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Abstract

A desirable dialog system should be able to001
continually learn new skills without forgetting002
old ones, and thereby adapt to new domains003
or tasks in its life cycle. However, continually004
training a model often leads to a well-known005
catastrophic forgetting issue. In this paper, we006
present Continual Prompt Tuning, a parameter-007
efficient framework that not only avoids for-008
getting but also enables knowledge transfer be-009
tween tasks. To avoid forgetting, we only learn010
and store a few prompt tokens’ embeddings011
for each task while freezing the backbone012
pre-trained model. To achieve bi-directional013
knowledge transfer among tasks, we propose014
several techniques (continual prompt initial-015
ization, query fusion, and memory replay) to016
transfer knowledge from preceding tasks and017
a memory-guided technique to transfer knowl-018
edge from subsequent tasks. Extensive exper-019
iments demonstrate the effectiveness and effi-020
ciency of our proposed method on continual021
learning for dialog state tracking, compared022
with state-of-the-art baselines.023

1 Introduction024

Recently, most studies have focused on developing025

dialog systems for specific domains in an offline026

manner, assuming the data distribution stays the027

same. However, this is far from realistic because a028

deployed dialog system is often required to support029

new domains and provide more services constantly030

over time. Therefore, it is crucial for a dialog sys-031

tem to continually learn new tasks without forget-032

ting old ones with high efficiency.033

Previous studies on continual learning (Kirk-034

patrick et al., 2017; Li and Hoiem, 2018) mainly035

focused on solving the catastrophic forgetting (CF)036

problem (McCloskey and Cohen, 1989): when a037

neural model is trained on a sequence of tasks, new038

tasks may interfere catastrophically with old tasks.039

Simply storing a model version for each task to040

mitigate forgetting is prohibitive as the number041
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Figure 1: An illustration of Continual Prompt Tuning.
We train a soft prompt for each task and freeze the
pre-trained model. Several techniques are proposed to
transfer knowledge from preceding tasks (green solid
arrows) and subsequent tasks (red dashed arrows).

of tasks grows, especially when the model size is 042

large. To mitigate catastrophic forgetting with low 043

computation and storage overhead, recent methods 044

freeze the backbone model and propose to train 045

a weight/feature mask (Mallya et al., 2018; Geng 046

et al., 2021) or an adapter (Madotto et al., 2021) for 047

each task independently. However, the techniques 048

above are still not efficient enough, and they largely 049

ignore knowledge transfer among tasks. 050

In this paper, we develop prompt tuning (Lester 051

et al., 2021) for continual learning. We freeze the 052

backbone pre-trained model and train a few prompt 053

tokens’ embeddings for each task, which is highly 054

parameter-efficient to avoid forgetting. As illus- 055

trated by yellow components in Figure 1, we con- 056

catenate the input with a few tunable task-specific 057

prompt tokens before feeding it to a frozen pre- 058

trained model. Since these prompt tokens have 059

only a small number of parameters (0.1% of the pre- 060

trained model’s parameters in our experiments), we 061

can efficiently train and store the prompt for each 062

task. During inference, the same pre-trained model 063

can handle different tasks by inputting different 064

prompts, which is friendly for deployment. 065

Unlike the vanilla approach of training each 066

task’s prompt from scratch and fixing it afterward, 067

we propose Continual Prompt Tuning, a framework 068

that enables knowledge transfer between tasks. 069
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We consider transferring knowledge from both pre-070

ceding tasks (forward) and subsequent tasks (back-071

ward). To realize forward transfer, we propose072

several techniques, including continual prompt ini-073

tialization, query fusion, and memory replay (green074

solid arrows in Figure 1). To achieve positive back-075

ward transfer, we propose a memory-guided tech-076

nique that uses subsequent tasks’ data to update077

the previous tasks’ prompts selectively (red dashed078

arrows in Figure 1).079

We conduct experiments on Dialog State Track-080

ing (DST), a core component of a dialog system,081

using the Schema-Guided Dialog dataset (Rastogi082

et al., 2020). The model continually learns new083

services that have multiple slots to fill. We con-084

catenate all slots’ descriptions with the input and085

insert a sentinel token after each description, for-086

mulating DST as a masked spans recovering task,087

which is similar to the pre-training objective of T5088

(Raffel et al., 2020). We empirically show that our089

proposed framework effectively outperforms state-090

of-the-art baselines on continual learning for DST,091

and is extremely efficient in terms of computation092

and storage.093

To summarize, our main contributions are:094

1. For the first time, we develop prompt tuning095

for continual learning, which avoids forgetting096

efficiently and is friendly for deployment.097

2. We investigate several techniques for forward098

and backward knowledge transfer based on099

prompt tuning, further boosting the continual100

learning performance.101

3. Our experiments on continual DST demonstrate102

the superior performance and efficiency of our103

proposed method.104

2 Related Work105

2.1 Continual Learning106

Continual Learning (CL) studies the problem107

of continually acquiring knowledge from a data108

stream and reusing it for future learning while109

avoiding forgetting. Three kinds of CL methods110

have been developed. Rehearsal methods store111

and replay some training samples from previous112

tasks (Rebuffi et al., 2017; Lopez-Paz and Ranzato,113

2017). Regularization methods apply additional114

loss to aid knowledge consolidation (Kirkpatrick115

et al., 2017; Li and Hoiem, 2018). Architectural116

methods introduce task-specific parameters for new117

tasks and fix parameters for old tasks to prevent118

forgetting, to which our method belongs. Previous 119

architectural methods include dynamic expanding 120

network structure (Rusu et al., 2016), iterative net- 121

work pruning and re-training (Mallya and Lazeb- 122

nik, 2018), learning a parameter mask for each task 123

individually (Mallya et al., 2018), etc. 124

For continual learning in dialog system, variants 125

of general CL methods have been applied (Lee, 126

2017; Shen et al., 2019; Wu et al., 2019; Mi et al., 127

2020; Geng et al., 2021). AdapterCL (Madotto 128

et al., 2021) is the most related to our work, which 129

freezes the pre-trained model and learns an adapter 130

(Houlsby et al., 2019) for each task independently. 131

Compared with AdapterCL, our method is more 132

parameter-efficient, and we explore the effect of 133

both forward and backward transfer. 134

2.2 Prompt-based Tuning 135

Recent studies have found that using a textual 136

prompt to convert downstream tasks to the lan- 137

guage modeling task is a more effective way to 138

use pre-trained language models than typical fine- 139

tuning (Brown et al., 2020; Schick and Schütze, 140

2021). Prompts can be manual designed (Petroni 141

et al., 2019) or generated automatically (Shin et al., 142

2020; Jiang et al., 2020; Gao et al., 2021). Since 143

searching prompts in discrete spaces is sub-optimal, 144

some works (Qin and Eisner, 2021; Liu et al., 145

2021; Han et al., 2021) combine hard text prompts 146

and soft prompts whose embeddings are learned 147

through back-propagation. Lester et al. (2021) 148

show that freezing the pre-trained model and only 149

tuning soft prompts, known as prompt tuning, is 150

parameter-efficient and becomes more competitive 151

with fine-tuning as the model size grows. 152

Prompt tuning differs from embedding adapter 153

(Zhu et al., 2021) that aims to address the multilin- 154

gual embedding deficiency. An embedding adapter 155

transforms all tokens embeddings but do not affect 156

transformer layers’ computation, while prompt tun- 157

ing does not change tokens embeddings but adds 158

new tunable prompt tokens to the input, serving 159

as context and affecting all following transformer 160

layers. Gu et al. (2021) and Vu et al. (2021) further 161

explore the transferability of soft prompts across 162

tasks. While they investigate one-step adaptation, 163

we are interested in prompt transfer in the continual 164

learning setting. 165

2.3 Dialog State Tracking 166

Dialog State Tracking (DST) aims to capture user 167

goals in the form of (slot, value) pairs. Traditional 168
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ontology-based classification methods (Mrkšić169

et al., 2017; Lee et al., 2019) require access to170

all candidate values. To alleviate the reliance on171

the ontology and improve generalization to unseen172

values, some work extract values from a dialog173

context (Xu and Hu, 2018; Gao et al., 2019) while174

others generate values directly to handle situations175

where values are missing from the context (Wu176

et al., 2019; Hosseini-Asl et al., 2020).177

Generation-based models either generate all178

(slot, value) pairs in one pass (Hosseini-Asl et al.,179

2020; Madotto et al., 2021) or generate value for180

each given slot separately (Wu et al., 2019). The181

former are more efficient but can only predict in-182

domain slots and lack transferability while the latter183

can incorporate more information about a slot as184

a query, such as a brief natural language descrip-185

tion (Rastogi et al., 2020), slot type information186

(Lin et al., 2021), possible values (Lee et al., 2021),187

and the task definition and constraint (Mi et al.,188

2021). Our proposed method integrates multiple189

slot descriptions into a single query and generates190

all values in one pass, which improves performance191

without losing efficiency.192

3 Method193

3.1 Overview194

The goal of continual learning is to sequentially195

learn a model f : X × T → Y from a stream of196

tasks T1...TT that can predict the target y given the197

input x and task Tk ∈ T . We denote the data for198

each task Tk as Dk. Our method is based on pre-199

trained language models. Instead of fine-tuning a200

pre-trained model in a traditional manner (Figure201

2(a)), we freeze the model but "reprogram" it to202

solve task Tk by adding m new soft prompt tokens203

Pk = P 1
kP

2
k ...P

m
k to the textual input and tuning204

the embeddings of Pk only. Since the prompt’s205

parameters are much less than the model’s, we save206

Pk for each task to avoid forgetting.207

We treat each service/API as a task in continual208

DST (service and task are used interchangeably).209

To incorporate informative slot descriptions and210

ease the decoding process, we convert the descrip-211

tions into a query with masked spans and formulate212

DST as a masked spans recovering task (Sec. 3.2).213

To enhance knowledge transfer between tasks, we214

propose continual prompt initialization, query fu-215

sion, and memory replay for forward transfer (Sec.216

3.3) and explore a memory-guided technique for217

backward transfer (Sec. 3.4).218

3.2 DST as Masked Spans Recovering 219

In DST, each service Tk has a set of pre-defined 220

slots Sk = {s1, ..., snk
} to be tracked. The input x 221

is a dialog and the output y consists of slot-value 222

pairs: {(s1, v1), (s2, v2), ..., (snk
, vnk

)}. Similar 223

to many NLP tasks, DST can be formulated as a 224

text-to-text generation task. Formally, we define a 225

function gk : X × Y → V∗ × V∗ for each service 226

Tk to transform the original data (x, y) to: 227

x̃, ỹ = gk(x, y) (1) 228

where V is the vocabulary and x̃, ỹ are texts that 229

serve as the model input and output, respectively. 230

For example, x̃ can be the concatenation of x and 231

service name, while ỹ is a sequence of slot-value 232

pairs (Madotto et al., 2021) (Figure 2(a)). 233

Previous research has shown that incorporating 234

a natural language description di for each slot si is 235

beneficial (Lin et al., 2021; Lee et al., 2021). They 236

concatenate the dialog x with each slot description 237

di and decode the value vi independently. However, 238

separately decoding is inefficient, especially when 239

there are many slots. To solve this, we concatenate 240

all slot descriptions and insert a sentinel token after 241

each description to form a query added to the input, 242

formulating DST as a masked spans recovering task 243

that generates all slot values in one pass: 244

x̃ = [x;Qk;Pk]

Qk = “dk1 : 〈M1〉. ... dknk
: 〈Mnk

〉.”
ỹ = “〈M1〉 vk1 ...〈Mnk

〉 vknk
”

(2) 245

where [·; ·] is the concatenation operation and 〈M∗〉 246

are distinct sentinel tokens representing masked 247

spans. The query Qk contains all nk slot descrip- 248

tions for task Tk with nk masked spans and ỹ con- 249

tains corresponding slot values leaded by the sen- 250

tinel tokens. If the value of a slot can not be inferred 251

from the input, we set it to "None". We freeze the 252

pre-trained model’s parameters θ and only optimize 253

the prompt’s parameters θPk
for each service Tk. 254

The loss function is: 255

LθPk
(Dk) = −

|Dk|∑
j=1

log pθ(ỹ
k
j |[xkj ;Qk;Pk]) (3) 256

3.3 Forward Transfer 257

Reusing the knowledge acquired from preceding 258

tasks often improves and accelerates the learning 259

on future tasks. Therefore, we propose three types 260

of techniques for forward transfer that can be em- 261

ployed in combination. 262
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(a) Fine-tuning

Dialog Service name T5 (cuisine=Ethiopian, city=Berkeley)!"

USER: I'd like to find a place to eat.
SYSTEM: In which city are you looking for the 
restaurant and do you have any preferred cuisine?
USER: Find me Ethiopian cuisine in Berkeley.

Dialog: restaurantsService name:

City in which the restaurant is located: <X>.
The amount of money to transfer: <Y>.
Cuisine of food served in the restaurant: <Z>.
…

Query:

(b) Continual Prompt Tuning
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Figure 2: An illustration of Fine-tuning and Continual Prompt Tuning for continual DST. (a) Fine-tuning takes
the dialog and current service’s name as input and tunes T5 to generate slot-value pairs. (b) Continual Prompt
Tuning feeds the dialog, query consisting of slot descriptions and sentinel tokens, and prompt tokens to frozen T5
and tunes the prompt’s embeddings to generate values for all slots in the query. Continual prompt initialization,
query fusion, and memory replay are proposed to enhance forward transfer while subsequent services’ data will
be used for backward transfer. We show an example dialog, service name, fused query, and expected outputs. Slot
names and descriptions are in italic and values are underlined. Note that the second slot description in the query
belongs to another service ("banks") and is inserted by query fusion.

3.3.1 Continual Prompt Initialization263

An intuitive way to transfer knowledge is parame-264

ter initialization. We explore two continual prompt265

initialization strategies. CLInit uses last task’s266

prompt Pk−1 to initialize current task’s prompt Pk.267

SelectInit evaluates all {Pj}j<k on the validation268

set of Tk without training and selects the one with269

the lowest loss to initialize Pk. The initial prompt270

of CLInit has been continually trained on all previ-271

ous tasks, while SelectInit only considers the most272

relevant task without interference from its subse-273

quent tasks. We empirically compare these two274

strategies in Sec. 5.3.275

3.3.2 Query Fusion276

We hope the model can learn to generate values277

according to any slot descriptions, which is a gen-278

eral skill that may improve performance on future279

tasks. However, when training on the current task,280

there is only one query that consists of the slot281

descriptions of that task in a fixed order, which282

may hinder the model from learning the general283

skill. Therefore, we propose to augment the query284

by mixing slot descriptions from the current and285

previous tasks to help the prompt better understand286

the correspondence between slot descriptions and287

values. We fuse the query Qk with previous tasks’288

queries {Qj}j<k for each sample, including three289

steps: 1) sample n1 slots from Sk randomly, where 290

n1 is sampled from [1, |Sk|] uniformly. 2) sample 291

n2 slots from previous tasks’ slots
⋃
i<k Si ran- 292

domly, where n2 is sampled from [1, n1] uniformly. 293

3) combine the above n1 and n2 slots’ descriptions 294

in a random order as new Q
′
k, and modify ỹ accord- 295

ingly. Note that some original slots are dropped, 296

and values for added slots are set to "None". 297

3.3.3 Memory Replay 298

Previous studies (Rebuffi et al., 2017; Lopez-Paz 299

and Ranzato, 2017) store a few samples for each 300

task and replay them when training on new tasks to 301

mitigate forgetting. Since our prompt tuning frame- 302

work has already resolved forgetting, we focus on 303

how these samples benefit the current task. We as- 304

sume we can store |M | samples for each task (|M | 305

should be small) and denote Mi as the memory for 306

task Ti. When a new task Tk comes, we optimize 307

Pk on Dk and M<k =
⋃
i<kMi jointly, changing 308

the loss function to LθPk
(Dk +M<k). 309

When combined with query fusion, query Qi 310

for samples in the memory Mi are also fused with 311

queries {Qj}j≤k,j 6=i from other seen tasks, includ- 312

ing the current task. Note that in this way, samples 313

from other tasks can be viewed as "positive" sam- 314

ples to those added slots in Q
′
i since these samples 315

may have not "None" values for those added slots. 316
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3.4 Memory-Guided Backward Transfer317

Although fixing Pk immediately after training on318

task Tk can avoid forgetting, it also blocks the319

backward knowledge transfer from future tasks.320

Motivated by Chaudhry et al. (2019), we explore321

whether it is possible to improve the performance322

on previous tasks with the help of memory when323

a new task comes. Specifically, for each previous324

task Ti, i < k, we initialize a new prompt P (k)
i to325

Pi and trained it on current task’s data Dk with326

memory Mi as regularization. During training, we327

sample a batch from Dk and a batch from Mi syn-328

chronously and denote the gradient from each batch329

as gori and gref , respectively. We decide the gradi-330

ent for update according to the angle between gori331

and gref :332

g =

{
gori, if gTori gref > 0

0, otherwise
(4)333

which means we abort the update that will increase334

the loss on memory batch. We empirically find that335

this simple abortion is better than projecting gori336

onto the normal plane of gref (Chaudhry et al.,337

2019). After training, we update Pi to P
(k)
i if338

P
(k)
i obtains lower loss and better (or equal) per-339

formance on Mi than Pi.340

4 Experimental Setup341

Recently, Madotto et al. (2021) proposed a con-342

tinual learning benchmark for task-oriented dialog343

systems and compared several classic CL methods.344

We adapt their data processing steps and baselines345

in our experiments.346

4.1 Dataset347

We conduct experiments on Schema-Guided Dia-348

log dataset (SGD) (Rastogi et al., 2020) that has 44349

services over 19 domains. It also provides a one-350

sentence description for each slot. We treat each351

service as a task and only consider dialogs involv-352

ing a single service. We randomly split a service’s353

dialogs into train/val/test sets at the ratio of 7:1:2.354

The number of training samples of each service355

ranges from 112-4.7K, and there are 2-10 slots for356

one service. More details about data statistics can357

be found in the Appendix (Table 8).358

4.2 Evaluation Protocol359

We evaluate DST performance using the widely360

adopted Joint Goal Accuracy (JGA) (Wu et al.,361

2019), which requires all slots’ values are correctly362

predicted. We assign the target service during test- 363

ing to avoid ambiguity since the same dialog can 364

be parsed differently under different services. We 365

denote aj,i as the JGA on the test set of task Ti 366

right after training on task Tj . We evaluate the CL 367

performance as the average JGA on all tasks after 368

training on the final task TT : 369

Avg. JGA =
1

T

T∑
i=1

aT,i (5) 370

Following Lopez-Paz and Ranzato (2017), we 371

define two metrics to measure the effect of forward 372

transfer and backward transfer, respectively: 373

FWT =
1

T − 1

T∑
i=2

ai−1,i

BWT =
1

T − 1

T−1∑
i=1

aT,i − ai,i

(6) 374

FWT is the averaged zero-shot performance on new 375

tasks, evaluating a model’s generalization ability. 376

BWT assesses the impact that learning on subse- 377

quent tasks has on a previous task. Negative BWT 378

indicates that the model has forgotten some previ- 379

ously acquired knowledge. 380

4.3 Baselines and Training Details 381

We adopt the following models from Madotto et al. 382

(2021) as baselines: 383

• Fine-tuning: Fine-tune the model on new task 384

data continually. 385

• Replay: Save |M | samples randomly sampled 386

from the training set of each task Ti to memory 387

Mi and jointly train the model on new task data 388

Dk and memory M<k. 389

• EWC: Maintain the memory in the same way as 390

Replay but use it to compute the Fisher informa- 391

tion matrix for regularization (Kirkpatrick et al., 392

2017). 393

• AdapterCL: Freeze the pre-trained model and 394

train a residual Adapter (Houlsby et al., 2019) for 395

each task independently (Madotto et al., 2021). 396

Above methods use the same input and output for- 397

mat as in Figure 2(a). 398

Prompt tuning based methods including our pro- 399

posed Continual Prompt Tuning are list below: 400

• Prompt Tuning: Formulate DST as a masked 401

spans recovering task (Sec. 3.2) and only tune 402

the prompt for each task independently. 403

• Multi-task Prompt Tuning: Prompt Tuning in a 404

multi-task manner instead of CL. Train a single 405

prompt using all tasks’ data concurrently. 406
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• Continual Prompt Tuning: Prompt Tuning with407

CLInit (Sec. 3.3.1) and query fusion (Sec. 3.3.2).408

– w/ memory with memory replay (Sec. 3.3.3).409

– w/ memory & backward with memory replay410

and memory-guided backward transfer (Sec.411

3.4).412

We use the following setting in the experiments413

unless otherwise specified.414

Training task sequences Since a sequence of all415

(44) tasks is too long for the evaluation purpose, we416

conduct most of the experiments on 15 tasks chosen417

at random to save computing resources. We run418

AdapterCL, Prompt Tuning, and Multi-task Prompt419

Tuning 5 times with different random seeds because420

they are agnostic to task order. The FWT and BWT421

metrics for these models are left blank. We run422

other methods in the same 5 task orders created423

by random permutation. The selected tasks and424

ordering are listed in the Appendix (Table 9).425

Hyper-parameters We use T5-small as the back-426

bone model and reuse its sentinel tokens (Raffel427

et al., 2020). For each task, Continual Prompt Tun-428

ing first trains 10 epochs with fused query (and429

using memory if available) for forward transfer.430

Afterward, it concentrates on the current task and431

continues training 10 epochs on the original data of432

the current task. When using backward transfer, we433

train 5 epochs for each previous task. Other meth-434

ods train 20 epochs for each task. We use AdamW435

and set the learning rate to 3e-5 for Fine-tuning,436

Replay, and EWC, 3e-3 for AdapterCL, and 0.5437

for all prompt tuning based methods. We set the438

batch size to 16 for prompt tuning based methods439

and 8 for other methods. To avoid overfitting, we440

perform early stopping if validation performance441

does not improve for 5 consecutive epochs. The442

weight for EWC regularization loss is 0.01. We set443

the memory size |M | to 50 for each task and save444

the same samples for all methods that require mem-445

ory. We initialize prompt tokens with the tokens446

randomly drawn from the vocabulary. For prompt447

tuning based methods, we tune 100 soft prompt448

tokens with the embedding size 512 for each task,449

resulting in 51.2K parameters. To compare param-450

eter efficiency, we adjust AdapterCL’s parameters451

for each task to be nearly 1x or 20x as ours.452

5 Experiments and Analysis453

The experiments are organized as follows. We com-454

pare our method with baselines in Sec. 5.1, and455

present a comprehensive ablation study in Sec. 5.2. 456

We investigate the effect of prompt initialization in 457

Sec. 5.3, and the effect of model size and prompt 458

length in Sec. 5.4. The study about different mem- 459

ory sizes is in Appendix A due to the page limit. 460

5.1 Main Experiment 461

Computation Resource Analysis. In CL, there 462

is a trade-off between performance and computa- 463

tion resources. Ideally, we hope to utilize the least 464

amount of computation resources to achieve the 465

best performance. We take three vital resources 466

into our consideration. Memory saves previous 467

tasks’ samples, which may involve privacy issue 468

and requires extra storage. Additional parame- 469

ters are the extra parameters we add to our model 470

to cope with different tasks along the CL process, 471

which should be kept to a minimum in order to 472

scale to long task sequences. Tunable parame- 473

ters are the trainable parameters when we learn 474

a task, which is important for GPU memory and 475

computation. We show the usage of these resources 476

in Table 1 (right). Replay stores |M | samples for 477

each task and does not need extra parameters. EWC 478

saves the Fisher information matrix and original 479

parameters, requiring two times additional param- 480

eters. AdapterCL, Prompt Tuning, and Continual 481

Prompt Tuning require no memory and only add a 482

small number (2% or 0.1%) of additional param- 483

eters for each task, largely reducing the computa- 484

tional and storage overhead. Apart from the vanilla 485

form, Continual Prompt Tuning can also utilize the 486

memory if available. 487

CL Performance Analysis. Overall CL results 488

of different methods are summarized in Table 1 489

(left). We have the following findings: 490

• Consistent with Madotto et al. (2021), both Fine- 491

tuning and EWC suffer from catastrophic forget- 492

ting while replaying memory can alleviate the 493

problem to a large extend. Fine-tuning and EWC 494

have a low Avg. JGA because of the large neg- 495

ative BWT, while Replay improves BWT a lot 496

thus has a high Avg. JGA. 497

• Our proposed Prompt Tuning with masked spans 498

recovering is more parameter efficient than 499

AdapterCL. In terms of Avg. JGA, Prompt Tun- 500

ing is much better than AdapterCL with the same 501

size and comparable to AdapterCL with 20x pa- 502

rameters. 503

• Forward transfer through CLInit and query fu- 504

sion is effective for Prompt Tuning. Continual 505
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Method Avg. JGA FWT BWT Memory +Params Tune Params

Fine-tuning 14.30.8 8.31.0 -49.94.4 - 0 1
EWC 13.91.1 8.40.9 -50.84.3 |M |*T 2 1
Replay 58.63.5 10.90.5 -3.22.3 |M |*T 0 1
AdapterCL (20x) 49.81.7 - - - 2%*T 2%
AdapterCL (1x) 30.61.1 - - - 0.1%*T 0.1%

Prompt Tuning 48.10.9 - - -

0.1%*T 0.1%
Continual Prompt Tuning 59.51.4 9.90.7 0 -

w/ memory 60.72.4 13.70.8 0 |M |*T
w/ memory & backward 61.22.5 13.70.8 0.50.4 |M |*T

Multi-task Prompt Tuning 64.01.9 - - - 0.1% 0.1%

Table 1: Performance and resource usage on 15 tasks CL in 5 random orders. Means and standard variances are
reported. "T" is the total number of tasks. "+Param" and "Tune Params" are additional parameters in total and
tunable parameters for each task, respectively, measured by the ratio to the pre-trained model’s parameters. We
adjust AdapterCL’s parameters for each task to nearly 1x or 20x parameters of prompt tuning based methods.

MSR CLInit QF MR Avg. JGA FWT

1 29.61.2 -
2 X 41.82.8 6.70.3
3 X 48.10.9 -
4 X X 57.62.5 9.61.2
5 X X X 59.51.4 9.90.7
6 X X X 60.41.1 11.90.6
7 X X X X 60.72.4 13.70.8

Table 2: Ablation study for masked spans recovering
formulation (MSR), prompt initialization (CLInit or
random), query fusion (QF) and memory replay (MR).

Prompt Tuning improves over Prompt Tuning sig-506

nificantly and outperforms baselines.507

• When memory is available, our method achieves508

the best results w.r.t. all metrics, closing the gap509

between CL and multi-task learning. Memory510

improves zero-shot performance (FWT) on new511

tasks as Replay is better than Fine-tuning and512

Continual Prompt Tuning w/ memory is better513

than without memory.514

• Our memory-guided backward transfer effec-515

tively utilizes subsequent tasks to help previous516

tasks. Although minor, Continual Prompt Tuning517

w/ memory & backward is the only method that518

exhibits positive BWT.519

5.2 Ablation Study520

To understand the effect of different proposed tech-521

niques, we conduct an in-depth ablation study and522

show the result in Table 2. Row 1 and 2 do not for-523

mulate DST as a masked spans recovering (MSR)524

task: the input is the concatenate of the dialog, ser-525

vice name, and soft prompt, while the output is a 526

sequence of slot-value pairs as in Fine-tuning (Fig- 527

ure 2(a)). Several interesting observations can be 528

noted: First, formulating DST as MSR is benefi- 529

cial. Using MSR achieves better CL performance 530

regardless of learning each task independently (row 531

3 v.s. row 1) or continually using CLInit (row 4 532

v.s. row 2). Besides, MSR formulation improves 533

zero-shot generalization on new tasks (row 4 v.s. 534

row 2). Second, forward transfer through CLInit 535

brings large improvement for CL. CLInit outper- 536

forms random initialization greatly for both using 537

MSR formulation (row 4 v.s. 3) and not (row 2 v.s. 538

1). Third, both query fusion and memory replay 539

are effective. When they are used separately, mem- 540

ory replay (row 6) boosts the performance more 541

than query fusion (row 5), while applying them 542

altogether achieves the best performance (row 7). 543

5.3 Continual Prompt Initialization 544

In this experiment (Table 3), we compare CLInit 545

with other prompt initialization strategies for 546

Prompt Tuning in CL. SelectInit (see Sec. 3.3.1) 547

selects the prompt that has the best zero-shot perfor- 548

mance on the current task from all previous tasks’ 549

prompts for initialization. We could see that both 550

SelectInit and CLInit outperform random initial- 551

ization significantly, demonstrating the effective- 552

ness of transferring knowledge from previous tasks 553

through prompt initialization. CLInit is slightly bet- 554

ter than SelectInit in both Avg. JGA and zero-shot 555

generalization (FWT), which reveals the benefit of 556

accumulating knowledge from all seen tasks. In 557

contrast, the prompt initialized by SelectInit has 558
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Initialization Avg. JGA FWT

Random 48.10.9 -
SelectInit 54.52.0 8.21.3

CLInit 57.62.5 9.61.2

Table 3: Comparison of different prompt initialization
strategies for Prompt Tuning.

Training Testing tasks
task sequence T40:44 T30:44 T15:44
T40:44 45.1 - -
T30:44 54.2 59.7 -
T15:44 59.0 64.4 64.3
T1:44 60.7 67.8 69.3

Table 4: Prompt Tuning with CLInit on the last 5, 15,
30, and 44 (all) tasks of the same task order. We report
the Avg. JGA on the last 5, 15, and 30 tasks, respec-
tively.

seen fewer tasks and thus contains less knowledge,559

which might explain the slightly worse result.560

Based on the observation above, we further study561

that whether seeing more preceding tasks further562

helps CLInit. To this end, we choose a task order563

of all 44 tasks at random (see Table 8 in the Ap-564

pendix) and perform Prompt Tuning with CLInit on565

the last 5, last 15, last 30, and all 44 tasks separately.566

Formally, we train on four CL curriculums T40:44,567

T30:44, T15:44, and T1:44, which have the same end-568

ing. We calculate the Avg. JGA on the T40:44,569

T30:44, and T15:44 if possible. As illustrated in Ta-570

ble 4, performance on the same tasks (in the same571

column) increases monotonously as the number of572

preceding tasks grows. This pattern validates that573

the benefit of CLInit becomes more evident as the574

number of tasks increases. This finding suggests575

that our method is suitable for long task sequences.576

5.4 Model Size and Prompt Length577

In this experiment, we analyze the influence of pre-578

trained model size and prompt length. We vary the579

pre-trained model in {T5-small, T5-base, T5-large}580

and prompt length in {1, 5, 20, 100, 150} for Con-581

tinual Prompt Tuning on the 15 tasks (the task order582

is in Table 9 in the Appendix). Figure 3 shows Avg.583

JGA and Table 5 shows FWT. We can observe that:584

First, when fixing the prompt length, increasing585

the model size improves the Avg. JGA as well586

as the generalization ability measured by FWT in587

most cases. Second, when the backbone model588

size is fixed, increasing the prompt length improves589

the overall performance in general. Furthermore,590

Tunable Parameters

A
vg

. J
G

A

0

20

40

60

80

1k 10k 100k

T5-small (60M) T5-base (220M) T5-large (770M)

Figure 3: Avg. JGA for Continual Prompt Tuning with
different pre-trained models and prompt lengths. The
x-axis is the number of tunable parameters in log scale.
The points on each curve correspond to 1, 5, 20, 100,
and 150 prompt tokens from left to right.

Prompt Length

1 5 20 100 150

T5-small (60M) 6.1 6.7 8.9 9.8 9.8
T5-base (220M) 5.7 9.9 12.9 18.3 15.0
T5-large (770M) 10.6 17.0 18.5 28.0 31.2

Table 5: FWT for Continual Prompt Tuning with differ-
ent pre-trained models and prompt lengths.

we found that increasing prompt token length from 591

20 to 100 improves Avg. JGA and FWT more than 592

increasing it from 100 to 150, which is consistent 593

with the finding in Lester et al. (2021). Third, our 594

method becomes more parameter-efficient as the 595

backbone model size grows. With the same num- 596

ber of tunable parameters (x-axis), using a larger 597

pre-trained model achieves better Avg. JGA. 598

6 Conclusion 599

In this paper, we develop prompt tuning for con- 600

tinual learning for the first time. We propose Con- 601

tinual Prompt Tuning, a highly parameter-efficient 602

framework that avoids forgetting and enables for- 603

ward/backward knowledge transfer among tasks. 604

For forward transfer, we explore continual prompt 605

initialization, query fusion, and memory replay 606

techniques. For backward transfer, we devise 607

a memory-guided technique. Extensive experi- 608

ments on continual learning for DST demonstrate 609

the effectiveness and efficiency of our proposed 610

method compared with state-of-the-art baselines. 611

Our method and findings will foster more future 612

studies towards building more scalable, adaptable 613

task-oriented dialog systems. 614
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A The Effect of Memory Size856

In this section, we compare the role of memory in857

Replay and our method. We vary the memory size858

per task |M | in {10, 50, 100} and show the per-859

formance of Replay and Continual Prompt Tuning860

with memory replay (and memory-guided back-861

ward transfer) in Table 6. We can find that increas-862

ing the memory size benefits Replay significantly.863

This is not surprising because Replay and other864

rehearsal methods rely on memory to solve the865

challenging forgetting problem. When the memory866

size is unlimited, Replay degenerates to multi-task867

learning, which is powerful but costly in storage868

and computation.869

Memory Size

10 50 100

Replay 44.01.0 58.63.5 65.60.8
CPT w/ mem. 59.03.3 60.72.4 59.73.2
CPT w/ mem. & back. 58.63.7 61.22.5 60.43.3

BWT -0.40.5 0.50.4 0.80.4

Table 6: Avg. JGA for Replay and Continual Prompt
Tuning (CPT) with memory replay (and memory-
guided backward transfer) using different memory size.
BWT for CPT w/ mem. & back. is also shown.

For Continual Prompt Tuning, however, the870

memory is not used for retaining the performance871

on previous tasks since parameters for previous872

tasks are saved.873

• In forward transfer, the memory helps recall pre-874

vious tasks’ knowledge and serves as a comple-875

ment to CLInit and query fusion. The influence876

on Avg. JGA depends on the effect of transfer877

learning on the current task via multi-task train-878

ing (LθPk
(Dk +M<k)). As shown in the second879

row in Table 6, increasing the memory size does880

not improve Avg. JGA significantly. This result 881

suggests that our method does not need a large 882

memory for forward transfer. 883

• In backward transfer, the memory gives refer- 884

ence gradients to guide the updates and serves as 885

a filter to decide whether to accept the updates. 886

Thus larger memory gives more accurate guid- 887

ance. From the bottom row in Table 6, we can 888

find that increasing memory size can improve the 889

effect of backward transfer. 890

Memory Size

fixed = 50 proportional

Replay 58.63.5 55.80.7
CPT w/ mem. 60.72.4 60.21.9
CPT w/ mem. & back. 61.22.5 60.52.4

BWT 0.50.4 0.30.7

Table 7: Avg. JGA for Replay and Continual Prompt
Tuning (CPT) with memory replay (and memory-
guided backward transfer) using the fixed/proportional
memory size. The total memory sizes are the same.
BWT for CPT w/ mem. & back. is also shown.

We also conduct experiments using a percentage 891

memory budget, setting the memory size for each 892

task proportional to task data size: |Mi| ∝ |Di|. 893

This means low-resource tasks have fewer samples 894

stored in the memory than the original setting. We 895

set the total memory size to 50 * T, where T is the 896

number of tasks. As shown in Table 7, Replay per- 897

forms much worse (58.6→55.8) in the unbalanced 898

task memory setting while the effect on Contin- 899

ual Prompt Tuning w/ mem. is slight (60.7→60.2). 900

Besides, our proposed backward transfer becomes 901

less effective. 902

Overall, these results indicate that compared 903

with Replay, our method uses the memory differ- 904

ently and benefits less from increasing memory 905

size. 906
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Task ID Service # Slots # Dialogs # Samples Avg. tokens

Train Dev Test Train Dev Test Context Query

1 events_3 5 53 7 16 312 40 105 121 47
2 banks_2 4 29 4 9 220 31 72 111 49
3 banks_1 4 144 21 42 1138 169 335 114 57
4 calendar_1 4 118 17 34 773 110 234 112 33
5 movies_3 3 33 5 10 112 18 37 72 26
6 music_2 5 231 33 67 1593 221 469 117 54
7 services_2 5 129 19 37 917 148 253 131 52
8 payment_1 4 25 3 8 233 33 89 171 52
9 media_1 4 196 28 57 1207 182 360 99 48

10 weather_1 2 58 8 17 259 39 66 77 16
11 events_1 6 202 29 58 1424 195 400 132 64
12 flights_4 7 60 9 18 290 41 87 90 77
13 travel_1 4 48 7 14 231 28 63 87 59
14 buses_2 6 111 16 32 857 120 234 137 54
15 events_2 6 400 57 115 3537 521 1067 159 59
16 alarm_1 2 58 9 17 367 49 107 101 22
17 buses_3 7 61 9 18 405 66 114 123 69
18 services_1 5 185 27 53 1241 180 352 129 58
19 buses_1 5 136 20 39 1054 143 313 138 49
20 restaurants_2 9 87 13 28 807 113 240 154 97
21 hotels_2 6 212 31 61 1569 234 460 152 73
22 ridesharing_2 3 64 9 19 380 49 108 106 34
23 rentalcars_1 6 100 14 29 840 120 242 161 59
24 movies_1 8 263 37 76 1873 250 556 122 70
25 ridesharing_1 3 74 10 22 412 57 125 103 36
26 media_3 4 56 8 16 327 42 89 95 36
27 music_3 6 17 3 5 112 19 32 114 60
28 movies_2 3 32 5 10 118 20 38 70 30
29 flights_2 7 129 19 37 822 115 251 127 75
30 services_4 5 86 13 25 680 97 208 154 49
31 flights_1 10 560 80 160 4680 667 1379 168 10
32 services_3 5 131 19 38 959 143 290 143 54
33 flights_3 8 65 10 19 420 75 116 133 79
34 trains_1 7 58 9 17 415 67 117 131 76
35 homes_2 8 62 9 18 424 56 139 140 89
36 rentalcars_2 6 77 11 23 631 91 185 157 61
37 restaurants_1 9 256 37 74 2098 297 581 153 10
38 music_1 6 68 10 20 468 73 142 118 61
39 hotels_4 7 80 12 23 559 99 141 134 72
40 media_2 5 32 4 10 215 29 71 112 59
41 hotels_3 6 90 13 26 737 100 193 157 64
42 rentalcars_3 7 44 7 13 332 55 99 148 72
43 hotels_1 7 99 14 29 868 105 250 161 71
44 homes_1 7 244 35 70 1829 282 540 159 81

Table 8: Statistics of the services we used. Average tokens of dialog context and query is calculated using T5
tokenizer. Services are arranged in the order of their appearance in our 44 task experiment (Sec. 5.3). Last 15
services are used for all our 15 task experiments.
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Task order Tasks’ IDs in order

Order1 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
Order2 39 33 36 42 40 37 38 34 32 35 41 31 30 44 43
Order3 30 41 38 31 43 39 40 33 34 44 37 36 32 35 42
Order4 43 40 44 38 30 37 31 39 32 35 41 34 33 36 42
Order5 30 33 44 31 38 32 42 40 37 43 36 39 41 35 34

Table 9: Five task orders of all our 15 tasks experiments. We use last 15 tasks in Table 8. The task order for Section
5.4 is Order1.
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