

000 001 TRAINING-FREE SPEEDUP FOR 002 RETRIEVAL-AUGMENTED GENERATION WITH STAGED 003 PARALLEL SPECULATION 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Retrieval-augmented generation (RAG) leverages external knowledge bases to en-
014 hance the quality of answers produced by large language models (LLMs). However,
015 retrieving relevant documents from large-scale databases can be time-consuming,
016 and existing RAG methods primarily focus on improving accuracy while often
017 overlooking latency. In this paper, we introduce *Staged Parallel Speculation (SPS)*,
018 a training-free RAG framework that achieves substantial latency reduction with-
019 out sacrificing answer quality. Unlike prior approaches that rely on task-specific
020 training or model modifications, SPS is a plug-and-play method that requires
021 no changes to the underlying models. Our framework enables the inference and
022 retrieval systems to run in parallel during staged retrieval, thereby eliminating
023 frequent pauses in the inference process and significantly accelerating generation.
024 Furthermore, at each retrieval-generation stage, SPS first uses a model to generate
025 multiple candidate answer chunks in parallel and then selects the most reliable
026 output based on self-consistency among the candidates, thereby further improving
027 answer quality. Extensive experiments across multiple benchmark datasets show
028 that SPS consistently surpasses training-free RAG baselines by achieving higher
029 accuracy with **at most** 57% lower latency, while still reaching 96% of the per-
030 formance of finetuning-based methods, making it a practical choice for deployment
031 in latency-sensitive applications such as agentic systems, enterprise knowledge
032 management, or healthcare support.
033

1 INTRODUCTION

034 Large language models (LLMs) have achieved remarkable success in natural language processing,
035 excelling in tasks like text generation, translation, and question answering (Brown et al., 2020; Izacard
036 & Grave, 2021). However, they face key challenges in knowledge-intensive problems. They are prone
037 to factual errors, or hallucinations, where generated information appears plausible but is incorrect
038 (Karpukhin et al., 2020). Furthermore, their reliance on static training data leads to knowledge
039 obsolescence, especially in rapidly evolving domains (Gao et al., 2024).
040

041 Retrieval-Augmented Generation (RAG) has emerged as an effective paradigm to mitigate the
042 limitations of traditional large language models in knowledge-intensive tasks by integrating external
043 knowledge retrieval with language generation (Lewis et al., 2020). By retrieving relevant documents
044 and incorporating them with the question as input, RAG significantly reduces factual inaccuracies
045 and helps address knowledge obsolescence (Cheng et al., 2025). Most existing RAG research has
046 primarily focused on improving answer accuracy (Xie et al., 2024; Feng et al., 2024; Su et al., 2024).
047 These approaches often rely heavily on additional fine-tuning—either to enhance retrieval quality or
048 to strengthen how LLMs leverage retrieved information. However, such tuning-based methods are
049 costly, time-intensive, and risk reinforcing biases inherent in training data (Bommasani et al., 2022;
050 Ravaut et al., 2025). Beyond this, RAG inherently involves retrieving large amounts of information,
051 which must then be integrated into long prompts for inference (Ma et al., 2024; Ding et al., 2023).
052 This process introduces substantial latency, yet prior work has paid little attention to efficiency
053 challenges. The issue becomes especially pressing in agentic AI systems (Peng et al., 2025; Ruan
et al., 2025), where autonomous decision-making and tool use are executed at scale: in such settings,

Figure 1: Comparison of Self-RAG and our proposed SPS. Unlike Self-RAG (Asai et al., 2024), which performs retrieval sequentially and incurs frequent idle time, SPS parallelizes retrieval with inference and employs multi-sampling with self-consistency selection, thereby reducing latency while maintaining answer quality.

reducing inference delay directly improves throughput and yields tangible economic benefits, making efficiency just as crucial as accuracy (Kim et al., 2025; Belcak et al., 2025).

In this work, we propose Staged Parallel Speculation (SPS), an efficient RAG framework that requires no additional training and significantly reduces generation latency without sacrificing answer accuracy. Our framework introduces staged retrieval. Instead of performing a single retrieval step before generation, as in traditional RAG methods, retrieval is periodically triggered during the generation process after a fixed number of tokens are generated. This approach ensures that the retrieved documents remain relevant to the latest context of the generation, allowing the model to better handle topic shifts that often occur when generating long answers to complex questions. Furthermore, at each retrieval-generation stage, we cluster the retrieved documents by content similarity and sample one representative from each cluster, which not only maximizes the coverage of diverse information but also reduces the input context length, thereby improving efficiency. We then generate candidate answer chunks in parallel based on different subsets. Finally, we select the best candidate answer chunk by leveraging self-consistency. Specifically, we identify the answer that is most semantically similar to all other candidates. Our contributions are summarized as follows:

- We propose Staged Parallel Speculation, a training-free RAG framework that substantially reduces generation latency without sacrificing accuracy.
- SPS parallelizes inference and retrieval through a staged mechanism that proactively and dynamically updates the retrieved documents in close alignment with the evolving generation context. Furthermore, it incorporates a self-consistency-based selection strategy that systematically identifies the most reliable candidate output at each retrieval-generation stage, leveraging semantic agreement among multiple candidates while remaining entirely training-free.
- Extensive experiments on multiple QA benchmarks show that SPS achieves substantial latency reduction while consistently outperforming all training-free baselines. In addition, SPS delivers performance comparable to, and in some cases exceeding, that of fine-tuning-based methods.

108

2 RELATED WORKS

109

2.1 RETRIEVAL AUGMENTED GENERATION

110 Retrieval-Augmented Generation (RAG) enhances the quality and relevance of generated outputs by
 111 retrieving external documents as context during generation, thereby reducing factual inaccuracies
 112 and limitations due to model knowledge staleness(Yu et al., 2025; Fan et al., 2024; Li et al., 2025;
 113 Gupta et al., 2024). RAG has demonstrated its versatility and effectiveness in grounding language
 114 models with timely and domain-specific information across a wide range of domains, including legal
 115 reasoning (Barron et al., 2025), medical decision support (Zhao et al., 2025), enterprise knowledge
 116 management (Packowski et al., 2024), and multimodal understanding (Choi et al., 2025). To further
 117 enhance the effectiveness of RAG, a growing line of work explores how to tune or train LLM to better
 118 integrate retrieval into the generation process. For instance, Self-RAG (Asai et al., 2024) introduces
 119 special reflection tokens and trains the model to decide when additional retrieval is necessary, thereby
 120 improving factual accuracy. SAIL (Luo et al., 2023) fine-tunes a pre-trained LLM on large-scale web
 121 search data to help it better filter out irrelevant content and prioritize useful evidence. Corrective
 122 RAG (Yan et al., 2024) adopts a lightweight retrieval evaluator trained to refine the quality of retrieved
 123 documents. Similarly, Toolformer (Schick et al., 2023) trains LLMs to call external APIs, such as
 124 search engines, at appropriate times to improve retrieval quality. While these approaches demonstrate
 125 significant gains in accuracy, they often focus primarily on correctness, overlooking the equally
 126 critical dimension of system efficiency, such as latency and computational overhead.

127 Accelerating RAG frameworks has become another active line of research. Jiang et al. (2024)
 128 proposed PipeRAG, which parallelizes the retrieval and generation modules to reduce latency by
 129 prefetching with stale queries and supporting flexible retrieval intervals. **However, PipeRAG is built**
 130 **on top of the RETRO encoder-decoder framework (Borgeaud et al., 2021)**, which relies on a jointly
 131 **trained encoder-decoder transformer to enhance retrieval and generation performance, rather than**
 132 **an LLM-based RAG pipeline. Consequently, PipeRAG requires additional training to construct**
 133 **its retrieval module and cannot leverage the strong zero-shot and in-context capabilities of modern**
 134 **decode-only large language models for RAG question-answering.** Wang et al. (2024) introduced
 135 Speculative RAG, which improves generation efficiency by training a smaller model to first draft
 136 candidate outputs that are then verified by a larger model. **Nevertheless, these approaches either**
 137 **are not LLM-based RAG methods or rely on task-specific training, which demands substantial time**
 138 **and computational resources and may further introduce data bias into the underlying models (Wei**
 139 **et al., 2025).** Unlike prior methods that require task-specific training, SPS is plug-and-play and leaves
 140 underlying models frozen. During staged retrieval, it runs retrieval and inference in parallel, avoiding
 141 frequent inference stalls and substantially speeding up generation.

142

2.2 SPECULATIVE DECODING

143 The goal of Speculative Decoding (Stern et al., 2018; Leviathan et al., 2023; Chen et al., 2023; Xia
 144 et al., 2024) is to accelerate LLM inference through a draft-and-verify process. It first uses a smaller
 145 draft model to generate multiple future tokens, followed by a larger verification model that evaluates
 146 these draft tokens in parallel. The draft model can either be a smaller version from the same series
 147 as the verification model (Leviathan et al., 2023; Chen et al., 2023) or identical to the verification
 148 model (Zhang et al., 2023; Cai et al., 2024). Our method extends the draft-and-verify paradigm
 149 from token-level drafting to text chunk-level drafting. Additionally, we design a verification strategy
 150 tailored to our system, which leverages the idea of self-consistency to verify candidate answers based
 151 solely on their semantic properties, without relying on a larger verification model.

152

3 OUR APPROACH: STAGED PARALLEL SPECULATION

153 **Problem Setup.** In Staged Parallel Speculation, each entry can be represented as $(Q, \mathcal{D}, R, C, A)$.
 154 Given Q , a question or statement that requires additional knowledge to get the correct answer A ; \mathcal{D}
 155 is a set of documents. Let $C_t = (c_1, c_2, \dots, c_t)$ denote the chunk sequence of the answer. At the i -th
 156 retrieval-generation step during inference, (i) language model \mathcal{M} generate the current answer chunk
 157 c_i , based on the previous retrieved documents $R_{i-2} \in \mathcal{D}$ and the answer history C_{i-1} ; (ii) retrieval
 158 model \mathcal{R} retrieve related n document $R_{i-1} = (r_1, r_2, \dots, r_n) \in \mathcal{D}$ based on question Q and all

Algorithm 1: Staged Parallel Speculation

1 **Data description:** Question Q , answer seq. $C_t = (c_1, \dots, c_t)$, retrieved docs $R = (r_1, \dots, r_n)$, number of subsets m , number of docs per subset k , retrieval model \mathcal{R} , generation model \mathcal{M}

2 **Result:** Completed answer seq. C

3 **Initialize:** $C \leftarrow \emptyset, R \leftarrow \emptyset$

4 **repeat**

5 $R \leftarrow \mathcal{R}(Q, C)$ ▷ Retrieved in parallel by the retrieval system during inference.

6 Cluster the n retrieved docs into k groups:

7 $\{g_1, \dots, g_k\} \leftarrow R(r_1, \dots, r_n)$

8 **repeat**

9 $s_i = \{\}$ ▷ s_i is a subset

10 **for** g_i in $\{g_1, \dots, g_k\}$ **do**

11 $s_i \leftarrow s_i \cup \{\text{random.sample}(g_i)\}$ ▷ Sample one document from each group into subset s_i

12 **until** m subsets $\{s_1, \dots, s_m\}$ are generated

13 **for** $s_j \in \{s_1, \dots, s_m\}$ **(in parallel)** **do**

14 $c_{t+1}^j \leftarrow \mathcal{M}.\text{generate}(C, s_j)$ ▷ Generate m candidate chunks in parallel

15 **Append** c_{t+1}^j to C to form candidate answers $\{[C, c_{t+1}^j] \mid 1 \leq j \leq m\}$

16 $U_{i,j} = \text{sim}_{\text{cos}}(\text{emb}[C; c_{t+1}^i], \text{emb}[C; c_{t+1}^j]), \quad U \in \mathbb{R}^{m \times m}$ ▷ Use embeddings to compute similarity matrix

17 **for** $i = 1$ **to** m **do**

18 $\mu_i \leftarrow \sum_{j=1}^m U_{i,j}$ ▷ Average similarity for i -th candidate answer

19 $j^* = \arg \max_j \mu_j$

20 $C \leftarrow [C, c_{t+1}^{j^*}]$ ▷ Select best candidate answer and continue next round

21 **until** EOS token in C

answer history C_{i-1} ; (iii) after T rounds, we have a final answer C_T . The primary objective is to ensure that C_T is factually consistent with the ground-truth answer A , while significantly improving the efficiency of the generation process.

3.1 OVERVIEW

We propose Staged Parallel Speculation, a RAG framework that focuses on improving efficiency under a training-free setting. As illustrated in Figure 1, this framework enables the inference system and retrieval system to operate independently during staged retrieval. At each retrieval-generation stage, after generating multiple draft chunks, we append each new chunk to the current answer sequence to form a set of complete draft answers. We then apply self-consistency by selecting the draft answer that is most semantically similar to the others and use it as the updated answer sequence for the next generation step. This process is repeated iteratively until the final answer is fully generated.

Specifically, as compactly described in Algorithm 1, for a question Q that has not yet started generation, its answer sequence C and retrieval document set R are initialized as empty (**Line 3**). The main loop then begins (**Line 4**). The retrieval process runs concurrently with the inference process, continuously retrieving relevant documents from the database using a query formed by concatenating the original question with the current answer sequence. If the answer sequence is empty, the retrieval is performed using only the question. Since no answer sequence C exists at this point, we first perform an initial retrieval using the question Q to obtain the corresponding retrieval documents R (**Line 5**). The retrieved document set R is then clustered into k groups using K-means clustering, and one document is sampled from each cluster to form a subset. This ensures that the sampled documents capture diverse perspectives from the retrieved content. The i -th subset is denoted as s_i

216 (Line 6 to 10). By processing the documents in this way, the subset better captures the diversity and
 217 multiple perspectives of the retrieved content.

218 Then, each subset, together with the generated answer sequence C , is assigned to an LLM to indepen-
 219 dently and concurrently generate the next chunk of the answer sequence, c_{t+1} (Line 12). Generating
 220 candidate chunks in parallel is essential to ensure improved efficiency. Next, we concatenate each of
 221 the m generated draft chunks to the current answer sequence to form m draft answers (Line 13). We
 222 then compute a pairwise similarity matrix among the draft answers using an embedding model (Line
 223 14). For each draft answer, we calculate a similarity score by summing its corresponding row (or
 224 column) in the matrix (Line 15). The draft answer with the highest similarity score is selected as
 225 the updated answer sequence (Line 17), which is then used in the next generation step. This process
 226 is repeated until the *EOS token* is detected in the answer sequence C , indicating that the answer
 227 generation for the question Q is complete.

228 We next detail the design of SPS component by component: we begin with multi-perspective sampling
 229 of retrieved evidence, then describe the stagewise parallel retrieval–inference architecture, and finally
 230 present the self-consistency-based selection mechanism

232 3.2 MULTI-PERSPECTIVE SAMPLING

234 For constructing diverse subsets from the retrieved documents, we follow the approach proposed by
 235 Wang et al. (2024). Specifically, we first use an open-source embedding model to compute embedding
 236 vectors for the textual content of all retrieved documents.

$$237 \text{emb}(r_1), \dots, \text{emb}(r_n) = \mathcal{E}(r_1, \dots, r_n) \quad (1)$$

239 where \mathcal{E} is an open-source embedding model that embeds the document content into a vector repre-
 240 sentation; $\text{emb}(r_i)$ is the embedding for the retrieved document r_i . After obtaining the embeddings,
 241 we apply K-means clustering to divide the documents into k groups. We then sample one document
 242 from each group into a document subset s so each subset contains k documents of diverse contents.
 243 In total, we construct m subsets for parallel inference.

$$244 \{g_1, \dots, g_k\} = \text{K-Means}(\text{emb}(r_1), \dots, \text{emb}(r_n)) \quad (2)$$

$$245 s = \{\text{random.sample}(g) \mid g \in \{g_i\}_1^k\} \quad (3)$$

247 The retrieved documents may contain diverse content due to the ambiguity inherent in the query.
 248 Constructing subsets in this manner helps reduce redundancy and promote diversity among the
 249 documents used for answer draft generation.

251 3.3 PARALLELISM

253 PipeRAG (Jiang et al., 2024) parallelizes the retrieval and generation modules to reduce latency. SPS
 254 advances the paradigm with a stagewise dense retrieval architecture that conditions each retrieval
 255 step on the entire question plus the full answer history, not just the latest chunk. This design captures
 256 substantially richer semantics, yields more relevant evidence, and improves answer reliability without
 257 any dual-encoder training or model modifications. In short, SPS is a plug-and-play framework that
 258 unifies parallel execution with semantically complete, history-aware retrieval.

259 As illustrated in Figure 1, before the answer sequence is generated, the retrieval system first uses
 260 the question as the initial retrieval query, and the retrieved documents are denoted as RET_0 . RET_0
 261 is then used to generate the first two answer chunks, C_1 and C_2 . While the inference system is
 262 generating chunk C_1 , the retrieval system remains idle. During the generation of chunk C_2 , the
 263 retrieval system runs in parallel to retrieve documents based on the current context $[Q; C_1]$, resulting in
 264 RET_1 . RET_1 is subsequently used for generating chunk C_3 , while the retrieval system concurrently
 265 performs retrieval for RET_2 during the generation of chunk C_3 . This process continues iteratively
 266 until the entire answer sequence is generated.

267 In Self-RAG, the inference and retrieval systems operate sequentially: retrieval is performed only
 268 after each chunk is generated and only if needed. The retrieved documents are based on the most
 269 recent context – for example, the generation of chunk C_3 uses RET_2 , which is retrieved based on the
 complete context up to C_2 . In contrast, our system uses RET_1 for generating C_3 , meaning it is based

270 on a slightly earlier context. This introduces a one-chunk delay in the retrieval context. However, this
 271 trade-off enables full parallelization between inference and retrieval processes, thereby significantly
 272 reducing the overall end-to-end latency.
 273

274 3.4 SELF-CONSISTENCY SELECTION

275
 276 We leverage self-consistency to evaluate draft answers. Specifically, after generating m draft chunks,
 277 we append each of them to the current answer sequence to form m draft answers $\{[C, c_{t+1}^j] \mid 1 \leq$
 278 $j \leq m\}$. We then encode these draft answers using an embedding model and compute a cosine
 279 similarity matrix:
 280

$$U_{i,j} = \text{sim}_{\text{cos}}(\text{emb}[C; c_{t+1}^i], \text{emb}[C; c_{t+1}^j]), \quad U \in \mathbb{R}^{m \times m} \quad (4)$$

281
 282 The similarity score for each draft answer is obtained by summing its corresponding row (or column)
 283 in the matrix: $\mu_i \leftarrow \sum_{j=1}^m U_{i,j}$, then the draft answer with the highest similarity score is selected to
 284 update the answer sequence for the next generation step:
 285

$$j^* = \arg \max_j \mu_j, \quad C \leftarrow [C, c_{t+1}^{j^*}] \quad (5)$$

286
 287 In our case, the additional overhead comes from using an embedding model to encode the answer
 288 sequences and compute cosine similarity scores between them. Compared to Speculative RAG, which
 289 generates additional rationales and relies on a large verifier model, our approach is substantially
 290 more efficient, as the embedding model is significantly smaller, leading to lower memory usage and
 291 reduced runtime.
 292

293 4 EXPERIMENTS

294 4.1 TASKS AND DATASETS

295 We evaluate our proposed SPS framework on five retrieval-augmented generation benchmarks:
 296 PubHealth (Zhang et al., 2023), ARC-Challenge (Clark et al., 2018), TriviaQA-unfiltered (Joshi
 297 et al., 2017), PopQA (Mallen et al., 2023), and ALCE-ASQA (Gao et al., 2023). These datasets
 298 span a diverse range of knowledge-intensive tasks, including short-form, long-form, and closed-set
 299 question answering. All experiments are conducted in a zero-shot setting, where models receive task
 300 instructions without access to any in-context examples (Wei et al., 2022). Detailed evaluation setups,
 301 including test-time prompts and metrics, are provided in Appendix A.
 302

303 **Closed-set QA.** PubHealth and ARC-Challenge are closed-set QA tasks. PubHealth is a fact
 304 verification dataset requiring models to classify claims as supported or not based on medical evidence.
 305 ARC-Challenge is a multiple-choice science QA benchmark sourced from standardized tests. For
 306 both datasets, we use accuracy as the primary metric to assess whether the model output matches the
 307 ground-truth label.
 308

309 **Short-form QA.** TriviaQA and PopQA are open-domain QA benchmarks that require models
 310 to answer factual questions using retrieved documents. TriviaQA consists of naturally occurring
 311 questions from trivia sources, while PopQA emphasizes rare-entity coverage by focusing on long-tail
 312 Wikipedia questions. For both datasets, we evaluate whether the generated answer includes the gold
 313 reference answer, following Mallen et al. (2023); Schick et al. (2023).
 314

315 **Long-form QA.** ALCE-ASQA is a long-form question answering benchmark where models are
 316 required to produce multi-sentence answers grounded in retrieved evidence. We adopt standard
 317 metrics from prior work to evaluate different aspects of model performance, including correctness
 318 (string exact match and ROUGE-L (Lin, 2004), fluency (via MAUVE (Pillutla et al., 2021)).
 319

320 4.2 BASELINES

321 **Standard RAG** For standard RAG, we include all retrieved documents in the prompt as contextual
 322 input. Detailed prompt templates are provided in Appendix A. We conduct standard RAG experiments
 323

324 using pretrained LLMs including Mistral_{7B}, Mistral-Instruct_{7B} (Jiang et al., 2023), Alpaca_{7B,13B}
 325 (Dubois et al., 2024). For the instruction-tuned LMs, we use the official system prompt or instruction
 326 format used during training if available. We also include the performance of Toolformer (Schick
 327 et al., 2023) and SAIL (Luo et al., 2023), which are originally reported from Asai et al. (2024).
 328 Toolformer_{6B} is an LM instruction-tuned to use tools, including a search engine, and SAIL_{7B} is
 329 an LM instruction-tuned on the Alpaca instruction tuning set augmented with search results from
 330 different source, such as Wikipedia.

331
 332 **Self-Reflective RAG and Corrective RAG** Self-Reflective RAG (Self-RAG) (Asai et al., 2024)
 333 and Corrective RAG (CRAG) (Yan et al., 2024) represent more advanced variants of the RAG
 334 framework that aim to enhance the quality of contextual information obtained through retrieval.
 335 CRAG incorporates an external evaluator to assess and refine the initially retrieved documents prior
 336 to answer generation. In contrast, Self-RAG leverages instruction tuning to enable the language
 337 model to produce special self-reflection tags. These tags prompt the model to dynamically retrieve
 338 additional documents when needed and to critically evaluate the relevance of retrieved content before
 339 generating a response. Self-CRAG integrates the self-reflective mechanism of Self-RAG with CRAG
 340 by applying it to CRAG’s refined retrievals. For comparison, we directly include the performance of
 341 Self-RAG, CRAG, and Self-CRAG based on Mistral_{7B} as reported in Wang et al. (2024).

342 **Pipe-Style RAG** PipeRAG (Jiang et al., 2024) achieves parallelization of retrieval and generation
 343 on top of the RETRO (Borgeaud et al., 2021) framework, and further improves generation quality
 344 while reducing latency by allowing flexible retrieval intervals. However, this approach relies on a
 345 jointly trained encoder-decoder transformer architecture and is therefore not directly compatible with
 346 decode-only LLMs. To enable a fairer comparison, we implement a Pipe-style RAG variant that is
 347 LLM-based. Specifically, we use the same retriever as other baselines to perform staged retrieval and
 348 employ an LLM to generate each chunk, repeating this process until a complete answer is produced.

349
 350 **Speculative RAG** Speculative RAG (Wang et al., 2024) is a recent state-of-the-art RAG framework
 351 that incorporates the idea of speculative decoding to accelerate answer generation. It employs a small
 352 draft model to generate multiple candidate answers, which are then verified by a larger model to
 353 select the final output. This two-stage approach improves generation efficiency while maintaining
 354 strong answer quality. We include Speculative RAG as a competitive baseline in our comparison.¹

355 4.3 EXPERIMENTAL SETTINGS

356 To ensure fair comparison, we conduct all experiments using LLMs with approximately 7 billion pa-
 357 rameters. Specifically, we use open-source models Alpaca_{7B}, Mistral_{7B} (v0.1), and Mistral-Instruct_{7B}
 358 (v0.1) for answer generation, without applying any additional fine-tuning or modifications. All
 359 models are evaluated in a zero-shot setting, where only task instructions are provided, without any
 360 in-context demonstrations. To encode both the retrieved documents and the draft answers, we adopt a
 361 lightweight embedding model, bge-large-en-v1.5 (Xiao et al., 2023). Inference is performed
 362 using greedy decoding (temperature = 0), and we set the chunk size to 50 tokens by default for all
 363 experiments. For consistency with Wang et al. (2024) and Asai et al. (2024), we use **Contriever-MS**
 364 **MARCO** (Izacard et al., 2022) as our retrieval model. For TriviaQA, PopQA, PubHealth, and
 365 ARC-Challenge datasets, we follow the same retrieval configuration as Wang et al. (2024), retrieving
 366 the top-10 documents for each question. We set $k = 5$ and $m = 5$ to create 5 document subsets,
 367 each containing 5 documents. This subset construction helps ensure broad coverage of the retrieved
 368 evidence across candidates. For the ALCE-ASQA dataset, we adopt the same retrieval setup as Asai
 369 et al. (2024), retrieving the top-5 documents and using $k = 3$ and $m = 5$ to create 5 document
 370 subsets, each containing 3 documents.

371 4.4 PERFORMANCE ANALYSIS

372 **Comparison with training-free baselines.** Table 1 shows that SPS consistently outperforms
 373 standard RAG across different backbones and tasks. Notably, when applied to Alpaca-7B, SPS

374
 375 ¹For the fine-tuning-based Speculative RAG, we directly report the experimental results from the original
 376 paper. In addition, we report a training-free variant of Speculative RAG as a baseline for fair comparison.

378 Table 1: Overall experiment results on five tasks. * indicates concurrent or recent results reported by
 379 concurrent work. - indicates numbers that are not reported by the original papers or are not applicable.
 380 em, rg, mau, denote str-em, ROUGE (correctness); MAUVE (fluency).

RAG Method	Short-form		Closed-set		Long-form generations		
	PopQA (acc)	TQA (acc)	Pub (acc)	ARC (acc)	ASQA (em)	ASQA (rg)	ASQA (mau)
Fine-tuning based methods							
<i>Standard RAG</i>							
Toolformer* _{6B} (Schick et al., 2023)	-	48.8	-	-	-	-	-
SAIL* _{7B} (Luo et al., 2023)	-	-	69.2	48.4	-	-	-
<i>Self-Reflective RAG & Corrective RAG</i>							
Self-RAG* _{Mistral-7B} (Asai et al., 2024)	52.68	64.84	72.44	74.91	-	-	-
CRAG* _{Mistral-7B} Yan et al. (2024)	49.46	59.03	59.04	74.84	-	-	-
Self-CRAG* _{Mistral-7B} Yan et al. (2024)	56.11	65.43	72.85	75.26	-	-	-
<i>Speculative RAG</i> (Wang et al., 2024)							
$\mathcal{M}_{\text{Verifier-Mistral-7B}} + \mathcal{M}_{\text{Drafter-7B}}^*$	56.75	73.91	75.79	76.19	-	-	-
$\mathcal{M}_{\text{Verifier-Mixtral-8}\times 7B} + \mathcal{M}_{\text{Drafter-7B}}^*$	57.54	74.24	76.60	80.55	-	-	-
Training free methods							
<i>Standard RAG</i>							
Alpaca _{7B} (Dubois et al., 2024)	40.96	43.56	38.94	44.39	24.97	23.11	25.24
Alpaca _{13B} (Dubois et al., 2024)	46.10	64.38	55.34	57.63	26.62	24.34	33.83
Mistral _{7B} (Jiang et al., 2023)	32.59	53.50	35.26	43.51	25.42	23.87	44.76
Mistral-Instruct _{7B} (Jiang et al., 2023)	42.03	65.83	43.16	47.61	26.19	24.92	46.41
<i>Pipe-Style RAG</i> (Jiang et al., 2024)							
Pipe-Style RAG _{Mistral-7B}	32.47	54.16	34.19	41.28	25.23	24.71	42.37
<i>Speculative RAG</i> (Wang et al., 2024)							
$\mathcal{M}_{\text{Verifier-Mistral-7B}} + \mathcal{M}_{\text{Mistral-7B}}$	34.63	57.51	38.16	47.38	25.07	25.74	54.12
$\mathcal{M}_{\text{Verifier-Mixtral-8}\times 7B} + \mathcal{M}_{\text{Mistral-7B}}$	39.37	60.49	42.52	49.31	25.49	27.94	56.72
<i>SPS (Ours)</i>							
SPS _{Alpaca-7B}	48.39	67.87	59.17	65.96	28.38	34.30	61.79
SPS _{Mistral-7B}	50.11	68.12	64.35	71.76	26.84	31.52	63.81

408 surpasses standard RAG built on Alpaca-13B, on every benchmark, e.g., +3.49% on TriviaQA and
 409 +8.33% on ARC-Challenge, despite using a smaller model. **Compared with the Pipe-style RAG**
 410 **baseline, SPS consistently achieves higher accuracy (up to 30.48% improvement on the ARC dataset).**
 411 Against *training-free* Speculative RAG, SPS_{Mistral-7B} delivers sizeable gains (e.g., +10.74% on PopQA
 412 vs. a Mixtral-8 \times 7B verifier with a Mistral-7B drafter), and improves ASQA correctness/fluency as
 413 well. We attribute this to SPS’s training-free, self-consistency selection over parallel drafts: when
 414 no tuning is allowed, a learned drafter/verifier pair is less reliable, whereas SPS directly exploits
 415 semantic agreement among candidates without relying on trained rationale quality.

416 **Comparison with fine-tuning-based baselines.** As illustrated in Table 1, even when compared
 417 against strong fine-tuned baselines, SPS achieves comparable or superior performance. For instance,
 418 under the same backbone model Mistral-7B, SPS attains higher accuracy than CRAG (+8.84%),
 419 SelfRAG (+3.28%), and Self-CRAG (+2.69%) on TriviaQA. Its accuracy is only slightly below that
 420 of Speculative RAG with a fine-tuned 7B drafter and a Mistral-7B verifier (−5.79%). These results
 421 highlight that SPS not only closes the gap with fine-tuning-based approaches but, in some cases,
 422 surpasses them, providing a practical alternative that eliminates the cost and complexity of additional
 423 training while retaining high answer quality.

425 4.5 LATENCY ANALYSIS

427 We conduct our latency analysis experiments on a server equipped with an AMD Ryzen Threadripper
 428 PRO 5975WX CPU and four NVIDIA RTX 6000 Ada GPUs. Specifically, we compare the inference
 429 latency of Standard RAG, Self-RAG, Speculative RAG, and our proposed SPS method across
 430 five datasets: PopQA, TriviaQA, PubHealth, ARC-Challenge, and ALCE-ASQA. Following the
 431 evaluation protocol of Wang et al. (2024), we randomly sample 100 examples from each dataset and
 report the average latency. For Standard RAG, we use Mistral_{7B} as the generation model. Self-RAG

Figure 2: Latency analysis of Standard RAG, Self-RAG, Pipe-Style RAG, Speculative RAG(using Mixtral $_{8\times 7B}$ as verifier and Mistral $_{7B}$ as drafter) and SPS on PopQA, TriviaQA, PubHealth, ARC-Challenge and ALCE-ASQA. The latency varies across different datasets due to different retrieved document lengths. SPS achieves lower latency than all other baselines across all evaluated datasets.

is evaluated using Mistral $_{7B}$, while Speculative RAG adopts the configuration reported as its best-performing setting—using Mistral $_{7B}$ as the drafter and Mixtral $_{8\times 7B}$ as the verifier. Our SPS method is evaluated with Mistral $_{7B}$. For Standard RAG and Self-RAG, we retrieve the top-10 documents and include all of them directly in the prompt. For Speculative RAG, we retrieve the top-10 documents and set $k = 5$, $m = 5$. For our SPS method, we also retrieve the top-10 documents and adopt $k = 5$, $m = 5$, consistent with our previous experimental setup. For SPS and Speculative RAG, we launch 5 endpoints of the generation model to perform parallel drafting across document subsets on five datasets.

To simulate realistic deployment scenarios, we set the batch size to 1 (i.e., processing one query at a time). We also include document retrieval time in our measurements by performing retrieval immediately prior to generation, reflecting real-world system behavior. As shown in Figure 2, SPS achieves the lowest latency across all five datasets. This efficiency can be attributed to the parallel design of the retrieval and inference systems, as well as the fact that SPS does not require a larger model for verification.

4.6 COMPREHENSIVE COMPARISON

We present a comprehensive comparison of different RAG methods across four key dimensions: training requirement, GPU memory usage, inference latency, and answer accuracy. We adopt the same model configurations as used in the latency analysis. For GPU memory usage, although certain implementations of Mixtral-8 \times 7B (e.g., with vLLM) support memory optimizations such as lazy loading, we measure memory under a standardized setting for fair comparison: loading models in FP16 using HuggingFace Transformers with a batch size of 1 during inference. For latency and accuracy, we report the average values across four datasets shared by all methods: TriviaQA, PopQA, PubHealth, and ARC-Challenge. As shown in Table 2, our SPS method achieves a strong balance among all evaluated dimensions. Without any additional training, our SPS improves performance by **54.3%** over Standard RAG while maintaining nearly the same latency. Compared with the training-free Speculative RAG, SPS achieves a **57%** reduction in latency together with a **32%** accuracy gain. Moreover, our training-free approach reaches **96%** of the performance of the fine-tuning-based Self-RAG and **88%** of the fine-tuning-based Speculative RAG.

5 CONCLUSION

This work introduces SPS, an efficient, training-free retrieval-augmented generation (RAG) framework that balances answer accuracy and inference latency. By combining staged retrieval, parallel draft generation, and self-consistency-based selection, SPS maintains competitive performance while significantly reducing computational overhead. Extensive experiments show that SPS substantially outperforms existing training-free baselines, achieving up to 57% lower latency and 32% higher accuracy. Furthermore, SPS attains performance comparable to fine-tuning-based methods, demon-

486
487
488 Table 2: Comprehensive Comparison of different RAG Methods.
489
490
491
492
493
494
495

RAG Method	Training Required	Latency (s)	acc (%)
Self-RAG _{Mistral-7B}	Yes	8.58	66.22
Spec.RAG _{Mixtral-8×7B, Drafter-7B}	Yes	-	72.23
Spec.RAG _{Mixtral-8×7B, Mistral-7B}	No	12.44	47.92
Standard RAG _{Mistral-7B}	No	5.31	41.21
Pipe-Style RAG _{Mistral-7B}	No	5.61	40.53
SPS _{Mistral-7B}	No	5.35	63.59

496
497 strating that high-quality RAG can be achieved without additional training. Overall, SPS offers a
498 new paradigm for building RAG systems that break free from training dependency while improving
499 accuracy and efficiency, making it especially suitable for real-world deployment under strict latency
500 and resource constraints.

501 502 ETHICS STATEMENT 503

504 This work adheres to the ethical standards of the ICLR community. Our research does not involve
505 human subjects, sensitive personal data, or any information that could compromise privacy or security.
506 All datasets used are publicly available and widely adopted in the research community. We believe
507 the methods and results presented contribute positively to the advancement of AI research and do not
508 foresee potential misuse beyond common considerations in language model research.

510 REPRODUCIBILITY STATEMENT 511

512 We are committed to ensuring the reproducibility of our work. All datasets, preprocessing steps,
513 model configurations, and evaluation protocols are described in detail in the main paper and appendix.
514 We also provide source code, scripts, and instructions to replicate our experiments, which will be
515 made publicly available upon publication.

517 REFERENCES 518

519 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
520 to retrieve, generate, and critique through self-reflection. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=hSyW5go0v8>.

523 Ryan C. Barron, Maksim E. Eren, Olga M. Serafimova, Cynthia Matuszek, and Boian S. Alexandrov.
524 Bridging legal knowledge and ai: Retrieval-augmented generation with vector stores, knowledge
525 graphs, and hierarchical non-negative matrix factorization, 2025. URL <https://arxiv.org/abs/2502.20364>.

528 Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
529 line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai, 2025. URL
530 <https://arxiv.org/abs/2506.02153>.

531 Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
532 Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
533 Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
534 Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
535 Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
536 Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
537 Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
538 Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar
539 Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal
Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu

540 Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
 541 Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
 542 Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park,
 543 Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda
 544 Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa,
 545 Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W.
 546 Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,
 547 Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang,
 548 Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities
 549 and risks of foundation models, 2022. URL <https://arxiv.org/abs/2108.07258>.

550 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
 551 lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
 552 de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, T. W. Hennigan, Saffron Huang, Lorenzo
 553 Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
 554 Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre. Improving lan-
 555 guage models by retrieving from trillions of tokens. In *International Conference on Machine Learn-
 556 ing*, 2021. URL <https://api.semanticscholar.org/CorpusID:244954723>.

557 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 558 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 559 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 560 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
 561 teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCand-
 562 dish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
 563 learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
 564 vances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Asso-
 565 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

566 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
 567 Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
 568 <https://arxiv.org/abs/2401.10774>.

569 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
 570 Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
 571 <https://arxiv.org/abs/2302.01318>.

572 Mingyue Cheng, Yucong Luo, Jie Ouyang, Qi Liu, Huijie Liu, Li Li, Shuo Yu, Bohou Zhang, Jiawei
 573 Cao, Jie Ma, Daoyu Wang, and Enhong Chen. A survey on knowledge-oriented retrieval-augmented
 574 generation, 2025. URL <https://arxiv.org/abs/2503.10677>.

575 Changin Choi, Wonseok Lee, Jungmin Ko, and Wonjong Rhee. Multimodal iterative rag for knowl-
 576 edge visual question answering, 2025. URL <https://arxiv.org/abs/2509.00798>.

577 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 578 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
 579 2018. URL <https://arxiv.org/abs/1803.05457>.

580 Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
 581 Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens, 2023. URL
 582 <https://arxiv.org/abs/2307.02486>.

583 Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
 584 Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
 585 learn from human feedback, 2024. URL <https://arxiv.org/abs/2305.14387>.

586 Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
 587 Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models, 2024.
 588 URL <https://arxiv.org/abs/2405.06211>.

594 Shangbin Feng, Weijia Shi, Yuyang Bai, Vidhisha Balachandran, Tianxing He, and Yulia Tsvetkov.
 595 Knowledge card: Filling llms' knowledge gaps with plug-in specialized language models, 2024.
 596 URL <https://arxiv.org/abs/2305.09955>.

597

598 Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
 599 text with citations, 2023. URL <https://arxiv.org/abs/2305.14627>.

600

601 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
 602 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
 603 2024. URL <https://arxiv.org/abs/2312.10997>.

604

605 Shailja Gupta, Rajesh Ranjan, and Surya Narayan Singh. A comprehensive survey of retrieval-
 606 augmented generation (rag): Evolution, current landscape and future directions, 2024. URL
 607 <https://arxiv.org/abs/2410.12837>.

608

609 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
 610 domain question answering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceedings
 611 of the 16th Conference of the European Chapter of the Association for Computational Linguistics:
 612 Main Volume*, pp. 874–880, Online, April 2021. Association for Computational Linguistics. doi:
 613 10.18653/v1/2021.eacl-main.74. URL <https://aclanthology.org/2021.eacl-main.74>.

614

615 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 616 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
 617 *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=jKN1pXi7b0>.

618

619 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 620 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 621 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 622 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

623

624 Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska. Piperag: Fast
 625 retrieval-augmented generation via algorithm-system co-design, 2024. URL <https://arxiv.org/abs/2403.05676>.

626

627 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
 628 distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
 629 Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Com-
 630 putational Linguistics (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July
 631 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147>.

632

633 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 634 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
 635 Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on
 636 Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November
 637 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL
 638 <https://aclanthology.org/2020.emnlp-main.550>.

639

640 Jiin Kim, Byeongjun Shin, Jinha Chung, and Minsoo Rhu. The cost of dynamic reasoning: De-
 641 mystifying ai agents and test-time scaling from an ai infrastructure perspective, 2025. URL
 642 <https://arxiv.org/abs/2506.04301>.

643

644 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 645 decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 646 Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine
 647 Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19274–19286. PMLR, 23–
 29 Jul 2023. URL <https://proceedings.mlr.press/v202/leviathan23a.html>.

648 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 649 Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
 650 Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the 34th*
 651 *International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY,
 652 USA, 2020. Curran Associates Inc. ISBN 9781713829546.

653

654 Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei,
 655 Henry Peng Zou, Xiao Luo, Yusheng Zhao, Chunkit Chan, Yankai Chen, Zhongfen Deng, Yinghui
 656 Li, Hai-Tao Zheng, Dongyuan Li, Renhe Jiang, Ming Zhang, Yangqiu Song, and Philip S. Yu.
 657 Towards agentic rag with deep reasoning: A survey of rag-reasoning systems in llms, 2025. URL
 658 <https://arxiv.org/abs/2507.09477>.

659

660 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization*
 661 *Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
 662 URL <https://aclanthology.org/W04-1013/>.

663

664 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 665 and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
 666 <https://arxiv.org/abs/2307.03172>.

667

668 Hongyin Luo, Yung-Sung Chuang, Yuan Gong, Tianhua Zhang, Yoon Kim, Xixin Wu, Danny
 669 Fox, Helen Meng, and James Glass. Sail: Search-augmented instruction learning, 2023. URL
 670 <https://arxiv.org/abs/2305.15225>.

671

672 Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
 673 Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
 674 with unlimited context length, 2024. URL <https://arxiv.org/abs/2404.08801>.

675

676 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 677 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 678 memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the*
 679 *61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 680 pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
 681 10.18653/v1/2023.acl-long.546. URL [https://aclanthology.org/2023.acl-long.546/](https://aclanthology.org/2023.acl-long.546).

682

683 Sarah Packowski, Inge Halilovic, Jenifer Schlotfeldt, and Trish Smith. Optimizing and evaluating
 684 enterprise retrieval-augmented generation (rag): A content design perspective, 2024. URL <https://arxiv.org/abs/2410.12812>.

685

686 You Peng, Youhe Jiang, Chen Wang, and Binhang Yuan. Hexgen-text2sql: Optimizing llm inference
 687 request scheduling for agentic text-to-sql workflow, 2025. URL <https://arxiv.org/abs/2505.05286>.

688

689 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 690 and Zaid Harchaoui. MAUVE: Measuring the gap between neural text and human text using
 691 divergence frontiers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
 692 *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=Tqx7nJp7PR>.

693

694 Mathieu Ravaut, Bosheng Ding, Fangkai Jiao, Hailin Chen, Xingxuan Li, Ruochen Zhao, Chengwei
 695 Qin, Caiming Xiong, and Shafiq Joty. A comprehensive survey of contamination detection methods
 696 in large language models, 2025. URL <https://arxiv.org/abs/2404.00699>.

697

698 Chaoyi Ruan, Chao Bi, Kaiwen Zheng, Ziji Shi, Xinyi Wan, and Jialin Li. Asteria: Semantic-aware
 699 cross-region caching for agentic llm tool access, 2025. URL <https://arxiv.org/abs/2509.17360>.

700

701 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
 702 Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
 703 use tools, 2023. URL <https://arxiv.org/abs/2302.04761>.

702 Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
 703 gressive models. In *Proceedings of the 32nd International Conference on Neural Information*
 704 *Processing Systems*, NIPS'18, pp. 10107–10116, Red Hook, NY, USA, 2018. Curran Associates
 705 Inc.

706 Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: Dynamic retrieval
 707 augmented generation based on the information needs of large language models, 2024. URL
 708 <https://arxiv.org/abs/2403.10081>.

710 Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven Zheng, Swaroop Mishra, Vincent Perot,
 711 Yuwei Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister.
 712 Speculative rag: Enhancing retrieval augmented generation through drafting, 2024. URL <https://arxiv.org/abs/2407.08223>.

714 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 715 Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International*
 716 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=gEZrGC0zdqR>.

718 Zhepei Wei, Wei-Lin Chen, and Yu Meng. InstructRAG: Instructing retrieval-augmented gener-
 719 ation via self-synthesized rationales. In *The Thirteenth International Conference on Learning*
 720 *Representations*, 2025. URL <https://openreview.net/forum?id=P1qhkp8gQT>.

722 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
 723 Zhipang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
 724 speculative decoding, 2024. URL <https://arxiv.org/abs/2401.07851>.

725 Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
 726 advance general chinese embedding, 2023.

728 Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn
 729 sloth: Revealing the behavior of large language models in knowledge conflicts, 2024. URL
 730 <https://arxiv.org/abs/2305.13300>.

731 Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation,
 732 2024. URL <https://arxiv.org/abs/2401.15884>.

734 Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu, and Zhaofeng Liu. *Evaluation of Retrieval-
 735 Augmented Generation: A Survey*, pp. 102–120. Springer Nature Singapore, 2025. ISBN
 736 9789819610242. doi: 10.1007/978-981-96-1024-2_8. URL http://dx.doi.org/10.1007/978-981-96-1024-2_8.

738 Tianhua Zhang, Hongyin Luo, Yung-Sung Chuang, Wei Fang, Luc Gaitskell, Thomas Hartvigsen,
 739 Xixin Wu, Danny Fox, Helen Meng, and James Glass. Interpretable unified language checking,
 740 2023. URL <https://arxiv.org/abs/2304.03728>.

741 Xuejiao Zhao, Siyan Liu, Su-Yin Yang, and Chunyan Miao. Medrag: Enhancing retrieval-augmented
 742 generation with knowledge graph-elicited reasoning for healthcare copilot. In *Proceedings of*
 743 *the ACM on Web Conference 2025*, WWW '25, pp. 4442–4457, New York, NY, USA, 2025.
 744 Association for Computing Machinery. ISBN 9798400712746. doi: 10.1145/3696410.3714782.
 745 URL <https://doi.org/10.1145/3696410.3714782>.

747

748

749

750

751

752

753

754

755

756 **A EXPERIMENTAL DETAILS**
757758 **A.1 RETRIEVAL SETUP DETAILS.**
759760 To ensure fair comparison in document retrieval, we use the dataset provided by the official Self-
761 RAG implementation. This dataset includes questions along with their top-20 retrieved documents,
762 obtained via a hybrid retriever combining Contriever-MS MARCO² and Google Programmable
763 Search. Speculative RAG adopts the same setup, allowing our evaluation to eliminate variability
764 introduced by differences in retrieved content. For our latency experiments, we also use Contriever-
765 MS MARCO as the retriever, along with the 2018 Wikipedia dump (over 21 million passages) as the
766 retrieval corpus—identical to the configuration used in Self-RAG.³ This setup more closely reflects
767 realistic retrieval-augmented generation scenarios. In our environment, we observe that each retrieval
768 query takes approximately 2.5 to 3.5 seconds on average.
769770 **A.2 DETAILED EXPERIMENTAL SETTINGS FOR INDIVIDUAL DATASETS.**
771772 All datasets used in this work are preprocessed versions provided by the open-source project released
773 by Asai et al. (2024). For TriviaQA, PopQA, PubHealth, and ARC-Challenge, we use accuracy as
774 the primary evaluation metric. Specifically, we determine whether the gold answer appears in the
775 model-generated output.776 For TriviaQA and PopQA, the official datasets provide multiple answer variants that account for case
777 and surface form differences. Therefore, we apply direct string matching against these variants.778 In contrast, PubHealth and ARC-Challenge require classification-style outputs. PubHealth involves
779 assessing whether the retrieved documents support a given health claim, while ARC-Challenge
780 consists of multiple-choice science questions. For both tasks, we provide explicit prompts instructing
781 the model to output a specific label or option. In practice, we observe that models from the Mistral-
782 Instruct family follow the instructions reliably and generate outputs in the expected format. However,
783 models from the Alpaca family often produce overly concise responses and frequently fail to follow
784 instructions (e.g., omitting the option label when asked to provide both the label and the option
785 content), making direct evaluation difficult. To address this issue, we use **Gemini 2.0 Flash** to
786 automatically evaluate outputs from Alpaca models. We provide Gemini with the input question,
787 answer choices, gold answer and label, and the model’s response, and ask it to assess whether the
788 prediction is correct.789 For ALCE-ASQA, we adopt the official evaluation script⁴ released with the dataset, which computes
790 exact match, ROUGE, and MAUVE scores based on the generated long-form answers.792 **A.3 TASK-SPECIFIC INSTRUCTIONS.**
793794 Table 6 shows the list of instructions used on different datasets during evaluations.
795796 **B MORE EXPERIMENTAL RESULTS**
797798 **B.1 ABLATION STUDIES**
799800 We conduct ablation studies on ASQA to evaluate the contributions of each component in our SPS
801 framework. Specifically, we examine (1) staged retrieval, (2) self-consistency selection, and (3)
802 multi-perspective sampling. As shown in Table 3, removing any of these components consistently
803 degrades performance across all metrics, with the most pronounced impact observed when discarding
804 the self-consistency selection mechanism. These results demonstrate that each design choice in SPS
805 plays an important role in achieving the overall effectiveness of the framework.
806807 ²<https://github.com/facebookresearch/atlas>
808 ³<https://github.com/AkariAsai/self-rag?tab=readme-ov-file#retriever-setup>
809 ⁴<https://github.com/princeton-nlp/ALCE>

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Table 3: Ablation study of SPS on ASQA.

	ASQA		
	em	rg	mau
SPS _{Mistral-Instruct-7B}	27.66	32.89	66.43
<i>Staged Retrieval</i>			
Always use question Q to retrieve documents	27.25 (-0.41)	32.50 (-0.39)	62.94 (-3.49)
<i>Self-Consistency Selection</i>			
Randomly select draft chunk	26.32 (-1.34)	25.78 (-7.11)	58.74 (-7.69)
<i>Muti-perspective sampling</i>			
Randomly sampling to form subsets	26.94 (-0.72)	31.71 (-1.18)	63.57 (-2.86)

Table 4: Effect of Instruction Tuning across datasets.

	PopQA (acc)	TQA (acc)	Pub (acc)	ARC (acc)	ASQA		
					em	rg	mau
SPS _{Mistral-7B}	50.11	68.12	64.35	71.76	26.84	31.52	63.81
SPS _{Mistral-Instruct-7B}	51.75	70.66	67.07	73.12	27.66	32.89	66.43

Effect of Staged Retrieval. To assess the effectiveness of staged retrieval, we replace it with a static retrieval strategy that always uses the original question Q to retrieve documents, regardless of the current generation context. As shown in Table 3, this modification leads to a consistent drop across all metrics: em decreases by 0.41, ROUGE by 0.39, and mauve by 3.49. These results suggest that dynamically updating the retrieval context during generation helps the model access more relevant evidence, which in turn improves both factual correctness and fluency.

Effect of Self-Consistency Selection. We further evaluate the impact of the self-consistency-based selection strategy by replacing it with a random choice among the generated draft chunks. This change results in substantial performance degradation, particularly in ROUGE (-7.11) and mauve (-7.69), as well as a 1.34-point drop in em. The large decrease in answer quality confirms the importance of self-consistency filtering in identifying the most semantically reliable draft.

Effect of Multi-Perspective Sampling. To examine the role of multi-perspective sampling, we replace it with a random subset sampling strategy. As shown in Table 3, this ablation leads to a moderate decline in performance, with em reduced by 0.72, ROUGE by 1.18, and mauve by 2.86. These results indicate that constructing subsets from diverse perspectives, rather than random sampling, provides more complementary evidence and enhances the robustness of answer generation.

B.1.1 EFFECT OF INSTRUCTION-TUNING

Although SPS performs well in a training-free setting, we also evaluate it with the instruction-tuned Mistral-Instruct-7B model under the same hyperparameter configuration as in the main results. As shown in Table 4, instruction tuning consistently improves performance across datasets, with gains observed in accuracy on PopQA, TQA, Pub, and ARC, as well as in all three ASQA metrics. This confirms that instruction tuning remains effective for further enhancing our method.

B.2 EFFECT OF CHUNK SIZE SETTING

As shown in Figure 3, the choice of chunk size affects both performance and system latency. In our framework, the chunk size determines how frequently we perform staged document retrieval and self-consistency-based draft chunk selection. A smaller chunk size results in more frequent selection steps, which improves answer quality by allowing finer-grained control and more timely updates of retrieved context. However, it also increases latency due to the repeated need to encode and

864 compare multiple draft answers. Conversely, a larger chunk size reduces computational overhead and
 865 improves efficiency, but delays both retrieval updates and draft selection, which can hurt performance.
 866 Therefore, there exists a trade-off between responsiveness and quality. In our experiments, we find
 867 that a chunk size of 50 strikes a good balance, yielding strong performance while keeping latency
 868 low.

877 (a) Accuracy under different chunk sizes with $m = 5$,
 878 $k = 5$, and top-10 retrieval.

877 (b) Latency under different chunk sizes with $m = 5$,
 878 $k = 5$, and top-10 retrieval.

879 Figure 3: Performance analysis (a) and latency analysis (b) of SPS_{Mistral-Instruct-7B} with different chunk
 880 size setting on Trivia QA and ARC-Challenge.

884 B.3 EFFECT OF DRAFT NUMBER AND DOCUMENT SUBSET SIZE

886 **Increasing the number of draft chunks per retrieval-generation stage generally leads to im-
 887 proved answer quality.** We conduct experiments under a fixed retrieval setup—retrieving the
 888 top-10 documents and setting $k = 5$ —while varying the number of drafts. As shown in Figure 4a,
 889 we observe a consistent improvement in accuracy as the number of drafts increases. This is because
 890 a larger number of drafts allows the model to explore a wider range of document subsets, thereby
 891 making more effective use of the retrieved evidence. Moreover, our framework supports launching
 892 multiple RAG drafter instances to generate these drafts in parallel, enabling scalability without
 893 introducing additional latency.

894 **Subset Size Does Not Uniformly Improve Performance.** As shown in Figure 4b, increasing
 895 the subset size does not necessarily lead to better performance, and its effect largely depends on the
 896 characteristics of the dataset. In the case of PopQA, retrieved documents are relatively short, and
 897 questions often target specific factual details—e.g., asking about a person’s profession or the capital
 898 of a country. In such settings, increasing the subset size helps include more relevant information,
 899 which benefits answer generation. In contrast, for PubHealth, the retrieved documents tend to be
 900 significantly longer, and the task requires verifying whether the evidence supports a given health
 901 claim. In this case, a larger subset size may introduce excessive redundancy and irrelevant content,
 902 which can overwhelm the model or increase the reasoning complexity. As a result, performance may
 903 degrade due to the model being lost in the middle (Liu et al., 2023) of too much information.

905 (a) Accuracy with different numbers of drafts, where
 906 each subset contains 5 documents. Top-10 documents
 907 are retrieved.

908 (b) Accuracy with different subset sizes, generating 5
 909 drafts per question. Top-10 documents are retrieved.

910 Figure 4: Performance analysis of SPS_{Mistral-Instruct-7B} with (a) different numbers of drafts, and (b)
 911 different supporting document subset size on PopQA and PubHealth.

918 B.4 ANALYSIS OF TOKEN LENGTH AND THROUGHPUT
919

920 We calculated the average output token length for different RAG methods and measured the generation
921 speed, where throughput is computed by excluding retrieval time and using a chunk size of 50 tokens.
922 The results are reported in Table 5. Overall, SPS tends to generate longer output sequences, as its
923 staged retrieval mechanism conducts multiple retrieval rounds, thereby incorporating more diverse
924 and informative content into the final response. Speculative RAG also shows relatively longer outputs,
925 since its design often includes additional rationale generation. In contrast, SPS not only produces
926 more comprehensive answers but also consistently achieves significantly higher throughput than all
927 other methods, underscoring its efficiency advantage.
928

929 Table 5: Comparison of Avg. Token Length and Throughput across datasets.

930 Dataset	931 Metric	932 Std.RAG (Mistral-7B)	933 Self-RAG (Mistral-7B)	934 Spec.RAG (8×7B, 7B)	935 SPS (Mistral-7B)
933 PopQA	Avg. Token Length	85.8	92.5	113.1	106.7
	Throughput (tokens/s)	16.0	10.9	9.1	20.5
935 TriviaQA	Avg. Token Length	82.1	91.3	108.4	105.0
	Throughput (tokens/s)	15.9	10.4	9.2	20.3
937 PubHealth	Avg. Token Length	101.5	103.9	132.3	129.6
	Throughput (tokens/s)	18.1	12.7	11.8	23.9
939 ARC-C	Avg. Token Length	90.6	96.2	117.1	114.6
	Throughput (tokens/s)	17.8	11.6	9.0	20.5
941 ASQA	Avg. Token Length	123.7	125.6	175.2	163.5
	Throughput (tokens/s)	16.4	10.2	9.0	21.5

944 B.5 EFFECT OF HARDWARE ON LATENCY
945

946 In the main results, we conducted experiments on a server equipped with 4 RTX 6000 Ada GPUs.
947 The part of high latency of Speculative RAG primarily stems from its reliance on larger models and
948 the associated multi-GPU inference, where the 6000 Ada exhibits considerable overhead in inter-GPU
949 communication. To further examine the impact of hardware, we repeated the experiments on 4
950 Nvidia A100-SXM4-40GB GPUs, which leverage NVLink to provide substantially faster multi-GPU
951 communication. As shown in Figure 5, Speculative RAG’s latency decreases markedly under this
952 setup. Nevertheless, across all datasets, our SPS method consistently achieves significantly lower
953 latency than Speculative RAG, highlighting its robustness and efficiency regardless of the underlying
954 hardware.

966 Figure 5: Latency analysis using 4 Nvidia A100-SXM4- 40GB GPUs.
967

972 **C A SIMPLE EXAMPLE OF STAGED RETRIEVAL**
 973

974 A single question posed to large language models may span multiple topics. In traditional RAG
 975 frameworks, document retrieval is performed only once before answer generation begins. As a result,
 976 the retrieved documents may fail to cover all relevant subtopics or domain-specific information
 977 required to generate a comprehensive response. In contrast, periodic retrieval enables the system
 978 to retrieve new documents at intermediate stages of generation, after each topic-specific segment
 979 is produced. This allows the retrieval process to remain closely aligned with the current focus of
 980 the response, ensuring that each part of the answer is supported by highly relevant information.
 981 Consequently, periodic retrieval significantly improves the factual coverage and coherence of the
 982 generated answers.

1012 **Figure 6: A simple example of staged retrieval.**
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **D CASE STUDY**
1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

```
===== Prompt =====
##Instruction:
Write a clear, informative, and balanced answer to the following question, based on the documents below. If the question is ambiguous or has multiple interpretations, explain the possible answers based on the context provided.

##Question:
Who's the highest paid nba player 2017?

##Retrieval Documents:
1. Highest-paid NBA players by season
has earned on a 1 year contract, Jordan also holds the record for the second largest 1 year contract at $30,140,000 in the 1996-97 season. Kobe Bryant became just the second player to reach this milestone when the 2013-14 season began. LeBron James became the third in the 2016-17 season. Stephen Curry became the first player to eclipse $40-Million per year when he signed a record 5-year contract worth $201-Million in 2017, starting with $34,682,550 in the 2017-18 season and ending with the largest earnings in the 2021-22 season with a record payout of $45,780,966.

2. NBA salary cap
signed the contract once the NBA's free agency moratorium ended on July 6, 2017. Shortly thereafter, James Harden agreed on a DVPE with the Rockets. At the time of signing, his current contract had two years remaining with total pay of $59 million; the extension will add another $170 million over four seasons, ending in 2022-23. The next supermax signing was that of John Wall, who agreed later in July to a four-year, $170 million extension that will start in 2019-20. In late September, Russell Westbrook became the fourth and final supermax signing of the 2017 offseason, signing a five-year,
...
10. Chris Paul
a 112-102 win. He also had 10 assists and seven rebounds. In Game 5 of the Western Conference Finals, Paul injured his hamstring late in the game as the Rockets went up 3-2 in the series against the Warriors. With Paul out for Games 6 and 7, the Rockets were eliminated from the playoffs with back-to-back losses. On July 8, 2018, Paul signed a four-year, $160 million maximum contract extension with the Rockets. Paul received a two-game suspension early in the 2018-19 season for his involvement in an on-court fight against the Los Angeles Lakers on October 20. Additionally, Paul

===== Cluster results =====
K-means clustering...
Group1:[1,3]
Group2:[2,4]
Group3:[5,7]
Group4:[6,10]
Group5:[8,9]
===== generate subsets =====
Sample from each group...
Subset1:[1,2,5,6,8]
Subset2:[1,4,7,10,9]
Subset3:[3,4,7,6,8]
Subset4:[1,2,7,10,9]
Subset5:[3,4,5,6,9]
===== generate draft chunks =====
1.Based on the information provided in the documents, the highest paid NBA player in 2017 could be LeBron James, Stephen Curry, or James Harden. LeBron became only the third player ever to surpass the $30 million
```

1080 single season threshold during the 2016-17 campaign, putting him at the
 1081 top of that year's payroll list...

1082 2.Based on the information provided in the documents, the highest-paid
 1083 NBA player in 2017 could be LeBron James, Stephen Curry, or James
 1084 Harden. LeBron became only the third player ever to surpass the \$30-
 1085 million single-season threshold during the 2016-17 campaign, putting
 1086 him at the top of that year's payroll list...

1087 3.Based on the documents, the highest-paid NBA player in 2017, by
 1088 actual 2017-18 salary, was Stephen Curry, whose record-setting five-
 1089 year \$201-million super-max began paying him \$34,682,550 that October.
 1090 He was the first player ever to eclipse \$40-million per year, setting a
 1091 new standard for league earnings...

1092 4.Based on the information provided in the documents, the highest-paid
 1093 NBA player in 2017 could be LeBron James, Stephen Curry, or James
 1094 Harden. LeBron became only the third player ever to surpass the \$30-
 1095 million single-season threshold during the 2016-17 campaign, putting
 1096 him at the top of that year's payroll list...

1097 5.Based on the available documents, the highest-paid NBA player in 2017,
 1098 when counting the 2016-17 season salary, was LeBron James, who became
 1099 the third man in history to top \$30-million for a single season and
 1100 finished that campaign as the league's biggest earner before free-
 1101 agency began in July that year...
 1102 --
 1103 Based on semantic similarity select chunk 1 and continue generating...
 1104 ...
 1105 ===== generate final answer =====
 1106 #Response:
 1107 Based on the information provided in the documents, the highest-paid
 1108 NBA player in 2017 could be LeBron James, Stephen Curry, or James
 1109 Harden. LeBron became only the third player ever to surpass the \$30-
 1110 million single-season threshold during the 2016-17 campaign, putting
 1111 him at the top of the pay scale as that season ended. Shortly after the
 1112 2017 free-agency moratorium lifted, Stephen Curry signed a record five-
 1113 year, \$201 million contract whose first-year payout-\$34,682,550 in
 1114 2017-18, which made him the first player to eclipse \$40 million per
 1115 season. Days later, James Harden agreed to a four-year, \$170 million
 1116 extension with Houston, part of a package totaling roughly \$228 million
 1117 in guaranteed money, the largest deal inked that calendar year.
 1118
 1119 The documents do not provide a single, definitive salary table for 2017,
 1120 but they do note a soft salary cap of \$99 million and a luxury-tax
 1121 line of \$119 million for the 2017-18 season. Therefore, depending on
 1122 whether one emphasizes salary already earned, the first paycheck of the
 1123 new season, or the biggest contract signed, any of these three stars
 1124 can reasonably be called the highest-paid NBA player of 2017.
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152

1153 Table 6: Full list of instructions used during zero-shot evaluations.
 1154

1155 Dataset	1156 Instruction
1156 TriviaQA	1157 Use the evidence documents to answer the following question. If the documents do not provide 1158 enough information, try to answer with your own knowledge and clearly indicate that this is not 1159 directly supported by the documents.
1158 PopQA	1159 Use the evidence documents to answer the following question. If the documents do not provide 1160 enough information, try to answer with your own knowledge and clearly indicate that this is not 1161 directly supported by the documents.
1161 ARC-Challenge	1162 Use the evidence documents to answer the following choice question. Given four answer candidates, A, B, C and D, choose the best answer choice.
1162 PubHealth	1163 Given the following claim and a set of evidence documents, determine whether the claim is: 1164 - SUPPORTS (evidence clearly supports the claim) 1165 - REFUTES (evidence clearly contradicts the claim) 1166 Please reason carefully based only on the provided evidence. Do not use any external knowledge.
1166 ASQA	1167 Write a clear, informative, and balanced answer to the following question, based on the documents 1168 below. 1169 If the question is ambiguous or has multiple interpretations, explain the possible answers based on the context provided.

1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **E LLM USAGE DISCLOSURE**
11891190 LLMs are employed only to aid writing clarity and polish. Importantly, all core scientific contributions,
1191 including problem formulation, model design, theoretical analysis, and experiments, are entirely
1192 conceived and executed by the authors. The authors take full responsibility for all technical content,
1193 claims, and conclusions presented in this work.
11941195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241