
Under review as a conference paper at ICLR 2024

DELAYED SPIKING NEURAL NETWORK AND EXPO-
NENTIAL TIME DEPENDENT PLASTICITY ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) become more similar to artificial neural net-
works (ANNs) to solve complex machine learning tasks. However, such similarity
does not bring superior performances but loses biological plausibility. Moreover,
most learning methods of SNNs follow the pattern of gradient descent used in
ANNs, which also suffer from low bio-plausibility. To address these issues, a re-
alistic delayed spiking neural network (DSNN) is introduced in this study, which
only considers the dendrite and axon delays as the learnable parameters. And a
more biologically plausible exponential time-dependent plasticity (ETDP) algo-
rithm is proposed to train the DSNN. The ETDP adjusts the delays according to
the global and local time differences between presynaptic and postsynaptic spikes,
and the forward and backward propagation time of signals. These biological indi-
cators can surrogate the time-consuming computation of descents precisely. Ex-
perimental results demonstrate that the DSNN trained by ETDP achieves very
competitive results on various benchmark datasets, compared with other SNNs.

1 INTRODUCTION

Recently, spiking neural networks (SNNs) have attracted more and more attention, due to their event-
driven property, biological plausibility and neuromorphic hardware realization Rao et al. (2022).
Plenty of SNNs have been proposed including Hodgkin-Huxley model, FitzHugh-Nagumo model
FitzHugh (1961), Morris-Lecar model Morris & Lecar (1981), and Integrate-and-Fire (IF) model
Gerstner & Kistler (2002). For simplification, the IF and its leaky version (LIF) are the most com-
monly used models to construct SNNs. The main obstacle to SNNs is the lack of effective learning
algorithms. Spike-timing dependent plasticity (STDP), as a specific version of Hebbian learning, is
one of the most popular unsupervised learning for SNNs Caporale & Dan (2008). But the perfor-
mance of SNN trained by STDP is limited on complicated machine learning tasks, without super-
vised signals.

More SNNs appeal to the supervised learning algorithms based on gradient descent (GD), which
are commonly used to train ANNs. More directly, ANN-to-SNN conversion approaches have been
proposed to convert the trained ANNs into rate-coded SNNs. That improves the efficiency of SNNs
on neuromorphic hardware Rueckauer et al. (2016); Sengupta et al. (2019); Fang et al. (2021).
However, such conversion only enables the computation capability of SNNs to approximate that of
ANNs, but never exceed. What is worse, these approaches will greatly degenerate the biological
plausibility of SNN, which is the most characteristic of SNNs distinguished from ANNs.

Biological evidence has proven the existence of delays in the mammalian neocortex, which can be
modulated according to input and output spikes Madadi Asl et al. (2017). In addition to synaptic
weights, delays are usually used as the auxiliary learnable parameters to improve the model capa-
bilities in SNNs Yu et al. (2022); Luo et al. (2022). However, such approaches do not fully consider
the biologically plausible property of delays in natural nervous systems, since delays can directly
affect the precise timing of spikes. Therefore, a delayed spiking neural network (DSNN) and an
exponential time dependent plasticity (ETDP) algorithm are proposed in this study. Both the DSNN
and ETDP are equipped with high levels of biological plausibilities, which are different from most
conventional SNNs. Comprehensive experiments are conducted to evaluate the performance of pro-
posed approaches. To sum up, the main contributions of this study can be described as follows:
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• A delay-based DSNN is proposed, using only dendrite and axon delays as learnable
paramters instead of elaborate parameters in other SNNs.

• A biologically plausible ETDP is introduced to train the DSNN. In ETDP, the global and
local time dependences between presynaptic and postsynaptic spikes decide whether the
dendrite and axon delays increase or decrease, and the forward and backward propagation
time of spiking signals determine the change amplitudes of delays.

• Compared with other SNNs and learning methods, the DSNN trained by ETDP achieved
satisfactory performances on machine learning tasks and retained high levels of biological
plausibility simultaneously.

2 RELATED WORKS

SpikeProp is one of the earliest SNN models that temporally encode information in terms of spike
timing Bohte et al. (2002). It formulates the spike timing as a function of the neuron’s membrane
potential and a GD-based learning algorithm to minimize the timing differences between output and
desired spikes. Later, several improved versions have been proposed, such as Extending SpikeProp
Schrauwen & Van Campenhout (2004), Multispike SpikeProp Booij & tat Nguyen (2005), Quick-
Prop and Rprop McKennoch et al. (2006). Another SNN with a temporal coding scheme is proposed
in Mostafa (2017). By deducing a brief formulation of the relation between input and output spike
times, MSNN works very similarly to conventional ANNs. It can be trained on large-scale datasets
with the aid of GPU acceleration. Following research that attempts to improve the MSNN can be
found in Comsa et al. (2020); Zhou et al. (2021); Fang et al. (2021).

Tempotron is a biologically plausible supervised learning algorithm to train spike timing-based neu-
rons Gütig & Sompolinsky (2006). It enables a single LIF neuron to encode categorical feature
information in the latencies of single spikes or synchronized multi-spikes instead of spike counts.
Afterward, an extended multi-spike tempotron named aggregate-label learning is introduced to train
LIF neuron models on the temporal credit assignment problem Gütig (2016). It improves the ca-
pacity of neurons by producing multiple output spikes, rather than simply giving out binary spiking
and non-spiking signals. In Yu et al. (2018), a threshold-driven plasticity algorithm is proposed to
improve the efficiency of multi-spike tempotron, based on the linear assumption of threshold. Re-
cently, Qin et al. (2023) proposed an attention-based temptron, in which the output spikes are divided
into clusters. Then, these spike clusters are used to encode information instead of discrete spikes.
The spike timing-dependent plasticity (STDP) is used to train the specific SNN, whose two-layer
framework consists of different kinds fo neurons, the layer of excitatory neurons and the other layer
of inhibitory ones Diehl & Cook (2015). It achieves very satisfactory performance on the image
recognition problem in an unsupervised learning way.

In general, there are two main training methods for SNNs, including the GD-based supervised learn-
ing algorithm and the STDP-based unsupervised learning algorithm. The GD algorithm is com-
monly used to train conventional ANNs. It is accurate and efficient to optimize the object function.
However, it seems impossible that such a specific error calculated by derivation can be implemented
in the brain at the same time. Compared with the GD algorithm, the STDP algorithm is more biolog-
ically plausible. It has been reported in the nervous system of various species. But, its optimization
performance is relatively limited as an unsupervised learning algorithm.

Naturally, plenty of research attempts to gain advantages from both GD and STDP methods and
avoid their shortcomings simultaneously. For instance, ReSuMe is a supervised learning method
that enables the SNN to code neural information in precise spike timing trains Ponulak & Kasiński
(2010). It employs the interaction between two STDP processes, based on well-recognized physio-
logical phenomena. SPAN applies the well-known Widrow–Hoff rule to adjust the synaptic weights,
and achieves a desired input/output spike behavior in a supervised fashion Mohemmed et al. (2012).
To train multilayer SNNs, a nonlinear voltage-based learning rule named SuperSpike is proposed
in Shrestha & Orchard (2018). It enables the deterministic IF neurons to perform nonlinear com-
putations on spatiotemporal spike patterns. SLAYER is a new backpropagation mechanism to train
synaptic weights and axonal delays, which uses a temporal credit assignment policy to backprop-
agate the error to each preceding layer Shrestha & Orchard (2018). It can overcome the non-
differentiable problem of spike functions, and train the SNNs with deep architectures. In addition,

2



Under review as a conference paper at ICLR 2024

i-1 j-1 k-1

i j k

i+1 j+1 k+1

Figure 1: Delayed spiking neural network with three fully-connected layers. i, j and k are the
indexes of neurons on the input, hidden and output layers, respectively.

other surrogate gradient learning algorithms can be found in Neftci et al. (2019); Zhang & Li (2020);
Zheng et al. (2021).

3 DELAYED SPIKING NEURAL NETWORK

The architecture of DSNN with three fully-connected layers has been presented in Fig. 1. A modified
IF neuron with an exponentially decaying synaptic current kernel is used as the computing unit of
DSNN. The kernel merely considers the time delays of signals passing through the axons, synapses
and dendrites,to replace the synaptic weights which are commonly used in the conventional SNNs.
The kernel function (κ) of IF neurons can be described by

κ(t− tiin) = Θ(t− tiin)e
(−

t−tiin−t
ij
d

τ ),

with Θ(t) =

{
1 if t ⩾ 0

0 otherwise,

(1)

where tiin represents the time of spike from neuron i arriving at the postsynaptic structure of the next
neuron j. τ denotes a time constant that determines the speed of the exponential decaying of spike-
caused synapse current. tijd is the dendrite delay, modeling the dendrite structure’s time effect in
integrating input spikes and then causing the membrane potential change of neuron j. As illustrated
in Fig. 1, tiout is the firing time of neuron i, tia represents the axon delay which contains the time of
spike traveling through the axon of neuron i, and the time of electrical-chemical signal transduction
within the presynaptic structure. Thus, we can get tiin = tiout + tia. It is notable that, once a neuron
fires, it will not be permitted to produce any spikes again in the same trial.

Each neuron of DSNN will receives N spikes from the previous neurons in a trial at times
{t1in, t2in, · · · , tNin}. As presented in Fig. 2, the membrane dynamic of neurons can be described
by

duj(t)

dt
=

N∑
i=1

κ(t− tiin),

with B.C. Ti−1(t
i
in) = Ti(t

i
in),

(2)

where uj is the membrane potential of neuron j. The given boundary conditions (B.C.) are based
on the assumption of the membrane potential’s continuity. And Tk is given by

Tk(t) =

k∑
i=1

τ(−e−
t−tiin−t

ij
d

τ ) + Ck, (3)

where k ∈ {1, 2, · · · , N}, Ck is the integration constant. By solving Eq. 2 (details in Appendix B),
for t < tjout, the membrane potential of neuron j is given by

uj(t) =

N∑
i=1

Θ(t− tiin) e
t
ij
d
τ · τ(1− e−

t−tiin
τ ). (4)
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Figure 2: Causal set of a single neuron in the DSNN.

Considering neuron j spikes at the output time tjout, only the input spikes that arrived before tjout
can influence the output time. The subset of these spikes is termed as the causal set of input spikes
C = {i|tiin<tjout}, as illustrated in Fig. 2. Let θj denote the firing threshold of neuron j, we can get
uj(tjout) = θj . Then, Eq. 4 will be transformed into

θj =
∑
i∈C

e
t
ij
d
τ · τ(1− e−

t
j
out−tiin

τ ). (5)

Then, tjout can be implicitly defined by

tjout = τ ln(

∑
i∈C e

t
ij
d
τ e

tiin
τ∑

i∈C e
t
ij
d
τ − θj

τ

). (6)

For the simplification, the time constant τ is set to 1, and etx is definied as zx. Finally, Eq. 6 can be
transformed into

zjout =

∑
i∈C zijd ziin∑
i∈C zijd − θj

. (7)

This transformation of variables yields a direct expression relating input spike times to the output
spike times in the exponential time domain. In Eq. 7, it is easy to observe that the sum of the
exponential dendrite delays of the causal input spikes should be larger than the threshold; otherwise,
they could not cause the neuron to fire. Algorithm 2 presentes pseudocode of the forward process of
DSNN in Appendix A.5.

4 EXPONENTIAL TIME DEPENDENT PLASTICITY

As introduced above, there are two learnable parameters in the DSNN, namely the dendrite delay
zd and the axon delay za. First, the conventional gradient descent (GD) algorithm is applied as the
training algorithm, by minimizing the mean square error function between the desired targets zT
given by the supervised signals and the final outputs of the entire network zO. Take a DSNN with
three fully connected layers as an example in Fig. 1, whose layers contain I , J and K neurons,
respectively. In the framework of the GD algorithm, the loss function of the K output neurons can
be presented as

E =
1

2

K∑
k=1

(zkO − zkT )
2. (8)

According to Eq. 7, zkO is computed as follows,

zjin2 = zjout1 · z
j
a1 = zja1

∑
i∈C1 z

ij
d1 · ziin1∑

i∈C1 z
ij
d1 − θj1

,

zkO = zkout2 · zka2 = zka2

∑
j∈C2 z

jk
d2 · z

j
in2∑

j∈C2 z
jk
d2 − θk2

,

(9)
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where zin1 and zout1 are the input and output of the hidden layer, and zin2 and zout2 are those of
the output layer. zd1, za1, zd2 and za2 are the corresponding dendrite and axon delays of these two
layers. The partial derivatives of E with respect to zd2 and za2 of the output layer are

∂E

∂zjkd2
=

∂E

∂zkO

∂zkO

∂zjkd2
=

(zkO − zkT ) ·
zk
a2(z

j
in2−zk

out2)∑
p∈C2 zpk

d2−θk
2

, j ∈ C2;

0, otherwise.
(10)

∂E

∂zka2
=

∂E

∂zkO

∂zkO
∂zka2

= (zkO − zkT ) · zkout2. (11)

Defining A = 1∑
p∈C2 zpk

d2−θk
2

, it can keep positive if the neuron fires as introduced above. The

dynamic of the parameters zjkd2 and zka2 can be written as

żjkd2 = A ·Rk
d2 · (zkO − zkT ) · (z

j
in2 − zkout2), j ∈ C2,

żka2 = F k · (zkO − zkT ),
(12)

where Rk
d2 = zka2 called the reverse timing term, which denotes the exponential timing of error

signal passing reverse to the dendrite between neurons k and j. And F k = zkout2 is called the
forward timing term, which denotes that of input signal passing forward to the neuron k. The
portion zkO−zkT = et

k
O −et

k
T is named the global timing difference term, whose direction is decided

by the contrast of the final output time tkO and the target time tkT . And the other portion ziin1−z
j
out1 =

etin1 − etout1 is named the local timing difference term, whose direction is determined by the input
and output times of neurons in the current layer. Similarly, the dynamic of the parameters zd1, za1
of the hidden layer can be presented as follows:

żijd1 = A′ ·Rij
d1 · (z

k
O − zkT ) · (ziin1 − zjout1), j ∈ C2 ∧ i ∈ C1,

żja1 = B′ ·Rj
a1 · F j · (zkO − zkT ), j ∈ C2,

(13)

where A′ = 1∑
p∈C2 zpk

d2−θk
2

· 1∑
q∈C1 zqj

d1−θj
1

, and B′ = 1∑
p∈C2 zpk

d2−θk
2

. Both A′ and B′ are constant

positive during the backpropagation process. The reverse timing term Rjk
d1 = zka2 · z

jk
d2 · z

j
a1, denotes

the exponential timing of error signal passing reverse to the dendrite between neurons i and j. The
other reverse timing term Rjk

a1 = zka2 · z
jk
d2 , denotes the reverse exponential timing to the axon of

neuron j. The forward timing term F j = zjout1 represents the exponential timing of input signal
passing forward through the neuron j.

Eqs. 12 and 13 imply that the sign of global term determines the increase or decrease of the axon
delays, and the signs of global and local terms decide whether the dendrite delays increase or de-
crease. The forward and reverse timing terms control the change amplitudes of the dendrite and
axon delays. By initializing large dendrite delays or setting small threshold values, the terms A, A′

and B′ are approximately equal to small positive constant. With the learning rates of ηd and ηa, the
update of dendrite and axon delay between neuron i and j can be given by

∆zjkd2 = −ηd ·Rk
d2 · (zkO − zkT ) · (z

j
in2 − zkout2), j ∈ C2,

∆zka2 = −ηa · F k · (zkO − zkT ),

∆zijd1 = −ηd ·Rjk
d1 · (z

k
O − zkT ) · (ziin1 − zjout1), j ∈ C2 ∧ i ∈ C1,

∆zja1 = −ηa ·Rjk
a1 · F j · (zkO − zkT ), j ∈ C2.

(14)

It is interesting to find that, both the global and local timing difference terms are similar to the
classic STDP algorithm. In the STDP, whether to strengthen or weaken the weights is dependent
on the signs of time differences tin − tout between the pre-synaptic spikes tin and post-synaptic
spikes tout Legenstein et al. (2005); Andrade-Talavera et al. (2023). However, the exponential terms
of time differences etin − etout in the Eqs. 12 and 13 can approximate the theoretic gradients more
accurately. Thus, our learning algorithm is named exponential time dependent plasticity (ETDP). It
is worth noting that these foundations can be easily generalized to the DSNN with multiple hidden
layers in a deep architecture, by simply updating the forward and reverse timing terms.
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Algorithm 1: Backward process of ETDP in one layer of the DSNN
Input: Causal set of neurons in this layer C, global term of the EDTP δ = zO − zT , number

of neurons in the previous and current layers M,N , learning rates for dendrite and axon
delays ηd, ηa;

Output: Updated dendrite and axon delays zd, za;
1 for i = 1 to M do
2 for j = 1 to N do
3 if j /∈ C then
4 δ

′
[i] += 0;

5 ∆zd[i, j] += 0;
6 ∆za[j] += 0;
7 else
8 δ

′
[i] += δ[i] · zd[i, j] · za[j];

9 ∆zd[i, j] += ηd · δ[j] · za[j] · (zout[j]− zin[i]);
10 ∆za[j] += ηa · δ[j] · (−zout);
11 end
12 end
13 end
14 zd ← zd +∆zd;
15 za ← za +∆za;
16 return zd and za.

5 BIOLOGICAL PLAUSIBILITY ANALYSIS

Neuroscientific studies have conclusively demonstrated the ubiquity of spiking time delay in the
mammalian neocortex, underscoring its pivotal role in the signal processing of the nervous system.
For instance, the dynamic regulation of synaptic latency at neocortical and hippocampal excitatory
synapses has been experimentally validated in Boudkkazi et al. (2011); Rama et al. (2015). Egger
et al. observed that conduction delays along intracortical axons strongly influence neural activity
patterns Egger et al. (2020). Madadi et al. highlighted the significant impact of dendritic and axonal
propagation delays on the STDP algorithm in determining the neural structures of SNNs Madadi Asl
et al. (2017).

Recognizing the indispensability of spiking time delays, various studies have sought to incorporate
them into SNNs. For instance, synaptic delay is integrated with synaptic weights to enhance the
learning ability of ReSuMe on spiking neurons Taherkhani et al. (2015), and a modified multispike
learning approach is proposed, which jointly considers synaptic weight and delay Yu et al. (2022).
Both dendritic and axonal delays have been adopted to augment the computational capability of spik-
ing neural P systems Garcia et al. (2021). Additionally, a reconfigurable axon delay is incorporated
into hardware realizations of SNNs to improve performance Ochs et al. (2021).

However, in the aforementioned works, spiking time delays are typically treated as additional learn-
able parameters alongside synaptic weights, resulting in increased complexity and longer running
times for the learning methods Taherkhani et al. (2020). In contrast, our proposed DSNN uniquely
employs only dendritic and axon delays as learnable parameters. Notably, the exponential term of
dendritic delays in our model (et

ij
d ) is functionally analogous to the synaptic weights (wij) used in

conventional IF neurons, if we rewrite Eq. 2 as follows:

duj(t)

dt
=

N∑
i=1

e
t
ij
d
τ ·Θ(t− tiin)e

(− t−tiin
τ ). (15)

The primary motivation behind our study is to emphasize the significance of time delays in the
signal processing of SNNs, aligning with neurobiological observations. Our experiments illustrate
that equipping SNNs solely with dendritic and axon delays, without the commonly used synaptic
weights, can still yield competitive performance. To the best of our knowledge, our DSNN is the
first neuron network that exclusively relies on dendritic and axon delays as learnable parameters.
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As emphasized in Taherkhani et al. (2020), delay is an inherent property of real biological systems,
and incorporating a proper delay learning mechanism can enhance the biological plausibility of
learning algorithms and improve the processing ability of SNNs. Consequently, we introduce a
novel ETDP to train the time delays of DSNN. Eq. 14 reveals that the strengthening or weakening of
delays is determined by the global and local time differences between presynaptic and postsynaptic
spikes, and the change amplitude is related to the forward and backward propagation time of signals.
For simplicity, the update strategy of ETDP can be presented as follows:

∆zjk = η · (zjout − zkin) · (zO − zT ) · (Rk · F k). (16)

Notably, this learning algorithm, originally inspired by the gradient-based approach, intriguingly
bears a striking resemblance to the biologically plausible learning rule outlined in Roelfsema &
Holtmaat (2018). The formulation is as follows:

∆wjk = η ·H(tin, tout) ·RPE(tO, tT ) · FBk, (17)

where ∆wjk denotes the change of connection strength between neurons j and k. The function
H(·, ·) represents the formalized version of Hebb’s rule, with the presynaptic activity (tin) and post-
synaptic activity (tout). The term RPE(·, ·) corresponds to the reward-prediction error function,
quantifying differences between the obtained and expected rewards for the network’s output (tO and
tT ). Neurophysiological studies have revealed that the RPE signal can be induced by in vivo neuro-
modulatory systems. Specifically, the dopaminergic system produces a positive RPE to strengthen
the tagged synapses, while the adenosine system generates a negative RPE to diminish synaptic
strength Izhikevich (2007); Frémaux & Gerstner (2016); Fisher et al. (2017). In addition, it is worth
noting that the RPE is a global signal that influences all the neurons in the network.

The term FBk represents feedback from higher brain regions onto neuron k, originating from the
motor and frontal cortex areas of the brain Moore & Armstrong (2003); Jonikaitis & Deubel (2011).
Importantly, FB remains positive and varies between 0 and 1. Thus, it gates the synaptic plasticity
but never changes the sign. As described above, it becomes evident that the learning rule presented
in Eq. 17 operates in a manner highly similar to our proposed ETDP algorithm. This observa-
tion strongly supports the assertion that ETDP can be considered a biologically plausible learning
algorithm.

6 EXPERIMENTS

To evaluate effectiveness of the DSNN and ETDP algorithm, three benchmark classification prob-
lems are used in the experiments. The axon and dendrite delays are initialized with the random
values of Gaussian distribution in the appropriate zone.

6.1 XOR PROBLEM

The XOR problem is the simplest nonlinear classification problem. It is used to verify whether
the neural network can solve linearly inseparable problems. In this task, the input layer of DSNN
receives two spike signals with different spike timings. Considering the DSNN encodes the neural
information in terms of exponential spike timings, the early spike is set to e0.01, and the late one is
set to e0.99. The number of neurons in the hidden layer is set to 8. The firing threshold θ is 1. And
the learning rates ηd and ηa use a self-adapting manner ranging from 0.01 to 0.001.

With random initial parameters, the experiment is repeated for 1000 times to investigate the robust-
ness of the model on the XOR problem. Each training iteration involved 200 trials, each of which
contains four input patterns and the corresponding output pattern. Since all the parameters in our
model own their specific physical representations, we do not employ extra normalization that will
weaken the biological plausibility of our model. Experimental result shows that the DSNN trained
by the ETDP algorithm achieved a success rate of 100% in all the 1000 repetition experiments,
implying the DSNN have a satisfactory and robust capability to solve the nonlinear problem.

6.2 IRIS DATASET

The Iris is the first used benchmark dataset used in the experiment Fisher (1936). The features are
encoded by the arrival time of input spike trains in the range [0,1]. For convenience of calculations,
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Figure 3: Convergence curves of the DSNN trained by both GD and ETDP algorithms on the MNIST
dataset.

Table 1: Accuracy of SNNs on the Iris dataset.

Models Learning method No. epochs Acc (%)
SpikeProp Bohte et al. (2002) Spiking GD 1000 96.1
Tempotron Gütig (2016) Aggregate-label Learning, GD 100 92.6
MSNN Mostafa (2017) Spiking GD 400 96.3
ReSuMe Ponulak & Kasiński (2010) Widrow-Hoff, STDP 200 94.0
DL-ReSuMe Taherkhani et al. (2015) STDP 100 95.7
SWAT Wade et al. (2010) STDP 500 95.3
DSNN ETDP 400 96.4
DSNN GD 400 96.7

all the spike timings are directly used in the exponential form. The neuron number of the hidden
layer is set to 10. The learning rate is set to 0.1 for both axon and dendrite delays. The performance
of DSNN is evaluated using 5-fold cross-validation. Compared with other SNNs, the results have
been presented in Table. 1. The DSNN trained by the ETDP algorithm achieves an accuracy of
96.7%, which is higher than all the other SNNs. That verifies the DSNN trained by the ETDP can
be regarded as a useful machine learning algorithm. In addition, we also compared the performances
of DSNNs trained by the ETDP and GD algorithms, respectively. The ETDP is slightly worse than
the GD algorithm. This is because the ETDP only used approximate values of gradients, leading to
instability during the optimization process.

6.3 MNIST DATASET

To assess the performance of proposed approaches on image recognition problems, the MNIST
and FashionMNIST datasets are used in our experiment LeCun et al. (1998); Xiao et al. (2017).
The MNIST database contains 70000 greyscale images of handwritten digits, where 60000 labeled
images are used for training, and the remaining 10000 are for testing. The number of neurons is set
to 800 on the hidden layer. The training epoch number is 40, with exponentially decaying learning
rates ranging from 10−4 to 10−6 for both dendrite and axon delays. And the mini-batch size is set to
128. In the initialization, the values of pixels larger than 128 generate a spike at time 0.01; otherwise,
produce a spike at time ln(10) = 2.30. We noticed that using a large temporal separation between
high and low intensities will lead to better accuracy. If the separation is less than the synaptic time
constant τ , the boundary between input spikes would be ambiguous, which will cause accuracy
degeneration. But, a too-large separation cannot further improve accuracy. It will reduce efficiency
and weaken biological plausibility at the same time. As shown in Table 2, the DSNN trained by
the ETDP algorithm obtains a success rate of 96.6%, which is higher than most of the other SNNs.
And the training performance of ETDP is slightly worse than that of GD. The convergence curves
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Table 2: Accuracy of SNNs on the MNIST dataset.

Models Learning method Acc (%)
MSNNMostafa (2017) Spiking GD 97.2
Deep SNN O’Connor & Welling (2016) Spiking GD 96.4
SG-SNN Neftci et al. (2019) Surrogate Gradient, BPTT 98.3
Unsupervised SNN Diehl & Cook (2015) STDP 95.0
SD-CNN Kheradpisheh et al. (2018) STDP, SVM 98.4
Deep SCNNLee et al. (2018) STDP, Spiking GD 91.1
DSNN Spiking ETDP 96.6
DSNN GD 97.2

Table 3: Accuracy of SNNs on the FASHIONMNIST dataset.

Models Learning method Acc (%)
MSNNMostafa (2017) Spiking GD 85.3
Tempotron Gütig (2016) Aggregate-label Learning, GD 10.1
Unsupervised SNN Diehl & Cook (2015) STDP 77.3
DSNN Spiking ETDP 83.1
DSNN GD 85.6

of ETDP and GD have been presented in Fig. 3, implying that the training performance of ETDP is
similar to the GD algorithm again.

6.4 FASHIONSMNIST DATASET

In addition to the MNIST, the performance of the proposed model is also evaluated on the FASH-
IONMNIST dataset, which is a more complex classification task for machine learning methods. The
same hyperparameters are set as described above. As shown in Table 3, the DSNN trained by the
ETDP achieves an accuracy of 83.1%, which is a little lower than the accuracy of 85.6% of the
DSNN trained by the GD algorithm, but still comparable. According to the above experiments, it
can be concluded that using only the parameters of axon and dendrite delays does not affect the
model capability but largely improves the biological plausibility of the DSNN. Also, the ETDP
retains the optimization capability from the GD algorithm and the biological plausibility from the
STDP algorithm, simultaneously.

7 CONCLUTIONS

Inspired by the highlights of delays in biological systems, the DSNN and ETDP learning algorithm
are proposed in this study. Compared with state-of-the-art SNNs, they achieve powerful perfor-
mances on various benchmark tasks, and meanwhile retain high levels of biological plausibilities.
To the best of our knowledge, the DSNN is the sole spiking network architecture that only considers
the dendrite and axon delays as the learnable parameters, and the ETDP is the first training algo-
rithm that uses time differences and propagation time to substitute the gradients precisely. In our
future works, we attempt to expand the DSNN with large-scale achitectures, and further simplify the
computation of the ETDP algorithm without sacrificing efficiency.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chankyu Lee, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Deep spiking
convolutional neural network trained with unsupervised spike-timing-dependent plasticity. IEEE
Transactions on Cognitive and Developmental Systems, 11(3):384–394, 2018.

Robert Legenstein, Christian Naeger, and Wolfgang Maass. What can a neuron learn with spike-
timing-dependent plasticity? Neural computation, 17(11):2337–2382, 2005.

Xiaoling Luo, Hong Qu, Yuchen Wang, Zhang Yi, Jilun Zhang, and Malu Zhang. Supervised
learning in multilayer spiking neural networks with spike temporal error backpropagation. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

Mojtaba Madadi Asl, Alireza Valizadeh, and Peter A Tass. Dendritic and axonal propagation delays
determine emergent structures of neuronal networks with plastic synapses. Scientific reports, 7
(1):39682, 2017.

Sam McKennoch, Dingding Liu, and Linda G Bushnell. Fast modifications of the spikeprop algo-
rithm. In The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp.
3970–3977. IEEE, 2006.

Ammar Mohemmed, Stefan Schliebs, Satoshi Matsuda, and Nikola Kasabov. Span: Spike pattern
association neuron for learning spatio-temporal spike patterns. International journal of neural
systems, 22(04):1250012, 2012.

Tirin Moore and Katherine M Armstrong. Selective gating of visual signals by microstimulation of
frontal cortex. Nature, 421(6921):370–373, 2003.

Catherine Morris and Harold Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophys-
ical journal, 35(1):193–213, 1981.

Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. IEEE
transactions on neural networks and learning systems, 29(7):3227–3235, 2017.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Karlheinz Ochs, Dennis Michaelis, and Sebastian Jenderny. Synthesis of an equivalent circuit for
spike-timing-dependent axon growth: What fires together now really wires together. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 68(9):3656–3667, 2021.

Peter O’Connor and Max Welling. Deep spiking networks. arXiv preprint arXiv:1602.08323, 2016.
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