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Abstract

Meningioma is one of the most prevalent brain tumors in adults. To determine its malig-
nancy, it is graded by a pathologist into three grades according to WHO standards. This
grade plays a decisive role in treatment, and yet may be subject to inter-rater discordance.
In this work, we present and compare three approaches towards fully automatic menin-
gioma grading from histology whole slide images. All approaches are following a two-stage
paradigm, where we first identify a region of interest based on the detection of mitotic
figures in the slide using a state-of-the-art object detection deep learning network. This
region of highest mitotic rate is considered characteristic for biological tumor behavior. In
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the second stage, we calculate a score corresponding to tumor malignancy based on infor-
mation contained in this region using three different settings. In a first approach, image
patches are sampled from this region and regression is based on morphological features
encoded by a ResNet-based network. We compare this to learning a logistic regression
from the determined mitotic count, an approach which is easily traceable and explainable.
Lastly, we combine both approaches in a single network. We trained the pipeline on 951
slides from 341 patients and evaluated them on a separate set of 141 slides from 43 patients.
All approaches yield a high correlation to the WHO grade. The logistic regression and the
combined approach had the best results in our experiments, yielding correct predictions in
32 and 33 of all cases, respectively, with the image-based approach only predicting 25 cases
correctly. Spearman’s correlation was 0.7163, 0.7926 and 0.7900 respectively. It might be
counter-intuitive at first that morphological features provided by the image patches do not
improve model performance. Yet, this mirrors the criteria of the grading scheme, where
mitotic count is the only unequivocal parameter.

Keywords: automatic tumor grading, meningioma, deep learning, known operator learn-
ing

1. Introduction

With 20-30% of all primary brain tumors, meningiomas are reported to be the most frequent
occurring brain tumor in adults (Lam Shin Cheung et al. (2018), Saraf et al. (2011)).
Meningiomas are classified into various sub-types, and graded according to the grading
system of the World Health Organization (WHO) into three grades with ascending risk of
recurrence and/or aggressive growth (Louis et al. (2016)). Grade I is the most prevalent,
accounting for 80 to 90% of all meningiomas. However, even though these low-grade tumors
are mostly benign, recurrence rates range from 7 to 20% (Louis et al. (2016)). Grade II
and III meningiomas are less frequently diagnosed, but tend to show a more aggressive
biological behavior than grade I meningiomas (Louis et al. (2016)). For these, recurrence
rates are reported to be in the range of 30 to 40% for grade II and 50 to 80% for grade
III meningiomas (Louis et al. (2016)). These differences make grading an important factor
for treatment success and tumor management, however, concordance between raters was
reported to be suboptimal (Rogers et al. (2015)).
Beside morphological features like high cellularity, prominent nucleoli or brain invasion, the
presence of cells undergoing cell division (mitotic figures) is a key factor in the WHO grading
scheme (Louis et al. (2016)). Even though mitoses are also part of tumor morphology, their
density (mitotic rate) is still treated as a separate factor in the WHO grading scheme
and is known to be highly correlated with cell proliferation, which is a key predictor for
biological tumor behaviour (Baak et al. (2009)). Consequently, the rate of mitoses per area
(mitotic count, MC), typically counted over ten high power fields, is a factor in many grading
schemes, e.g. for breast cancer (Elston and Ellis (1991)) or lung cancer Kadota et al. (2012).
Yet, it is also known that the inter-rater agreement on mitotic figures is fairly modest, and
that algorithmic approaches offer performance in mitotic figure detection comparable to
humans (Meyer et al. (2005), Malon et al. (2012), Veta et al. (2016)), Aubreville et al.
(2020)).
In this work we perform automated grading of meningiomas from whole slide images (WSIs),
based on deep learning models. We base our approaches on the prediction of mitotic figures
by a state-of-the-art deep learning architecture. Over all images associated with one patient,
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we calculate the highest mitotic count (i.e., the number of mitotic figures per area equivalent
to 10 high power fields). This prediction is then used in three different approaches: First,
we evaluate the performance of a model based on a pre-trained ResNet18 stem to regress the
WHO grade solely based on histopathology patches. Second, the predicted mitotic count
alone is used to train a very simple network to map the WHO grade. Finally, we combine
both approaches and derive a novel explainable model architecture that makes use of the
mitotic count as well as image information, mimicking the diagnostic procedure described
in the WHO grading scheme.

2. Related Work

Several authors addressed the preoperative grading of meningiomas in magnetic resonance
imaging (Zhang et al. (2020), Yan et al. (2017), Lin et al. (2019)). For other tumor types,
automatic grading is an active field of research. For grading prostate cancer, the sum of the
two most common Gleason patterns, called Gleason score is used. The score is a measure
for glandular separation and thus, cancer aggressiveness (Nguyen et al. (2017)). There have
been multiple attempts to asses the Gleason grade via algorithmic approaches (Nguyen et al.
(2017), Lucas et al. (2019)); however, the proposed approaches are of limited transferability
since mitotic figures do not play a role in Gleason grading. A more similar application
is the determination of proliferation scores of breast cancer tissue, where mitotic count
is an important predictive biomarker (Van Diest et al. (2004)). As with meningiomas, the
density of mitotic figures is a criterion for determining tumor proliferation. In the TUPAC16
challenge, participants were faced with the tasks of predicting mitotic scores as well as the
gene expression-based PAM50 score from WSIs of breast cancer tissue (Veta et al. (2019)).
The solutions proposed by the participants can be dived into two groups. The one group
identified a region of interest (ROI) in which they detected mitotic figures. The second group
also detected a ROI but tried to predict tumor proliferation directly (Veta et al. (2019)). A
key difference between these works submitted in the TUPAC16 challenge and ours is that
we aim for a tumor severity prediction instead of only predicting proliferation scores. Shah
et al. also targeted the prediction of tumor proliferation for breast cancer WSIs (Shah et al.
(2017)). In their work, they used a pipeline of different networks to use mitotic figures as well
as general morphological features from histopathological slides to aggregate a categorical
tumor grade and RNA expression predictions (Shah et al. (2017)). Their approach is related
to ours as we also combine the mitotic count with general morphological features. As one
key difference to their approach, our model is designed to be as simple as possible and
thus explainable in the contributions of the pipeline elements. Besides, to the authors’ best
knowledge, this is the first time automatic meningioma grading of histopathology whole
slide images was performed.

3. Materials and Methods

3.1 Datasets

For this work, three different datasets were used. For all of them, hematoxylin and eosin
(H&E)-stained meningioma samples were retrospectively collected from the Department of
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Neuropathology, University Hospital Erlangen, Germany. All samples were digitized using
an Hamamatsu S60 digital slide scanner.

• The training dataset for mitotic figure detection consists of 65 WSIs, completely
annotated for mitotic figures. For the annotation, the WSIs were screened for mitotic
figures and mitotic figure lookalikes by an expert (TK) in mitosis detection using an
open source software solution (Aubreville et al. (2018)). Additionally, to avoid missed
mitotic figures, a machine learning system was trained in a cross-validation scheme to
find additional mitotic figures with high sensitivity, following the procedure described
in (Bertram et al. (2020)). All newly found candidates were then re-evaluated by the
expert and classified into being a mitotic figure or not. In total, 178,826 cell annota-
tions were generated by this procedure. All annotations were subsequently assessed
blindly (without knowing the first expert’s class label) by a pathologist with five years
of experience in histopathology and mitotic figure identification (CB). Disagreed cases
were (again blindly) re-evaluated by a third expert, who is a trained neuropathologist
(SJ). Overall, the data set contains 10,662 annotations for mitotic figures and 168,164
annotations for non-mitotic cells.

• For the meningioma grading training dataset, H&E stained tissue slides of the
years 2009 until 2011 were collected from the hospital’s slide archive. All samples were
reviewed by an expert neuropathologist. Samples without sufficient tissue or with pale
stains were excluded from the study. The original selection contained 47 additional
WSIs which were excluded due to a possible case bleed to the test set. After this
process, 951 samples / whole slide images were included in the study, representing
tumor sections from 341 patients with corresponding tumor grades. For each patient,
the overall WHO grade of the tumor was retrieved from the hospital information
system, leading thus to 341 assigned tumor grades (272 samples of WHO grade 1, 62
samples of WHO grade 2 and 7 samples of WHO grade 3). We would like to highlight
that the retrospective data collection may have resulted in some inconsistencies in
the associated labels. The tumor grade was derived from patient records based on
the most malignant WSI sample. This sample, however, may not be present in the
dataset at hand (which is from a restricted time range, as stated). This kind of label
noise can be tolerated in the training set from our point of view if utmost case is taken
for the curation of the test set as described next.

• The independent test set consists of 121 WSIs from 43 tumor cases, representing
26 patients which are neither part of the mitotic figure detection dataset nor of the
meningioma grading training dataset (17 samples of WHO grade 1, 17 samples of
WHO grade 2 and 9 samples of WHO grade 3). For each WSI, a neuropathologist
re-evaluated the WSIs to contain a sufficient amount of tumor tissue and confirmed
sufficient scanning and staining quality. The dataset represents a complete list of
samples from each of the 26 patients, ranging from 2003 to 2013. For each tumor
sample, a WHO grading was performed by an expert neuropathologist, thus 43 grades
were assigned within the complete set.
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Figure 1: Overview of the three approaches compared in this work. All are based on a
initial mitotic figure (MF) detection to select the region of interest (ROI) and/or
to calculate the mitotic count (MC), i.e. the MF within the ROI.

3.2 Methods

The aim of this work is to predict a tumor malignancy score for meningiomas given a WSI
as an input. In contrast to the WHO grade, in this study we used a continuous score to
determine tumor malignancy. The aim is to show a smoother transition between different
malignancy levels than is possible with a discrete scale like the WHO grade. Our method
consists of two main stages (see Figure 1). In the first stage, mitotic figures are detected
with a state-of-the-art object detector. Here we used a Faster R-CNN with a ResNet18 as
backbone (Ren et al. (2017); He et al. (2016)). A mitotic figure was defined to be a square
bounding box annotation with width and height of 50 pixels (approx. 2.43 µm2). We used
the aforementioned training dataset for mitotic figure detection on which we performed a
random split on whole slide image level, leading to a train, validation and test set of 34,
10 and 21 WSIs, respectively. We trained the model until convergence, as observed by the
validation loss. Selection of the best model parameters was performed retrospectively based
on the minimal validation loss. During inference, the whole WSI was fed patch-wise into
the detector. For this, adjacent patches were cut out of the WSI with an overlap of 10%.
After model inference, the detections were projected back onto the WSI and overlapping
detections were filtered by a non-maximum suppression (NMS) algorithm. We optimized
the detection threshold on inference results on the complete training set WSIs, using the
F1 score as metric. We then ran inference on the test set and subsequently estimated the
mitotic count (MC) from the detected figures using a moving window average with a size
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equivalent to 2.5mm2 (approximately 10 high power fields) at an aspect ratio of 4:3. The
maximum MC determined the ROI for the subsequent second model stage (see Figure 1).
This methodology is in line with the grading standard, in that the most mitotically active
region is assumed to be of the highest prognostic value for tumor behavior.
In the second stage, the calculated values were used to determine a malignancy score as a
continuous value (regression). In this study, we compared three different approaches to do
this regression. The first approach, denoted as model 1 is a purely image based one, based
on patches sampled from the ROI, which is, as indicated, assumed to determine biological
tumor behavior and thus can be assumed to also contain discriminative morphological
information. The ROI is fed patch-wise into a neural network based on a pre-trained
ResNet18 stem and followed by a 512 × 1 linear layer trained from scratch. This way, the
features calculated by the ResNet are used to calculate a tumor malignancy score directly
from the patches. The ResNet used was pre-trained with ImageNet and fine-tuned with
patches from the meningioma grading training dataset. Since a separate value is calculated
for each patch of the ROI during inference, we need to combine these values into a single
overall tumor malignancy score, for which we use averaging of all single values. We use
averaging because in our experiments it led to higher correlations with the actual WHO
grade than the maximum value of the different patches. As previously mentioned, the
meningioma training data set consisted of 951 WSIs representing 341 patients and the
WHO grade was only available on a patient level for the most malignant tumor of this
patient. Hence, the malignancy assigned for a patient was not necessarily consistent with
the actual malignancy of the different WSIs. To reduce the resulting label noise, only the
WSI with the highest mitotic count per patient was included in the training data set. This
reflects the clinical grading workflow, in which also the most malignant tumor specimen is
decisive for the overall grade. Therefore, only 341 WSIs of the meningioma grading training
dataset where used in training (one per patient, identified by the highest predicted MC).
On these slides we performed a 85% / 15% split into training and validation data.
The second approach, denoted as model 2, relies solely on the MC calculated in stage one
to predict tumor malignancy. To learn a regression function based on the MC, we used a
1 × 1 layer with sigmoid activation followed by a 1 × 1 linear layer. The sigmoid activation
of the first layer was used to constrain the value range of this layer and thus, to increase
the interpretability of the model. Furthermore, the sigmoid function dampens the effects
of outliers in the mitotic count on the learned regression function. Overall, this results in a
logistic function that can be expressed as

t = sig (w1 · MC + b1) · w2 + b2

where t represents the continuous tumor malignancy score, sig() represents the sigmoid
function, and w1, w2 and b1, b2 the model weights and biases, respectively. Effectively, this
results in a scaled and shifted version of the sigmoid function, which is motivated by the
biological behavior of tumors: For MC values below a certain cutoff, we can assume normal
(regulated) cell division processes; then, there is an intermediate range which scales with
the malignancy of the tumor, and above a certain MC value the tumor can be considered so
aggressive that we assign the highest grade. This is also in line with the grading schemes for
many tumors (e.g., Elston and Ellis (1991); Louis et al. (2016)). As in the first approach,
only the highest MC per patient was used for training. We used the same training and

6



Automatic and explainable grading of meningiomas from histopathology images

validation split as in approach one.
The third approach, denoted as model 3, uses a combination of the previous two. As in
the first approach, it uses a ResNet18 stem to encode morphological information about the
patches sampled from the ROI. In addition, the network from model 2 is used to calculate
a tumor malignancy score directly from the MC. Both information are merged in a 2 × 1
linear layer, which outputs a malignancy score. Like in approach one, the mean of all
patches sampled from one ROI is taken as the final malignancy score. The aim of this
method is to model the procedure for determining the WHO grade as described by the
WHO (Louis et al. (2016)), incorporating both morphological features (as can be extracted
by the image-based approach) and the MC.
To ensure the comparability of the results of all three methods, they were trained with the
same randomly selected training and validation sub sets. To investigate training robustness
we trained all models five times, using different random picks of patients within train and
validation set. All models were trained until validation loss converged and the best model
was retrospectively selected by the lowest validation loss.
To evaluate the models, we compute both Pearson’s correlation and Spearman’s correlation
between the prediction and the label given by the medical experts. Further, we compute
the mean squared error of this prediction over the independent test set. Additionally we
computed the portion of correct predictions. To do this, we rounded the predicted tumor
malignancy score the the closest integer value and examined how closely the quantized
predictions matched the associated WHO grades. We have made our code publicly available
at https://github.com/JonaGanz/automatic_meningioma_grading.

4. Results

We find a generally satisfactory correlation between the inputs and the experts’ labels.
The models that utilize the mitotic count are generally outperforming the model that only
makes use of morphological information from image patches (see Table 1). Overall, we
found only a minor impact of the selection of patients as training or validation set, as
shown by the low standard deviation across the trained models on the test set. The results
of the combined model are on par with the simple logistic regression model only utilizing
the mitotic count. This also coincides with low model activation values for the image path
in the combined model and thus a generally low impact of the image path on the final model
output (cf. Figure 2). Further, we see that the logistic regression model was optimized to
yield a rounded grade of one for an MC below approximately four, of two until an MC of
approximately 15, and three for MC values above 15 (see Figure 3 right).

5. Discussion

The results indicate that the relatively simple model 2 yields the same results as the much
more complex combined approach of model 3. This raises the question why model 3 does
not give better results although it seems to have more information available. The idea
of combining the information of model 1 and model 2 is that we have two independent
variables, morphological features and MC, which are both correlated with the WHO grade.
We can assume such a correlation since both features are mentioned in the WHO grading
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Spearman Correlation Pearson Correlation Mean Squared Error Correct Prediction
M SD M SD M SD M SD

Model 1 (image-based) 0.7163 0.0178 0.7120 0.0110 0.4161 0.1018 25/43 2.5612

Model 2 (MC-based) 0.7926 0.0004 0.7611 0.0012 0.2416 0.0007 32/43 1.8330

Model 3 (combined) 0.7900 0.0034 0.7640 0.0025 0.2416 0.0026 33/43 0.8000

Table 1: Results indicating the mean (M) and standard deviation (SD) of five runs with
different training/validation selections. The MC-based regression yields results on
par with the more complex combined approach.

Model 1

Pearson's ρ:     
Spearman's ρ: 

0.7185
0.7409

(image-based)
Model 2

Pearson's ρ:     
Spearman's ρ: 

0.7620
0.7928

(MC-based)
Model 3

Pearson's ρ:     
Spearman's ρ: 

0.4008
0.5152

Pearson's ρ:     
Spearman's ρ: 

0.7644
0.7942

Pearson's ρ:     
Spearman's ρ: 

0.7578
0.7881

(combined)

Figure 2: Results for all three approaches, trained using the same training/validation split
of patients. For the third (combined) model, the weighted results of both paths
are evaluated. Boxes indicate show first and third quartile, whiskers are limited
to 1.5 times the interquartile range.

scheme (Louis et al. (2016)). In fact, the results of model 1 and model 2 reveal that these
features have discriminative power with respect to the WHO grade. However, just because
these two features are univariately correlated with the WHO grade, this does not necessarily
mean that their multivariate correlation with the WHO grade is higher. Figure 2 shows the
results of all three approaches. Additionally it shows the weighted results for the MC and
image path of model 3. It can be seen that the final result of model 3 is mostly determined
by the MC path. Although the outputs of the image path are also correlated with the WHO
grade, they are weighted so low that their influence on the overall result is minor. This
suggests that the image path did not contribute any major additional information to the
overall result.
The high discriminative power of the MC with respect to the WHO grade (compared to
morphological features retrieved from the image) could be related to the fact that it is the
only hard criterion defined in the WHO grading scheme. The regression function between
MC and WHO grade learned by model 2 is shown in figure 3. Between the WHO grades 1
and 2, the relationship between MC and WHO grade is almost linear. Between the WHO
grades 2 and 3, it shows a logarithmic behaviour and converges against grade 3. This
corresponds almost to the different mitotic count thresholds defined in the WHO grading
scheme. Our experiments thus indicate that the main driver of the decision for the WHO
grade is the mitotic count whereas additional morphological features play a subordinate
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Mitotic Figure Detections

Figure 3: Left panel: exemplary detections of mitotic figures by the Faster RCNN approach
in Stage 1. Right panel: Logistic regression learned by the model 2.

role, at least for our data set.
Another limitation of our experiment is that our test only contained 141 slides from 43
patients. However, since we also found a good correspondence of the results to each of our
validation runs, we are confident that our observations can generalize also for larger data
sets. At the same time, a generalization of these findings and suggesting that morphological
features can be regarded as negligible would be premature. The malignancy of a tumor is a
continuous biological parameter for which a discrete value like the WHO grade can only be
an approximation. Future work should therefore assess the proposed model variants on a
more continuous grading scheme for malignancy, the derivation of biological parameters like
genotypical information or prediction of risk of recurrence, for which a more pronounced
impact of morphological features is likely.
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