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Abstract

Investigating cellular level tissue architecture requires the imaging of intact biological sam-
ples from 3D volumes with high-resolution imaging methods, including confocal microscopy.
A significant challenge for the quantitative analysis of such volumetric data using computer
vision is the degradation of image quality at increased depths due to light scattering, ab-
sorption and optical factors. Here, we introduce a generative cycle consistent adversarial
network (Cycle-GAN) to mitigate these effects, which exploits the property that since the
tissue is self-similar, the appearance of the shallow layers can serve as a proxy for that
of depth degradation-free data. The network model obtains a bi-directional mapping be-
tween the shallow and deep layers so that the restored deep layers resemble the shallow
ones. We demonstrate this approach’s utility on a dataset of images obtained by confocal
imaging of thick cardiac tissue sections from the mouse. Our experiments show that the
restored deeper layers are qualitatively and quantitatively similar to the shallow ones, that
the restored tissue images are amenable to geometric analysis and that in general such an
approach outperforms other methods both qualitatively, as well as quantitatively.
Keywords: Microscopy, reconstruction, confocal imaging.

1. Introduction

In cellular and molecular biology, 3D tissue is often examined using high-resolution imaging
methods such as confocal microscopy. This permits an analysis of 3D tissue architecture
at the micron scale, at which cell membranes, cell nuclei, capillaries, and larger blood ves-
sels, and extracellular material become visible. Deep tissue imaging has many applications
in biology and medicine, including biopsy assessment, tissue ultra-structure analysis, and
assessment of tissue health (Feuchtinger et al., 2016; Abadie et al., 2018). Nonetheless,
thick biological tissue samples often yield poorly resolved imaging data in deeper layers,
where light penetration can be poor. In addition, optical factors such as light scattering
and aberrations caused by the lens also diminish image quality. In recent years, active
tissue clearing methods have been introduced to reduce the impact of the distinct refrac-
tive indices of heterogeneous biological tissue types (Chung et al., 2013; Richardson and
Lichtman, 2015). The tissue samples, combined with compatible refractive index matching
materials, have reduced scattering and absorption, allowing for better penetration of the
optical signal. Even so, deeper layers in actively cleared tissue can still suffer from blurring
and image degradation effects, when imaging with a conventional confocal microscope, as
illustrated in Fig. 3 (top row). With knowledge of the point spread function of the micro-
scope’s objective, it is possible to apply a deconvolution method to sharpen these images
(Dey et al., 2006), but the depth degradation effects remain.

How can ultra-structure cellular properties be assessed from microscopy in these deeper
layers in actively cleared tissue, in the face of such degradation effects? This presents
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a fundamental computer vision challenge, since the ideal (ground truth) restored images
are not available. In the present article we propose to use a generative model to solve this
problem, where the key idea is to use the texture and intensity pattern of the lower layers as
a proxy for what restored images from deeper layers should resemble, under the assumption
that the tissue is self-similar. A deep tissue image is then altered so as to match the statistics
of lower layers while being faithful to its original isophote geometry. We introduce a cycle
consistent generative adversarial model (Cycle-GAN) to accomplish this, a model which
has already shown great promise in computer vision and medical imaging tasks involving
style transfer (Zhu et al., 2017; Tmenova et al., 2019), super-resolution (You et al., 2019),
denoising (Kang et al., 2019; Song et al., 2020; Li et al., 2019) and image enhancement (Ma
et al., 2020). The particular problem we address falls in the realm of image restoration,
since unlike in style transfer applications, where the underlying source and target domains
are different, in ours both are the same, i.e., microscopy images of the same tissue sample.
A similar restoration problem has been addressed in (Xiao et al., 2020), where a pairing
of clean and noisy images is required. This is achieved by using elaborate multiview light
sheet microscopy. In order to acquire images of the same tissue under different levels of
depth degredation, the authors image the sample from six different views and then apply
3D registration. They also use a step by step layering of 100u thick slices of non-florescent
tissue on top of the tissue sample. In contrast, our approach uses the simpler standard
confocal microscopy set up and does not require multi-view 3D registration since we do not
assume pairing.

We have compared our Resnet based noise model free generative approach to classi-
cal generative models based on dictionary learning, as well as modern deep learning based
methods such as residual learning based denoising (Zhang et al., 2017) and analytically
derived methods (Pronina et al., 2020; Li et al., 2017) which assume a degredation model.
All these methods have shown promise in various microscopy image enhancement and de-
noising tasks. However, in our work we exploit the similarity of structure in a 3D tissue
block to learn an implicit tissue model from degredation free images from close to surface
of the tissue block, to construct restored images of the deeper tissue. We do not require
a degredation model or explicit ground truth training data. We note that the Cycle-GAN
architecture has shown great promise in other biomedical applications including denoising
(Elad and Aharon, 2006; Li et al., 2011), segmentation (Zhang et al., 2012) and restoration
(Ma et al., 2020). Our experiments using thick tissue sections of the mouse heart imaged us-
ing confocal microscopy demonstrate the superior qualitative and quantitative performance
of our approach over other methods.

2. Methods

As explained earlier, the challenge in our restoration problem is that we cannot explicitly
model the degradation process. Hence we exploit the power of a Cycle-GAN, demonstrating
the first computer vision application to restoring deeper tissue layers in confocal microscopy
images. In our experiments we demonstrate our method on tissue that has been actively
cleared prior to confocal imaging (Richardson and Lichtman, 2015); this should not be
confused with our figurative use of the word “clearing” in the paper, which refers to the
Cyle-GAN based restoration process of the deeper layers.
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2.1. Cycle-Consistent Generative Adversarial Networks

Our essential goal is to increase the effective depth for analysis of tissue images obtained
in microscopy. Whereas active clearing methods such as the Clarity protocol (Chung et al.,
2013; Richardson and Lichtman, 2015) make the tissue sample translucent and thus increase
light penetration, the 3D microscopy images still suffer from depth dependent degradation
in the optical signal. This depth degradation is caused by a combination of the scattering of
light, and non-uniformities in the tissue sample and tissue preparation procedure, and the
uneven penetration of stains used to highlight particular tissue components. Whereas these
effects reduce the quality of images obtained from deeper layers, modelling these sources of
degradation analytically is not feasible.

For a specific block of tissue, while the shape and structure of organelles can differ from
region to region, the general underlying cellular structure is similar in deep and shallow
layers. The microscopy images of the deeper layers suffer from an unknown non-linear
degradation. Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) (Zhu et al.,
2017) provide an adversarial approach to learn unpaired image to image translations, and
have been used successfully for applications including unsupervised image super-resolution
(Yuan et al., 2018) and image denoising in medical imaging (Kang et al., 2019; Song et al.,
2020; Li et al., 2019). In the present article we describe the first use of a Cycle-GAN to
restore the degraded images in the deeper layers of such confocal microscopy images. We
use the forward and a backward networks of a Cycle-GAN to model the degradation from
shallow to deep tissue and vice-versa respectively. The network architecture is illustrated
in Fig. 1, with the domain of shallow clear images being Y and that of the deeper degraded
images being X. The two transformation networks learn the mapping between domains,
given by G5 : X — Y and F; : Y — X. Here the subscripts refer to the parameters of
the shallow mapping and deep mapping neural networks. To discriminate the translated
“fake” samples in each domain we have two discriminator networks Df; : X — [0,1] and
Dgf :Y — [0,1]. Let the data distribution of domain X be p(x) and that of domain Y be
p(y). Then the adversarial objective of the model (Zhu et al., 2017) is

Laav(5,€) = Eyp(y)[log D (4)] + Epmpa[log (1 — D¢ (Gis(2))), (1)

Eadv(da sz)) = Emwp(m) [lOgD;/))( (‘T)] + IEyfvp(y) [lOg(l - Dq);(Fd(y))] (2)

We also enforce cycle consistency so that an image x in deep domain X when translated by
Gs() and then Fy() should be similar to z, i.e, F;j(Gs(x)) ~ x. For this we use an additional
cycle-consistency loss given by

Leyere(0, ¢) = B [[1Fs(Go(2)) — 2[|1)] + Eypoy [l|Go(Fi(y)) — yll1)]- 3)

This leads to the familiar cycle-GAN min max optimization problem given by

Hlidn leagx Ladv(5,8) + Ladw(s,) + )\Ecycle(sa d). (4)

Here, A is a hyper-parameter, which we set to 10 for our experiments. The value was chosen
after experimentation with different values. Empirically, a value of 10 led to convergence of
both the discriminator as well as the generator networks.
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Figure 1: A schematic of the Cycle-GAN network. See Section 2.1 for a discussion.

For our translation networks, we used an architecture based on 9 Resnet blocks. The
Residual network architecture with skip connections is suited to the task of image restoration
and has been used for denoising as well as other image restoration tasks. For example (Zhang
et al., 2017) exploits the residual framework for denoising Gaussian degraded images. While
(Zhang et al., 2017) uses a single residual unit we use a stacked layer of 9 Resnet blocks in
out generator to model our complex degredation process. Both the generators are identical
in their architecture, consisting first of three convolutional layers with Relu activation. The
first three layers consist of 64, 128 and 256 filters with a stride of 1, 2 and 2 respectively.
This is followed by 9 Resnet blocks followed by two layers of transposed convolution of stride
2 and a final layer of convolution followed by tanh activation. We used the Adam optimizer
with a learning rate of 0.002 for optimization. The optimizer as well as the learning rate
were chosen empirically, and worked well.

3. Experiments

3.1. Datasets

The heart wall presents particular challenges in deep tissue imaging via confocal microscopy,
due to its density and consequently high degree of tissue opacity. To test our methods, we
have used cardiac tissue obtained from two different wild-type mice. The tissue has been
optically cleared using the Clarity method (Chung et al., 2013), followed by sectioning
in axial and coronal planes and staining with fluorescently labeled wheat germ agglutinin
(WGA). WGA serves as a marker for the cell membranes of cardiac myocytes, and also
capillaries and vessel boundaries. With the optical working distance of the objective lens
set to resolve at 2m, we were able to image to a depth of 350um with an Olympus FV3000
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Figure 3: FIRST Row: Sample original (OR) deep confocal microscopy images, which show
degradation effects. SECOND - SEVENTH ROwW: The images from the top row, restored using
the Cycle-GAN (CG), DnCnn (DC), Dictionary Learning (DI), Pure LET (PL), Wiener-
Poisson (WP) and Wiener-Gaussian (WG) methods.
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Figure 4: A comparison of histograms across methods.

confocal microscope. We divide our images into two sets: a ‘deep’ set consisting of 1225
images acquired at depths beyond 200um from the surface of the tissue block closest to the
objective and a ‘shallow’ set consisting of 1225 images acquired at depths upto 60um from
the surface. The datasets were generated from tissue samples from two different animals.
We randomly sampled overlapping regions of size 128 x 128 pixels with 25% overlap. We
further applied a manual quality control to remove any borderline images from each set.
Fig. 2 shows typical samples from shallow layers, depicting sharp myocyte and capillary
boundaries. Fig. 3 (top row) shows typical samples from deep layers, showing the effects of
degradation.

3.2. Experiments and Results

In the dictionary learning experiments we used the full set of shallow images to learn the
dictionary D and the full ‘deep’ set for testing. The image intensities in the ‘shallow’ as
well as the ‘deep’ set are approximately distributed as a gamma distribution, with peaks at
around 0.2 and 0.4 respectively, as illustrated in Fig. 4. The dictionary D was then used
to clear the images from the ‘deep’ set. To quantify the results we used the following two
similarity metrics: a) the Structural Similarity Image Metric (SSIM) (Wang et al., 2004)
between the cleared and the deep image, and b) the Hellinger Similarity Hs, which we define
as the Hellinger Distance between two normalized intensity histograms subtracted from 1:
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Figure 5: A comparison of SSIM and Hellinger similarity across methods.
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and its cleared version, and Hj is computed between the normalized intensity distribution of
a deep image and that of the ‘shallow set’, and also that of the corresponding cleared image
and that of the ‘shallow’ set. Fig. 5 shows these three metrics for each deep test image - the

Hy,=1- \/ 1—> oty The SSIM is calculated between an original deep image
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dark curve is a running average. Fig. 4 (bottom, left) shows the intensity distribution of the
‘cleared’ set, which has shifted towards that of the ‘shallow’ set. This shift is also apparent
in Fig. 5 (middle, right), where the Hy between each cleared image and the ‘shallow’ set
shows a slight increase from below 0.4 to above 0.4, across the dataset. The SSIM between
the ‘cleared’ and ‘deep’ images also remains stable at around 0.6, indicating that the cleared
image is structurally similar to the original degraded deep image. To test the learning based
models including our Cycle-GAN model, the DnCnn model, the Pure LET model, and the
Wiener-Kolmogorov(WK) model we carry out a similar set of experiments. Here we further
divide our ‘shallow’ set into ‘TrainS’ and ‘TestS’ subsets and the ‘deep’ set into ‘TrainD’
and ‘TestD’ subsets, both containing 1169 and 56 images, respectively. We use these 4 sets
to train our Cycle-GAN model for 200 epochs, with a batch size of 2. For DnCnn we used
TrainS to train the model for 365000 epochs with a batch size of 64 and for the WK model
we use a pre-trained UNet based method with a peak Poission noise level of 50 for WP and
a Gaussian noise of variance 0.01 for WG. We tested all models on a separate validation set
of 1315 images, distinct from the one used during training.

3.3. Discussion

We observe that with the Cycle-GAN, the restored image distribution better matches that
of the ‘shallow’ set. The restored images are closer to the shallow ones in terms of their
intensity histograms. The SSIM metric decreases (Fig. 4 (top left)) because each deep
image has undergone more alteration when being translated to its restored version. There
is also a much greater increase in H, between the original ‘deep’ and ’shallow’ images, and
the ‘cleared’ and ‘shallow’ ones (from 0.4 to 0.6). These metrics are also supported by the
qualitative results in Fig. 3. In Pure LET we observe that the histograms of the deep and
restored images are quite close. This is also evident from a qualitative comparison of row 1
and 5. Similarly, a slight shift in the distribution for the case of DnCNN is apparent in row 3.
While this method does restore some of the structure, the images still have the washed out
look of the original degraded images in row 1, although they are less grainy. From Fig. 3 it
is clear that the Cycle-GAN restorations most closely match the appearance of the shallow
(sharp) images in Fig. 2. We note that Cycle-GAN model is based on the assumption that
we are able to acquire good quality shallow images to train the system. A degradation such
as one caused by loss in stain penetration strength, could lead to unreliable reconstruction.

4. Conclusion

The application of computer vision to the analysis of deep tissue images from microscopy is
an emerging area of research, where methods based on deep learning (Weigert et al., 2018;
Li et al., 2017; Pronina et al., 2020; Xiao et al., 2020; Ma et al., 2020) as well as more
classical approaches (Nasser and Boudier, 2019) can be applied. Here we have shown the
promise of a Cycle-GAN to clear image degradation effects at increased depths in a tissue
stack from confocal microscopy. Our method can be applied to any 3D tissue sample which
is self-similar so long as the ultra-structure features in the shallow layers are similar to those
in the deeper ones. Our analysis shows that a Cycle-GAN produces cleared results that are
closer to those in the shallow layers, both in a qualitative sense (Fig. 3) and by quantitative
measures (Figs. 4 and 5) to those produced by other methods.
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