closed-book mode. In the closed-
book mode, the model is required to make a judg-
ment on the claim based on its prior knowledge
without being provided with any evidence.In the
open-book mode, all the golden evidence related to
the claim to be detected is submitted to the model.
We categorize our ES4CV method as open - book
because in its workflow, all evidence for claim ver-
ification is provided to the framework. After fil-
tering, the evidence with less noise is given to the
VLM. So, it’s logical for us to classify it as open -

Evidence Provided F1 of LLaVa
1-hop 2-hop 3-hop 4-hop
Closed_book 63.57 63.87 66.76 64.64
Text-evidence Only  60.53 62.38 64.46 65.32
Image-evidence Only 67.72 65.57 67.72 66.53
Table-evidence Only 5827 61.76 63.75 63.25
Open_book 5721 61.50 63.76 66.42

Table 2: The table shows the experimental results of
our pre-experiment. We adopted the LLaVa model as
the base model and respectively attempted to provide
only text evidence, image evidence or table evidence
to the model to observe which modal the noise in the
evidence mainly came from.

book and use the open - book approach as a base-
line for comparison.

Prompt Since different prompt enhancement
methods have different impacts on VLMs with
different parameters, we did not use any prompt
enhancement methods (such as chain-of-thought,
self-questioning, etc.) in our experiments. Instead,
we merely designed three sets of pure prompt tem-
plates to instruct the VLM to make judgments on
the claim under conditions of providing all evi-
dence, providing no evidence, and providing partial
evidence. The complete prompt templates will be
provided in the appendix.Among them, the open
book mode is the baseline method we have chosen.

Evidence screening threshold In the previous
text, we mentioned that after obtaining the em-
bedding similarity between the evidence and the
claim, we will select an adjustable hyperparame-
ter m as the similarity threshold to screen the evi-
dence. After the ablation study (the content here
will be detailed in Section 4.2), we decided to set
the screening threshold for textual evidence and
tabular evidence at 0.7, and the threshold for image
evidence at 0.5.

Evaluation metrics We adopted precision, re-
call and F1 score as the evaluation criteria for our
experiment.

4.2 Pre-Experiment

To explore which modality the noise in the evidence
comes from, we conduct a pre-experiment using
LLaVa, which generates the most hallucinations
beacause of the least parameters. The experimental
results are shown in Table 2. We conduct experi-
ments by providing the model with only text, image,



and table evidence respectively, and compared the
F1 values in open-book and closed-book modes as
the baseline.

From the results, it can be seen that when only
image evidence is provided to the model, the F1
value has a significant increase compared to the
closed-book mode. In contrast, if only text evi-
dence is provided, the F1 value drops significantly.
This phenomenon is even more pronounced when
only table evidence is provided. We believe that
this result is due to the fact that text evidence of-
ten contains a large amount of content irrelevant
to the claim to be verified. The same is true for ta-
ble evidence; verifying a claim often only requires
specific cells in the table rather than the entire ta-
ble. Excessive and irrelevant text brings a very
serious hallucination tendency to the model. In
contrast, image evidence is different; the informa-
tion carried by images is often closely related to
the claim. This is also consistent with human per-
ception: when you search for a certain piece of
information, a large amount of text can make you
feel lost, while images can present the information
you are looking for more clearly. In conclusion,
we believe that the noise that disrupts the model
mostly comes from text and tables. Therefore, we
set the similarity threshold for text and tables to
0.7, and the screening threshold for image evidence
to 0.5.

4.3 Main Results

The results of our comparative experiments are
shown in Table 3, and for each model, the better
scores in open - book and ES4CV modes are high-
lighted.

According to the experimental results, we can
classify the models into two categories. Models
with higher closed-book performance than open-
book, like LLaVa and GPT-4o, are likely weaker in
summarizing evidence and extracting useful infor-
mation and more susceptible to noise. Conversely,
models with higher open-book performance than
closed-book, such as Gemini, are less affected by
noise and less prone to hallucinations.

Overall, the experimental results prove that our
ES4CV framework is effective on models that more
susceptible to noise. Most of the results of the
LLaVa model and the GPT-40 model on the four
sub-datasets have been significantly improved com-
pared with the open-book experiments used as
the baseline method. Only the performance of
the LLaVa model on the 2-hop sub-dataset were

slightly lower than the baseline methods. One
point that needs to be particularly noted is that
our method is to screen the evidence that contains
more noise, thereby helping the models that will be
affected by noise to select high-quality evidence.
However, the Gemini model itself achieved bet-
ter results in the open-book experiment than the
closed-book one,and there is less evidence related
to each claim in 1-hop and 2-hop. Therefore, the
effect of our method on Gemini is not good. We
think this is in line with expectations. And as the
number of reasoning hops increases, the evidence
and the noise it contains also increase. It can also
be observed from the results that our method has
begun to play a certain positive role for Gemini.
Specifically, in the open-book mode, Gemini 1.5
performed the best, with an average F-1 value of
70.92. However, in the closed-book mode, LLaVA
surprisingly performed the best, with an average F-
1 value of 66.77. Nevertheless, this does not mean
that its prior knowledge is richer than that of the
GPT model and the Gemini model. Previous stud-
ies(Wang et al., 2025) have pointed out that even
when LLaVA’s predictions are correct, its reason-
ing process may still have illusions and be a wrong
reasoning process. In addition, GPT - 40 is most
affected by ES4CV, with an average metric im-
provement of 6.68 percentage points. This is likely
because GPT - 40 has strong reasoning ability but
weaker information selection ability. Thus, when
the external framework helps with information fil-
tering, its reasoning ability is better unleashed.

5 Conclusion

The ES4CV framework we propose leverages the
extensive prior knowledge and powerful reasoning
ability of VLM for zero-shot claims verification.
Meanwhile, it builds a Zero-shot Evidence Screen-
ing Module centered on the multimodal embedding
model GME to filter evidence, thereby retaining
evidence highly relevant to the claim and screening
out multimodal evidence with more noise. This
effectively reduces the impact of model hallucina-
tions on judgment results and improves the accu-
racy of the judgment.

Additionally, we have comprehensively demon-
strated the effectiveness of our method through
experiments, and detailedly analyzed the reasons
for hallucinations when the model conducts mul-
timodal multi-hop reasoning, providing valuable
solutions and research contributions to the field of



1-hop 2-hop 3-hop 4-hop

Retrieval Mode Model P R Fl P R Fl1 P R F1 P R Fl1
GPTdo Base 7695 7295 71.78 68.03 63.24 60.53 62.67 58.78 56.08 67.75 6246 61.35
ES4CV  80.11 7645 76.21 75.14 67.72 66.03 75.54 68.90 68.66 75.79 66.68 66.64
Open_book Gemini Base 79.58 79.25 79.20 72.38 71.85 71.66 66.37 6590 65.86 67.21 66.86 66.97
ES4CV 7793 7429 7392 7186 64.69 6245 6577 61.50 60.50 69.70 64.56 64.52
LLaVa Base 62.86 59.68 5721 64.17 6248 61.50 6547 64.64 63.76 66.50 66.76 66.42
ES4CV  65.35 61.84 58.84 66.00 63.16 60.66 70.01 68.59 66.18 68.88 69.51 67.75
GPT-40 76.86 7294 7179 67.96 6330 60.66 62.88 58.89 56.17 67.93 6239 61.20
Closed_book Gemini 75.67 7144 70.15 69.10 64.19 61.73 66.74 61.10 5844 63.78 59.90 58.69
LLaVa 64.18 63.78 63.57 64.06 6393 6387 66.78 66.81 66.76 64.64 64.84 64.64

Table 3: This table shows our experimental results. We selected three VLMs, namely GPT-40, Gemini and LLava,
for our experiment. The experiment adopted two different modes: the open-book mode, that is, providing all the
evidence to the model; Closed-book mode, that is, no evidence is provided to the model, allowing the model to make
judgments based on its own prior knowledge. We categorize our ES4CV method as a sub-mode of open-book mode.

multimodal multi-hop misinformation detection.

Limitations

The ES4CV we proposed filters and screens mul-
timodal evidence through the method of evidence
embedding similarity screening. This is a coarse-
grained screening approach. For instance, if the
similarity between a text evidence and the claim to
be detected is less than 0.7, the entire text evidence
will be completely filtered out. In fact, if we look
at the problem from a fine-grained perspective, we
will find that not the entire text evidence is irrele-
vant to the claim to be detected. As shown in Figure
2, although the longer text evidence was filtered
out as a whole after screening, the highlighted short
sentence "it was directed by Mark Dindal from a
screenplay by Steve Bencich, Ron J. Friedman, and
Ron Anderson, based on a story by Mark Kennedy
and Dindal." is actually high-quality evidence that
is helpful for the model’s judgment. Therefore, we
believe that it is possible to conduct research on
evidence from a fine-grained perspective to achieve
more precise screening of multimodal evidence.

Furthermore, although our method has been
proven effective in comparison and ablation ex-
periments and has achieved a comprehensive im-
provement over the baseline method that only uses
VLM in open-book experiments, its metrics are
still lower than those in closed-book experiments.
If this issue is resolved, models can better utilize
multimodal contextual evidence for more accurate
claim evaluation.
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A Example Appendix

A.1 Prompt

Given a claim and evidence (which can be text, table, or an image), determine whether
the claim is SUPPORT or REFUTE by the and your p i

Use the following format to provide your answer:

Prediction: [SUPPORT or REFUTE]

Confidence Level: [please show the percentage]

The confidence level indicates the degree of certainty you have about your answer and
is represented as a percentage. For instance, if your confidence level is 80%, it means
you are 80% certain that your answer is correct and there is a 20% chance that it may

be incorrect.

Figure 3: The prompt template we used in the open-

book experiment.

10

Given a claim, classify the claim based on your parametric knowledge. Use the
following format to provide your answer:

Prediction: [SUPPORT or REFUTE]

Confidence Level: [please show the percentage]

The confidence level indicates the degree of certainty you have about your answer and
is represented as a percentage. For instance, if your confidence level is 80%, it means
you are 80% certain that your answer is correct and there is a 20% chance that it may

be incorrect.

Figure 4: The prompt template we used in the closed-
book experiment.

Given a claim and evidence (which can be text, table, or an image), determine whether
the claim is SUPPORT or REFUTE by the evidk and your i

ic

Use the following format to provide your answer:
Prediction: [SUPPORT or REFUTE]
Confidence Level: [please show the percentage]

The confidence level indicates the degree of certainty you have about your answer and

is rep! as a p For i if your level is 80%, it means
you are 80% certain that your answer is correct and there is a 20% chance that it may

be incorrect.

Figure 5: The prompt template we used in the ES4CV
experiment.
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