
Under review as a conference paper at ICLR 2024

ENHANCING THE CROSS-SIZE GENERALIZATION FOR
SOLVING VEHICLE ROUTING PROBLEMS VIA CONTIN-
UAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep models for vehicle routing problems are typically trained and evaluated us-
ing instances of a single size, which severely limits their ability to generalize
across different problem sizes and thus hampers their practical applicability. To
address the issue, we propose a continual learning based framework that sequen-
tially trains a deep model with instances of ascending problem sizes. Specifically,
on the one hand, we design an inter-task regularization scheme to retain the knowl-
edge acquired from smaller problem sizes in the model training on a larger size.
On the other hand, we introduce an intra-task regularization scheme to consoli-
date the model by imitating the latest desirable behaviors during training on each
size. Additionally, we exploit the experience replay to revisit instances of for-
merly trained sizes for mitigating the catastrophic forgetting. Extensive experi-
mental results show that the proposed approach achieves predominantly superior
performance across various problem sizes (either seen or unseen in the training),
as compared to state-of-the-art deep models including the ones specialized for the
generalizability enhancement. Meanwhile, the ablation studies on the key designs
manifest their synergistic effect in the proposed framework.

1 INTRODUCTION

Vehicle routing problems (VRPs), including the Traveling Salesman Problem (TSP) and the Capac-
itated Vehicle Routing Problem (CVRP), aim to find the optimal route for vehicles serving a group
of customers in various real-life scenarios, such as parcel pickup/delivery, passenger transportation,
and home health care (Baker & Ayechew, 2003; Schneider et al., 2014). Despite the extensive ef-
forts in computer science and operations research, traditional exact and heuristic algorithms still
encounter challenges when solving VRPs due to their NP-hard nature (Lenstra & Kan, 1981). These
algorithms often require massive tuning to determine the hand-crafted rules and related hyperpa-
rameters. To mitigate this issue, deep (reinforcement) learning based methods have been extensively
studied and applied to solve VRPs in recent years (Bengio et al., 2021; Mazyavkina et al., 2021;
Zhang et al., 2023a), which leverage neural networks to automatically learn (heuristic) policies from
the experience of solving similar VRP instances. Bolstered by advanced neural networks and train-
ing approaches, some of these deep models have achieved competitive or even superior performance
to the traditional algorithms (Kwon et al., 2020; Ma et al., 2021; Li et al., 2023).

Typically, existing deep models are often trained and evaluated on single-sized problem instances,
where they are able to deliver decent and efficient solutions. However, the performance of learned
policies diminishes when applied to sizes not encountered during the training phase. This limitation
becomes more pronounced as the disparity between the sizes further increases. Such a cross-size
generalization issue considerably hinders the applications of deep models, especially given that real-
world VRP instances consistently present a diverse range of problem sizes.

To address this issue, we propose a continual learning (CL) (Chen & Liu, 2018) based framework
that sequentially trains a deep model on instances of ascending problem sizes. This approach en-
ables the model to perform favorably across a range of problem sizes, covering both those seen
and unseen during the training phase. Specifically, we preserve exemplary models derived from the
previous training, and leverage the regularization scheme to retain their knowledge for facilitating

1

Under review as a conference paper at ICLR 2024

the subsequent model training. We design two distinct regularization terms in the loss function, i.e.,
the inter-task and the intra-task regularization terms. During the training on each size, the former
aims to transfer the valuable insights from smaller-sized tasks to larger-sized ones, while the lat-
ter enables the imitation of the most recent exemplar models. Intuitively, both schemes expedite the
training on a newly encountered size, with the aid of previously attained experience in problem solv-
ing. Additionally, we tailor an experience replay technique (Rolnick et al., 2019) to intermittently
revisit the training instances of smaller sizes (trained on previously), with the intent of mitigating
the catastrophic forgetting (French, 1999) inherent in continual learning. Notably, the proposed con-
tinual learning only improves the training algorithm of existing deep models, without altering their
original neural architectures. It has a great potential to be deployed with different models, without
inducing extra inference time. Experimental results indicate that our approach significantly raises
the cross-size generalization performance of deep models for both seen and unseen problem sizes.
Furthermore, it generally outperforms the state-of-the-art methods that are specialized for enhancing
the generalizability of deep models, showing the effectiveness of our algorithmic designs.

Accordingly, our contributions are summarized as follows: (1) We propose a model-agnostic contin-
ual learning based framework to improve the cross-size generalization capabilities of deep models
for VRPs. With a single training session, the proposed approach empowers deep models to de-
liver promising results for vehicle routing across a wide range of problem sizes, without incurring
extra inference time. (2) To expedite the training on new sizes, we design the inter-task regulariza-
tion scheme to facilitate the knowledge transfer from smaller to larger problem sizes. Alternatively,
the intra-task regularization scheme consolidates the model by imitating the most recent exemplar
models on the current size. On the other hand, we employ the experience replay to counteract the
catastrophic forgetting, retaining the competence of deep model in handling smaller-size instances
beyond its training on larger ones. (3) We evaluate our approach on TSP and CVRP, across a broad
spectrum of sizes (seen or unseen during the training). Results on both synthetic and benchmark
datasets show that our approach bolsters the cross-size generalization, yielding predominantly supe-
rior performance to the state-of-the-art methods specialized for generalizability enhancement.

2 RELATED WORK

In this section, we review deep models for VRPs and representative works on enhancing cross-size
generalization. Then, we brief on the generic continual learning in the machine learning community.

Deep models for VRPs. Recent learning based methods, i.e., deep models, have shown promise
in solving VRPs by automatically discovering effective policies. Vinyals et al. (2015) tendered the
Pointer network to learn constructing TSP solution supervisedly, which was further extended to
reinforcement learning (Bello et al., 2017) and CVRP (Nazari et al., 2018). Similarly, the graph
conventional network (GCN) was leveraged to estimate probabilities of each edge appearing in the
optimal TSP solution (Joshi et al., 2019). With recent advances of the self-attention mechanism, the
attention model (AM) (Kool et al., 2018) was tailored from Transformer (Vaswani et al., 2017) for
solving VRPs and recognized as a landmark contribution in this field. The follow-up works diverged
by (slightly) restructuring AM or targeting diverse VRP variants (Xin et al., 2020; Li et al., 2021a).
The policy optimization with multiple optima (POMO) (Kwon et al., 2020) improved AM by ex-
ploiting symmetric rollouts and data augmentation technique, achieving state-of-the-art performance
for VRPs. Despite the efficient inference, the above methods usually require heavy post-processing
procedures to enhance solution quality, such as sampling (Li et al., 2021b), active search (Hottung
et al., 2021). Especially, some works attempt to improve the generalization performance of deep
models in handling distribution shift (Jiang et al., 2022; Wang et al., 2022; Bi et al., 2022; Hottung
et al., 2021; Zhou et al., 2023). Instead, this paper aims to enhance the cross-size generalization
towards a deep model capable of well solving different-sized VRPs.

Cross-size generalization. The above deep models are often trained to solve single-sized VRP in-
stances for attaining favorable evaluation results on that problem size. However, their performance
degenerates when the models are evaluated on sizes unseen during the training. To address this cross-
size generalization issue, Lisicki et al. (2020) proposed a curriculum learning method to solve TSP
instances spanning a range of problem sizes. Similarly, Zhang et al. (2023b) utilized the curricu-
lum learning to train a deep model on different-sized TSP, with the knowledge distillation used for

2

Under review as a conference paper at ICLR 2024

training on the largest TSP. Nevertheless, both methods are limited to TSP and lack the versatility in
addressing broader VRP variants. Instead, Zhou et al. (2023) worked on improving generalization
performance across sizes and distributions, by introducing a meta-learning approach to initialize
deep models for rapid adaptation to target VRPs. However, its performance is contingent on the
heavy base model and tricky meta-learning process, which could suffer from a high training cost in
the absence of well pre-trained deep models.

In this paper, we first use continual learning to enhance cross-size. Note that our work is different
from the ones attempting to solve large-scaled VRPs, which require extra inefficient training/post-
processing for the target size Qiu et al. (2022); Sun & Yang (2023); Li et al. (2021c); Fu et al.
(2021); Hou et al. (2022); Zong et al. (2022). Our overarching goal is developing a single model
with favorable performance in a broad spectrum of problem sizes, in only a single training session.

Continual learning. Continual learning (CL) is advantageous in sequentially learning a stream of
relevant tasks by absorbing and accumulating knowledge over them Hadsell et al. (2020). However,
CL is generally limited by catastrophic forgetting, where learning a new task usually results in a
performance degradation on the old tasks. To address this issue, numerous efforts have been devoted
in recent years to strike a desirable balance between learning plasticity and memory stability. These
works can be broadly categorized into three groups, i.e., regularization-based approaches (Li &
Hoiem, 2017) that regularize the current training with the knowledge acquired in the past training;
replay-based approaches (Rebuffi et al., 2017) that revisit data distributions of previous tasks; and
parameter isolation approaches (Mallya & Lazebnik, 2018) that freeze parameters associated with
earlier tasks. Continual learning has widespread applications in visual classification (He & Zhu,
2021), semantic segmentation (Michieli & Zanuttigh, 2019), natural language processing (Han et al.,
2021), to name a few. We direct interested readers to De Lange et al. (2021); Parisi et al. (2019)
for more details of CL. In this paper, we introduce the continual learning into VRP domain, and
empirically testify its potential in training deep models that favorably solve different-sized VRPs.

3 PRELIMINARIES AND NOTATIONS

We first formally describe the vehicle routing problems (VRPs) with the objective of yielding high-
quality solutions across a spectrum of problem sizes. Then, we present the commonly used encoder-
decoder structured deep models for constructing solutions to VRPs in an autoregressive manner.

3.1 VRP STATEMENT

Following the literature (Kool et al., 2018; Wu et al., 2021), we focus on two representative routing
problems, i.e., TSP and CVRP, respectively. We define a VRP instance over a graph G = (V,E),
where V signifies (customer) nodes and E signifies edges between every two different nodes. With
N customer in different locations, TSP aims to find the shortest Hamiltonian cycle of V = {vi}N1 ,
which satisfies that each node in V is visited exactly once. With an auxiliary depot node v0, CVRP
extends TSP by considering a fleet of identical vehicles, each of which traverses locations of cus-
tomers for serving them. Specifically, each vehicle starts from the depot, serves a subset of customers
and ultimately returns to the depot. The constraint on the route of a vehicle is that the total demand
of customers in a route cannot exceed the vehicle capacity and each customer is visited exactly once.

Objective Function. The solution (i.e., tour) τN to a VRP instance can be described as a permu-
tation of N nodes in V . The objective function is often defined as the tour length. For example,
the objective function of TSP is C(τN) =

∑
{vi,vj}∈τN D(vi, vj), where D(vi, vj) means the Eu-

clidean distance between the nodes vi and vj . In this paper, we focus on optimizing objective values
of VRPs across multiple problem sizes. By referring various sizes to a series {N1, N2, ..., NK}, the
cross-size objective function could be defined as the average value of the expected tour lengths over
the K sizes, i.e., L = 1

K

∑K
i=1 E[C(τNi)], reflecting the overall performance of deep models.

3.2 AUTOREGRESSIVE DEEP MODELS FOR VRPS

Deep models often learn constructing solutions to TSP instances in an autoregressive manner.
Specifically, they model the solution construction procedure of VRPs as a Markov Decision Pro-

3

Under review as a conference paper at ICLR 2024

Figure 1: The illustration of the proposed framework with inter-task regularization. For each mini-
batch training during current task interval, we employ 1) experience replay to sample a size from
formerly trained sizes and current one, and generate instances with that sampled size; 2) inter-task
regularization to foster the current model to emulate an exemplary model for knowledge retention.

cess (MDP). Then the encoder-decoder structured policy network is adopted to sequentially con-
struct solutions. More specific, the encoder projects problem-specific features into high-dimensional
node embeddings for informative representation learning. Afterwards, the decoder sequentially con-
structs a solution τNi for a TSP instance of problem size Ni, conditioned on the updated node
embeddings and partial tour at each step. During solution construction, the decoder selects a node
atc at step tc, with all constraints satisfied by masking the invalid nodes. A feasible solution is
constructed until all customer nodes are selected, which is expressed by the factorization below,

pθ(τ
Ni |G) =

Tc∏
tc=1

pθ(atc |a1:tc−1, G), (1)

where pθ and Tc signifies the policy network and the total number of decoding steps, respectively. In
particular, Tc=Ni for TSP, and Tc≥Ni for CVRP as the depot node can be visited multiple times.

4 METHODOLOGY

Continual learning has emerged as a powerful approach for handling sequential tasks, which enables
deep models to progressively retain and accumulate knowledge from evolving data streams. As
illustrated in Figure 1, we harness CL to enhance the cross-size generalization capability of an
autoregressive deep model θ (e.g., POMO (Kwon et al., 2020) (see Appendix E for details)), by
sequentially training it on VRP instances of ascending problem sizes {N1, N2, ..., NK}. To ensure
general favorable performance across the size spectrum, each size (i.e., task) Ni (i = 1, ...,K) is
considered equally important and trained with the same task interval, which is defined as Ep =
E/K epochs where E denotes the total training epochs of CL. In each task interval, the model
is trained on each size to optimize the task-specific objective. Meanwhile, our approach exploits
experience replay strategy to revisit instances of previously trained smaller sizes, so as to mitigate
the catastrophic forgetting. Moreover, the inter-task or intra-task regularization scheme foster the
model in current interval to emulate an exemplary model derived from previous or current interval,
so as to inherit the previous learned knowledge. In this sense, our CL approach facilitates a coherent
continuum of learning across varying problem sizes, which is elaborated in the following sections.

4.1 EXPERIENCE REPLAY

Experience replay has shown promise to alleviate the catastrophic forgetting issue in continual learn-
ing, with the basic logic of reminding the model about the policy learned for previous tasks. A typical
experience replay technique is to maintain a small memory buffer of training samples. These sam-
ples are collected from the past tasks and replayed during the training on subsequent tasks. Given

4

Under review as a conference paper at ICLR 2024

Figure 2: Regularization with two exemplar model updating strategies. (a) inter-task: exemplar
model is updated after training on a whole task; (b) intra-task: exemplar model is updated multi-
ple times during training on a task for concentrating more on newly encountered (larger) size.

that existing deep models for VRPs are generally trained with random instances (Kool et al., 2018;
Kwon et al., 2020), we propose to randomly generate instances of smaller sizes on the fly. Such real-
time memory buffer is able to reflect the instance patterns in previous tasks and raise the memory
efficiency, when the deep model is trained on a newly encountered larger size.

During the training on the problem size Ni (i > 1), we harness a sampling strategy to either ran-
domly select a size from the set of formerly trained sizes Npre = {N1, ..., Ni−1}, or deterministi-
cally select the current size Ni. This strategy is devised to ensure that the deep model is primarily
trained on the current task, i.e., the VRP with a larger size and higher complexity than the pre-
vious ones. Meanwhile, it ensures the competence of the deep model is retained for well solving
previous tasks, i.e., the VRPs with smaller sizes but subjected to the catastrophic forgetting. To this
end, we sample problem sizes in mini-batches during the training on size Nk, by assigning a higher
probability to select Ni and a lower probability to uniformly select one from Npre, such that,

Nk =

{
Ni, if ϵ < 0.5

Nj ∼ U(Npre), otherwise
(2)

where ϵ ∈ (0, 1) is a random number. Specially, only the size N1 is involved in the first task.

4.2 REGULARIZATION SCHEMES

During the training process, we employ favorable models trained previously as the exemplar ones
to infuse the current model with a wealth of knowledge in VRP solving, with the goal to guide
the training on the newly encountered size. Specifically, we design two distinct terms in the loss
function, i.e., inter-task regularization term and intra-task regularization term, respectively, with
different update rule for the exemplar model. Note that only one regularization scheme can be used
in our CL approach to keep a stable update of the exemplar model throughout the training.

Inter-task regularization scheme. As shown in Figure 2(a), the inter-task regularization scheme
aims to retain knowledge derived from the past training on smaller sizes for achieving generalization
across various sizes. Specifically, when training on size Ni, the current model θNi is thoughtfully
guided by the exemplar model θNi−1 meticulously trained on the preceding size Ni−1. In this fash-
ion, the exemplar model is updated after training on each size, with the update interval equal to the
task interval, i.e., Einter = Ep. This strategy encourages the current model to imitate the solution
construction policy learned by the exemplar model. Given a training instance G with size Ni and
a tour τθNi constructed by θNi , we leverage the exemplar model θNi−1 to engender the same tour,
resulting in the probability distribution pθNi−1 (τθNi |G). The inter-task regularization loss LRinter

is defined as the similarity between probability distributions derived by θNi and θNi−1 over a mini-
batch of instances {Gb}Bb=1, which is calculated by the Kullback-Leibler divergence as below,

LRinter =
1

B

B∑
b=1

∑
aj∈τb

θNi

pθNi−1 (aj |Gb)(logpθNi−1 (aj |Gb)− logpθNi (aj |Gb)). (3)

Particularly, for training on the first size, a pre-trained backbone model (such as POMO (Kwon et al.,
2020)) on size N1 could be used to serve as the exemplar model in Eq. (3).

5

Under review as a conference paper at ICLR 2024

Algorithm 1: Model training by continual learning

Input: An ascending sequence of problem sizes N1, N2, ..., NK with equal space n; a pre-trained
backbone model (e.g., POMO) parameterized by θN1 on size N1;

1: for epoch e = 1, 2, ..., E do
2: Compute the size Ni = N1 + n ∗ (e % Ep) of current task;
3: for step t = 1, 2, ..., T do
4: Pick a size Nk, k = 1, ..., i according to Eq. (2);
5: Randomly generate a batch of training instances with size Nk;
6: Let model θ (e.g., θNi for inter-task regularization) sample tours τ bθ for each {Gb}Bb=1;
7: Compute∇LR using Eq. (3) for inter-task regularization or Eq. (4) for intra-task one;
8: Compute∇LT using Eq. (??);
9: θ ← θ + η∇L where ∇L ← α∇LR + (1− α)∇LT .

10: end for
11: end for

Intra-task regularization scheme. As illustrated in Figure 2(b), the intra-task regularization
scheme concentrates more on consolidating the recently learned knowledge, thereby updating the
exemplar model more frequently than inter-task scheme. Specifically, during the training on size
Ni in the task interval, we update the exemplar model M times with an even update interval
Eintra = Ep/M . Given the current epoch e, the training of the model θNi

e is guided by the most re-
cent exemplar model θNi

m (m = 1, 2, ...,M). Accordingly, the intra-task regularization loss LRintra

over a mini-batch of instances {Gb}Bb=1 is formulated as follows,

LRintra
=

1

B

B∑
b=1

∑
aj∈τb

θ
Ni
e

p
θ
Ni
m
(aj |Gb)(logpθNi

m
(aj |Gb)− logp

θ
Ni
e
(aj |Gb)). (4)

In contrast to inter-task regularization scheme using exemplar model from previous size, intra-task
scheme adopts the one that has already been exposed to the intricacies of a new size, which could
assimilate more generalized and resilient knowledge to boost the training efficiency and is preferred
for generalizing to unseen larger sizes. However, the deep model cannot be sufficiently trained on
a new size in the initial stage of a task interval. Thus we employ the finally well-established model
θ
Ni−1

M on the last size as the exemplar, during the first Eintra epochs in the current task interval.

Finally, the deep model is trained with the objective of minimizing a weighted combination of the
regularization term LR (i.e., LRinter for inter-task regularization and LRintra for intra-task regular-
izatio) and the original task loss LT as below,

L = αLR + (1− α)LT , (5)

where α ∈ [0, 1]. Taking inter-task regularization term as an example, the task loss is formulated
as LT = EG∼Nk,τ

Nk∼p
θNi

(τNk |G)[C(τNk |G)], where the training instances are sampled with the
selected size Nk via the experience replay strategy, and the tour τNk is engendered via the cur-
rent network θNi according to Eq. (1). The task loss is used to update the deep model by REIN-
FORCE (Williams, 1992), which is a commonly applied reinforcement learning algorithm in VRP
literature Kool et al. (2018); Kwon et al. (2020).

4.3 TRAINING ALGORITHM

We outline the training procedure of the proposed CL approach in Algorithm 1, where the model is
sequentially trained using instances with ascending problem sizes N1, ..., NK . Particularly, starting
with the training on size N2, the experience replay strategy plays the role to retain the competence
in tackling smaller-size instances when addressing a new larger one. Moreover, the regularization
scheme, i.e., either inter-task or intra-task, is smoothly incorporated during the whole training pro-
cess, transferring previous valuable knowledge to facilitate the subsequent training. In this sense,
the proposed approach is expected to endow the deep models with strong cross-size generalization
ability so that they could perform favorably across a wide range of sizes.

6

Under review as a conference paper at ICLR 2024

Table 1: Comparison results on TSP and CVRP (seen scales).

Method Test on N=60 Test on N=100 Test on N=150 Average of
Obj. Gap Time# Obj. Gap Time# Obj. Gap Time# Total costs

T
SP

Concorde 6.1729 - (7m) 7.7646 - (1.7h) 9.3462 - (22m) 7.7612
LKH3 6.1729 0.00% (14m) 7.7646 0.00% (9.8h) 9.3462 0.00% (2.1h) 7.7612

AMDKD-POMO∗ 6.1828 0.16% 36s 7.7930 0.37% 2m 9.4539 1.15% 33s 7.8092

POMO-60 6.1746 0.03% ∼ 7.8050 0.52% ∼ 9.5909 2.62% ∼ 7.8568
POMO-100 6.1768 0.06% ∼ 7.7753 0.14% ∼ 9.3987 0.56% ∼ 7.7836
POMO-150 6.1928 0.32% ∼ 7.7875 0.30% ∼ 9.3812 0.36% ∼ 7.7868

POMO-random 6.1778 0.08% ∼ 7.7782 0.18% ∼ 9.3937 0.51% ∼ 7.7832

AMDKD-POMO 6.1820 0.15% ∼ 7.7916 0.35% ∼ 9.4473 1.08% ∼ 7.8070
Omni-POMO‡ 6.2351 1.01% 34s 7.8650 1.29% 2.5m 9.4958 1.60% 37s 7.8653

Ours-inter 6.1758 0.05% 36s 7.7775 0.17% 2m 9.3883 0.45% 33s 7.7805
Ours-intra 6.1758 0.05% ∼ 7.7764 0.15% ∼ 9.3820 0.38% ∼ 7.7781

C
V

R
P

HGS 11.9471 - (15.3h) 15.5642 - (25.6h) 19.0554 - (6.2h) 15.5222
LKH3 11.9694 0.19% (3.5d) 15.6473 0.53% (6.5d) 19.2208 0.87% (13h) 15.6125

AMDKD-POMO∗ 12.3561 3.42% 56s 15.8854 2.06% 3m 19.8395 4.12% 33s 16.0270

POMO-60 12.0656 0.99% ∼ 16.0914 3.39% ∼ 20.2573 6.31% ∼ 16.1381
POMO-100 12.2531 2.56% ∼ 15.7544 1.22% ∼ 19.6856 3.31% ∼ 15.8977
POMO-150 12.4322 4.06% ∼ 15.8924 2.11% ∼ 19.3683 1.64% ∼ 15.8976

POMO-random 12.2758 2.75% ∼ 15.7942 1.48% ∼ 19.6121 2.92% ∼ 15.8940

AMDKD-POMO 12.1487 1.69% ∼ 15.8119 1.72% ∼ 19.5280 2.48% ∼ 15.8362
Omni-POMO‡ 12.2996 2.95% 45s 15.9878 2.72% 2.5m 19.5975 2.85% 45s 15.9616

Ours-inter 12.0660 1.00% 56s 15.7848 1.42% 3m 19.4109 1.87% 33s 15.7539
Ours-intra 12.0663 1.00% ∼ 15.7781 1.37% ∼ 19.3938 1.78% ∼ 15.7461

Bold and italics refer to the best and the second-best performance, respectively, among all deep models.
∼ The inference time of a method is equal to that of the preceding method in the row above, since those deep models except for Omni-
POMO utilize the original POMO architecture and result in the same inference efficiency.
‡ The training size range of Omni-POMO is [50, 200], which is broader than our [60, 150].

5 EXPERIMENTS

To demonstrate the effectiveness of the proposed framework, we apply it to a well-known and strong
deep model, i.e., POMO (Kwon et al., 2020), and conduct comprehensive experiments on two rep-
resentative routing problems, i.e., TSP and CVRP (Kool et al., 2018; Wu et al., 2021), respectively.

Training setups. We adhere to most of the setups in POMO. For our approach, we set the ascend-
ing problem sizes {N1, N2, ..., NK} to {60, 70, ..., 150} with K = 10 and n = 10. Note that these
sizes could be flexibly adjusted to other incremental values. We train our approach for a total of E
(E = 2000) epochs, with each size trained for Ep (Ep = 200) epochs, ensuring robust performance
across the wide range of problem sizes. Specifically, the update interval of the exemplar model is
Einter = 200 epochs for the inter-task regularization scheme and Eintra = 25 epochs for the
intra-task one. The batch size is set to 64 (32 when the sizes exceed 100) for both TSP and CVRP.

Inference setups. Complying with the established convention (Kool et al., 2018), we randomly
generate instances following the uniform distribution for both seen and unseen problem sizes during
the training phase. Pertaining to the former, we select the three most representative sizes from the set
of K training sizes aforementioned, encompassing the minimum size of 60 (with 10,000 instances),
the median size of 100 (with 10,000 instances), and the maximum size of 150 (with 1,000 instances).
Pertaining to the latter, we consider three larger unseen sizes, i.e., 200, 300 and 500 (with 128
instances for each), to further assess the generalizability. We conduct all experiments including the
training and evaluation on a Linux server equipped with TITAN XP GPUs (with 12 GB memory)
and Intel Xeon E5-2660 CPUs at 2.0 GHz. Our dataset and code in Pytorch will be made available.

5.1 COMPARISON ANALYSIS

We first verify the effectiveness of our approach on seen sizes during training for both TSP and
CVRP, and the results are displayed in Table 1. Specifically, we compare our approach with (1)
highly specialized VRP solvers: Concorde (Applegate et al., 2020) and LKH3 (Helsgaun, 2017) for
TSP, the hybrid genetic search (HGS) (Vidal, 2022) and LKH3 for CVRP; (2) learning-oriented
deep models: POMO-based methods, including the original POMO (Kwon et al., 2020), AMDKD-

7

Under review as a conference paper at ICLR 2024

Table 2: Generalization results on TSP and CVRP (unseen scales).

Method Test on N=200 Test on N=300 Test on N=500 Average of
Obj. Gap Time# Obj. Gap Time# Obj. Gap Time# Total costs

T
SP

Concorde 10.6683 - (8m) 12.9534 - (11m) 16.5219 - (17m) 13.3812
LKH3 10.6683 0.00% (25m) 12.9534 0.00% (47m) 16.5219 0.00% (1.2h) 13.3812

AMDKD-POMO∗ 10.9651 2.78% 10s 13.9793 7.92% 33s 19.4197 17.54% 2.5m 14.7880

POMO-60 11.3360 6.27% ∼ 14.8162 14.38% ∼ 20.5835 24.58% ∼ 15.5786
POMO-100 10.8464 1.67% ∼ 13.8730 7.10% ∼ 20.1985 22.25% ∼ 14.9726
POMO-150 10.7752 1.00% ∼ 13.2922 2.62% ∼ 18.0793 9.43% ∼ 14.0489

POMO-random 10.8397 1.61% ∼ 13.8212 6.70% ∼ 19.0881 15.53% ∼ 14.5830

AMDKD-POMO 10.9054 2.22% ∼ 13.4472 3.81% ∼ 18.4477 11.66% ∼ 14.2668
Omni-POMO‡ 10.8923 2.10% 11s 13.4044 3.48% 33s 17.8146 7.82% 2.6m 14.0371
Ours-inter 10.7631 0.89% 10s 13.2942 2.63% 33s 18.1047 9.58% 2.5m 14.0540
Ours-intra 10.7444 0.71% ∼ 13.2263 2.11% ∼ 18.0267 9.11% ∼ 13.9992

C
V

R
P

HGS 21.9737 - (1.1h) 25.8417 - (1.6h) 31.0308 - (2.5h) 26.6514
LKH3 22.2146 1.10% (2.4h) 26.2184 1.46% (3.2h) 31.5213 1.58% (5.3h) 26.6514

AMDKD-POMO∗ 23.8507 8.54% 12s 30.7218 17.18% 38s 48.1260 52.68% 3m 34.2328

POMO-60 24.0638 9.51% ∼ 29.6416 14.71% ∼ 38.8480 25.19% ∼ 30.8511
POMO-100 23.2783 5.94% ∼ 28.9372 11.98% ∼ 37.9132 22.18% ∼ 30.0429
POMO-150 22.4706 2.26% ∼ 26.8810 4.02% ∼ 33.7746 8.84% ∼ 27.7087

POMO-random 23.2016 5.59% ∼ 28.1393 8.89% ∼ 35.6822 14.99% ∼ 29.0077

AMDKD-POMO 22.7842 3.69% ∼ 27.4462 4.68% ∼ 34.0650 9.78% ∼ 28.0985
Omni-POMO‡ 22.6562 3.11% 13s 26.8707 3.98% 38s 33.1435 6.81% 4m 27.5568
Ours-inter 22.4847 2.33% 12s 26.8134 3.76% 38s 33.6337 8.39% 3m 27.6439
Ours-intra 22.4436 2.14% ∼ 26.6884 3.28% ∼ 33.4200 7.70% ∼ 27.5173

POMO (Bi et al., 2022) and Omni-POMO (Zhou et al., 2023) for both TSP and CVRP. For POMO,
we retrain the model on each problem size with an equivalent number of epochs as our approach for
a fair comparison, e.g., POMO-60 signifying the model meticulously trained on size 60. AMDKD-
POMO improved the cross-distribution generalization of POMO using knowledge distillation, where
we retrain it following our training setups by tailoring teacher models to align with our exemplar
sizes. Besides, we also show the results of its open-sourced pretrained models on the largest avail-
able sizes, i.e., AMDKD-POMO∗. Furthermore, Omni-POMO is a recent meta-learning framework
to improve generalization across size and distribution of POMO for VRPs, where we report their
results based on the direct use of their open-sourced pretrained models. Regarding our approach,
two distinct variations with inter-task and intra-task regularization schemes are denoted as Ours-
inter and Ours-intra, respectively. Every method is assessed using the data augmentation of POMO,
and the results without augmentation are reported in Appendix A. The total inference time is also
reported for all methods, i.e., GPU time for deep models and CPU time for traditional solvers.

From Table 1, we observe that Ours-inter performs slightly superior to Ours-intra on small sizes
(e.g., 60), but the other way round on larger sizes (e.g., 100 and 150) for both TSP and CVRP.
This is reasonable since intra-task regularization concentrate more on efficiently learning the latest
larger sizes. While specially designed to improve the cross-distribution generalization of POMO,
AMDKD-POMO∗ still suffers from the cross-size generalization issue. Moreover, in comparison
with the original POMO trained on a specific size, both Ours-inter and Ours-intra achieve competi-
tive performance concerning the objective values on that size for both TSP and CVRP, while signif-
icantly outperforming those POMO models concerning average objective values over the three sizes
(refer to the final column). Furthermore, both Ours-inter and Ours-intra outstrip POMO-random,
AMDKD-POMO and Omni-POMO across all sizes for both TSP and CVRP with comparable infer-
ence time, even if Omni-POMO utilizes training instances with larger upper sizes (i.e., 200).

5.2 GENERALIZATION ANALYSIS

We further evaluate all methods on unseen larger sizes and gathered the results in Table 2. As re-
vealed, the cross-size generalization issue of AMDKD-POMO∗ is more pronounced, leading to a
substantial deterioration in performance. Ours-inter surpasses POMO-random, POMO-60, POMO-
100 and AMDKD-POMO in terms of average objective values over the three sizes, and achieves
competitive performance to POMO-150 for both TSP and CVRP. Leveraging intra-task regulariza-
tion to prioritize the learning of the latest larger sizes, Ours-intra further outperforms POMO-150
across all sizes. Moreover, both Ours-inter and Ours-intra deliver superior performance to Omni-

8

Under review as a conference paper at ICLR 2024

Table 3: Generalization performance on instances (50≤N≤500) from benchmark instances.

POMO-60 POMO-100 POMO-150 AMDKD-POMO Omni-POMO Ours-Inter

TSPLIB 9.71% 4.49% 4.18% 5.17% 3.11% 4.07%
CVRPLIB 13.59% 12.30% 9.21% 7.09% 5.83% 5.45%

POMO on sizes 200 and 300 for both TSP and CVRP. Although our approach exhibits slightly
inferior performance to Omni-POMO on size 500, it is worth noting that Omni-POMO is trained
on a broader range of sizes (including larger ones up to 200), which inherently offers Omni-POMO
the potential for superior performance on larger sizes. Furthermore, Ours-intra consistently achieves
lower average objective values than Omni-POMO over the three sizes for both TSP and CVRP,
which further underscores the effectiveness of our approach.

In Table 3, we extend the evaluation to well-established benchmark datasets TSPLIB (Reinelt, 1991)
and CVRPLIB (Uchoa et al., 2017) with size smaller than 500, and report the average gaps for all
methods. AMDKD-POMO∗ is omitted due to its clear inferiority as demonstrated in Table 1 and Ta-
ble 2. Notably, benchmark datasets usually encompass a diverse range of sizes and customer distribu-
tion patterns. For our approach, we emphasize Ours-intra given its decent performance demonstrated
earlier. The results indicate that our approach outstrips AMDKD-POMO and POMO trained on three
specific sizes when evaluated on both benchmark datasets, which showcases that our approach could
effectively enhance the the cross-size generalization ability of a backbone model. Moreover, despite
the fact that Omni-POMO is specially designed to enhance generalization across both size and dis-
tribution, our approach still delivers desirable performance that is competitive to Omni-POMO. This
further showcases the efficiency and effectiveness of our approach (see Appendix B for details).

5.3 ABLATION STUDY

Table 4: Ablation study on TSP.
N=60 N=100 N=150

ER Inter-task Intra-task Obj. Gap Obj. Gap Obj. Gap

× × × 6.1886 0.25% 7.7898 0.32% 9.3974 0.55%
× ✓ × 6.1805 0.12% 7.7831 0.24% 9.3938 0.51%
× × ✓ 6.1809 0.13% 7.7829 0.24% 9.3885 0.45%
✓ × × 6.1789 0.10% 7.7860 0.28% 9.3932 0.50%
✓ ✓ × 6.1758 0.05% 7.7775 0.17% 9.3883 0.45%
✓ × ✓ 6.1758 0.05% 7.7764 0.15% 9.3820 0.38%

In Table 8, we conduct an ablation study to clar-
ify the effectiveness of each component of our
approach on TSP and CVRP (refer to Appendix
C.1), where only one regularization scheme can
be used in our approach to keep a stable update
of the exemplar model. The markers “✓” and
“×” denote the utilization or exclusion of the
corresponding component, respectively. The gaps are calculated based on the solutions acquired
by Concorde in Table 1. As exhibited, experience replay, inter-task and intra-task regularization
schemes contribute to the reduction of objective values and optimality gaps across all sizes, affirm-
ing their effectiveness in enhancing cross-size generalizability. Further combining them together,
both Ours-inter and Ours-intra (last two rows) achieve better performance. We further conduct an
ablation study to demonstrate the effectiveness of the proposed regularization schemes, including
both the inter-task regularization scheme and the intra-task one (see Appendix C.2 for details).

We further conduct experiments to show that our approach can consistently improve the performance
across diverse sizes as the training progresses. To this end, we use the obtained models after training
on each size to evaluate on both seen and unseen sizes. We present the details in Appendix D.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a continual learning based framework to foster the cross-size generalization of
deep models for VRPs. We leverage either inter-task or intra-task regularization scheme to retain
the valuable insights derived from previously trained exemplar models for facilitating subsequent
training. To mitigate the catastrophic forgetting, we exploit the experience replay to revisit instances
of formerly trained smaller sizes. Results show that our approach not only significantly strengthens
the cross-size generalization performance, but also delivers predominantly superior performance to
state-of-the-art deep models specialized for the generalizability enhancement.

For future work, we will investigate automatically selecting the inter-task or intra-task regularization
scheme to further enhance our approach. Scaling up to substantially large problem instances is also
important. Bolstered by the superior cross-size generalization ability, we will further improve the CL
framework to train reliable deep models for handling large-scale VRPs, e.g., in a divide-and-conquer
manner. Additionally, explicitly enhancing the cross-distribution generalization in the proposed CL
framework could further unleash the potential of our approach in real-world applications.

9

Under review as a conference paper at ICLR 2024

REFERENCES

David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. Concorde TSP solver,
2020. URL http://www.math.uwaterloo.ca/tsp/concorde/.

Barrie M Baker and MA1951066 Ayechew. A genetic algorithm for the vehicle routing problem.
Computers & Operations Research, 30(5):787–800, 2003.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Machine Learning
(Workshop), 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. In Ad-
vances in Neural Information Processing Systems, volume 35, pp. 31226–31238, 2022.

Zhiyuan Chen and Bing Liu. Lifelong machine learning, volume 1. Springer, 2018.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2021.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128–135, 1999.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in Cognitive Sciences, 24(12):1028–1040, 2020.

Rujun Han, Xiang Ren, and Nanyun Peng. Econet: Effective continual pretraining of language mod-
els for event temporal reasoning. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 5367–5380, 2021.

Jiangpeng He and Fengqing Zhu. Online continual learning for visual food classification. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2337–2346, 2021.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2021.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2022.

Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via distri-
butionally robust optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
2022.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arxiv preprint arxiv: 1906.01227, 2019.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

10

http://www.math.uwaterloo.ca/tsp/concorde/

Under review as a conference paper at ICLR 2024

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of vehicle routing and scheduling problems.
Networks, 11(2):221–227, 1981.

Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Deep
reinforcement learning for solving the heterogeneous capacitated vehicle routing problem. IEEE
Transactions on Cybernetics, 52(12):13572–13585, 2021a.

Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Heterogeneous
attentions for solving pickup and delivery problem via deep reinforcement learning. IEEE Trans-
actions on Intelligent Transportation Systems, 2021b.

Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, and Yeow Meng Chee.
Learning feature embedding refiner for solving vehicle routing problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
Advances in Neural Information Processing Systems, volume 34, pp. 26198–26211, 2021c.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2017.

Michal Lisicki, Arash Afkanpour, and Graham W Taylor. Evaluating curriculum learning strategies
in neural combinatorial optimization. arXiv preprint arXiv:2011.06188, 2020.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learn-
ing to iteratively solve routing problems with dual-aspect collaborative transformer. Advances in
Neural Information Processing Systems, 34:11096–11107, 2021.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Umberto Michieli and Pietro Zanuttigh. Incremental learning techniques for semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (Workshop), pp.
0–0, 2019.

Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V Snyder. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9861–9871, 2018.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Gerhard Reinelt. TSPLIB-A traveling salesman problem library. ORSA Journal on Computing, 3
(4):376–384, 1991.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

11

Under review as a conference paper at ICLR 2024

Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem
with time windows and recharging stations. Transportation Science, 48(4):500–520, 2014.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. arXiv preprint arXiv:2302.08224, 2023.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, pp. 2692–2700, 2015.

Chenguang Wang, Yaodong Yang, Oliver Slumbers, Congying Han, Tiande Guo, Haifeng Zhang,
and Jun Wang. A game-theoretic approach for improving generalization ability of tsp solvers. In
ICLR 2022 Workshop on Gamification and Multiagent Solutions, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE Transactions on Neural Networks and Learning Systems,
2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In AAAI Conference on Artificial Intelligence, 2020.

Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, and Jie Zhang. A review
on learning to solve combinatorial optimisation problems in manufacturing. IET Collaborative
Intelligent Manufacturing, 5(1):e12072, 2023a.

Dongxiang Zhang, Ziyang Xiao, Yuan Wang, Mingli Song, and Gang Chen. Neural tsp solver
with progressive distillation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 12147–12154, 2023b.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In the 40th International Conference on Machine
Learning (ICML 2023), 2023.

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4648–4658,
2022.

12

Under review as a conference paper at ICLR 2024

A FULL RESULTS ON TSP AND CVRP (SEEN SCALES)

In Table 1, regarding the learning-oriented methods, we mainly displayed their results yielded with
the data augmentation strategy (A). Here we show the full results with (A) and without (N) the data
augmentation in Table 5. As shown, the inference time without data augmentation is significantly
shorter than that with data augmentation. On the other hand, it is clear that both Ours-inter and Ours-
intra achieve the best average performance among all deep models, no matter the data augmentation
strategy is used or not.

Table 5: Comparison results on TSP and CVRP (seen scales).

Method Test on N=60 Test on N=100 Test on N=150 Average of
Obj. Gap Time# Obj. Gap Time# Obj. Gap Time# Total costs

T
SP

Concorde 6.1729 - (7m) 7.7646 - (1.7h) 9.3462 - (22m) 7.7612
LKH3 6.1729 0.00% (14m) 7.7646 0.00% (9.8h) 9.3462 0.00% (2.1h) 7.7612

AMDKD-POMO∗ 6.1828 0.16% 36s 7.7930 0.37% 2m 9.4539 1.15% 33s 7.8092

POMO-60 6.1746 0.03% ∼ 7.8050 0.52% ∼ 9.5909 2.62% ∼ 7.8568
POMO-100 6.1768 0.06% ∼ 7.7753 0.14% ∼ 9.3987 0.56% ∼ 7.7836
POMO-150 6.1928 0.32% ∼ 7.7875 0.30% ∼ 9.3812 0.36% ∼ 7.7868

POMO-random 6.1778 0.08% ∼ 7.7782 0.18% ∼ 9.3937 0.51% ∼ 7.7832

AMDKD-POMO 6.1820 0.15% ∼ 7.7916 0.35% ∼ 9.4473 1.08% ∼ 7.8070
Omni-POMO‡ 6.2351 1.01% 34s 7.8650 1.29% 2.5m 9.4958 1.60% 37s 7.8653

Ours-inter 6.1758 0.05% 36s 7.7775 0.17% 2m 9.3883 0.45% 33s 7.7805
Ours-intra 6.1758 0.05% ∼ 7.7764 0.15% ∼ 9.3820 0.38% ∼ 7.7781

C
V

R
P

HGS 11.9471 - (15.3h) 15.5642 - (25.6h) 19.0554 - (6.2h) 15.5222
LKH3 11.9694 0.19% (3.5d) 15.6473 0.53% (6.5d) 19.2208 0.87% (13h) 15.6125

AMDKD-POMO∗ 12.3561 3.42% 56s 15.8854 2.06% 3m 19.8395 4.12% 33s 16.0270

POMO-60 12.0656 0.99% ∼ 16.0914 3.39% ∼ 20.2573 6.31% ∼ 16.1381
POMO-100 12.2531 2.56% ∼ 15.7544 1.22% ∼ 19.6856 3.31% ∼ 15.8977
POMO-150 12.4322 4.06% ∼ 15.8924 2.11% ∼ 19.3683 1.64% ∼ 15.8976

POMO-random 12.2758 2.75% ∼ 15.7942 1.48% ∼ 19.6121 2.92% ∼ 15.8940

AMDKD-POMO 12.1487 1.69% ∼ 15.8119 1.72% ∼ 19.5280 2.48% ∼ 15.8362
Omni-POMO‡ 12.2996 2.95% 45s 15.9878 2.72% 2.5m 19.5975 2.85% 45s 15.9616

Ours-inter 12.0660 1.00% 56s 15.7848 1.42% 3m 19.4109 1.87% 33s 15.7539
Ours-intra 12.0663 1.00% ∼ 15.7781 1.37% ∼ 19.3938 1.78% ∼ 15.7461

Bold and italics refer to the best and the second-best performance, respectively, among all deep models.
∼ The inference time of a method is equal to that of the preceding method in the row above, since those deep models except for Omni-
POMO utilize the original POMO architecture and result in the same inference efficiency.
‡ The training size range of Omni-POMO is [50, 200], which is broader than our [60, 150].

B DETAILED GENERALIZATION RESULTS ON BENCHMARK DATASETS.

We evaluate all methods on the classic benchmark datasets, including TSPLIB (Reinelt, 1991)
and CVRPLIB (Uchoa et al., 2017), in which we choose representative instances with size N ∈
[50, 500]. Note that both benchmark datasets encompass a diverse range of sizes and distributions.
The detailed results are shown in Table 6 and Table 7, where the gaps are calculated based on the op-
timal solution values for the instances. From two tables, we observe that our approach outperforms
AMDKD-POMO and all POMO models trained on specific sizes on both benchmark datasets. Note
that Omni-POMO is explicitly specialized for improving generalization across both size and dis-
tribution, which has the potential to achieve desirable performance on benchmark datasets whose
instances encompass a diverse range of sizes and distributions. More specific, the setting that ex-
plicitly training with more diverse sizes and distributions, will inherently favor Omni-POMO over
our approach. Whereas, our approach still yields competitive performance in comparison against
Omni-POMO, e.g., with the average gap of 5.45% (Ours) VS. 5.83% (Omni-POMO) on CVRPLIB,
which further underscores the effectiveness of our approach.

13

Under review as a conference paper at ICLR 2024

Table 6: Detailed generalization results on instances from TSPLIB.

POMO-60 POMO-100 POMO-150 AMDKD-POMO Omni-POMO‡ Ours
Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

berlin52 7544 7544 0.00% 7545 0.01% 7613 0.92% 7545 0.01% 8003 6.08% 7544 0.00%
st70 675 677 0.30% 677 0.30% 678 0.44% 677 0.30% 680 0.74% 677 0.30%
eil76 538 547 1.67% 544 1.12% 549 2.05% 550 3.77% 557 3.53% 544 1.12%
rd100 7910 7920 0.13% 7910 0.00% 7952 0.53% 7934 0.30% 7958 0.61% 7910 0.00%

KroA100 21282 21786 2.34% 21667 1.81% 21596 1.48% 22077 3.74% 21305 0.11% 21738 2.14%
KroB100 22141 22941 3.61% 22370 1.03% 22575 1.96% 22745 2.73% 22650 2.30% 22640 2.25%

lin105 14379 14808 2.98% 14557 1.24% 14808 2.98% 14898 3.61% 14819 3.06% 14753 2.60%
pr124 59030 59031 0.00% 59388 0.61% 59595 0.96% 59521 0.83% 59238 0.35% 59164 0.23%
ch130 6110 6188 1.28% 6133 0.38% 6142 0.52% 6159 0.80% 6251 2.31% 6119 0.15%
pr136 96772 100459 38.12% 97540 0.80% 97668 0.93% 97951 1.22% 97780 1.04% 97258 0.50%
gr137 699 746 6.72% 755 8.01% 759 8.58% 773 10.59% 772 10.44% 747 6.87%
ch150 6528 6679 2.31% 6559 0.48% 6579 0.78% 6583 0.82% 6586 0.89% 6559 0.48%

KroA200 29368 31819 8.35% 30415 3.57% 30015 2.20% 30672 4.44% 29823 1.55% 29951 1.99%
KroB200 29437 32020 8.78% 30880 4.90% 30172 2.50% 30990 5.28% 29814 1.28% 30792 4.60%

ts225 126643 135704 7.16% 130990 3.43% 128045 1.14% 128911 1.79% 128770 1.68% 129297 2.10%
a280 2579 3101 20.24% 2951 0.45% 2788 8.10% 2809 8.92% 2695 4.50% 2828 9.65%
rd400 15281 18055 18.15% 17342 13.49% 16155 5.72% 16160 5.75% 15948 4.37% 15968 4.50%
fl417 11861 14319 20.72% 14396 21.37% 14225 19.93% 14004 18.07% 12683 6.93% 13932 17.46%

pcb442 50778 71914 41.62% 62145 22.39% 54683 7.69% 63643 25.34% 59761 17.69% 61152 20.43%

Avg. Gap 0.00% - 9.71% - 4.49% - 4.18% - 5.17% - 3.11% - 4.07%

Table 7: Detailed generalization results on instances from CVRPLIB.

POMO-60 POMO-100 POMO-150 AMDKD-POMO Omni-POMO‡ Ours
Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

A-n53-k7 1010 1315 30.20% 1318 30.50% 1152 14.06% 1111 10.00% 1105 9.41% 1136 12.48%
A-n60-k9 1354 1741 28.58% 1739 28.43% 1657 22.38% 1574 16.25% 1465 8.20% 1453 7.31%

A-n80-k10 1763 2692 52.69% 2740 55.42% 2816 59.73% 2136 21.16% 2127 20.65% 2100 19.12%
X-n101-k25 27591 29786 7.96% 29287 6.15% 29398 6.55% 29306 6.22% 29442 6.71% 28533 3.41%
X-n110-k13 14971 15530 3.73% 15161 1.27% 15130 1.06% 15202 1.54% 15285 2.10% 15102 0.88%
X-n120-k6 13332 14239 6.80% 14570 9.29% 14060 5.46% 14010 5.09% 13944 4.59% 13882 4.13%
X-n129-k18 28940 30154 4.20% 29569 2.17% 29343 1.39% 29702 2.63% 29975 3.58% 29306 1.27%
X-n139-k10 13590 14269 5.00% 14080 3.61% 13855 1.95% 13890 2.21% 14019 3.16% 13812 1.63%
X-n148-k46 43448 46146 6.21% 47621 9.61% 45850 5.53% 46451 6.91% 46438 6.88% 45600 4.95%
X-n157-k13 16876 17663 4.66% 18302 8.45% 18340 8.68% 17523 3.83% 17107 1.37% 17414 3.19%
X-n167-k10 20557 22306 8.51% 21297 3.60% 20995 2.13% 21068 2.49% 21436 4.28% 20960 1.96%
X-n190-k8 16980 18757 10.47% 18164 6.97% 18140 6.83% 18169 7.00% 17645 3.92% 17770 4.65%
X-n200-k36 58578 62737 7.10% 61933 5.73% 61397 4.81% 61384 4.79% 61496 4.98% 61514 5.01%
X-n251-k28 38684 42430 9.69% 41360 6.92% 40024 3.47% 40595 4.94% 40059 3.55% 40046 3.52%
X-n298-k31 34231 38749 13.20% 38611 12.80% 35663 4.18% 37221 8.74% 36384 6.29% 35779 4.52%
X-n351-k40 25896 30289 16.96% 28343 9.45% 27952 7.94% 28315 9.34% 27515 6.25% 27487 6.14%
X-n401-k29 66154 72209 9.15% 71173 7.59% 69641 5.27% 69227 4.65% 68234 3.14% 69682 5.33%
X-n449-k29 55233 63569 15.09% 61915 12.08% 58418 5.77% 59929 8.50% 58037 5.08% 58563 6.03%
X-n491-k59 66483 78463 18.02% 75620 13.74% 71668 7.80% 72087 8.43% 70923 6.68% 71787 7.98%

Avg. Gap 0.00% - 13.59% - 12.30% - 9.21% - 7.09% - 5.83% - 5.45%

C MORE ABLATION STUDY RESULTS

C.1 ABLATION STUDY ON COMPONENTS OF OUR APPROACH FOR CVRP

In Table 4, we display the ablation study on the effectiveness of each component of our approach for
TSP. Here we show the corresponding results for CVRP in Table 8. As revealed, experience replay,
inter-task and intra-task regularization schemes contribute to the reduction of objective values and
optimality gaps across all sizes, affirming their effectiveness in enhancing cross-size generalizability.
Further combining experience replay and regularization scheme together, both Ours-inter and Ours-
intra (last two rows) achieve better performance.

Table 8: Ablation study on CVRP.

N=60 N=100 N=150
ER Inter-task Intra-task Obj. Gap Obj. Gap Obj. Gap

× × × 12.1174 1.43% 15.8528 1.86% 19.5024 2.35%
× ✓ × 12.0829 1.14% 15.8109 1.59% 19.4472 2.06%
× × ✓ 12.0855 1.16% 15.8085 1.57% 19.4289 1.96%
✓ × × 12.0786 1.10% 15.8187 1.64% 19.4389 2.01%
✓ ✓ × 12.0660 1.00% 15.7848 1.42% 19.4109 1.87%
✓ × ✓ 12.0663 1.00% 15.7781 1.37% 19.3938 1.78%

14

Under review as a conference paper at ICLR 2024

C.2 ABLATION STUDY ON REGULARIZATION SCHEMES

To verify the effectiveness of the regularization schemes designed in our approach, we further an-
alyze the evaluation results of our accomplished models after training on each size with inter-task
regularization scheme, intra-task regularization scheme, and without regularization scheme, across
three sizes (i.e., 60, 100 and 150) for both TSP and CVRP. The corresponding curves are depicted
in Figure 3 and Figure 4, respectively, where we also present the average objective values across
those sizes, in order to show the overall improved cross-size generalization performance. As re-
vealed, both inter-task and intra-task regularization schemes accelerate the learning efficiency and
boost the overall results in comparison with the one without regularization scheme for both TSP
and CVRP, which showcases the effectiveness of the proposed regularization schemes. Moreover,
inter-task regularization scheme is superior to the intra-task one in terms of the learning efficiency
on smaller sizes (i.e., 60), while the other way round on larger sizes (i.e., 100 and 150). This is
reasonable since the intra-task regularization scheme concentrate more on efficiently learning the
latest lager sizes. Furthermore, the intra-task achieves the fastest learning efficiency and the lowest
objective value when averaging the objective values across all three sizes.

(a) TSP60 (b) TSP100

(c) TSP150 (d) Average on three sizes

Figure 3: Curves of learning progress for our approach on TSP.

15

Under review as a conference paper at ICLR 2024

(a) CVRP60 (b) CVRP100

(c) CVRP150 (d) Average on three sizes

Figure 4: Curves of learning progress for our approach on CVRP.

Table 9: Validation results on seen and unseen sizes.

Method Test on N=100 Test on N=150 Test on N=200
Obj. Gap Obj. Gap Obj. Gap

T
SP

Ours (after training on 60) 7.8419 1.00% 9.6460 3.21% 11.2975 5.90%
Ours (after training on 70) 7.8065 0.54% 9.5426 2.10% 11.1413 4.43%
Ours (after training on 80) 7.7902 0.33% 9.4715 1.34% 11.0082 3.19%
Ours (after training on 90) 7.7846 0.26% 9.4327 0.93% 10.9116 2.28%
Ours (after training on 100) 7.7808 0.21% 9.4137 0.72% 10.8585 1.78%
Ours (after training on 110) 7.7773 0.16% 9.3982 0.56% 10.8029 1.26%
Ours (after training on 120) 7.7775 0.17% 9.3943 0.52% 10.7880 1.12%
Ours (after training on 130) 7.7755 0.14% 9.3861 0.43% 10.7629 0.89%
Ours (after training on 140) 7.7757 0.14% 9.3824 0.39% 10.7526 0.79%
Ours (after training on 150) 7.7764 0.15% 9.3820 0.38% 10.7445 0.71%

C
V

R
P

Ours (after training on 60) 15.9992 2.23% 20.0320 4.22% 23.5642 6.08%
Ours (after training on 70) 15.8721 1.42% 19.6862 2.42% 23.0514 3.77%
Ours (after training on 80) 15.8275 1.13% 19.5619 1.78% 22.8025 2.65%
Ours (after training on 90) 15.8092 1.02% 19.5051 1.48% 22.7007 2.19%
Ours (after training on 100) 15.7987 0.95% 19.4732 1.31% 22.6235 1.84%
Ours (after training on 110) 15.7924 0.91% 19.4466 1.18% 22.5745 1.62%
Ours (after training on 120) 15.7870 0.88% 19.4282 1.08% 22.5361 1.45%
Ours (after training on 130) 15.7849 0.86% 19.4148 1.01% 22.4948 1.26%
Ours (after training on 140) 15.7835 0.85% 19.4075 0.97% 22.4695 1.15%
Ours (after training on 150) 15.7781 0.82% 19.3938 0.90% 22.4436 1.03%

D VALIDATION ON BOTH SEEN AND UNSEEN SIZES

We evaluate the obtained models after training on each size with intra-task regularization scheme.
On both seen and unseen sizes, i.e., 100, 150 and 200, these models are evaluated to showcase
that our approach can consistently improve the performance of the deep model, as the training pro-
gresses. The results are summarized in Table 9, where the gaps are calculated based on the solutions

16

Under review as a conference paper at ICLR 2024

acquired by Concorde for TSP and HGS for CVRP in Table 1. We observe that when we evaluate the
models on size 100, it progressively reduces the gaps before the training process reaching size 100.
Furthermore, it effectively retains the acquired knowledge and superiority on size 100, after further
trained on instances with larger sizes. The models trained after size 100 still show decreasing gaps on
size 100. Similarly, in the case of testing on the larger sizes, i.e., 150 and 200, our approach consis-
tently enhances the performance during the whole training phase. These findings highlight that our
approach excels not only in preserving superior performance on small sizes but also in consistently
enhancing performance on larger sizes.

E DETAILS OF POMO MODEL.

POMO uses the encoder-decoder structure to sequentially construct solutions for VRPs. Specifi-
cally, the encoder projects problem-specific features into high-dimensional node embeddings for
informative representation learning. Afterwards, the decoder sequentially constructs a solution
τ = {τ1, τ2, ..., τTc} with Tc steps for a VRP instance of problem size N , conditioned on the node
embeddings and partial tour at each step. Specifically, Tc = N for TSP, and Tc ≥ N for CVRP as
the depot node could be visited multiple times.

E.1 THE ENCODER

The encoder first embeds problem-specific features to higher-dimensional space, then passes them to
stacked attention layers to extract useful information for better representation. The problem-specific
features of node vi, i ∈ {1, 2, ..., N} contain 2-dimensional location coordinates (for both TSP
and CVRP) and 1-dimensional demand vector (for CVRP only), which are linearly projected to
initial node embedding h0

i of 128-dimension [1]. Then they are processed through L = 6 attention
layers with different parameters to derive the final node embedding hL

i , where each attention layer is
composed of a multi-head attention (MHA) sub-layer and a feed-forward (FF) sub-layer. Following
the original design of the Transformer architecture [2], both the outputs of the MHA sub-layer and
the FF sub-layer are followed by a skip-connection layer [3] and a batch normalization (BN) layer
[4] as below,

h̃i = BN(hl
i + MHA(hl

i)), (6)

hl+1
i = BN(h̃i + FF(h̃i)). (7)

MHA sub-layer. The MHA sub-layer employs a multi-head self-attention mechanism [2] with M =
8 heads to compute the attention weights between each two nodes. Specifically, the query/key/value
proposed in [2] are defined with dk = d/M dimension as below,

ql,mi = W l,m
Q hl

i, k
l,m
i = W l,m

K hl
i, v

l,m
i = W l,m

V hl
i. (8)

Then the attention weights are computed by using the Softmax activation function to represent the
correlation between each two nodes as follows,

ul,m
ij = Softmax

(
(ql,mi)⊤(kl,mj)
√
dk

)
. (9)

Finally, the l-th MHA sub-layer first computes the new context vectors by performing an element-
wise multiplication of the attention weights with value, and then aggregates the information from
M heads as follows,

hl,m
i =

∑
j

ul,m
ij vl,mj , m = 1, 2, ...,M, (10)

MHA(hl
i) = [hl,1

i ;hl,2
i ; ...;hl,M

i]W l
O, (11)

where W l,m
Q , W l,m

K , W l,m
V ∈ Rd×dk , W l

O ∈ Rmdk×d are learnable parameters, and [;] denotes the
concatenate operator.

17

Under review as a conference paper at ICLR 2024

FF sub-layer. The FF sub-layer processes the node embeddings h̃i, i ∈ {1, 2, ..., N} through a
hidden sub-layer with dimension 512 and a ReLU activation function, as follows,

FF(h̃i) = W 1
F ReLU(W 0

F h̃i + b0F) + b1F , (12)

where W 0
F ,W

1
F , b

0
F , b

1
F are trainable parameters. At the end, the encoder outputs a set of node em-

beddings in the L-th layer hL
i , i ∈ {1, 2, ..., N}. These embeddings will be preserved as a part of

the input to the decoder for route construction.

E.2 THE DECODER

Taking TSP as an example, the decoder first calculates the mean of node embeddings to derive the
global graph embedding, i.e., h̄ = 1

N

∑N
i hL

i , then defines a context vector as the combination of
the graph embedding, the embeddings of the first node of the route and the last visited node. For
step tc = 1, we use learned parameters v1 and v2 as input placeholders. Note that POMO constructs
N solutions by taking each of the N nodes as the first node to visit (i.e., hi

τ1 = hi). Particularly, it
defines N context vectors hc

i , ∀i ∈ {1, 2, ..., N} as follows,

hc
i =

{
(h̄, hi, h

i
τtc−1

), if tc > 1

(h̄, v1, v2), if tc = 1
(13)

where hi
τtc

is the node embedding of the node visited at decoding step tc for the ith solution. The
context vectors are then processed by a MHA layer as introduced above to generate N glimpse
vectors hg

i , i ∈ {1, 2, ..., N} in parallel,

hg
i = MHA(W g

Qh
c
i , W

g
Kh, W g

V h), i ∈ {1, 2, ..., N}, (14)

after which the decoder computes the compatibility between the enhanced glimpses and node em-
beddings. Then it further calculates the probabilities of selecting the next node to visit for N solu-
tions in parallel at decoding step tc as follows,

ctci = G · tanh
(
(hg

iWQ)
T (hWK)√
dk

)
, (15)

ptci = Softmax(ctci), i ∈ {1, 2, ..., N}, (16)

where W g
Q,W

g
K ,W g

V ,WQ,WK are learnable parameter matrices, and G is often set to 10 to control
the entropy of ctci .

Pertaining to the decoding strategy, we could select the node with the maximum probability in a
greedy manner or sample a node according to the probability in a sampling manner at each decoding
step.

18

	Introduction
	Related work
	Preliminaries and Notations
	VRP Statement
	Autoregressive deep models for VRPs

	Methodology
	Experience replay
	Regularization schemes
	Training algorithm

	Experiments
	Comparison analysis
	Generalization analysis
	Ablation study

	Conclusions and future work
	Full results on TSP and CVRP (seen scales)
	Detailed generalization results on benchmark datasets.
	More Ablation study results
	Ablation study on components of our approach for CVRP
	Ablation study on regularization schemes

	Validation on both seen and unseen sizes
	Details of POMO model.
	The Encoder
	The Decoder

