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Abstract001

With the rapid development of generative AI002
and the explosive growth of Internet, a large003
amount of multimodal misinformation has been004
spreading wantonly. Zero-shot claim verifica-005
tion is crucial for combating this issue. Check-006
ing a claim requires multi-hop reasoning across007
evidence with multiple modalities. Conse-008
quently, we design a framework called ES4CV,009
which utilizes Embedding Screening for multi-010
modal multi-hop Claim Verification. It consists011
of two modules: one for zero-shot evidence012
screening and another for zero-shot claims ver-013
ification. Within the evidence screening mod-014
ule, we employ a General Multimodal Embed-015
der(GME) to project both multimodal evidence016
and claims into a unified semantic space, where017
evidence is screened based on similarity. In018
the zero-shot claim verification module, the fil-019
tered evidence and claims are ultimately fed020
into a Vision Language Model (VLM) for final021
judgment. We conduct extensive comparative022
and ablation experiments on the recently re-023
leased multimodal multi-hop dataset MMCV024
to demonstrate our method’s effectiveness and025
superiority.026

1 Introduction027

With the rapid emergence of new-generation gen-028

erative artificial intelligence (GAI) represented029

by large language models (LLMs) and vision-030

language models (VLMs)(Huang et al., 2025;031

Zhang et al., 2024), coupled with the accelerated032

development of social media, massive amounts033

of GAI-generated synthetic content are flooding034

the internet, distorting public perception. This035

phenomenon has been particularly exacerbated in036

recent years by advanced diffusion models, ex-037

emplified by DALL-E(Ramesh et al., 2021) and038

Stable Diffusion(Rombach et al., 2022), which039

significantly amplify the scale and realism of040

AI-generated misinformation.Claim verification is041

an essential approach in combating misinforma-042

Figure 1: An instance of redundant information in mul-
timodal evidence affecting a model’s judgment is veri-
fying the claim: "The team with a deer and antlers in
its logo, among those in the 2014 NBA draft lottery,
has never won a championship." Actually, just provid-
ing the Milwaukee Bucks’ logo suffices, as the model
can judge based on its prior knowledge. Excessive text
may confuse the model, even causing hallucinations and
impacting the final judgment.

tion, verifying the authenticity of claim often re- 043

quires integrating multimodal evidence from di- 044

verse sources(Yang et al., 2018), demanding de- 045

tection systems with multimodal and multi-hop 046

information processing capabilities. Meanwhile, 047

given the complexity and time-sensitive nature 048

of information on contemporary social media 049

platforms(Tasnim, 2020), while domain-specific 050

models may demonstrate strong performance in 051

claim verification within their trained domains, 052

they often fall short when dealing with real-world 053
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claims and evidence that have complex composi-054

tions.Therefore, zero-shot capability in misinfor-055

mation detection has become a critical evaluation056

criterion for detection systems.057

To achieve zero-shot multimodal multi-hop058

claim verification, LLMs and VLMs are often used059

for their rich general-domain prior knowledge(Liu060

et al., 2024a).However, the multimodal evidence061

implies more noise information.As shown in Fig-062

ure 1, to verify the claim "The team with a deer and063

antlers in its logo, among those in the 2014 NBA064

draft lottery, has never won a championship", it is065

only necessary to provide the VLM with the im-066

age evidence of the Milwaukee Bucks’ logo. The067

model can then make a judgment based on this im-068

age and its prior knowledge. In the textual evidence,069

only the phrase "won one league title (1971)" is070

useful for the model’s judgment. The remaining071

information serves as irrelevant noise, which can072

induce hallucinations and mislead the model’s judg-073

ment.074

To address this issue, we propose ES4CV, a075

Embedding Screening based framework for multi-076

modal multi-hop Claims Verification. This frame-077

work employs general-domain embedding models078

to embed claims and multimodal evidence. By fil-079

tering the evidence based on similarity, it retains080

only the evidence highly relevant to the claim. This081

process effectively cleans the noise in the evidence,082

thereby improving the model’s judgment accuracy.083

In summary, our contributions are as follows:084

• We propose an Embedded Screening based085

multimodal Multi-hop Claims Verification086

framework called ES4CV.We uniformly em-087

bed the information to be detected and mul-088

timodal evidence, and screen the multimodal089

evidence based on the similarity of these em-090

beddings to reduce the impact of information091

noise when the model makes judgments.092

• During the embedding process,we introduced093

a General Multimodal Embedder(GME)094

based on VLM construction, which leveraged095

the powerful semantic and image understand-096

ing capabilities of VLM for embedding. It097

can map text and images to the same semantic098

space under zero-shot conditions.099

• We demonstrated the effectiveness of our100

method through comprehensive comparative101

experiments and ablation experiments, and102

analyzed in detail the reasons for the halluci- 103

nations that occurred when the model made 104

judgments on claims verification. 105

2 Related Work 106

In this section, we introduce relevant work on mul- 107

timodal multi-hop claims verification, including re- 108

lated datasets and research progress on methods. In 109

2.1, we present the newly proposed MMCV dataset 110

for multimodal multi-hop claims verification. In 111

2.2 and 2.3, we’ll respectively cover feature ex- 112

traction based and VLM based claims verification 113

methods, along with their inapplicability to real- 114

world claims verification. 115

2.1 MMCV Dataset 116

In recent years, numerous scholars have con- 117

structed challenging datasets in order to assess 118

model capabilities in multimodal multi-hop mis- 119

information detection. Several teams have de- 120

veloped multimodal claim verification datasets, 121

including FakeNewsNet(Shu et al., 2019), COS- 122

MOS(Aneja et al., 2021)and Mocheg(Yao et al., 123

2023). However, these datasets lack multi-hop rea- 124

soning components, thus failing to adequately eval- 125

uate models" inference capabilities across sequen- 126

tial information chains.Other research teams have 127

developed multi-hop reasoning datasets, such as 128

QAngaroo(Welbl et al., 2018), ComplexWebQues- 129

tion(Talmor and Berant, 2018), and HoVer(Jiang 130

et al., 2020). However, these frameworks predom- 131

inantly focus on unimodal contexts, failing to ac- 132

count for multimodal contextual information and 133

consequently limiting their evaluation to single- 134

modality reasoning capabilities. In contrast, The 135

MMCV dataset(Wang et al., 2025) was proposed 136

by integrating considerations of both multimodality 137

and multi-hop, enabling a comprehensive assess- 138

ment of multi-hop reasoning capabilities within a 139

multimodal context. 140

The MMCV dataset comprises 15k multihop 141

claims paired with multimodal evidence for SUP- 142

PORT/REFUTE. It assesses models’ ability to com- 143

bine multimodal evidence for multihop reasoning. 144

The dataset distribution is shown in the Table 1, 145

where n-hop means each claim has n pieces of 146

evidence proving partial truth, requiring n-hop rea- 147

soning. 148

When evaluating VLM on it, we found that mul- 149

timodal evidence often brings extra noise, causing 150

hallucinations and affecting judgment. Thus, we 151

proposed the ES4CV framework to filter evidence, 152
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Data 1-hop 2-hop 3-hop 4-hop
# Claims 5,884 8,485 804 396
Ave. # Tokens in Claim 21.7 25.32 25.44 26.17
Max. # Tokens in Claim 48 58 51 63
# Text Evidence 2,590 7,323 1,142 760
# Image Evidence 1,979 2,948 634 512
# Table Evidence 1,315 6,699 636 312
# SUPPORT Labels 2,824 4,030 349 158
# REFUTE Labels 3,060 4,455 455 238

Table 1: Data Distribution of MMCV.

retaining high - quality data for model judgment153

with prior knowledge. To our knowledge, no other154

team has tested methods on this dataset.155

2.2 Claims Verification Method based on156

feature extraction157

Before the introduction of LLMs and VLMs, most158

research on claim verification focused on using neu-159

ral networks to extract potential information from160

multimodal evidence and represent it comprehen-161

sively to assist models in determining the authen-162

ticity of claims(Liu et al., 2023b; Chen et al., 2023;163

Khattar et al., 2019). For instance, Safe(Zhou et al.,164

2020) and BTIC(Zhang et al., 2021) enhanced the165

representation of multimodal evidence by setting166

appropriate loss functions. Even after the advent167

of LLMs and VLMs, this approach has continued168

to attract numerous researchers due to its excellent169

performance. Currently, the mainstream method in-170

volves aligning the features of entities in claims and171

evidence to determine the authenticity of claims.172

CAFE (Chen et al., 2022) calculates the ambigu-173

ity between different modal elements using KL174

divergence, while FND-CLIP (Zhou et al., 2023)175

achieves outstanding results through element-level176

semantic detection. Some studies have gone fur-177

ther by leveraging the connections between entities178

to achieve more precise judgments on the claims179

verification(Ma et al., 2024). However, the prereq-180

uisite for these methods to achieve high accuracy181

is that they have been comprehensively trained on182

datasets, and they cannot perform well in a zero-183

shot setting. Additionally, these methods have poor184

interpretability, as the models mainly make judg-185

ments based on the consistency of features between186

evidence and claims rather than true reasoning at187

the level of factual consistency between evidence188

and claims.189

2.3 Claims Verification Method based on 190

VLM 191

Visual Language Model (VLM) has demonstrated 192

outstanding capabilities in various downstream 193

tasks. Capitalizing on the rich prior knowledge 194

embedded in LLMs and VLMs, research teams 195

have begun exploring Verification frameworks uti- 196

lizing these large-scale parameterized models(Liu 197

et al., 2024a). Some studies have pointed out the 198

significant potential of multimodal language mod- 199

els in claims verification(Liu et al., 2024b), and 200

some studies have utilized the semantic understand- 201

ing ability and prior knowledge of VLM to extract 202

more features from the text to be detected(Zheng 203

et al., 2025), in order to assist the classifier in 204

making the final authenticity judgment. However, 205

these studies merely directly make judgments on 206

the claim to be detected, without involving the use 207

of the provided evidence to enable the model to 208

conduct multimodal multi-hop reasoning to reach 209

the final result. In contrast, our method directly 210

employs VLM for the final judgment, effectively 211

leveraging the powerful reasoning ability of VLM 212

to summarize the multimodal evidence, and reduc- 213

ing the influence of noise on the model through 214

evidence screening, thereby improving the accu- 215

racy of the model’s prediction. 216

3 Method 217

In this section, we introduce the Embedded Screen- 218

ing based multimodal multi-hop Claims Verifica- 219

tion framework(ES4CV) that we propose. Firstly, 220

we provide a simple definition of the task (3.1) and 221

give an overview of our method (3.2). Then, we 222

elaborate on how our Zero-shot Evidence Screen- 223

ing Module operates (3.3), and how we construct 224

the Zero-shot Claim Verification Module(3.4). 225

3.1 Task Definition 226

The problem of multimodal multi-hop claims verifi- 227

cation is a typical multimodal binary classification 228

problem. Given a set of cross-modal sample pairs 229

consisting of claims to be detected and a collection 230

of multimodal evidence for reference, the goal of 231

the task is to determine the claim to be detected 232

based on the evidence in the evidence set (which 233

may consist of 1 to 3 pieces), and to provide the 234

final detection result (SUPPORT or REFUTE). Our 235

focus is on detecting metaphors in image-text pairs, 236

so the task can be expressed as: 237

Y = F (xcn, E) (1) 238
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name year original

Chicken Little 2005 Henny Penny

The video game featuring a 
chicken on its poster, in 
which Pamela Adlon is 

involved, is based on the 
fable The Tortoise and the 

Hare.

Claim

Chicken Little is a 2005 
American 3D computer-
animated science fiction 

comedy film, produced by 
Walt Disney Feature 

Animation and loosely based 
on the original fable of the 

same name. The 46th Disney 
animated feature film, it was 

directed by Mark Dindal from 
a screenplay by Steve 

Bencich, Ron J. Friedman, 
and Ron Anderson, based on 
a story by Mark Kennedy and 
Dindal. The film is dedicated 
to Disney artist and writer Joe 

Grant, who died before the 
film's release.

Text Evidence

Table Evidence

Image Evidence

Image EvidenceGME 
Model

Screening

Filtered Evidence

Zero-shot Evidence Screening Module

REFUTE

VLM

Zero-shot Claims Verification Module

Claim

Text Evidence

Image Evidence

Embedding 
Layer

……

……

……

claim

Table Evidence

name year original

Chicken 
Little

2005
Henny 
Penny

Table Evidence

Figure 2: An overview of ES4CV.The ES4CV framwork has two parts: a Zero-shot Evidence Screening Module
based on GME Model and a VLM - based Zero-shot Claim Verification Module.

where xcn represents the claim to be detected,239

and the subscript n indicates that this piece of240

information requires n pieces of evidence for241

its judgment, meaning that the model needs n242

steps of thinking to reach the final judgment.243

E is the set of evidence required to detect this244

piece of information, and it is given by E =245

pte1 , pte2 , pi1 , pi2 , pta1 , pta2 , ..., ptem , pin , ptak ,246

where ptem is the mth piece of text evidence in the247

evidence set,pin is the nth piece of image evidence,248

and ptak is the kth piece of table evidence. For249

all three types of evidence, 1 ≤ m + n + k ≤ 4250

exists. Y represents the classification result of251

the detected claim, and there are two results:252

SUPPORT and REFUTE. The focus of our work253

is to optimize method F to make the model’s254

prediction results as close as possible to the real255

results.256

3.2 Method Overview257

Our method overview is shown in Figure 2.258

ES4CV consists of two parts:the Zero-shot Evi-259

dence Screening Module based on GME Model and260

the Zero-shot Claims Verification Module based on261

VLM. In the Zero-shot Evidence Screening Mod-262

ule, the claim to be detected and multimodal evi-263

dence are sent to the GME model for unified fea-264

ture encoding. This obtains separate encodings for265

the claim and evidence in a unified semantic space.266

Then, cosine similarity between claim and evidence 267

embeddings is calculated. Based on this, evidence 268

with much noise info is excluded.The screened evi- 269

dence set and claim are sent to the Zero-shot Calim 270

Verification Module for final judgment. In the Zero 271

- shot Claim Verification module, the claim and 272

screened evidence are sent to the VLM. It uses the 273

VLM’s rich prior knowledge and reference multi- 274

modal evidence to get the final result. 275

3.3 Zero-shot Evidence Screening Module 276

To reduce the impact of noise on the model’s 277

judgment ability, we construct a Zero-shot Evi- 278

dence Screening Module based on the multimodal 279

retrieval model General Multimodal Embedder 280

(GME). Through the multimodal embedding layer 281

of GME, we uniformly embed multimodal evi- 282

dence and claims, and calculate their cosine simi- 283

larity. Then, we screen the evidence based on the 284

similarity, retaining those with a higher similarity 285

to the claim to be detected (i.e., evidence carrying 286

information highly relevant to the claim and with 287

less noise), and filtering out those with a lower 288

similarity (i.e., evidence carrying more noise and 289

having a lower relevance to the claim), thereby re- 290

ducing the impact of noise on the model to a certain 291

extent. 292
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3.3.1 GME model for multimodal evidence293

alignment294

The General Multimodal Embedder (GME)(Zhang295

et al., 2025) is an instruction-based embedding296

framework, built on the backbone of multimodal297

large language models (MLLMs), and constructed298

on the powerful Qwen2-VL series of vision-299

language models (VLMs). It supports cross-modal300

retrieval under a unified paradigm, including text,301

images, visual documents, and fused modalities302

(i.e., image-text composites). By using the GME303

model to uniformly embed multimodal evidence304

sets and claims, it can leverage the general-domain305

semantic understanding capabilities of its backbone306

VLM to map these multimodal data into a unified307

semantic space under zero-shot conditions, laying308

a solid foundation for various downstream tasks.309

We innovatively applied the GME model to310

aligning semantic features of claims and multi-311

modal evidence. Leveraging its prior knowledge312

and semantic understanding, we achieve zero-shot313

multimodal feature embedding.The embedding for-314

mula of GME is as follows:315

x⃗c, p⃗te, p⃗i, p⃗ta = GME(xc, pte, pi, pta) (2)316

where x⃗c, p⃗te, p⃗i, and p⃗ta are the feature vectors ob-317

tained after embedding the claim, textual evidence,318

image evidence, and tabular evidence respectively.319

3.3.2 Multimodal Information Noise Filtering320

Based on Similarity Screening321

After obtaining the embeddings corresponding to322

the claim and the multimodal evidence set through323

GME, we perform filtering based on the cosine324

similarity. The formula for cosine similarity is as325

follows:326

cosine_similarity =

∑d
i=1 aibi√∑d

i=1 a
2
i

√∑d
i=1 b

2
i

(3)327

where vector a and vectorb are both feature vec-328

tors of dimension d. The higher the cosine similar-329

ity between the two vectors, the closer the distance330

and direction of the two vectors in the semantic331

space are, which means the semantic similarity of332

the two vectors is higher. In the context of evi-333

dence screening, the evidence vector with a higher334

similarity to the claim represents that this piece of335

evidence carries more evidence information related336

to the claim.337

In order to improve the efficiency of vector338

calculations, we first perform normalization on339

the obtained vectors: For a vector a, the vector 340

anormalized obtained by normalizing its L2 norm 341

can be expressed as: 342

anormalized =
a

∥a∥2
(4) 343

where ∥a∥2 is the L2 norm of the vector a, and the 344

calculation formula is: 345

∥a∥2 =

√√√√ d∑
i=1

ai2 (5) 346

Finally, the dot product is calculated for the two 347

normalized vectors to determine the cosine similar- 348

ity between the two vectors: 349

cosine_similarity =
d∑

i=1

aibi (6) 350

By plugging x⃗c and the embedded evidence set 351

E⃗ into the formula, we can obtain the similarity set 352

S1 between the claim and the evidence from each 353

modality in the evidence set E: 354

{scte1, scte2, ..., sctem, sci1, sci2, ..., scin,

scta1, scta2, ..., sctak}
= S1

= cosine_similarity(x⃗c, E⃗)

(7) 355

where sctem, scin, and sctak respectively represent 356

the similarity of the corresponding textual evidence, 357

image evidence, and table evidence in the claim 358

and evidence sets. The similarities smaller than 359

z (where z is an adjustable hyperparameter) in S1 360

are filtered out. The resulting filtered similarity set 361

S2 is obtained. Then, based on the mapping rela- 362

tionship between the similarity and the evidence, 363

the corresponding evidence in the evidence set is 364

filtered out to obtain the filtered evidence set Es. Fi- 365

nally, set Es would be sent to the Zero-shot Claim 366

Verification Module to make judgments, and the 367

final output result is obtained. 368

3.4 Zero-shot Claim Verification Module 369

In order to achieve multimodal multi-hop claim 370

verification under the zero-shot condition, we use 371

VLM to make judgments on the claims to be de- 372

tected. Similar to LLM, during the training process, 373

VLM usually uses a large amount of image-text 374

pairs of data for learning to discover the correla- 375

tions and mapping relationships between vision and 376

5



language, thereby achieving accurate descriptions377

of images and visual understanding of text. The378

rich training data enables VLM to possess a large379

amount of prior knowledge without fine-tuning,380

and even without providing an evidence set, VLM381

can already achieve a relatively high accuracy rate382

for claim verification. Therefore, we chose it as the383

final judgment model to achieve false information384

detection under the zero-shot condition, as shown385

in the following formula:386

Y = V LM(xcn, E) (8)387

In the zero - shot claim verification module, we388

send the filtered evidence set E and the claim to be389

checked to the VLM. The evidence filtered by the390

Zero-shot Evidence Screening Module is highly391

relevant to the claim and has less noise information.392

This allows the VLM to use the information more393

efficiently to assist in claim verification, thereby394

improving the accuracy of zero - shot claim verifi-395

cation.396

4 Experiments and Results397

4.1 Setup398

4.1.1 Baselines399

Since there are no other models available for400

multimodal multi-hop misinformation detection at401

present, we adopted the method of directly using402

VLM for judgment as our baseline for compari-403

son. We selected several state-of-the-art VLMs:404

GPT-4o(OpenAI et al., 2024) and Gemini 1.5405

Flash(Team et al., 2025). Additionally, we in-406

cluded LLaVA-V1.5-7B(Liu et al., 2023a) as a407

representative of open-source models in the experi-408

ment. The temperature of all VLMs was set to 0.0,409

and the maximum token value was set to 5000.410

4.1.2 Details411

Retrieval modes We set up two different Re-412

trieval modes for comparison, namely the open-413

book mode, the closed-book mode. In the closed-414

book mode, the model is required to make a judg-415

ment on the claim based on its prior knowledge416

without being provided with any evidence.In the417

open-book mode, all the golden evidence related to418

the claim to be detected is submitted to the model.419

We categorize our ES4CV method as open - book420

because in its workflow, all evidence for claim ver-421

ification is provided to the framework. After fil-422

tering, the evidence with less noise is given to the423

VLM. So, it’s logical for us to classify it as open -424

Evidence Provided F1 of LLaVa
1-hop 2-hop 3-hop 4-hop

Closed_book 63.57 63.87 66.76 64.64

Text-evidence Only 60.53 62.38 64.46 65.32

Image-evidence Only 67.72 65.57 67.72 66.53

Table-evidence Only 58.27 61.76 63.75 63.25

Open_book 57.21 61.50 63.76 66.42

Table 2: The table shows the experimental results of
our pre-experiment. We adopted the LLaVa model as
the base model and respectively attempted to provide
only text evidence, image evidence or table evidence
to the model to observe which modal the noise in the
evidence mainly came from.

book and use the open - book approach as a base- 425

line for comparison. 426

Prompt Since different prompt enhancement 427

methods have different impacts on VLMs with 428

different parameters, we did not use any prompt 429

enhancement methods (such as chain-of-thought, 430

self-questioning, etc.) in our experiments. Instead, 431

we merely designed three sets of pure prompt tem- 432

plates to instruct the VLM to make judgments on 433

the claim under conditions of providing all evi- 434

dence, providing no evidence, and providing partial 435

evidence. The complete prompt templates will be 436

provided in the appendix.Among them, the open 437

book mode is the baseline method we have chosen. 438

Evidence screening threshold In the previous 439

text, we mentioned that after obtaining the em- 440

bedding similarity between the evidence and the 441

claim, we will select an adjustable hyperparame- 442

ter m as the similarity threshold to screen the evi- 443

dence. After the ablation study (the content here 444

will be detailed in Section 4.2), we decided to set 445

the screening threshold for textual evidence and 446

tabular evidence at 0.7, and the threshold for image 447

evidence at 0.5. 448

Evaluation metrics We adopted precision, re- 449

call and F1 score as the evaluation criteria for our 450

experiment. 451

4.2 Pre-Experiment 452

To explore which modality the noise in the evidence 453

comes from, we conduct a pre-experiment using 454

LLaVa, which generates the most hallucinations 455

beacause of the least parameters. The experimental 456

results are shown in Table 2. We conduct experi- 457

ments by providing the model with only text, image, 458
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and table evidence respectively, and compared the459

F1 values in open-book and closed-book modes as460

the baseline.461

From the results, it can be seen that when only462

image evidence is provided to the model, the F1463

value has a significant increase compared to the464

closed-book mode. In contrast, if only text evi-465

dence is provided, the F1 value drops significantly.466

This phenomenon is even more pronounced when467

only table evidence is provided. We believe that468

this result is due to the fact that text evidence of-469

ten contains a large amount of content irrelevant470

to the claim to be verified. The same is true for ta-471

ble evidence; verifying a claim often only requires472

specific cells in the table rather than the entire ta-473

ble. Excessive and irrelevant text brings a very474

serious hallucination tendency to the model. In475

contrast, image evidence is different; the informa-476

tion carried by images is often closely related to477

the claim. This is also consistent with human per-478

ception: when you search for a certain piece of479

information, a large amount of text can make you480

feel lost, while images can present the information481

you are looking for more clearly. In conclusion,482

we believe that the noise that disrupts the model483

mostly comes from text and tables. Therefore, we484

set the similarity threshold for text and tables to485

0.7, and the screening threshold for image evidence486

to 0.5.487

4.3 Main Results488

The results of our comparative experiments are489

shown in Table 3, and for each model, the better490

scores in open - book and ES4CV modes are high-491

lighted.492

According to the experimental results, we can493

classify the models into two categories. Models494

with higher closed-book performance than open-495

book, like LLaVa and GPT-4o, are likely weaker in496

summarizing evidence and extracting useful infor-497

mation and more susceptible to noise. Conversely,498

models with higher open-book performance than499

closed-book, such as Gemini, are less affected by500

noise and less prone to hallucinations.501

Overall, the experimental results prove that our502

ES4CV framework is effective on models that more503

susceptible to noise. Most of the results of the504

LLaVa model and the GPT-4o model on the four505

sub-datasets have been significantly improved com-506

pared with the open-book experiments used as507

the baseline method. Only the performance of508

the LLaVa model on the 2-hop sub-dataset were509

slightly lower than the baseline methods. One 510

point that needs to be particularly noted is that 511

our method is to screen the evidence that contains 512

more noise, thereby helping the models that will be 513

affected by noise to select high-quality evidence. 514

However, the Gemini model itself achieved bet- 515

ter results in the open-book experiment than the 516

closed-book one,and there is less evidence related 517

to each claim in 1-hop and 2-hop. Therefore, the 518

effect of our method on Gemini is not good. We 519

think this is in line with expectations. And as the 520

number of reasoning hops increases, the evidence 521

and the noise it contains also increase. It can also 522

be observed from the results that our method has 523

begun to play a certain positive role for Gemini. 524

Specifically, in the open-book mode, Gemini 1.5 525

performed the best, with an average F-1 value of 526

70.92. However, in the closed-book mode, LLaVA 527

surprisingly performed the best, with an average F- 528

1 value of 66.77. Nevertheless, this does not mean 529

that its prior knowledge is richer than that of the 530

GPT model and the Gemini model. Previous stud- 531

ies(Wang et al., 2025) have pointed out that even 532

when LLaVA’s predictions are correct, its reason- 533

ing process may still have illusions and be a wrong 534

reasoning process. In addition, GPT - 4o is most 535

affected by ES4CV, with an average metric im- 536

provement of 6.68 percentage points. This is likely 537

because GPT - 4o has strong reasoning ability but 538

weaker information selection ability. Thus, when 539

the external framework helps with information fil- 540

tering, its reasoning ability is better unleashed. 541

5 Conclusion 542

The ES4CV framework we propose leverages the 543

extensive prior knowledge and powerful reasoning 544

ability of VLM for zero-shot claims verification. 545

Meanwhile, it builds a Zero-shot Evidence Screen- 546

ing Module centered on the multimodal embedding 547

model GME to filter evidence, thereby retaining 548

evidence highly relevant to the claim and screening 549

out multimodal evidence with more noise. This 550

effectively reduces the impact of model hallucina- 551

tions on judgment results and improves the accu- 552

racy of the judgment. 553

Additionally, we have comprehensively demon- 554

strated the effectiveness of our method through 555

experiments, and detailedly analyzed the reasons 556

for hallucinations when the model conducts mul- 557

timodal multi-hop reasoning, providing valuable 558

solutions and research contributions to the field of 559

7



1-hop 2-hop 3-hop 4-hop

Retrieval Mode Model P R F1 P R F1 P R F1 P R F1

Open_book

GPT-4o
Base 76.95 72.95 71.78 68.03 63.24 60.53 62.67 58.78 56.08 67.75 62.46 61.35

ES4CV 80.11 76.45 76.21 75.14 67.72 66.03 75.54 68.90 68.66 75.79 66.68 66.64

Gemini
Base 79.58 79.25 79.20 72.38 71.85 71.66 66.37 65.90 65.86 67.21 66.86 66.97

ES4CV 77.93 74.29 73.92 71.86 64.69 62.45 65.77 61.50 60.50 69.70 64.56 64.52

LLaVa
Base 62.86 59.68 57.21 64.17 62.48 61.50 65.47 64.64 63.76 66.50 66.76 66.42

ES4CV 65.35 61.84 58.84 66.00 63.16 60.66 70.01 68.59 66.18 68.88 69.51 67.75

Closed_book

GPT-4o 76.86 72.94 71.79 67.96 63.30 60.66 62.88 58.89 56.17 67.93 62.39 61.20

Gemini 75.67 71.44 70.15 69.10 64.19 61.73 66.74 61.10 58.44 63.78 59.90 58.69

LLaVa 64.18 63.78 63.57 64.06 63.93 63.87 66.78 66.81 66.76 64.64 64.84 64.64

Table 3: This table shows our experimental results. We selected three VLMs, namely GPT-4o, Gemini and LLava,
for our experiment. The experiment adopted two different modes: the open-book mode, that is, providing all the
evidence to the model; Closed-book mode, that is, no evidence is provided to the model, allowing the model to make
judgments based on its own prior knowledge. We categorize our ES4CV method as a sub-mode of open-book mode.

multimodal multi-hop misinformation detection.560

Limitations561

The ES4CV we proposed filters and screens mul-562

timodal evidence through the method of evidence563

embedding similarity screening. This is a coarse-564

grained screening approach. For instance, if the565

similarity between a text evidence and the claim to566

be detected is less than 0.7, the entire text evidence567

will be completely filtered out. In fact, if we look568

at the problem from a fine-grained perspective, we569

will find that not the entire text evidence is irrele-570

vant to the claim to be detected. As shown in Figure571

2, although the longer text evidence was filtered572

out as a whole after screening, the highlighted short573

sentence "it was directed by Mark Dindal from a574

screenplay by Steve Bencich, Ron J. Friedman, and575

Ron Anderson, based on a story by Mark Kennedy576

and Dindal." is actually high-quality evidence that577

is helpful for the model’s judgment. Therefore, we578

believe that it is possible to conduct research on579

evidence from a fine-grained perspective to achieve580

more precise screening of multimodal evidence.581

Furthermore, although our method has been582

proven effective in comparison and ablation ex-583

periments and has achieved a comprehensive im-584

provement over the baseline method that only uses585

VLM in open-book experiments, its metrics are586

still lower than those in closed-book experiments.587

If this issue is resolved, models can better utilize588

multimodal contextual evidence for more accurate589

claim evaluation.590
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A Example Appendix771

A.1 Prompt772

Figure 3: The prompt template we used in the open-
book experiment.

Figure 4: The prompt template we used in the closed-
book experiment.

Figure 5: The prompt template we used in the ES4CV
experiment.
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