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Abstract

Maximum entropy reinforcement learning (MaxEnt-RL) has become the standard1

approach to RL due to its beneficial exploration properties. Traditionally, policies2

are parameterized using Gaussian distributions, which significantly limits their3

representational capacity. Diffusion-based policies offer a more expressive alterna-4

tive, yet integrating them into MaxEnt-RL poses challenges—primarily due to the5

intractability of computing their marginal entropy. We propose Diffusion-Based6

Maximum Entropy RL (DIME). DIME leverages recent advances in approximate7

inference with diffusion models to derive a lower bound on the maximum en-8

tropy objective. Additionally, we propose a policy iteration scheme that provably9

converges to the optimal diffusion policy. Our method enables the use of expres-10

sive diffusion-based policies while retaining the principled exploration benefits11

of MaxEnt-RL, significantly outperforming other diffusion-based methods on12

challenging high-dimensional control benchmarks. It is also competitive with13

state-of-the-art non-diffusion based RL methods while requiring fewer algorith-14

mic design choices and smaller update-to-data ratios, reducing computational15

complexity.16

1 Introduction17

The maximum entropy reinforcement learning (MaxEnt-RL) objective augments the task reward in18

each time step with the entropy of the policy [76, 60, 25, 26]. This objective has several favorable19

properties among which improved exploration [75, 25] is crucial for RL. Recent successful model-20

free RL algorithms leverage these favorable properties and build upon this framework [8, 46]21

improving sample efficiency and leading to remarkable results. However, the policies are traditionally22

parameterized using Gaussian distributions, significantly limiting their representational capacity.23

On the other hand, diffusion models [57, 30, 58, 36] are highly expressive generative models and24

have proven beneficial in representing complex behavior policies [54, 16]. However, important25

metrics such as the marginal entropy are intractable to compute [74] which restricts their usage in26

RL. Because of this shortcoming, recent methods propose different ways to train diffusion-based27

methods in off-policy RL. While these methods are discussed in more detail in the related work28

section (App. C), most of them require additional techniques to add artificial (in most cases Gaussian)29

noise to the generated actions to induce exploration in the behavior generation process. Hence,30

they do not leverage the diffusion model to generate potentially non-Gaussian exploration patterns31

but fall back to mainly Gaussian exploration. Nonetheless, there have been significant advances in32

training diffusion-based models for approximate inference [7, 55]. Since the policy improvement in33

MaxEnt-RL can also be cast as an approximate inference problem to the energy-based policy [25], it34

is a natural step to explore these parallels.35
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We propose Diffusion-Based Maximum Entropy Reinforcement Learning (DIME). DIME leverages36

recent advances in approximate inference with diffusion models [55] to derive a lower bound on the37

MaxEnt objective. We propose a policy iteration framework with monotonic policy improvement that38

converges to the optimal diffusion policy. Additionally, building on recent off-policy RL algorithms39

such as Cross-Q [8] and distributional RL [6], we propose a practical version of DIME that can be40

used for training diffusion-based RL policies. On 13 challenging continuous high-dimensional control41

benchmarks, we empirically validate that DIME significantly outperforms other diffusion-based42

baselines on all environments and consistently outperforms other state-of-the-art RL methods based43

on a Gaussian policy on 10 out of 13 environments, while being computationally more efficient and44

requiring less algorithmic design choices as the current state of the art baseline BRO [46].45

2 Preliminaries46

2.1 Maximum Entropy Reinforcement Learning47

Notation We consider the task of learning a policy π : S ×A → R+, where S and A denote a con-48

tinuous state and action space, respectively using reinforcement learning (RL). We formalize the RL49

problem using an infinite horizon Markov decision process consisting of the tuple (S,A, r, p, ρπ, γ),50

with bounded reward function r : S ×A → [rmin, rmax] and transition density p : S × S ×A → R+51

which denotes the likelihood for transitioning into a state s′ ∈ S when being in s ∈ S and executing52

an action a ∈ A. We follow [26] and slightly overload ρπ which denotes the state and state-action53

marginals induced by a policy π. Moreover, γ ∈ [0, 1) denotes the discount factor. For brevity, we54

use rt ≜ r(st, at). We denote objective functions that we aim to maximize as J and minimize as L.55

Control as inference. The goal of maximum entropy reinforcement learning (MaxEnt-RL) is to56

jointly maximize the sum of expected rewards and entropies of a policy57

J(π) =

∞∑
t=l

γt−lEρπ [rt + αH(π(at|st))] , (1)

where H(π(a|s)) = −
∫
π(a|s) log π(a|s)da is the differential entropy, and α ∈ R+ controls the58

exploration exploitation trade-off [25]. To keep the notation uncluttered we absorb α into the reward59

function via r ← r/α. Defining the Q-function of a policy π as60

Qπ(st, at) = rt +

∞∑
l=1

γlEρπ
[rt+l +H (π(at+l|st+l))] , (2)

with Qπ : S ×A → R, the MaxEnt objective can be cast as an approximate inference problem as61

L(π) = DKL

(
π(at|st)

∣∣∣expQπ(st, at)

Zπ(st)

)
, (3)

in a sense that maxπ J(π) = minπ L(π). Here, DKL denotes the Kullback-Leibler divergence and62

Zπ(s) =
∫
expQπ(s, a)da is the state-dependent normalization constant.63

Policy iteration is a two-step iterative update scheme that is, under certain assumptions, guaranteed64

to converge to the optimal policy with respect to the maximum entropy objective. The two steps65

include policy evaluation and policy improvement. Given a policy π, policy evaluation aims to66

evaluate the value of π. To that end, [26] showed that repeated application of the Bellman backup67

operator T πQk with T πQ(st, at) ≜ rt + γE [Q(st+1, at+1) +H(at+1|st+1)] converges to Qπ as68

k →∞, starting from any Q. To update the policy, that is, to perform the policy improvement step,69

the Q-function of the previous evaluation step, Qπold is used to obtain a new policy according to70

πnew = argmin
π∈Π

DKL

(
π(at|st)

∣∣∣expQπold(st, at)

Zπold(st)

)
, (4)

where Π is a set of policies such as a family of parameterized distributions. Note that Zπold(st) is71

not required for optimization as it is independent of π. [26] showed that for all state-action pairs72

(s, a) ∈ S ×A it holds that Qπnew(s, a) ≥ Qπold(s, a) ensuring that policy iteration converges to the73

optimal policy π∗ in the limit of infinite repetitions of policy evaluation and improvement.74
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2.2 Denoising Diffusion Policies75

For a given state s ∈ S, we consider a stochastic process on the time-interval [0, T ] given by an76

Ornstein-Uhlenbeck (OU) process 1 [56]77

dat = −βtatdt+ η
√
2βtdBt, a0 ∼ π⃗0(·|s), (5)

with diffusion coefficient β : [0, T ]→ R+, standard Brownian motion (Bt)t∈[0,T ], and some target78

policy π⃗0. For t, l ∈ [0, T ], we denote the marginal density of Eq. 5 at t as π⃗t and the conditional79

density at time t given l as π⃗t|l. Eq. 5 is commonly referred to as forward or noising process since,80

for a suitable choice of β, it holds that π⃗T ≈ N (0, η2I). Denoising diffusion models leverage the81

fact, that the time-reversed process of Eq. 5 is given by82

dat =
(
−βtatdt− 2η2βt∇ log π⃗t(at|s)

)
+ η

√
2βtdBt, (6)

starting from ⃗πT = π⃗T ≈ N (0, η2I) and running backwards in time [47, 4, 29]. For the backward,83

generative or denoising process (Eq. 6), we denote the density as ⃗π. Here, time-reversal means that84

the marginal densities align, i.e., π⃗t = ⃗πt for all t ∈ [0, T ]. Hence, starting from aT ∼ N (0, η2I),85

one can sample from the target policy π⃗0 by simulating Eq. 6. However, for most densities π⃗0, the86

scores (∇ log π⃗t(at|s))t∈[0,T ] are intractable, requiring numerical approximations. To address this,87

denoising score-matching objectives are commonly employed, that is,88

LSM(θ) = E
[
βt∥fθ

t (at, s)−∇ log π⃗t|0(at|a0, s)∥2
]
, (7)

where t is sampled on [0, T ] and fθ denotes a parameterized score network [32, 66]. For OU processes,89

the conditional densities ∇ log π⃗t|0 are explicitly computable, making the objective tractable for90

optimizing θ [58]. Once trained, the score network fθ can be used to simulate the denoising process91

dat =
(
−βtatdt− 2η2βtf

θ
t (at, s)

)
+ η

√
2βtdBt, (8)

to obtain samples a0 ∼ πθ
0 that are approximately distributed according to π⃗0. Here, πθ

t denotes the92

marginal distribution of Eq. 8 at time t. While score-matching techniques work well in practice, they93

cannot be applied to maximum entropy reinforcement learning. This is because the expectation in94

Eq. 7 requires samples a0 ∼ π⃗0 ∝ expQπ which are not available. However, in the next section, we95

build on recent advances in approximate inference to optimize diffusion models without requiring96

samples from a0, relying instead on evaluations of Qπ .97

3 Diffusion-Based Maximum Entropy RL98

Here, we express the maximum entropy objective as an approximate inference problem for diffusion99

models. We then use these results to introduce a policy iteration scheme that provably converges to100

the optimal policy. Lastly, we propose a practical algorithm for optimizing diffusion models.101

3.1 Control as Inference for Diffusion Policies102

Directly maximizing the maximum entropy objective103

J( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt(st, a

0
t ) + αH( ⃗π0(a

0
t |st))

]
,

for a diffusion model is difficult as the marginal entropyH( ⃗π0(a|s)) of the denoising process in Eq.104

6 is intractable. Please note that we use superscripts for the actions to indicate the diffusion step to105

avoid collisions with the time step used in RL. Moreover, we will again absorb α into the reward and106

use rt ≜ r(st, a
0
t ). To overcome this intractability, we propose to maximize a lower bound. We start107

by discretizing the stochastic processes introduced in Section 2.2 and use the results as a foundation108

to derive this lower bound. Note that while similar results can be derived from a continuous-time109

perspective (see e.g., [7, 55, 51]), such derivation would require a background in stochastic calculus,110

1Please note, for clarity, we slightly abuse notation by using t to denote the time in the stochastic process,
not be confused with the time step in RL. The distinction becomes clear when we discretize the processes.
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making it less accessible to a broader audience. The Euler-Maruyama (EM) discretization [56] of the111

noising (Eq. 5) and denoising (Eq. 6) process is112

an+1 = an − βna
nδ + ϵn and (9)

an−1 = an +
(
βna

n + 2η2βn∇ log π⃗n(a
n|s)

)
δ + ξn, (10)

respectively, with ϵn, ξn ∼ N (0, 2η2βnδI). Here, δ denotes a constant discretization step size such113

that N = T/δ is an integer. To simplify notation, we write an, instead of anδ. Under the EM114

discretization, the noising and denoising process admit the following joint distributions115

π⃗0:N (a0:N |s) = π⃗0(a
0|s)

N−1∏
n=0

π⃗n+1|n(a
n+1

∣∣an, s), (11)

⃗π0:N (a0:N |s) = ⃗πN (aN |s)
N∏

n=1

⃗πn−1|n(a
n−1

∣∣an, s), (12)

in a sense that π⃗0:N and ⃗π0:N converge to the law of (at)t∈[0,T ] in Eq. 5 and 6, as δ → 0, respectively116

[22]. Here, π⃗n+1|n and ⃗πn−1|n are Gaussian transition densities from Eq. 9 and 10. To obtain a117

maximum entropy objective for diffusion models, we make use of the following lower bound on the118

marginal entropy, that is,H( ⃗π0(a0|s)) ≥ ℓ ⃗π(a
0, s), where119

ℓ ⃗π(a
0, s) = E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
. (13)

Please note that similar bounds have been used, e.g., in [1, 61, 53, 42, 5], or, more generally, follow120

from the data processing inequality [17]. A derivation can be found in Appendix A. From Eq. 13, it121

directly follows that122

J( ⃗π) ≥ J̄( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
. (14)

Next, we cast Eq. 14 as an approximate inference problem to make the objective more interpretable.123

To that end, let us define the Q-function of a denoising policy ⃗π with respect to the maximum entropy124

objective J̄ as125

Q ⃗π(st, a
0
t ) = rt +

∑
l=1

γlEρπ

[
rt+l + ℓ ⃗π(a

0
t+l, st+l)

]
, (15)

with Q ⃗π : S ×A → R. With Eq. 15 we identify the corresponding approximate inference problem126

as finding ⃗π which minimizes (please see Appendix A for derivation)127

L̄( ⃗π) = DKL
(

⃗π0:N (a0:N |s)|π⃗0:N (a0:N |s)
)
, (16)

where the target policy, i.e., the marginal of the noising process in Eq. 11 is given by the exponentiated128

Q-function of the diffusion policy129

π⃗0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
. (17)

Recall from Section 2.2 that we aim to time-reverse the noising process, that is, to ensure for all130

states s ∈ S, it holds that ⃗π0:N = π⃗0:N . Please note that this is precisely what Eq. 16 is trying to131

accomplish, i.e., we aim to learn a diffusion model ⃗π, such that the denoising process time-reverses132

the noising process, and, in particular, has a marginal distribution given by π0 = expQ ⃗π/Z ⃗π . Lastly,133

from the data processing inequality it directly follows that134

DKL

(
⃗π0(a

0|s)
∣∣∣expQ ⃗π(s, a0)

Z ⃗π(s)

)
≤ DKL

(
⃗π(a0:N |s)|π⃗(a0:N |s)

)
, (18)

which shows the approximate inference problem in Eq. 16 indeed optimizes the same inference135

problem stated in Eq. 3.136
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3.2 Diffusion-based Policy Iteration137

We propose a policy iteration scheme for learning an optimal maximum entropy policy, similar to138

[26]. However, here we restrict the family of stochastic actors to diffusion policies ⃗π ∈ ⃗Π ⊂ Π.139

Throughout this section, we assume finite action spaces to enable theoretical analysis, but relax this140

assumption in Section 3.3. All proofs of this section are deferred to Appendix A.141

For policy evaluation, we aim to compute the value of a policy ⃗π. We define the Bellman backup142

operator as143

T ⃗πQ(st, a
0
t ) ≜ rt + γE

[
Q(st+1, a

0
t+1) + ℓ ⃗π(a

0
t+1, st+1)

]
. (19)

Note that this equation contains the entropy-lower bound ℓ ⃗π. By applying standard convergence144

results for policy evaluation [59] we can obtain the value of a policy by repeatedly applying T ⃗π as145

established in Proposition 3.1.146

Proposition 3.1 (Policy Evaluation). Let T ⃗π be the Bellman backup operator for a diffusion policy147

⃗π as defined in Eq. 19. Further, let Q0 : S × A → R and Qk+1 = T ⃗πQk. Then, it holds that148

limk→∞ Qk = Q ⃗π where Q ⃗π is the Q value of ⃗π.149

For the policy improvement step, we seek to improve the current policy based on its value using the150

Q-function. Formally, we need to solve the approximate inference problem151

⃗πnew = argmin
⃗π∈ ⃗Π

DKL
(

⃗π0:N (a0:N |s)|π⃗ old
0:N (a0:N |s)

)
, (20)

for all s ∈ S, where π⃗ old
0:N (a0:N |s) is as in Eq. 11 with marginal density152

π⃗ old
0 (a0|s) = expQ ⃗πold(s, a0)

Z ⃗πold(s)
. (21)

Indeed, solving Eq. 20 results in a policy with higher value as established below.153

Proposition 3.2 (Policy Improvement). Let ⃗πold, ⃗πnew ∈ ⃗Π be defined as in Eq. 21 and 20, respectively.154

Then for all (s, a) ∈ S ×A it holds that Q ⃗πnew(s, a) ≥ Q ⃗πold(s, a).155

Combining these results leads to the policy iteration method which alternates between policy eval-156

uation (Proposition 3.1) and policy improvement (Proposition 3.2) and provably converges to the157

optimal policy in ⃗Π (Proposition 3.3).158

Proposition 3.3 (Policy Iteration). Let ⃗π0, ⃗πi+1, ⃗πi, ⃗π∗ ∈ ⃗Π and let ⃗πi+1 be the policy obtained159

from ⃗πi after a policy evaluation and improvement step. Then, for any starting policy ⃗π0 it holds160

that limi→∞ ⃗πi = ⃗π∗, with ⃗π∗ such that for all ⃗π ∈ ⃗Π and (s, a) ∈ S ×A it holds that Q ⃗π∗
(s, a) ≥161

Q ⃗π(s, a).162

However, performing policy iteration until convergence is, in practice often intractable, particularly163

for continuous control tasks. As such, we will introduce a practical algorithm next.164

3.3 DIME: A Practical Diffusion RL Algorithm165

For a practical algorithm, we use a parameterized function approximation for the Q-function and the166

policy, that is, Qϕ and πθ, with parameters ϕ and θ. Here, πθ is represented by a parameterized score167

network, see Eq. 8. For policy evaluation, we can minimize the Bellman residual,168

JQ(ϕ) =
1

2
E
[(
Qϕ(st, a

0
t )−Qtarget(st, a

0
t )
)2]

, (22)

using stochastic gradients with respect to ϕ. We provide implementation details in Section 3.4. More-169

over, the expectation is computed using state-action pairs collected from environment interactions170

and saved in a replay buffer. For policy improvement, we solve the approximate inference problem171

L(θ) = DKL
(
πθ
0:N (a0:N |s)|π⃗0:N (a0:N |s)

)
, (23)

where the target policy, i.e., the marginal of the noising process in Eq. 11 is given by the approximate172

Q-function π⃗0(a
0|s) = expQϕ(s,a

0)
Zϕ(s)

, where states are again sampled from a replay buffer. Further173
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expanding L(θ) yields174

L(θ) = Eπθ

[
log πθ

N (aN |s)−Qϕ(s, a
0) +

N∑
n=1

log
πθ
n−1|n(a

n−1
∣∣an, s)

π⃗n|n−1(an
∣∣an−1, s)

]
+ logZϕ(s), (24)

showing that Zϕ is not needed to minimize Eq. 24 as it is independent of θ. Moreover, contrary to the175

score-matching objective (see Eq. 7) that is commonly used to optimize diffusion models, stochastic176

optimization of L(θ) does not need access to samples a0 ∼ expQϕ/Zϕ, instead relying on stochastic177

gradients obtained via reparameterization trick [37] using samples from the diffusion model πθ.178

3.4 Implementation Details179

Autotuning Temperature. We follow implementations like SAC [27] where the reward scaling180

parameter α is not absorbed into the reward but scales the entropy term. Choosing α depends on the181

reward ranges and the dimensionality of the action space, which requires tuning it per environment.182

We instead follow prior works [27] for auto-tuning α by optimizing J(α) = α
(
Htarget − ℓθH

)
, where183

Htarget is a target value for the mismatch between the noising and denoising processes.184

Autotuning Diffusion Coefficient. The objective function in Eq. 24 is fully differentiable with185

respect to parameters of the diffusion process. As such, we additionally treat the diffusion coefficient186

β as a learnable parameter that is optimized end-to-end, further reducing the need for manual187

hyperparameter tuning. Further details on the parameterization can be found in Appendices G and E.188

Q-function. Following [8] we adopt the CrossQ algorithm, i.e., we use Batch Renormalization in189

the Q-function and avoid a target network for calculating Qtarget. When updating the Q-function, the190

values for the current and next state-action pairs are queried in parallel. The next Q-values are used191

as target values where the gradients are stopped. Additionally, we employ distributional Q learning192

as proposed by [6]. The details are described in Appendix G.193

4 Experiments194

We analyze DIME’s algorithmic features with an intensive ablation study where we clarify the role of195

the reward scaling parameter α, the effect of varying diffusion steps, the gained performance boost196

when using a diffusion policy representation over a Gaussian representation in Appendix D and we197

analyze employing distributional Q learning in Appendix E.198

In a broad range of 13 sophisticated learning environments (see Appendix F) from different benchmark199

suits, ranging from mujoco gym [11], deepmind control suit (DMC) [62], and myo suite [12],200

we compare DIME’s performance against state-of-the-art RL baselines that employ diffusion and201

Gaussian policy parameterizations. The considered environments are challenging locomotion and202

manipulation learning tasks with up to 39-dimensional action and 223-dimensional observation203

spaces. We consider QSM [52], Diffusion-QL [69], Consistency-AC [21], DIPO [71], QVPO [20],204

and DACER [68] as diffusion-based policy baselines. Additionally, we compare against the state-of-205

the-art RL methods CrossQ [8] and BRO [46], where we have used the provided learning curves from206

the latter. Both methods use a Gaussian parameterized policy and have shown remarkable results. We207

have run the learning curves for 10 seeds using the official code releases and report the interquartile208

mean (IQM) with a 95% stratified bootstrap confidence interval as suggested by [2].209

4.1 Performance Comparisons210

Gym Environments. Fig 3c and Fig. 3d show the learning curves for the An-tv3 and Humanoid-v3211

tasks respectively. While the diffusion-based baselines perform reasonably well on the Ant-v3 task212

with DIPO outperforming the rest, they are all outperformed by DIME and CrossQ which perform213

comparably. On the Humanoid-v3 DIME achieves a significantly higher return than all baselines.214

DMC: Dog and Humanoid Tasks (Fig. 1). We additionally consider BRO and BRO Fast (identical215

to BRO but different update-to-data (UTD) ratio) on DMC suit’s dog and humanoid tasks. Please note216

that we used the online available learning curves provided by the official implementation for BRO.217

DIME outperforms all baselines significantly on the dog-run environment and converges faster to the218

same end performance on the remaining dog environments (see Fig. 1a - 1d). BRO has slightly higher219
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Figure 1: Training curves on DMC’s dog, humanoid tasks, and the hand environments from
the MYO Suite. DIME performs favorably on the high-dimensional dog tasks where it significantly
outperforms all baselines (dog-run) or converges faster to the final performance. On the humanoid
tasks, DIME outperforms all diffusion-based baselines, CrossQ and BRO Fast, and performs on par
with BRO on the humanoid-stand task and slightly worse on the humanoid-run and humanoid-walk
tasks. In the MYO Suite, DIME consistently outperforms the baselines or performs on par.

average performance on the humanoid-run and humanoid-walk (see Fig. 1f - 1e)) tasks indicating220

that DIME performs favorably on more high-dimensional tasks like the dog environments and tasks221

from the myo suite. However, DIME’s asymptotic behavior in the humanoid-run achieves slightly222

higher aggregated performance than BRO, where we have run both algorithms for 3M steps (Fig. 8c).223

However, BRO requires full parameter resets, leading to performance drops during training, and it is224

run with a UTD ratio of 10, which is 5 times higher than DIME. This leads to longer training times.225

As reported in their paper [46], BRO needs an average training time of 8.5h, whereas DIME trains in226

approximately 4.5h with 16 diffusion steps on the humanoid-run on the same GPU (Nvidia A100).227

MYO Suite (Fig. 1). Except for pen twirl hard (Fig. 1k), DIME consistently outperforms BRO,228

BRO Fast, and CrossQ in that it converges to a higher or faster end success rate.229

5 Conclusion and Future Work230

We introduced DIME, a method for learning diffusion models for maximum entropy reinforcement231

learning by leveraging connections to approximate inference. We view this work as a starting point232

for exciting future research. Specifically, we explored denoising diffusion models, where the forward233

process follows an OU process. However, approximate inference with diffusion models is an active234

and rapidly evolving field, with numerous recent advancements that consider alternative stochastic235

processes. For example, [55] proposed learning both the forward and backward processes, while [51]236

further enhanced exploration by incorporating the gradient of the target density into the diffusion237

process. Additionally, [14] combined learned diffusion models with Sequential Monte Carlo [19],238

resulting in a highly effective inference method. These approaches hold significant promise for239

further improving diffusion-based policies in RL. We have conducted preliminary experiments on the240

framework from [55] and provide them in Appendix I.241
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A Derivations442

Lower-Bound Derivation. H(π0(a0|s)) ≥ ℓ ⃗π(a
0, s)443

H(π0(a0|s)) = −E ⃗π0:N

[
log

⃗π0:N (a0:N |s)
⃗π1:N |0(a1:N |s, a0)

]
(25)

= −E ⃗π0:N

[
log

⃗π0:N (a0:N |s)π⃗1:N |0(a
1:N |s, a0)

⃗π1:N |0(a1:N |s, a0)π⃗1:N |0(a1:N |s, a0)

]

= E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |s, a0)

⃗π0:N (a0:N |s)

]
+ E ⃗π0:N

[
log

⃗π1:N |0(a
1:N |s, a0)

π⃗1:N |0(a1:N |s, a0)

]
(26)

= E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |s, a0)

⃗π0:N (a0:N |s)

]
+ Eπ0

[
DKL

(
⃗π1:N |0(a

1:N |s, a0)∥ π⃗1:N |0(a
1:N |s, a0)

)]
(27)

≥ E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |s, a0)

⃗π0:N (a0:N |s)

]
, (28)

where we have used the relation444

π0(a0|s) =
⃗π0:N (a0:N |s)

⃗π1:N |0(a1:N |s, a0)
(29)

and the fact that the KL divergence is always non-negative445

Approximate Inference Formulation. Recall the definition of the Q-function446

Q ⃗π(st, a
0
t ) = rt +

∑
l=1

γlEρπ

[
rt+l + ℓ ⃗π(a

0
t+l, st+l)

]
. (30)

and447

ℓ ⃗π(a
0, s) = E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
. (31)

We start reformulating the objective448

J( ⃗π) ≥ J̄( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
. (32)

=

∞∑
t=l+1

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
+ Eρπ

[
rl + ℓ ⃗π(a

0
l , sl)

]
(33)

= Eρπ

[
Q ⃗π(st, a

0
t )
]
+ Eρπ

[
ℓ ⃗π(a

0
l , sl)

]
(34)

= Eρπ

[
Q ⃗π(st, a

0
t ) + ℓ ⃗π(a

0
l , sl)

]
(35)

= Eρπ, ⃗π0:N

[
Q ⃗π(st, a

0
t ) + log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
(36)

= −Eρπ

[
DKL

(
⃗π(a0:N |s)∥ π⃗(a0:N |s)

)
− logZ ⃗π(s)

]
, (37)

where we used449

π⃗0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
(38)

in the last step. When minimizing, the negative sign in front of the KL vanishes. Please note that450

the expectation over the marginal state distribution was ommited in the main text to avoid cluttered451

notation.452
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B Proofs453

Proof of Proposition 3.1 (Policy Evaluation). Let’s define the entropy-augmented reward of a454

diffusion policy as455

r ⃗π(st, a
0
t ) ≜ rt(st, a

0
t ) + E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
(39)

and the update rule for the Q-function as456

Q(st, a
0
t )← r ⃗π(st, a

0
t ) + γEst+1∼p,a0

t+1∼ ⃗π

[
Q(st+1, a

0
t+1)

]
. (40)

This formulation allows us to apply the standard convergence results for policy evaluation as stated in457

[59].458

Proof of Proposition 3.2 (Policy Improvement). It holds that459

⃗π(i+1)(a0:N |s) = expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s) (41)

Moreover, using the fact that the KL divergence is always non-negative, we obtain460

0 = DKL

(
⃗π(i+1)(a0:N |s)∥ ⃗π(i+1)(a0:N |s)

)
≤ DKL

(
⃗π(i)(a0:N |s)∥ ⃗π(i+1)(a0:N |s)

)
(42)

Rewriting the KL divergences yields461

E ⃗π(i+1)

[
log

⃗π(i+1)(a0:N |s)
⃗π(i+1)(a0:N |s)

]
≤ E ⃗π(i)

[
log

⃗π(i)(a0:N |s)
⃗π(i+1)(a0:N |s)

]
(43)

⇐⇒ E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
− E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
(44)

≤ E ⃗π(i)

[
log ⃗π(i)(a0:N |s)

]
− E ⃗π(i)

[
log ⃗π(i+1)(a0:N |s)

]
⇐⇒ E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
− E ⃗π(i+1)

[
log

expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s)

]
(45)

≤ E ⃗π(i)

[
log ⃗π(i)(a0:N |s)

]
− E ⃗π(i)

[
log

expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s)

]

⇐⇒ E ⃗π(i+1)

[
Qπ(i)

(s, aN )
]
+ E ⃗π(i+1)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i+1)(a0:N |s)

]
(46)

≥ E ⃗π(i)

[
Qπ(i)

(s, aN )
]
+ E ⃗π(i)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i)(a0:N |s)

]

To keep the notation uncluttered we use462

d(i+1)(s, aN ) = E ⃗π(i+1)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i+1)(a0:N |s)

]
and d(i)(s, aN ) = E ⃗π(i)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i)(a0:N |s)

]
(47)
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Qπ(i)

(s, aN ) = r0 + E
[
γ
(
d(i)(s1, a

N
1 ) + E ⃗π(i)

[
Qπ(i)

(s1, a
N
1 )

])]
(48)

≤ r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + E ⃗π(i+1)

[
Qπ(i)

(s1, a
N
1 )

])]
(49)

= r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + r1

)
+ γ2

(
d(i)(s2, a

N
2 ) + E ⃗π(i)

[
Qπ(i)

(s2, a
N
2 )

])]
(50)

≤ r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + r1

)
+ γ2

(
d(i+1)(s2, a

N
2 ) + E ⃗π(i+1)

[
Qπ(i)

(s2, a
N
2 )

])]
(51)

... (52)

≤ r0 + E

[ ∞∑
t=1

γt
(
d(i+1)(st, a

N
t ) + rt

)]
= Qπ(i+1)

(s, aN ) (53)

Since Q improves monotonically, we eventually reach a fixed point Q(i+1) = Q(i) = Q∗463

Proof of Proposition 3.3 (Policy Iteration). From Proposition 3.2 it follows that Q ⃗πi+1

(s, a) ≥464

Q ⃗πi

(s, a). If for limk→∞ ⃗πk = ⃗π∗, then it must hold that Q ⃗π∗(s,a) ≥ Q ⃗π(s, a) for all ⃗π ∈ ⃗Π which465

is guaranteed by Proposition 3.2.466

C Related Work467

Maximum Entropy RL. The maximum entropy RL framework uses the entropy of the policy at468

each time step as an additional objective, providing a principled way of inducing exploration in469

the RL policy. It is different from entropy regularized RL [48], where the entropy of the policy is470

maximized only for the current time step. [25] proposed Soft-Q Learning, where amortized Stein471

variational gradient descent [67] (SVGD) is used to train a parameterized sampler that can sample472

from the energy-based policy. SAC [26] proposes an actor-critic RL method but frames the policy473

update as an approximate inference problem to the energy-based policy using a Gaussian policy474

parameterization. SAC has been extended to energy-based policies using SVGD in [44], where the475

authors also propose a new method to estimate the entropy in closed form. While SVGD is a powerful476

method for learning an energy-based policy, it is harder to scale these approaches to high-dimensional477

control problems. For improving exploration, LSAC [33] proposes leveraging Langevin Monte Carlo478

[70] in conjunction with a distributed critic objective to sample a state-action value. Recent advances479

of SAC also define the state-of-the-art in off-policy RL in many domains, such as CrossQ [8] and480

BRO [46]. CrossQ proposed removing the target network by leveraging batch renormalization and481

BRO scales to large networks in RL by using several methods such as optimistic exploration [45],482

network resets [49], weight decay, and high update-to-data ratios.483

Diffusion-Based Policies in RL. Early works have researched diffusion models in offline RL [38, 39]484

as trajectory generators [34] or as expressive policy representations [69, 35, 28, 13, 21, 43, 23, 41].485

More recently, diffusion models in online RL have become more popular. DIPO [71] proposes486

training a diffusion-based policy using a behavior cloning loss. The actions in the replay buffer serve487

as target actions for the policy improvement step and are updated using the gradients of the Q-function488

∇aQ(s, a). DIPO has been extended to develop methods for learning multi-modal behaviors[40] by489

leveraging hierarchical clustering to isolate different behavior modes. DIPO relies on the stochasticity490

inherent to the diffusion model for exploration and does not explicitly control it via an objective. QSM491

[52] directly matches the policy’s score with the gradient of the Q-function∇aQ(s, a). While their492

objective avoids differentiating through the whole diffusion chain, the proposed objective disregards493

the entropy of the policy and, therefore, exploration. Consequently, QSM needs to add noise to the494

final action of the diffusion chain. More recently, DACER [68] proposed using the data-generating495

process as the policy representation and backpropagating the gradients through the diffusion chain.496

However, they do not consider a backward process as we do, and their objective for updating the497

diffusion model is based on the expected Q-values only. To incentivize the exploration, DACER498

adds diagonal Gaussian noise to the sampled actions, where the variance of this noise is controlled499

by a scaling term that is updated automatically using an approximation of the marginal entropy by500
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Figure 2: Reward Scaling Sensitivity (a)-(b). The α parameter controls the exploration-exploitation
trade-off. (a) shows the learning curves for varying values on DMC’s dog-run task. Too high α values
(α = 0.1) do not incentivize learning whereas too small α values (α ≤ 10−5) converge to suboptimal
behavior. (b) shows the aggregated end performance for each learning curve in (a). For increasing
α values, the end performance increases until it reaches an optimum at α = 10−3 after which the
performance starts dropping. Diffusion Policy Benefit (c) and (d). We compare DIME to a Gaussian
policy with the same implementation details as DIME on the (a) humanoid-run and (b) dog-run tasks.
The diffusion-based policy reaches a higher return (a) and converges faster.

extracting a Gaussian Mixture Model from the diffusion policy. Concurrently, QVPO [20] proposed501

weighting their diffusion loss with their respective Q-values after applying transformations. However,502

QVPO relies on sampling actions from a uniform distribution to enforce exploration.503

DIME distinguishes from prior works in that we use the maximum entropy RL framework for504

training the diffusion policy, which was not considered before. This allows direct control of the505

exploration-exploitation trade-off arising naturally through this objective without the need for addi-506

tional approximations. DIME is leveraging the diffusion model to generate non-Gaussian exploration507

actions which is in contrast to most other diffusion RL approaches that still require including Gaussian508

or uniform exploration noise.509

Approximate Inference with Diffusion Models. Early works on approximate inference with510

diffusion models were formalized as a stochastic optimal control problem using Schrödinger-Föllmer511

diffusions [18, 63, 31] and only recently realized with deep-learning based approaches [65, 73].512

[64, 7] later extended these results to denoising diffusion models. A more general framework where513

both forward and backward processes of the diffusion model are learnable was concurrently proposed514

by [55, 51]. Recently, many extensions have been proposed, see e.g. [3, 50, 24, 72, 14, 10, 9, 15].515

Our work can be seen as an instance of the sampler presented in [7]. However, our formulation allows516

using different diffusion samplers such as those presented in [55, 9], while we restrict ourselves in517

this work to the sampler presented in [7].518

D Ablation Studies519

Exploration Control. The parameter α balances the exploration-exploitation trade-off by scaling520

the reward signal. We analyze the effect of this parameter by comparing DIME’s learning curves521

with different α values on the dog-run task from the DMC (see Fig. 2a). Additionally, we show the522

performance of the last return measurements for each learning curve in Fig. 2b. Too high α values523

(α = 0.1) do not incentivize maximizing the task’s return, leading to no learning at all, whereas small524

values (α ≤ 10−5) lead to suboptimal performance because the policy does not explore sufficiently.525

We can also see a clear trend that starting from α = 10−12, the performance gradually increases until526

the best performance is reached for α = 10−3.527

Diffusion Policy Benefit. We aim to analyze the performance benefits of the diffusion-parameterized528

policy compared to a Gaussian parameterization in the same setup by only exchanging the policy529

and the corresponding policy update. This comparison ensures that the Gaussian policy is trained530

with the identical implementation details from DIME as described in Sec. 3.4 and showcases the531

performance benefits of a diffusion-based policy. Fig. 2c and 2d show the learning curves of both532

versions on DMC’s humanoid-run and dog-run environments. The diffusion policy’s expressivity533

leads to a higher aggregated return in the humanoid-run and to significantly faster convergence in the534

high-dimensional dog-run task. We attribute this performance benefit to an improved exploration535

behavior.536
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Figure 3: Varying the Number of diffusion steps (a)-(b). The number of diffusion steps might affect
the performance and the computation time. (a) shows DIME’s learning curves for varying diffusion
steps. Two diffusion steps perform badly, whereas four and eight diffusion steps perform similar
but still worse than 16 and 32 diffusion steps which perform similarly. (b) shows the computation
time for 1MIO steps of the corresponding learning curves. The smaller the diffusion steps, the less
computation time is required. Learning Curves on Gym Benchmark Suite (c)-(d). We compare
DIME against various diffusion baselines and CrossQ on the (c) Ant-v3 and (d) Humanoid-v3 from
the Gym suite. While all diffusion-based methods are outperformed by DIME, DIME performs
on par with CrossQ on the Ant environment. DIME performs favorably on the high-dimensional
Humanoid-v3 environment, where it also outperforms CrossQ.
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Figure 4: Learned β parameters. DIME’s policy improvement objective (Eq. 24) allows to train
various parameters end-to-end, such as the scaling for the diffusion coefficient β. More concretely,
we train a scaling parameter βk per dimension k, that scales the cosine schedule. We visualize the
adaptation of the parameter for the dimension k = 0, 10, 20, 30 over the training, averaged over 10
seeds for the dog-run task. Clearly, DIME first increases the parameter at the beginning of the training
phase. Depending on the dimension, it either converges to a rather high value (k = 20 and k = 30),
or keeps being reduced for other dimensions k = 0 and k = 10.

Number of Diffusion Steps. The number of diffusion steps determines how accurately the stochastic537

differential equations are simulated and is a hyperparameter that affects the performance. Usually,538

the higher the number of diffusion steps the better the model performs at the burden of higher539

computational costs. In Fig. 3a we plot DIME’s performance for varying diffusion steps on DMC’s540

humanoid-run environment and report the corresponding runtimes for 1 Mio environment steps in Fig.541

3b on an Nvidia A100 GPU machine. With an increasing number of diffusion steps, the performance542

and runtime increases. However, from 16 diffusion steps on, the performance stays the same.543

E Additional Experiments544

End-To-End Learning of β. We visualize the adaptation of the scaling for the diffusion coefficient545

β in Fig. 4 during learning on DMC’s dog-run environment.546

Extended Analysis on Distributional Q Learning. DIME employs distributional Q Learning [6]547

to represent the Q-function as a distribution over bins. We compare DIME to baselines when using548

distributional Q Learning and when using the well-known Bellman residual (see Eq. 22) for updating549

the parameters of the Q-function.550

We start by comparing DIME with distributional Q learning against diffusion-based baselines that551

employ distributional Q learning. Fig. 5a and Fig. 5b show the learning curves on the Ant-v3552
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Figure 5: Comparison to Diffusion Baselines with (a)-b)) and without Distributional Q (c)-
d)) on the Ant-v3 and Humanoid-v3 tasks. We provide the learning curves for distributional
versions for Diff-QL and Consistency-AC alongside DACER, which employs distributional Q by
default on the Ant-v3 (a) and Humanoid-v3 (b) tasks. DIME converges faster on the Ant-v3 (a)
task to the same performance achieved by DACER and outperforms all baselines on the more high-
dimensional Humanoid-v3 (b) task. Additionally, we compare DIME without distributional Q against
the diffusion baselines without distributional Q on the Ant-v3 (c) and Humanoid-v3 (d) tasks. DIME
without distributional Q performs on par with the baselines DIPO and QVPO on the Ant-v3 (c) and
outperforms all baselines on the Humanoid-v3 (d).

DIME (ours) DIME w/o DistrQ BRO BRO (Fast) CrossQ

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(a) Dog Run

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(b) Dog Trot

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n

(c) Dog Walk

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

Number Env Interactions

IQ
M

M
ea

n
R

et
ur

n
(d) Dog Stand

Figure 6: Ablation on Distributional Q. Comparison of DIME and DIME without employing
distributional Q (dashed line). While there is a small improvement when using distributional Q,
DIME w/o Distributional Q still performs on par, or better than BRO, which employs quantile
distributional RL. DIME w/o DistrQ outperforms CrossQ and BRO (Fast).

and Humanoid-v3, respectively, where we compare against DACER, a distributional Q variant of553

Diff-QL, and Consistency-AC. DIME converges faster to the same performance as DACER on554

the Ant-v3 task and outperforms the baselines on the Humanoid-v3 task. In the setting without555

distributional Q Learning, i.e., when updating the parameters using the residual Bellman function,556

DIME performs similarly to DIPO and QVPO on the Ant-v3 task and outperforms all baselines on557

the higher-dimensional Humanoid-v3 task (Fig. 5c and Fig. 5d).558

Additionally, we compare DIME with and without distributional Q Learning on the four dog en-559

vironments from the DMC suite (Fig. 5), where we concentrate on the strong baselines BRO [46]560

and CrossQ [8]. BRO employs quantile distributional Q learning, whereas CrossQ uses the Bellman561

residual loss function for updating the Q-function’s parameters. In the main text, we have already562

observed that DIME with distributional Q performs favorably over the baselines. Fig. 5 shows a563

small improvement when using distributional Q. However, DIME without distributional Q (dashed564

line) still performs on par, or better than BRO and consistently performs better than BRO (Fast) and565

CrossQ. Please note that BRO and BRO (Fast) employ quantile distributional RL [46].566

F Environments567

All environments are visualized in Fig. 7. We consider the Ant-v3 and the Humanoid-v3 environments568

from mujoco gym [11]. The humanoid-stand, humanoid-walk , humanoid-run, dog-stand, dog-569

walk, dog-trot and dog-run environments from the deepmind control suite (DMC) [62]. The hand570

environments from myo suite are the object-hold-random,reach-random, key-turn-random and pen-571
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Figure 7: Considered environments. The Humanoid-v3 and the Ant-v3 are environments from the
mujoco gym benchmark [11]. The three environmentshumanoid-run,humanoid-walk and humanoid-
stand are from the deepmind control suite (DMC) benchmark [62]. The dog environments consist of
dog-run, dog-walk, dog-stand, dog-trot and are also from the DMC sutie benchmark. Finally, the
myo suite hand environments object-hold-hard,reach-hard, key-turn-hard, pen-twirl-hard are from
the myo suite [12].

twirl-random environments [12]. The action and observation spaces of the respective environments572

are shown in Table 1.573

Training Environment Observation Space Dim. Action Space Dim.
Ant-v3 111 8
Humanoid-v3 376 17
dog-run 223 38
dog-walk 223 38
dog-trot 223 38
dog-stand 223 38
humanoid-run 67 24
humanoid-walk 67 24
humanoid-stand 67 24
myoHandObjHoldRandom-v0 91 39
myoHandReachRandom-v0 115 39
myoHandKeyTurnRandom-v0 93 39
myoHandPenTwirlRandom-v0 83 39

Table 1: Observation and Action Space Dimensions for Various Training Environments

G Implementation Details574

We consider a score network with 3 layers and a 256 dimensional hidden layer with gelu activation575

function. We use Fourier features to encode the timestep and scale the embedding using a feed-576

forward neural network with two layers, with a hidden dimension of 256. For the diffusion coefficient,577

we use a cosine schedule and additionally optimize a scaling parameter for the diffusion coefficient578

per dimension end-to-end (i.e,. we learn the parameter β (please see Appendix E).579

We employ distributional Q following [6], where the Q-model outputs probabilities q over b bins.580

Using the bellman backup operator for diffusion models from Eq. 19 and the bin values b we581

follow [6] and calculate the target probabilities qtarget. Using the entropy-regularized cross-entropy582

loss L(ϕ) = −∑
qtarget log qϕ − 0.005

∑
qϕ log qϕ we update the parameters ϕ of the Q-function.583

Please note that the entropy regularization was not proposed in the original paper from [6], however,584

we noticed that a small regularization helps improve the performance in the early learning stages but585

does not change the asymptotic performance. Additionally, we follow [46] and use the mean of the586

two Q-values instead of the min as it has usually been used in RL so far.587

The expected Q-values for updating the actor can be easily calculated using the expectation Q(s, a0t ) =588 ∑
i qi(st, a

0
t )bi589

Action Scaling. Practical applications have a bounded action space that can usually be scaled to a590

fixed range. However, the action range of the diffusion policy ⃗π is unbounded. Therefore, we follow591

recent works [26] and propose applying the change of variables with a tanh squashing function at592
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the last diffusion step n = 0. For the backward process ⃗q0:N (u0:N |s) with unbounded action space593

u ∈ RD we can squash the action a0 = tanhu0 such that a0 ∈ (−1, 1) and its density is given by594

⃗π0:N (a0:N |s) = ⃗q0:N (u0:N |s) det
∣∣∣∣∣
(

da0

du0

)∣∣∣∣∣
−1

, (54)

with the corresponding log-likelihood595

log ⃗π0:N (a0:N |s) = log ⃗qN (uN ) +

N∑
n=1

log ⃗qn−1(u
n−1|un, s)−

D∑
i=1

log
(
1− tanh2

(
uN
i

))
. (55)

This means that the Gaussian kernels of the diffusion chain have the same log probabilities except for596

the correction term of the last step at n = 0.597

Algorithm 1 DIME: Diffusion-Based Maximum Entropy Reinforcement Learning

Input: Initialized parameters θ, ϕ, α, learningrates λ
1: for k = 1 to M do
2: if k % UTD then
3: a0:Tt ∼ πθ

0:N (a0:N |st)
4: st+1 ∼ p(st+1|a0t , st)
5: D ← D⋃{st, a0t , rt, st+1}
6: end if
7: ϕ← ϕ− λϕ∇ϕJQ(ϕ) (Eq. 22)
8: if k % POLICYDELAY then
9: θ ← θ − λθ∇θL(θ) (Eq. 23)

10: α← α− λαJ(α)
11: end if
12: end for

Algorithm 1 shows the learning procedure of DIME. Note that policy delay refers to the number of598

delayed updates of the policy compared to the critic. UTD is the update to data ratio.599

H List of Hyperparameters600

DIME QSM Diff-QL Consistency-AC DIPO DACER QVPO
Update-to-data ratio 2 1 1 1 1 1 1
Discount 0.99 0.99 0.99 0.99 0.99 0.99 0.99
batch size 256 256 256 256 256 256 256
Buffer size 1e6 1e6 1e5 1e5 1e6 1e6 1e6
Htarget 4dim(A) N/A N/A N/A N/A -0.9dimA N/A
Critic hidden depth 2 2 2 3 3 3 2
Critic hidden size 2048 2048 256 256 256 256 256
Actor/Score depth 3 3 4 4 4 3 2
Actor/Score size 256 256 256 256 256 256 256
Num. Bins/Quantiles 100 N/A N/A N/A N/A 2 N/A
Temp. Learn. Rate 1e-3 N/A N/A N/A N/A 3e-2 N/A
Learn. Rate Critic 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Learn. Rate Actor/Score 3e-4 3e-4 1e-5 1e-5 3e-4 3e-4 3e-4
Optimizer Adam Adam Adam Adam Adam Adam Adam
Diffusion Steps 16 15 5 N/A 100 20 20
Prior Distr. N (0, 2.5) N (0, 1) N/A N/A N/A N (0, 1) N (0, 1)
Exploration Steps 5000 1e4 1e4 1e4 1e4 1e4 1e4
Score-Q align. factor N/A 50 N/A N/A N/A N/A N/A

Table 2: Hyperparameters of DIME and all diffusion-based algorithms for all benchmark suits.
Varying hyperparameters for different benchmark suits are described in the text.

DIME. For DIME, we use distributional Q, where the maximum and minimum values for the bins601

have been chosen per benchmark suite. We have used vmin = −1600 and vmax = 1600 for the602
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DIME BRO BRO Fast CrossQ
Polyak weight N/A 0.005 0.005 N/A
Update-to-data ratio 2 10 2 2
Discount 0.99 0.99 0.99 0.99
batch size 256 128 128 256
Buffer size 1e6 1e6 1e6 1e6
Htarget 4dim(A) dim(A)/2 dim(A)/2 dim(A)
Critic hidden depth 2 BRONET BRONET 2
Critic hidden size 2048 512 512 2048
Actor/Score depth 3 BRONET BRONET 3
Actor/Score size 256 256 256 256
Num. Bins/Quantiles 100 100 100 N/A
Temp. Learn. Rate 1e-3 3e-4 3e-4 3e-4
Learn. Rate Critic 3e-4 3e-4 3e-4 7e-4
Learn. Rate Actor/Score 3e-4 3e-4 3e-4 7e-4
Optimizer Adam AdamW AdamW Adam
Diffusion Steps 16 N/A N/A N/A
Prior Distr. N (0, 2.5) N/A N/A N/A
Exploration Steps 5000 2500 2500 5000
Score-Q align. factor N/A N/A N/A N/A

Table 3: Hyperparameters of DIME and Gaussian-based algorithms for all benchmark suits. Varying
hyperparameters for different benchmark suits are described in the text.

gym environments, vmin = −200 and vmax = 200 for the DMC suite and vmin = −3600 and603

vmax = 3600 for the myo suite.604

QSM. In certain environments, we observed that QSM with default hyperparameters performed605

poorly, particularly in several DMC tasks and the Gym Ant-v3 tasks. To address this, we fine-tuned606

the hyperparameters for QSM in each of these underperforming tasks. For the DMC tasks, we found607

that QSM often requires an α value—representing the alignment factor between the score and the608

Q-function [52]—in the range of 100-200, rather than the default value of 50 reported in QSM’s609

original implementation. In the Ant-v3 task, we determined that α needs to be set to 1. In the original610

implementation, the number of diffusion steps is set to be 5, however, we found using more steps,611

such as 10 and 15, can significantly improve the performance in these under performed tasks.612

CrossQ. We used the hyperparameters from the original paper [8] for the gym benchmark suite.613

However, we used a different set of hyperparameters for the DMC and MYO suites for improved per-614

formance. More precisely, we increased the policy size to 3 layers with 256 hidden size. Additionally,615

we reduced the learning rate to 7e-4.616

I General Diffusion Policies617

DIME’s maximum entropy reinforcement learning framework for training diffusion policies is not618

specifically restricted to denoising diffusion policies but can be extended to general diffusion policies.619

This can be realized using the General Bridges framework as presented in [55]. In this case, we can620

write the forward and backward process as621

dat = [f(at, t) + βu(at, s, t)] dt+
√
2βtdBt, a0 ∼ π⃗0(·|s), (56)

dat = [f(at, t)− βv(at, s, t)] dt+
√

2βtdBt, aT ∼ N (0, I), (57)

with the drift and control functions f, u, v : Rd × [0, T ]→ Rd, the diffusion coefficient β : [0, T ]→622

R+, standard Brownian motion (Bt)t∈[0,T ] and some target policy π⃗0. Again we denote the marginal623

density of the forward process as π⃗t and the conditional density at time t given l as π⃗t|l for t, l ∈ [0, T ].624

The backward process starts from ⃗πT = π⃗T ∼ N (0, I) and runs backward in time where we denote625

its density as ⃗π.626
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(b) DIME and GB on Humanoid Run
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(c) DIME and BRO on Humanoid
Run

Figure 8: Preliminary results for the GB sampler on the dog run (a) and humanoid run (b)
environments from DMC. Comparison to BRO on the humanoid run for 3 million steps.

The respective discretization using the Euler Maruyama (EM) [56] method are given by627

an+1 = an + [f(an, n) + βu(an, s, n)] δ + ϵn, (58)

an−1 = an − [f(an, n)− βv(an, s, n)] δ + ξn, (59)

where ϵn, ξn ∼ N (0, 2βδI), with the constant discretization step size δ such that N = T/δ is an628

integer. We have used the simplified notation where we write an instead of anδ . The discretizations629

admit the joint distributions630

π⃗0:N (a0:N |s) = π0(a
0|s)

N−1∏
n=0

π⃗n+1|n(a
n+1

∣∣an, s), (60)

⃗π0:N (a0:N |s) = ⃗πN (aN |s)
N∏

n=1

⃗πn−1|n(a
n−1

∣∣an, s), (61)

with Gaussian kernels631

π⃗n+1|n(a
n+1

∣∣an, s) = N (an+1|an + [f(an, n) + βu(an, s, n)] δ, 2βδI) (62)

⃗πn−1|n(a
n−1

∣∣an, s) = N (an−1|an − [f(an, n)− βv(an, s, n)] δ, 2βδI) (63)

Following the same framework presented in the main text, we can now optimize the controls u and v632

using the same objective633

L̄(u, v) = DKL
(

⃗π0:N (a0:N |s)|π⃗0:N (a0:N |s)
)
, (64)

where the target policy at time step n = 0 is given as634

π0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
. (65)

In practice, we optimize the control functions u and v using parameterized neural networks. We have635

run preliminary results using the general bridge framework within the maximum entropy objective as636

suggested in our work. The learning curves can be seen in Fig. 8.637
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(a) α < 1
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(b) α = 1

expQπ/Zπ N (0, I)t

(c) α > 1

Figure 9: The effect of the reward scaling parameter α. The figures in (a)-(b) show diffusion
processes for different α values starting at a prior distribution N (0, I) and going backward in time
to approximate the target distribution exp (Qπ/α)/Zπ. Small values for α (a) lead to concentrated
target distributions with less noise in the diffusion trajectories especially at the last time steps. The
higher α becomes (b) and (c), the more the target distribution is smoothed and the distribution of the
samples at the last time steps becomes more noisy. Therefore, the parameter α directly controls the
exploration by enforcing noisier samples the higher α becomes.
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