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Abstract
Shock waves caused by earthquakes can be dev-
astating. Generating realistic earthquake-caused
ground motion waveforms help reducing losses
in lives and properties, yet generative models for
the task tend to generate subpar waveforms. We
present High-fidelity Earthquake Groundmotion
Generation System (HEGGS) and demonstrate
its superior performance using earthquakes from
North American, East Asian, and European re-
gions. HEGGS exploits the intrinsic character-
istics of earthquake dataset and learns the wave-
forms using an end-to-end differentiable genera-
tor containing conditional latent diffusion model
and hi-fidelity waveform construction model. We
show the learning efficiency of HEGGS by train-
ing it on a single GPU machine and validate
its performance using earthquake databases from
North America, East Asia, and Europe, using di-
verse criteria from waveform generation tasks and
seismology. Once trained, HEGGS can generate
three dimensional E-N-Z seismic waveforms with
accurate P/S phase arrivals, envelope correlation,
signal-to-noise ratio, GMPE analysis, frequency
content analysis, and section plot analysis.

1. Introduction
Broadband ground motion caused by seismic waves is cru-
cial in the study of earthquakes and geology since it in-
cludes important features related to subsurface structures
of the solid Earth. At the same time, it is a great challenge
from signal processing perspective, as observed ground mo-
tion waveform signals cover a wide frequency band and are
caused by rare and unevenly distributed earthquake events.

As the size of systematically recorded seismic waveforms
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grew, various improvements in seismological applications
were made by analyzing historically observed seismic wave-
forms. For example, the accuracy of earthquake analysis
was improved, early warning systems for earthquake-prone
areas were polished, and earthquake-resistant architectural
designs became more robust. Recently deep learning found
successful applications in seismology (Mousavi & Beroza,
2022), such as seismic signal denoising (Zhu et al., 2019),
fault recognition (An et al., 2021), and earthquake event
detection (Mousavi et al., 2020; Saad et al., 2023).

However, the field still faces a shortage of data, particu-
larly for large-scale earthquakes as they are rare (Shi et al.,
2024; Katsanos et al., 2010). Recently, deep-learning based
synthesis of seismic waveforms has emerged as a potential
solution, mostly employing GAN-based generative models
conditioned with various geological and seismological infor-
mation (Wang et al., 2021; Florez et al., 2022; Li et al., 2024;
Chen et al., 2024). However, the synthesized waveforms
from these models often lack seismological realism, such as
phase arrival times and amplitude of ground motions.

We see this problem as a mixed artifact of conditioned gen-
eration model architecture and unreliable conditioning in-
formation. Hence, we propose adapting diffusion model
architecture (Sohl-Dickstein et al., 2015; Ho et al., 2020),
which have shown superior realism and stability in image
generation, to seismic waveform data in order to present a
novel generation system for seismologically realistic ground
motions with bare minimum set of conditioning informa-
tion.

Our Contribution

• We design a novel seismic waveform generation model,
HEGGS, that requires a bare-minimum set of condi-
tional information on the earthquake and the observa-
tion point.

• We demonstrate constructing datasets for HEGGS us-
ing openly available seismic datasets, such that ob-
served waveforms are paired with the source earth-
quake and time-aligned to the earthquake origin time.

• We design an end-to-end training method for the model
and demonstrate its effectiveness by learning to gen-
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erate high-fidelity earthquake ground motions from
earthquakes in North America, East Asia, and Europe.

• We validate the superior fidelity of generated samples
from HEGGS against benchmark models in various per-
spectives including seismology-inspired metrics such
as GMPE analysis and phase arrival prediction.

2. Key Idea
Our goal is to robustly synthesize the broadband ground mo-
tion data with high level of seismological realism when com-
pared to actual seismograph-recorded waveforms caused by
earthquake events. We cast this seismic waveform synthe-
sis problem into conditional waveform generation task to
learn from seismic waveform databases, with minimal de-
pendency on conditional information.

We use the following as the minimal conditional info:

1. slat, slon : latitude and longitude of the station to ob-
serve the waveform data.

2. elat, elon : latitude and longitude of the hypocenter.

3. edep : depth of the hypocenter, in kilometers.

4. ML : local magnitude of the earthquake.

This set of information is usually considered insufficient
for ground motion synthesis. For example, seismological
properties of the source earthquake such as focal mechanism
or local geological properties of observation point such as
VS30 are often required in prior works. Instead of addi-
tionally demanding the often expensive-to-obtain info, we
desire a generative model that learns directly from seismic
waveforms with minimal conditional info as metadata.

When an earthquake happens, its shock waves propagate and
are recorded by nearby seismographs as three-dimensional
seismic waveforms named seismograms. Naturally, these
seismograms are correlated by the common information
about the source earthquake as well as the information spe-
cific to each of the seismographs such as geological con-
ditions around the observation location. Regional seismic
waveform datasets contain multiple waveform observations
that can be paired to a source earthquake event, as illustrated
in the left panel of Figure 1. The observations paired to the
same earthquake would share properties of the same source
earthquake, while containing different information pertain-
ing to their respective observation location. This is how we
liberate ourselves from asking additional conditional info.

We exploit this intrinsic pair-ability of the seismic waveform
datasets, and construct paired waveform-metadata datasets
from three earthquake databases from different continents:
INSTANCE (Michelini et al., 2021) from Europe, KMA

(Han et al., 2023) from East Asia, and SCEDC (SCEDC,
2013) from North America. Raw waveforms and corre-
sponding metadata including locations, earthquake ID, mag-
nitude and earthquake occurrence time are collected, and
the processing of each datasets are detailed in Appendix A.

3. Method
Inspired by a conditional music generation method (Ghosal
et al., 2023), our method first creates spectrograms with a
diffusion model and then convert spectrograms into wave-
forms. Our generative model fully exploits the pair-ability
of seismic waveform datasets shown in Section 2 to train
both the diffusion process for spectrogram generation and
the high-fidelity decoder for waveform generation. We name
the method HEGGS, an acronym for High-fidelity Earth-
quake Groundmotion Generation System.

3.1. Pair-Exploiting Diffusion Model

For each earthquake event, we sample a pair of waveforms
(W src,W tgt) from dataset and convert it to spectrograms
(Xsrc, Xtgt) and construct conditional vector of target sta-
tion c⃗tgt by preprocessing.

Let q(x1:T ;X) be the forward process of the diffusion
model, and consider two trajectories q(xsrct |Xsrc) and
q(xtgtt |Xtgt). Recall that Xsrc and Xtgt shares the prop-
erty of earthquake, we may assume that from Xsrc and c⃗tgt
we can gather enough features of earthquake to generate
Xtgt. In this approach, we may consider the transform map
η(xsrct , c⃗tgt, t) for t > 0 which maps the latent of input
Xsrc to the latent of target Xtgt as a random variable, with
following assumption:

η(xsrct , c⃗tgt, t) ∼ q(xtgtt |Xtgt). (1)

Referring (Salimans & Ho, 2022), the loss function LDM
of diffusion model in x-space (sample space) is:

LDM = E(Xtgt ,⃗ctgt),ϵ,t∥X
tgt − xθ(x

tgt
t , c⃗tgt, t)∥2. (2)

while the SNR weight is simplified.

Considering the Equation (1), we rewrite the loss function
as

L′
DM = E(Xsrc,Xtgt ,⃗ctgt),ϵ,t∥X

tgt −mθ(x
src
t , c⃗tgt, t)∥2

(3)
where

mθ(x, c⃗, t) = xθ(η(x, c⃗, t), c⃗, t). (4)

Hence, we predict mθ by neural network, which is a com-
position of latent transform function and denoising model.

For the sampling of the reverse process, we exploit the same
procedure of the denoising process of diffusion, as

xtgtt−1 = µ̃t(x
tgt
t ,mθ(x

tgt
t , c⃗tgt, t))+ σtz, z ∼ N(0, I) (5)
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Figure 1. Left : Visualization of SCEDC data using paired waveforms. It shows that earthquake events can be detected at greater distances
depending on magnitude. Right : Diagram of the waveform generative model architecture of HEGGS and its training loss.

where µ̃t(xt, x0) is mean vector of q(xt−1|xt, x0), intro-
duced in Eq. (7) of (Ho et al., 2020).

This is equivalent to conventional denoising process, as

η(xtgtt , c⃗tgt, t)
d
=xtgtt (6)

by assumption and thus

mθ(x
tgt
t , c⃗tgt, t) = xθ(x

tgt
t , c⃗tgt, t). (7)

Therefore, pair-exploiting training process of HEGGS al-
lows the diffusion model to generate Xtgt from the Gaus-
sian noise xtgtT ∼ N (0, I) following conventional reverse
process with mθ.

3.2. End-to-end Model Training

From the idea of LDM (Rombach et al., 2022), we consider
the autoencoder comprised of a downsampling module EAE
and an upsampling module DAE , and construct diffusion
model on latent space with smaller dimension. If there were
a suitable pretrained autoencoder, the LDM loss would be

L′
LDM = E(Zsrc,Ztgt ,⃗ctgt),ϵ,t∥Z

tgt −mθ(z
src
t , c⃗tgt, t)∥2

(8)
where Z = EAE(X), zsrct is latent of diffusion process of
Zsrc.

There is no suitable encoder-decoder model for seismic
waveforms, so we modify Equation (8) into an end-to-end

loss function as shown below:

Lours
:= E(Xsrc,Xtgt ,⃗ctgt),ϵ,t∥X

tgt −DAE(mθ(z
src
t , c⃗tgt, t))∥2

(9)
where zsrct =

√
αtEAE(Xsrc) +

√
1− αtϵ .

Using Lours as the loss function, we train the waveform
generation model end-to-end, covering the encoder, the dif-
fusion module, and the decoder with ACM (Amplitude Cor-
rection Module), as shown in the right panel of Figure 1.
For the detailed implementation in the diffusion module,
we used a U-Net backbone for mθ, brought EAE and DAE .
More details on the specifications of HEGGS and its training
recipe can be found in Appendix B.

After training diffusion model with HEGGS, we generate
waveform with conventional reverse process by setting ztgtT
by Gaussian noise or Zsrc. The details with pseudocode of
training and generation, can be found in Appendix J.

4. Empirical Verification
We showcase the performance of HEGGS in three cases:

1. generate waveforms of existing earthquakes at existing
observation stations c⃗tgt, using an observed earthquake
information W src as input waveform.

2. generate at arbitrary locations c⃗′tgt, using an observed
earthquake information W src as input waveform.

3. generate waveforms of fictitious earthquake informa-
tion c⃗

′′

tgt (also, without W src).
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The first case is designed to verify the fidelity of HEGGS,
by comparing the generated samples to ground truth wave-
forms. We present quantitative results in Section 4.1 and
qualitative analyses with visualizations in Sections 4.2.1
to 4.2.3. The results from the second case are presented
throughout Sections 4.1 and 4.2, and in Section 4.2.4 we
show the results from the third case.

4.1. Quantitative Evaluation

To assess and compare the effectiveness of models syn-
thesizing seismic waves, we conducted a comprehensive
quantitative analysis focusing on key parameters including
P-wave and S-wave arrival times, GMPE analysis, and simi-
larity measures such as envelope correlation, spectrogram
image similarity, as well as signal-to-noise ratio (SNR), and
peak signal-to-noise ratio (PSNR). Specifically, we compare
generated synthetic waveform W pred from c⃗tgt and com-
pare it with corresponding ground truth waveform W tgt to
compute each metric.

For comparison, we also trained the following benchmark
models on SCEDC: Seismogen (Wang et al., 2021), Con-
seisgen (Li et al., 2024), BBGAN (Florez et al., 2022) and
LDM (Rombach et al., 2022). Since the input shape of
waveform W tgt or spectrogram Xtgt is different from each
of the models, we give reasonable modifications to them
for the training and evaluation. The detailed changelogs are
listed in Appendix E.

4.1.1. PHASE ARRIVAL TIMES

The arrival times of P-wave and S-wave are the most basic,
but important properties of seismic waveforms, as determin-
ing P-wave and S-wave from the seismogram is the first step
of earthquake analysis. Since we want to assess the fidelity
of the generated waveforms, we fine-tune the SeisBench
(Woollam et al., 2022) implementation of EQTransformer
(EQT) (Mousavi et al., 2020) on each dataset to use it in
labeling phase arrivals times and compare them with the
ground truth arrival times. The detailed training recipe we
used for EQT is given in Appendix D. We present the perfor-
mance measure of the finetuned EQT in the test dataset in
Table 1. Note that the waveforms are inherently normalized
as preprocessing step of EQT prediction.

Table 1. Performance of EQT picker on each test dataset. Samples
with errors less than 0.5s are considered to be positive for F1 score
computation.

Dataset P MAE(s) S MAE(s) P F1 S F1

SCEDC 0.1116 0.2189 0.9728 0.9384
KMA 0.0993 0.1362 0.9635 0.9624

INSTANCE 0.1738 0.3151 0.9797 0.9099

Using the finetuned EQT as the phase picker, we label gen-
erated synthetic waveforms at a random station for every
earthquake event from the test dataset. The mean absolute
error (MAE) metrics of the P wave and the S wave phase
arrival times from the ground truth labels are reported in the
first two columns of Table 2. The resulting phase arrival
times of the P wave and the S wave are considered to be
close to the ground-truth arrival times on all datasets, as the
MAE values are measured to be significantly small while
other benchmark models failed to generate earthquake event
signals on correct arrival time. Notably, generating with
input waveform W src gives better results compared to gen-
erating without W src (i.e. with noise), as the observation
W src contains earthquake-specific information.

4.1.2. SIMILARITY MEASURES

We also compare the synthesized waveforms and corre-
sponding spectrogram directly to the ground truth wave-
forms. We use general-purpose similarity measures: the
envelope correlation, SNR and PSNR for the waveforms,
and MSE for the spectrograms.

Envelope correlation was calculated to measure the simi-
larity between the envelopes of synthesized and observed
seismic waves, providing insights into the overall waveform
fidelity. We applied Savitzky-Golay Filtering (Savitzky &
Golay, 1964) technique with polyorder 3 before calculating
the envelope correlation. In implementation, we exploit
(Beyreuther et al., 2010) implementation of cross correla-
tion, which includes the waveform normalization. Further-
more, SNR and PSNR metrics were employed to evaluate
the quality of the synthesized seismic waves in terms of
signal clarity and fidelity to the original data. Addition-
ally, we compare the synthesized spectrogram Xsyn and
spectrogram of observed seismic signals Xtgt to quantify
their similarity using image similarity. We normalized both
spectrograms to compare

The results are summarized in Table 2. The proposed
method outperforms the benchmark models on almost all
similarity metrics, which may imply that the generated
Xpred and W pred are more realistic in most cases. These
quantitative analyses provide a comprehensive assessment
of how similar HEGGS-generated waveforms are to the
actual observed seismic ground motion.

4.1.3. GMPE ANALYSIS

Ground Motion Prediction Equation (GMPE) is a widely
used mathematical modeling in seismology that predicts
the ground shaking intensity caused by earthquakes, and it
is crucial for seismic hazard assessment and earthquake-
resistant structural engineering. The GMPE model re-
lates earthquake parameters, like local magnitude ML and
hypocentral distance Rhypo, to ground motion characteris-
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Table 2. Results of quantitative analysis. Models were evaluated with W src when it is trained with paired data, otherwise without W src,
except (*): evaluated without W src, while the model was trained with paired data.

Dataset Model Input Waveform Spectrogram

P MAE (s) S MAE (s) env.corr SNR PSNR MSE

SCEDC

SeismoGen
(Wang et al., 2021)

w/o W src 1.9558 3.6246 0.4895 -8.6166 23.5431 1.4124
w/ W src 1.8426 3.3325 0.5454 -8.6282 23.6354 0.8063

ConSeisGen
(Li et al., 2024)

w/o W src 3.9724 6.8992 0.3246 -8.6216 23.6416 0.7461
w/ W src 3.9102 6.8055 0.2980 -8.5341 23.5329 0.9356

BBGAN
(Florez et al., 2022)

w/o W src 6.4210 10.416 0.1950 -3.0093 23.7598 1.6150
w/ W src diverged

LDM
(Rombach et al., 2022)

w/o W src 1.1142 1.7294 0.6932 -3.0202 24.7573 0.2838
w/ W src 0.5633 0.7808 0.7726 -3.0015 19.6269 0.2426

HEGGS
(ours)

(*)w/o W src 0.5025 0.8003 0.7963 -2.9891 24.6816 0.1531
w/ W src 0.4760 0.5476 0.8187 -2.0051 24.6553 0.1512

KMA

LDM
(Rombach et al., 2022)

w/o W src 1.6233 2.1125 0.7703 -3.0006 25.3883 0.3521
w/ W src 1.3521 1.6845 0.8076 -2.9989 26.3658 0.3785

HEGGS
(ours)

(*)w/o W src 0.2988 0.5551 0.8769 -3.0034 26.2769 0.1867
w/ W src 0.2763 0.4644 0.8785 -2.9768 26.8730 0.1682

INSTANCE

LDM
(Rombach et al., 2022)

w/o W src 0.8417 0.7847 0.7921 -3.0062 22.0767 0.2927
w/ W src 0.8187 0.7875 0.7898 -2.9904 22.0956 0.2841

HEGGS
(ours)

(*)w/o W src 0.5192 0.6804 0.8299 -3.0004 22.3690 0.1376
w/ W src 0.5085 0.6378 0.8301 -2.9976 22.6870 0.1308

tics, such as Peak Ground Acceleration (PGA). Since ML

is obtained from the peak amplitude of the waveforms, the
GMPE analysis shows how the scale of the generated wave-
forms from HEGGS matches the real observations.

Computing PGA (Emolo et al., 2015; Boore et al., 2014;
Lanzano et al., 2019a;b) is closely related to local magni-
tude ML, which would be calculated by distinct formula
(Han et al., 2023; Uhrhammer et al., 2011; Di Bona, 2016)
for each region. We follow the conventions in geoscience
research to decide PGA computation formula, which is de-
tailed in Appendix F.

GMPE analysis result, shown in Figure 2, reveals that the
synthetic seismic waveforms generated by HEGGS closely
resemble how the observed ground truths in distribution.
Also, the similarity in PGA values indicates that the mag-
nitude of synthesized waveforms is similar to the ground
truth.

4.2. Qualitative Evaluation

We perform qualitative analyses to evaluate the seismologi-
cal fidelity and reliability of HEGGS-generated waveforms.

4.2.1. WAVEFORM ANALYSIS

Synthetic waveforms can be visually inspected alongside
real seismic waveforms for similarities in terms of waveform
morphology, including amplitude, shape, and duration of
seismic signals.

Figure 3 compares a set of representative synthesized wave-
forms and real waveforms from three datasets. Notably,
both synthesized waveform and real waveform depict sim-
ilar patterns of seismic activity, including distinct seismic
phases and their corresponding arrivals. This alignment
underscores the effectiveness of our approach in accurately
replicating the seismic signal’s morphology and temporal
evolution. More waveform examples can be found in Ap-
pendix H.

4.2.2. SPECTROGRAM COMPARISON

We also show the output spectrogram of HEGGS, compared
to the spectrogram of the ground truth waveform to examine
their time-frequency characteristics. This provides insights
into the similarities of temporal distribution of energy across
different frequency bands.

In Figure 4 we show the comparison of spectrograms, where
each corresponds to the waveforms in Figure 3. Upon com-
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(a) SCEDC (b) KMA (c) INSTANCE

Figure 2. Result of GMPE analysis in PGA values with respect to the distance. The points in the figures represent the PGA values
calculated from randomly selected waveforms from the test set containing earthquakes filtered by the magnitude range indicated by
the black solid lines, and synthetic waveforms using the corresponding metadata. The subfigures correspond to the earthquake source:
SCEDC (North America), KMA (East Asia), and INSTANCE (Europe).

Figure 3. Comparison of 3-component real and synthetic wave-
forms from earthquake datasets SCEDC (North America), KMA
(East Asia), and INSTANCE (Europe). For each panel, top shows
a real waveform and the bottom shows a synthetic waveform gen-
erated with the same metadata. The phase arrivals marked as red
(P) and blue (S) lines are detected by EQT.

paring the synthesized spectrogram with the real spectro-
gram, several key observations come to light. Both spec-
trograms exhibit remarkable similarities in terms of phase
arrival times and frequency band distribution, indicative of
the efficacy of our synthesis approach in capturing essential
seismic signal characteristics. However, it is discernible
that the synthesized spectrogram exhibits a slightly lower
resolution compared to the real spectrogram, with some de-
tails appearing less defined. This reduction in resolution is
particularly evident in the depiction of fine-scale frequency
variations and subtle signal features. Despite this differ-
ence, the overall agreement between the synthesized and
real spectrograms underscores the fidelity of our synthesis
method in reproducing the fundamental characteristics of
seismic signals. More spectrogram examples are shown in
Appendix H.

(a) SCEDC

(b) KMA

(c) INSTANCE

Figure 4. Comparison of real and synthetic spectrograms.

4.2.3. FREQUENCY CONTENT ANALYSIS

We also analyze how the energy released during an earth-
quake is retained in different frequencies. This analysis is
closely related to the concept of corner frequency (Boore,
1983) and the seismic moment (M0). The corner frequency
is generally associated with the earthquake’s magnitude.
Specifically, the corner frequency identifies the point at
which high-frequency energy begins to decline sharply, in-
dicating that larger earthquakes generally have lower corner
frequencies. The M0 represents the total energy released
by the earthquake, which corresponds to an increase in
amplitude on the spectrum as the earthquake’s magnitude
increases. By comparing synthetic and observed seismic
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Figure 5. (a)-(c):frequency contents of synthetic waveform compared to the real waveform
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Figure 6. Magnitude Manipulation

signals, we aim to evaluate the similarity between the two
characteristics of corner frequency and M0 across different
magnitudes.

We apply both Fast Fourier Transform (FFT) and Konno-
Ohmachi-smoothing (Konno & Ohmachi, 1998) technique
to enhance our comparison. Also, we apply Wood-Anderson
simulations (Havskov & Ottemöller, 2010) to compare re-
sults from distinct stations. The resulting spectra are shown
in Figures 5a to 5c. We observe significant differences in
corner frequency and M0 across different earthquake mag-
nitudes. We also observe the trend of reduced corner fre-
quency reduces and increased M0 as the magnitude grows.

4.2.4. MAGNITUDE MANIPULATION

Synthesis of waveforms from fictitious earthquake is diffi-
cult challenging problem in DL-seismology area, especially
with large magnitude, since the seismological features of
large earthquake is hard to capture and large magnitude
earthquake data is very rare, which requires the extrapo-
lation ability of the model. We select ctgt from the test
dataset, change ML, and generate waveform with modified
c′tgt, without W src and analyze the frequency contents in

Figure 6. The result is quite promising: the corner frequency
gets smaller and M0 gets larger properly when the magni-
tude grows, which is consistent to the theory as explained
in (Geller, 1976).

4.2.5. WAVEFORM ANALYSIS ON SYNTHETIC STATIONS

By arranging virtual observation stations in a linear manner,
spatial variations of seismic waves could be observed, fa-
cilitating an understanding of seismic event characteristics.
The synthesized seismic waves reflected seismic activity
at the virtual observation stations, enabling exploration of
subsurface structures and seismic wave propagation charac-
teristics.

The sections in Figure 7 represented the positions of obser-
vation stations horizontally and represented the temporal
and frequency characteristics of seismic activity vertically.
Through such visualization, comparisons between synthe-
sized and observed seismic waves could be conducted, as-
sessing the fidelity of the synthesized seismic waves in
reflecting seismic events. Results from section plots clearly
visualized spatial and temporal variations of seismic activ-
ity, serving as crucial criteria for evaluating the extent to
which HEGGS accurately reproduces actual observed re-
sults. More section plot examples of seismic events are
provided in Appendix I.

5. Ablation Studies
Compared to the conventional latent diffusion model, we
introduced two major components, the efficient learning
framework and amplitude correction module, to generate
high-quality seismic waveforms. In this section, we present
the results of the ablation study to evaluate the role of each
component, on SCEDC dataset.

To assess the effectiveness of this approach, we conduct
training of the LDM (Rombach et al., 2022) with two dis-
tinct training schemes: the original and modified one trained
by Equation (8) with paired data. Unfortunately, conven-
tional LDM training on our dataset was diverged. Hence we
tried to train LDM to generate normalized waveform, which
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Figure 7. Section plots comparing synthetic and real waveforms.
The vertical capital letters displayed at the top of the plot are the
station ID that observed each real waveform.

Table 3. Results of ablation study. ∗ represents the generation of
normalized waveform. env.corr refers to the envelope correlation
between synthesized waveform and real waveform.

Model P MAE (s) S MAE (s) env.corr

LDM∗ 1.1142 1.7294 0.6932
+paired data∗ 0.5633 0.7808 0.7726

+end-to-end train 0.8014 1.5367 0.6239
+ACM (HEGGS) 0.4760 0.5476 0.8187

LDM+ACM 1.1131 1.6372 0.6981
+paired data 0.7748 0.9402 0.7965

is a relaxed version of our task.

After that, we tried to generate unnormalized waveforms,
by changing the training framework. Preserving the model
architecture, we trained the model which has same archi-
tecture, but by end-to-end training Equation (9). The only
difference between this model and ours is the amplitude
correction module ACM.

The results can be found in Table 3. On first two rows,
learning with paired data were very effective to increase the
quality of waveform, especially as the phase arrival times
were twice as accurate. Comparing 2nd and 3rd rows, the
overall scores seem to be worse, but the model in 2nd row
often generates unrealistic waveforms in qualitative analysis
results in Appendix G. Also, note that the result of 3rd row is
the result of unnormalized waveform generation while 2nd
row generates normalized waveform. Even the difficulty
of generation problems were increased, the paired training
shows better results, compared to the baseline model LDM.
This may indicate the failure of VAE pretraining that pre-
trained VAE could not capture the amplitude as important

feature. The amplitude correction module ACM helps to im-
prove the quality of seismic waveform synthesis, as shown
in the 3rd and 4th rows of Table 3.

Thanks to reviewers, we found that the ACM has ability
to allow LDM trainable with unnormalized waveforms, as
shown in 5th row of Table 3. The last row of Table 3 shows
the remarkable improvement induced by pair-exploiting
strategy, but still not better than HEGGS with end-to-end
training.

6. Discussion
The HEGGS training method, which takes advantage of the
seismic dataset characteristic by training the model with
paired data, allows for two modes of generation criteria:
with and without W src. Although HEGGS is trained using
W src, the fidelity of generation without W src is promising,
and much better than the benchmark models. Generation
without W src allows us to synthesize waveforms of non-
existent earthquakes and simulate the ground motion with
different magnitude or location, which is big challenge in
seismology. As shown in Section 4.2.4, HEGGS shows
the theoretically-expected trend of corner frequency and
M0, but may not be perfect since we only used minimal
condition about location and magnitude. We expect larger
success with additional geological features, which we did
not included in minimal condition, for this non-existent
earthquake synthesis challenge.

The seismic synthesis studies are inevitably build on re-
gional dataset, since each observatories are operated in-
dependently by each government and thus the waveform
formats are unaligned. Another challenging problem arises
here to build global model by training multiple models on
individual dataset, with consideration of robust consistency,
especially on border. We expect HEGGS would be the
effective starting point of this research direction.

Compared to other methods, HEGGS shows superior fidelity
with minimal conditions, especially for the P/S phase arrival
times. We expect HEGGS would applicable to downstream
tasks which is sensitive to the phase arrival times,such as
early warning systems, earthquake modeling and disaster,
hence we are planning to develop algorithms for those down-
stream tasks using HEGGS as a near-future research.

7. Conclusion
In this paper, we propose HEGGS, an efficient training
framework for seismic waveform synthesis utilizing a diffu-
sion model and a minimal set of conditions. Our approach
generates seismic waveforms using only readily accessi-
ble information, such as location and magnitude, thereby
avoiding the need for extra conditions.
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To empirically validate the proposed method, we con-
structed a seismic dataset from the SCEDC, INSTANCE
and KMA dataset by collecting simultaneously paired ob-
servations aligned with the earthquake’s origin time. We
demonstrate that HEGGS produces more realistic wave-
forms than existing benchmark models by applying seismic
domain-specific metrics, such as envelope correlation and
P/S phase arrival times, for expert-level comparison and
applications.

Impact statement
Our work enables high-fidelity seismic waveform synthesis,
enhancing earthquake modeling, early warning systems, and
disaster preparedness while promoting AI use in geophysical
research.
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A. Dataset Construction
We used three datasets (SCEDC(SCEDC, 2013), KMA(Han et al., 2023) and INSTANCE(Michelini et al., 2021)) from
different regions. In this section, we explain how each dataset was constructed. All datasets are collected from corresponding
APIs and processed to have 60-seconds duration and applied 1 ∼ 45Hz bandpass filter.

We split each dataset into training dataset and test dataset, according to the earthquake event, to evaluate the fidelity of
generated waveform for the earthquake which is unseen during the training.

dataset SCEDC KMA INSTANCE
Features Train Test Train Test Train Test

#observations 71,488 17,878 237,755 58,925 72,904 19,872
#source event 2,098 525 2,052 514 2,265 593

#station 149 149 134 134 578 534
average #station per events 34.07 34.05 115.87 114.64 24.43 25.29

average magnitude 2.45 2.45 1.45 1.45 3.36 3.36
average epicentral distance 125.25 126.71 235.48 234.22 57.82 57.79

average focus depth 8.51 8.65 11.52 11.73 12.47 11.97

Table 4. Features of each dataset

A.1. SCEDC

We exploit earthquake catalog of SCEDC (SCEDC, 2013) provided by SeisBench(Woollam et al., 2022). We selected
waveforms with a sampling rate of 100Hz that included 60 seconds from the earthquake and applied a bandpass filter in
the 1 ∼ 45Hz range to construct our data. Unfortunately, the Seisbench-provided dataset had fewer than 13 stations per
earthquake events on average, therefore we utilized Obspy API(Beyreuther et al., 2010) to collect additional observations on
more stations in the station list of (Uhrhammer et al., 2011) for each earthquake. Using earthquakes from the catalog during
the years 2016 to 2019, we constructed a new dataset with approximately 34 stations per source. The Table 4 shows the
count of datasets we used.

The VS30 information was sourced from (McPhillips et al., 2020) and used only during the GMPE analysis, not during the
training or model inference processes. The average value was used if multiple VS30 values were present for a single station
code. For station codes without VS30 data, 760m/s was assigned to negate the influence of VS30 during GMPE analysis.

A.2. KMA

KMA data source consist of continuous waveform data were employed, which are operated by KMA (Korea Meteorological
Administration) and KIGAM (Korea Institute of Geoscience and Mineral Resources). We exploit the dataset appear in (Han
et al., 2023) which is constructed from earthquake catalog provided by KMA, spanning from 2016-2020, and used subset
consist of observations from broadband sensors. Similarly to SCEDC, the waveforms have a sampling rate of 100hz, a
duration of 60 seconds, and a frequency 1 ∼ 45Hz.

A.3. INSTANCE

We used the Seisbench-provided version INSTANCE dataset and created a subset by selecting only the traces satisfying:

1. includes records for 60 seconds from the earthquake occurrence time

2. local magnitude is larger than 3.0.

3. P-arrival time is included in the metadata to ensure that the earthquake signal is observed.

For the EQT evaluation in Table 1, we excluded waveforms which include multiple event signals, which are out of our scope.
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B. Implementation details
We implement the proposed model with following implementation details.

During the training, Wsrc is fixed for a specific earthquake source ID, and Wtgt is sampled from earthquakes with the same
source ID. Among these, if metadata contained P/S phase labels, samples are randomly selected from those with labels.
If P/S phase labels are absent, samples are chosen randomly without considering P/S phase labels. And also we conduct
preprocessing of seismic data.

We implement using single NVIDIA-RTX A6000 with 48GB memory. For training, we set the number of epochs to 500
and the training batch size to 4. To enhance training efficiency, we apply an accumulation step 4, resulting in an effective
batch size of 16. For the loss, we set the maximum diffusion steps to T = 1000 and SNR weight 5. We minimize the loss
by AdamW optimizer with learning rate 10−5 and pytorch.optim defaults. During the training, we applied learning rate
decaying technique with linear scheduler. The total duration of training is approximately 65 hours.

B.1. Neural Network Architecture

We utilize the U-Net backbone with cross-attention architecture similar to (Rombach et al., 2022; Ghosal et al., 2023),
to represent mθ, with modification in the domain-specific encoder τθ to map c⃗tgt to hidden feature τθ(c⃗tgt). For the
implementation, we construct τθ by 5-layer FFN model. The encoded conditional vector τθ(c⃗tgt) will be provided as a value
and key of cross attention module Attn(Q,K, V ) while U-Net feature is provided as query Q.

For EAE and DAE , we take same architectures from VAE of (Esser et al., 2020) and give a modification on DAE . With the
vanilla module DAE , we find that the proposed model is not effective in accurately predicting the amplitude of the output
waveform. Therefore, we propose to attach an additional module ACM after DAE to predict the amplitude correction feature
and multiply it to the predicted spectrogram. In detail, we utilize the encoder, TSConformer blocks and Magnitude mask
decoder module from MP-SeNet (Lu et al., 2023) and provide output of DAE and auxiliary phase spectrogram induced by
GriffinLim algorithm to correct the amplitude and enhance the quality of generation. Improving the original implementation
(Lu et al., 2023) that allows only reducing the output, we add four TSConformer blocks and replace the final sigmoid
activation function with Softplus function to provide the ability to increase as well.

C. Pre-processing Recipe
C.1. Conditional Vector Pre-processing

We explain the process of c⃗tgt constuction. Recall the variables that we are used to synthesize waveform are:

1. slat, slon : latitude and longitude of the station to observe the waveform data.

2. elat, elon : latitude and longitude of epicenter.

3. edep : depth of the hypocenter, unit of kilometers.

4. ML : magnitude of the earthquake.

We preprocessed those variables to construct an 11-dimensional condition vector and later provide it to our condition encoder
module τθ.

First of all, we encode locational information slat, slon, elat and elon with the following process:

1. Normalize the values to get s′lat, s
′
lon, e

′
lat and e′lon with following:

s′lat =
slat − llat
ulat − llat

, e′lat =
elat − llat
ulat − llat

, s′lon =
slon − llon
ulon − llon

and e′lon =
elon − llon
ulon − llon

(10)

where (llat, ulat) and (llon, ulon) represent the lower and upper bounds of latitude and longitude, respectively, for the
region of interest.

In our datasets, we summarize those bounds in Table 5.
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Dataset (region) llat ulat llon ulon

SCEDC (Southern California) 32.0 37.9 -121.0 -114.1
KR (South Korea) 33.12 38.60 124.64 131.87
INSTANCE (Italy) 35.00 48.03 5.32 20.01

Table 5. upper and lower bounds of the region of interest

2. Motivated from polar coordinate transformation(Mohinder S. Grewal, 2007), which is commonly used in GPS
field, we further encode normalized coordinate to following:

csta = (cos(s′lat)cos(s
′
lon), sin(s

′
lat)cos(s

′
lon), sin(s

′
lon))

cepi = (cos(e′lat)cos(e
′
lon), sin(e

′
lat)cos(e

′
lon), sin(e

′
lon))

(11)

Secondly, we compute the back azimuth angle Azi and encode by

cazi = (cos(Azi), sin(Azi)) (12)

Lastly, we compute and normalized epicentral distance Repi, focus depth ds and magnitude ML. Each are normalized by
following formula:

SCEDC KMA INSTANCE

R′
epi (Repi − 125.542401)/55.810322 (Repi − 219.91)/119.99 (Repi − 57.8158)/31.7465
d′s (ds − 8.564146)/4.658161 (ds − 11.59)/5.40 (ds − 12.3680)/13.2456
M ′
L (ML − 2.0)/6.4 (ML − 0.35)/5.24 (ML − 3.0)/6.5

Concatenating the processed features csta, cepi, cazi, R′
epi, d

′
s and M ′

L, we get an 11-dimensional conditional vector c⃗tgt for
our problem, the synthesis of seismic ground motion.

C.2. spectrogram construction

The generation target of out model is spectrogram, which is in time-frequency domain. We report the process of spectrogram
construction as pre-processing. We employed the STFT (Short-Time Fourier Transform) with a hop length 16. Given that
the spectrogram’s scale is closely related to the earthquake’s amplitude, we used an nfft and window length of 128 and
applied a logarithmic scale transformation for better scale adjustment. Consequently, the original waveform data of size
3× 6000 was reshaped into 3× 64× 376.

D. EQT Training Details
We used EQTransformer (Mousavi et al., 2020) provided by SeisBench (Woollam et al., 2022). Starting from pre-trained
model provided by SeisBench, we finetune the model with our dataset, with the same training protocol. After standardizing
the waveforms, we trained the model using the Adam optimizer, with a batch size of 512 and a learning rate of 10−3, for
100 epochs. Other hyperparameters of the optimizer were set to default. For hyperparameter search, the learning rate ranged
from 10−2 to 10−5, and the performance was best when it was 10−3.

E. Details on Benchmark Models
E.1. SeismoGen (Wang et al., 2021)

SeismoGen is a CGAN-based model that generates waveforms conditioned on the presence of seismic events (e.g., P or
S waves). The Discriminator takes both the waveform and the presence of seismic events as inputs. It then divides the
waveform into high and low frequency components, analyzing each to determine if waveform is real or synthetic. SeismoGen
used data from three stations in Oklahoma: V34A, V35A, and V36A, while we used data from 149 stations from SCEDC.
Our synthesis approach used station and earthquake information instead of presence of seismic events. SeismoGen generated
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waveforms as 40 seconds at 40Hz, but we aimed for 60 seconds at 100Hz. We used an input noise length of 1500 and
added upsampling at the end of the first convolution layer. The basic training used noise as input, and for comparison with
HEGGS, we also trained using waveform. When using waveforms, we modified each pipeline to utilize one ENZ channel.
The hyper-parameters we used included the Generator learning rate and Discriminator learning rate are set to 10−4 and
10−6, using the RMSprop optimizer over 3000 epochs. The λ is set to 10 when using noise and 15 when using the input
waveform. We saved the best model based on envelope correlation. We experimented with learning rates ranging from
10−4 to 10−7, using both Adam and RMSprop optimizers. The value of λ was tested at 5, 10, and 15. The best-performing
combination of these parameters was selected for the final model. Additionally, the results reported in Table 2 reflect the
best performance achieved across 30 iterations. Addressing the instability of the original method, we added the L1 loss
Equation (13) from pix2pix(Isola et al., 2017) as an additional loss term to improve training stability.

E.2. ConSeisGen (Li et al., 2024)

ConSeisGen is an ACGAN-based model that generates waveforms conditioned on the epicentral distance. The Discriminator
consists of two components: DP , which learn determining whether the waveform is real or synthetic, and DQ, which learn
regression estimating the distance between the epicenter and the station. While ConSeisGen generated waveforms with 3
channels and a length of 4096, we aimed to generate waveforms with 3 channels and a length of 6000. We modified the first
linear layer and removed upsampling in the final layer. ConSeisGen used KiK-net data, which began recording shortly before
the arrival of the P-wave. However, the SCEDC data utilized in this model was recorded from the onset of the earthquake
for a duration of 60 seconds. ConSeisGen generates waveforms based on the epicentral distance. However, waveforms can
vary even at the same distance due to factors like magnitude and geological conditions. To generate waveforms for specific
locations, we utilized minimal additional condition such as station data and source data along with the epicentral distance.
The hyper-parameters we used included the Generator learning rate and Discriminator learning rate are set to 2 × 10−4

and 10−5, using the Adam optimizer over 5000 epochs. Referring eq.4 of (Li et al., 2024), the loss function consists of
Adversarial Loss, Regression Loss(Lreg), and Diversity Improvement Loss(Ldi). The Lreg computes the l1 loss between
DQ’s output and the condition vector, with the λreg set to 1. The Ldi aims to prevent mode collapse by maximizing the
distance between feature maps, with λdi set to 10 when using noise and 5 when using waveforms. We experimented with
learning rates ranging from 10−4 to 10−6, using both Adam and RMSprop optimizers. The value of λdi was tested at 5, 10,
and 15, while λreg was fixed at 1. The best-performing combination of these parameters was selected for the final model.
Additionally, the results reported in Table 2 reflect the best performance achieved across 30 iterations. Addressing the
instability of the original method, we added the L1 loss Equation (13) from pix2pix(Isola et al., 2017) as an additional loss
term to improve training stability.

LL1(G) = Ex,y,z
[
∥xtgt −G(z, y)∥1

]
(13)

E.3. BBGAN (Florez et al., 2022)

BBGAN is a conditional generative model within the Wasserstein GAN framework. The original conditions of BBGAN are
VS30, earthquake magnitude, and epicentral distance. We modified conditional vector to ours, add conditional vector encoder
τθ to both generator and discriminator, modified the last upsample layer of generator to have scale factor 3 (original: 2), and
lastly increased the number of hidden features of last convolution block of discriminator, corresponding to our waveform
shape (3, 6000). Those changes allows the model to generate (3, 6000) shape waveform from the provided conditional
vector. To further improve the performance, we replaced all relu activations of generator and leaky relu activations of
discriminator to gelu activation. Additionally, while the original BBGAN paper utilized data from Japanese networks
K-NET and KiK-net with earthquake magnitudes larger than 4.5, our approach employed data from the SCEDC (SCEDC,
2013) with earthquake magnitude larger than 2.0 for training. In the training process, we set 500 training epoch and batch
size 32, and Adam optimizer with learning rate 5× 10−7 and β = (0.9, 0.999). Also the final loss function is composed
of adversarial loss, L1 reconstruction loss, and a KL divergence term. The L1 regularization term was set to 25, and the
KL regularization term was set to 0.01. For evaluation during the validation loop, envelope correlation was used as the
performance metric. During the training, the linear learning rate decay technique was applied.
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E.4. LDM (Rombach et al., 2022)

E.4.1. VAE (ESSER ET AL., 2020) PRETRAINING

Due to lack of pretrained weights of VAE trained on seismic spectrogram, we first need to train VAE to encode Xtgt and
Xsrc to latent vector Ztgt and Zsrc.

Employing equation (25) of (Rombach et al., 2022), we set the loss function for VAE training is:

Ltotal = minEAE ,DAE
,maxψ[Lrec(x,DAE((x)))− Ladv(DAE(EAE(x))) + logDψ(x) + λklKL] (14)

where λkl is low weighted Kullback-Libler regularization term by factor 10−6.

Unfortunately, the VAE training on our spectrogram diverged, due to difficulty on magnitude processing. Therefore, we
apply standardization on spectrogram to relax the problem. And the latent space size is 64× 16× 94.

We report reconstruction performance of the Auto-encoder model using the proposed our metrics. The reconstruction
performance results as follow in Table 6.

Table 6. Reconstruction result
waveform spectrogram

Model P MAE (s) S MAE (s) envelope corr SNR PSNR MSE

VAE 0.5155 0.7066 0.7567 -2.9984 25.1800 0.2459

E.4.2. LDM (ROMBACH ET AL., 2022)

We train LDM using the pretrained VAE Appendix E.4.1 and DDPM(Ho et al., 2020) scheduler. Additionally, the overall
model architecture is adapted and modified base on the TANGO (Ghosal et al., 2023) model and code. But, while TANGO
models incorporate text-encoded conditions through Large Language Model, the seismic data does not exist text conditions.
Therefore, we employ our preprocessed conditions and apply our conditional vector encoder τθ for training. During model
training, the learning target is set the samples from the DDPM scheduler. Training is conduct using two methods and training
losses.

• Equation (15): not utilizing the characteristic of paired data

• Equation (16): utilizing the characteristic of paired data

We set the hyperparameters for the AdamW optimizer as follows: an initial learning rate 10−5 and β = (0.9, 0.999), and a
weight decay of 10−2 and adam epsilon 10−8. Also, we apply the learning rate decaying technique with the linear scheduler.
The training batch size is set to 4 with an accumulation step of 4, resulting in a total effective batch size of 16. The model is
trained for 500 epochs. The results indicate that training with paired data outperforms training without paired data.

L′
LDM = E(Ztgt ,⃗ctgt),ϵ,t∥Z

tgt − xθ(z
tgt
t , c⃗tgt, t)∥ (15)

L′
LDM = E(Zsrc,Ztgt ,⃗ctgt),ϵ,t∥Z

tgt −mθ(z
src
t , c⃗tgt, t)∥ (16)

F. GMPE formula
In this section, we express the PGA formula for GMPE analysis. Given waveform W , we obtain local magnitude ML first,
and compute the PGA value later.
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F.1. SCEDC(SCEDC, 2013)

Given the waveform W , the local magnitude ML of SCEDC can be computed by using the following formula (equations 1
to 6 of (Uhrhammer et al., 2011))

ML = logA− logA0(Rhypo) where

−logA0(Rhypo) = 1.11logRhypo + 0.00189×Rhypo + 0.591 +

6∑
n=1

TP(n)× T (n, z).
(17)

where A is amplitude of W and A0(r) is attenuation function of southern california region. The station adjustment term was
not applied due to a lack of values for recently installed stations.

The TP(n) coefficients are

TP(1) = +0.056, TP(2) = −0.031,

TP(3) = −0.053, TP(4) = +0.080,

TP(5) = −0.028, TP(6) = +0.015,

(18)

When z is

z(r) = 1.11366× log(r)− 2.00574, (19)

8 ≤ r ≤ 500 to −1 ≤ z ≤ +1, T (n, z) is the Chebyshev polynomial

T (n, z) = cos[n× arccos(z)]. (20)

After determining the local magnitude ML, we obtain the PGA value by equation 1 of (Boore et al., 2014), with pynga
(Wang, 2012) implementation. Since HEGGS doesn’t exploit the focal mechanism information, we set mech and rake to
be 0, which represents unspecified.

F.2. KMA(Emolo et al., 2015)

For the KMA dataset, the local magnitude ML can be computed by the following equation (equations 1 and 6 of (Sheen
et al., 2018)):

ML = logA− logA0 + S

− logA0 = 0.5869log(Repi/100) + 0.001680(Repi − 100) + 3
(21)

where A is the peak amplitude of the Wood-Anderson simulated waveform and S is station-wise correction term and Repi is
epicentral distance in kilometers.

After determining local magnitude ML we obtain PGA value Y by (Emolo et al., 2015) with following formula for South
Korea peninsula:

logY =− 3.16 + 0.75ML

− 0.72log
[√

R2
epi + 3.72

]
− 0.0034Repi

(22)

F.3. INSTANCE(Lanzano et al., 2019a;b)

the local magnitude ML on the INSTANCE dataset can be computed by the following equation (equation 1 to 14 of (Di Bona,
2016)):

ML = logA− logA0(Rhypo) + C

= logA+ 1.749log(Rhypo/100) + 0.0016(Rhypo − 100) + 2.9445 + C
(23)

where A is the peak amplitude of the Wood-Anderson simulated waveform and C is the station-wise correction term.
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After determining the local magnitude ML, we obtain the PGA value by equations 1 to 5 of (Lanzano et al., 2019b) and 7 to
8 of (Lanzano et al., 2019a). In these equations, Moment Magnitude(MW ) was used to compute PGA. However, (Di Bona,
2016) proposed a formula that satisfies ML = MW , on average. Therefore, this study used ML instead of MW . Also,
HEGGS doesn’t exploit the focal mechanism information, we set the style of faulting SOF to 0, representing the normal
fault type.

G. Qualitative Analysis on Ablation Models
This section is dedicated to the qualitative analysis of the SCEDC of the models mentioned in Table 3. The figure compares
the Real observation (Real), HEGGS(w/ ACM), end-to-end train (w/o ACM), and LDM + paired data. The human-labeled
P/S arrival times of the earthquake are indicated by orange and black lines, while the P/S arrival times detected by EQT for
each waveform are shown in red and blue.

G.1. Positive samples

We first list the positive samples, which are the results that all models generated realistic waveforms with accurate phase
arrivals.

EReal N Z

0 10 20 30 40 50 60

Ours
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (s)

0 10 20 30 40 50 60

w/o ACM
0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50 60

LDM + paired data
0 10 20 30 40 50 60 0 10 20 30 40 50 60

GT_P
GT_S
P_pick
S_pick

Figure 8. Positive synthesis results of our model and ablation models, compared to the real observation.

G.2. Negative Samples

We also include the results of the synthesis that at least one of the models failed to generate realistic and accurate waveforms.

EReal N Z

0 10 20 30 40 50 60

Ours
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (s)

0 10 20 30 40 50 60

w/o ACM
0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50 60

LDM + paired data
0 10 20 30 40 50 60 0 10 20 30 40 50 60

GT_P
GT_S
P_pick
S_pick

Figure 9. Negative synthesis results of our model and ablation models, compared to the real observation.
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H. Additional Figures: Waveform and Spectrogram
This section presents the waveforms and spectrograms shown in Figure 3 and Figure 4. The seismic data we used consist of
3-components, ENZ. Each pair displays the same waveform and spectrogram, with the top representing the real observation
and the bottom representing the synthetic generated HEGGS. The red and blue lines on the waveforms indicate the P/S
arrival times.

H.1. SCEDC

(a) waveform

(b) spectrogram

Figure 10. Synthesis results of our model compared to the real observation.
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H.2. KMA

(a) waveform

(b) spectrogram

Figure 11. Synthesis results of our model compared to the real observation.

H.3. INSTANCE

(a) waveform

(b) spectrogram

Figure 12. Synthesis results of our model compared to the real observation.

20



Broadband Ground Motion Synthesis by Diffusion Model with Minimal Condition

I. Additional figures: Section plot
The section plot is constructed by following process. Initially, a specific earthquake event is chosen, and input data is
randomly selected (indicated by the blue line). We set virtual stations established at equidistant intervals from the epicenter,
generate waveforms, and plot together with real observations. The red lines represent ground truth observations and black
lines are the synthesized waveforms. Note that the azimuth angle of observations varies, while the synthetic stations are set
to have same values. This potentially affect the P/S wave arrivals and lead to mismatch in visualization, but the effect is not
considered to be significantly large.

I.1. SCEDC

(a) Section plot on E axis (b) Section plot on N axis (c) Section plot on Z axis

Figure 13. Section plot on synthetic stations.

(a) Section plot on E axis (b) Section plot on N axis (c) Section plot on Z axis

Figure 14. Section plot on synthetic stations.

I.2. KMA

(a) Section plot on E axis (b) Section plot on N axis (c) Section plot on Z axis

Figure 15. Section plot on synthetic stations.
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(a) Section plot on E axis (b) Section plot on N axis (c) Section plot on Z axis

Figure 16. Section plot on synthetic stations.

I.3. INSTANCE

(a) Section plot on E axis (b) Section plot on N axis (c) Section plot on Z axis

Figure 17. Section plot on synthetic stations.

(a) Section plot on E axis (b) Section plot on N axis (c) Section plot on Z axis

Figure 18. Section plot on synthetic stations.
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J. On pair-Exploiting Diffusion Model
In this appendix, we provide more detailed explanations about the training and inference of HEGGS for the clarification.

J.1. Remark:Prediction targets of diffusion model

Referring equation (2),(4),(6) and (7) of (Ho et al., 2020), the forward process q(x1:T ;X) would be given by

q(xt|xt−1) = N (
√

1− βtxt−1, βtI), q(xt|x0) = N (
√
αtx0, (1− αt)I). (24)

and thus we have
xt =

√
αtx0 +

√
1− αtϵ where ϵ ∼ N (0, 1). (25)

The backward process q(xt−1|xt, x0) would be

q(xt−1|xt, x0) ∼ N (µ̃(xt, x0), β̃tI) (26)

where

µ̃t(xt, x0) =

√
αt−1βt
1− αt

x0 +

√
αt(1− αt−1)

1− αt
xt and β̃t =

1− αt−1

1− αt
βt. (27)

In implementation, it is required to find µ̃t(xt, x0) term in Equation (27). There are several methods for the prediction, with
replacing x0 by estimate xθ(xt, t). The HEGGS directly predicts x in sample space, as it would be more natural since we
want to learn the morphology between paired data, compared to the alternatives which predicts the noise ϵ (Ho et al., 2020)
or v-prediction(Salimans & Ho, 2022).

Algorithm 1 HEGGS training

Input: Seismic dataset D, diffusion steps T
repeat
(W src,W tgt, c⃗tgt) ∼ D
convert (W src,W tgt) to (Xsrc, Xtgt)
t ∼ Uniform(1, · · · , T )
ϵ ∼ N (0, 1)
Take gradient descent step on
∇∥Xtgt −DAE(mθ(z

src
t , c⃗tgt, t))∥2

where zsrct =
√
αtEAE(Xsrc) +

√
1− αtϵ

until converged

Algorithm 2 Generation

Input: Diffusion steps T ,condition vector c⃗tgt, source
waveform W src (optional)
if W src is given then

convert W src to spectrogram Xsrc

zT = EAE(Xsrc)
else

sample zT ∼ N (0, 1)
end if
for t = T, · · · , 1 do

sample z ∼ N (0, 1)
compute z̃ = mθ(zt, c⃗tgt, t)

compute zt−1 = µ̃t(zt, z̃) +

√
β̃tz (Eq. 27)

end for
Xtgt = DAE(z0)
Convert Xtgt to waveform W tgt

Return: W tgt

J.2. Training with pairs

As described in Section 3, we consider the paired data (Xsrc, Xtgt) with corresponding condition vector c⃗src and c⃗tgt. Note
that c⃗src is not in use.

Since Xsrc and Xtgt are the observations of same earthquake, we make assumption that there exist a morphology η
which maps the latent xsrct of Xsrc at time t, to xtgtt using c⃗tgt, as a random variable. We formulate this assumption with
Equation (1), as follows:

η(xsrct , c⃗tgt, t) ∼ q(xtgtt |Xtgt) (1)
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This assumption includes the intuition that the broadband waveform signal is a combination of earthquake information,
which is considered to be included in Xsrc, and local geological features near observatory, encoded by positional information
from c⃗tgt.

For training, we aim to train the neural network mθ which is a composition of η and denoising model xθ. Precisely, mθ

would be written by
mθ(x, c⃗, t) = xθ(η(x, c⃗, t), c⃗, t). (28)

Since η(xsrct , c⃗tgt, t) = xtgtt , we have mθ(x
src
t , c⃗tgt, t) = xθ(x

tgt
t , c⃗tgt, t) for the paired latents (xsrct , xtgtt ), the loss

function of diffusion model Equation (2) would be equivalent to Equation (3):

L′
DM = E(Xsrc,Xtgt ,⃗ctgt),ϵ,t∥X

tgt −mθ(x
src
t , c⃗tgt, t)∥2 (29)

After that, we consider same procedure in latent space (the ztgtt for the clarification) with autoencoder consist of the encoder
EAE and decoder DAE , we obtain the loss function Equation (9), with end-to-end training.

Lours := E(Xsrc,Xtgt ,⃗ctgt),ϵ,t∥X
tgt −DAE(mθ(z

src
t , c⃗tgt, t))∥2 (9)

In Algorithm 1, we present an training algorithm for the HEGGS training with Lours. The paired waveforms and
corresponding condition vector of target waveform would be sampled from the dataset, and the gradient descent would
update all modules mθ, EAE and DAE together.
Remark J.1. For the training process of diffusion model with Equation (9), several details below are considered for the loss
and model design.

1. During the training, the noise is designed to be added to the Zsrc instead of Ztgt. This would provide robustness
against site-specific noise which already included in observation W src and its latent vector Zsrc.

2. When t is small, zsrct would be almost same to Zsrc (this is also because Xsrc itself is already noisy) and thus the
model would learn the transformation η with more attention.

3. Regarding the intuition that zsrct and ztgtt will be identified (in distribution) when t is sufficiently large, the training loss
Equation (9) would be equivalent to the conventional training loss for xθ training when we disregard the end-to-end
training. Hence, the model learns to generate from the noise w/o W src too, during the training.

4. Since η and mθ does not take c⃗src as input. Therefore the model learns to extract common information from zsrct

through multiple pairs of observations of same earthquake during training, regardless the local information (encoded
by location) of observatory. This makes the model can handle ztgtt as a input too, since it shares the information of
earthquake.

J.3. Inference w/o W src

Although the diffusion model is trained with paired data and takes W src as an input, our model is capable to synthesize
seismic waveform without the observation W src.

Since η is defined to map the source latent zsrct to target latent ztgtt , it also maps the target latent to itself, in distribution.
Precisely, we can write

η(ztgtt , c⃗tgt, t) = ztgtt (30)

and thus the output of neural network would be

mθ(z
tgt
t , c⃗tgt, t) = xθ(η(z

tgt
t , c⃗tgt, t), c⃗tgt, t) = xθ(z

tgt
t , c⃗tgt, t) (31)

Therefore, we can use conventional reverse process

ztgtt−1 = µ̃t(z
tgt
t ,mθ(z

tgt
t , c⃗tgt, t)) + σtz, z ∼ N(0, I) (32)

even if ztgtT is the gaussian noise sampled from N (0, 1).

In Algorithm 2, we summarize the generation process of our model. Note that the diffusion steps are equivalent to
LDM(Rombach et al., 2022) when W src is not given.
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