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ABSTRACT

To demystify the (self-supervised) contrastive learning in representation learning, in
the paper we show that a model learned by deep contrastive learning with a family of
loss functions such as InfoNCE essentially approximates an ensemble of one-class
support vector machines (SVMs) with neural tangent kernels (NTKs). This result
comes from the fact that each gradient for network weight update in contrastive
learning can be interpreted approximately as the primal solution for a one-class
SVM with contrastive gradients as input. From the dual perspective, the Lagrange
multipliers provide unique insights into the importance of the anchor-positive-
negative triplet samples. In this way, we further propose a novel sequential convex
programming (SCP) algorithm for contrastive learning, where each sub-problem
is a one-class SVM. Empirically we demonstrate that our approach can learn
better gradients than conventional contrastive learning approaches that significantly
improve performance.

1 INTRODUCTION

Recently, self-supervised representation learning has drawn a great attention due to its potential of
alleviating human annotations for a large amount of data. Specifically, contrastive learning (Chopra
et al., 2005; Hadsell et al., 2006) has become the dominant method in self-supervised learning and
has shown competitive performance over its supervised counterpart on several downstream tasks such
as classification, object detection, and segmentation (Oord et al., 2018; Jaiswal et al., 2020; Deng,
2009; Misra & Maaten, 2020; He et al., 2020; Everingham et al., 2010; Güler et al., 2018; He et al.,
2017; Lin et al., 2014; Faster, 2015).

Typically, given an anchor x, contrastive learning takes augmented views of the same data as positive
pairs (x, x+), and other data in the same batch as negative pairs (x, x−). The contrastive represen-
tation learning attempts to pull the embeddings of positive pairs closer and push the embeddings
of negative pairs away in the latent space by optimizing the objective such as the InfoNCE loss
(Oord et al., 2018; Chen et al., 2020a). Data augmentation (by augmentation we mean any data
transformation, multi-view, or sampling strategies) plays an important role in contrastive learning
and is attracting more and more attention recently. The positive augmentation has been studied
intensively (Blum & Mitchell, 1998; Xu et al., 2013; Bachman et al., 2019; Chen et al., 2020a; Tian
et al., 2020b; Chen et al., 2020c; Tian et al., 2020a; Srinivas et al., 2020; Logeswaran & Lee, 2018;
Oord et al., 2018; Purushwalkam & Gupta, 2020; Sermanet et al., 2018), as well as the negative
data augmentation e.g., (Kalantidis et al., 2020; Ge et al., 2021; Robinson et al., 2021; Sinha et al.,
2021) where most of the works focus on “hard” negative data augmentation. For instance, Robinson
et al. (2021) provided a popular principle that “The most useful negative samples are ones that the
embedding currently believes to be similar to the anchor”, where the embedding refers to the network
output. That is, letting x−1 , x

−
2 be two negative samples w.r.t. the anchor x and ϕ be the current

network, then x−1 is more useful (i.e., harder) than x−2 if ϕ(x)Tϕ(x−1 ) > ϕ(x)Tϕ(x−2 ) holds, where
(·)T denotes the matrix transpose operator. However,

Do such “harder” negatives really help more in contrastive learning? To answer this question,
we did a simple experiment to validate it. We trained ResNet-18 (He et al., 2016) as the backbone
network using SimCLR (Chen et al., 2020a) on CIFAR-10 (Krizhevsky et al., 2009), with no negative
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data augmentation as a baseline. Then we used the learned network to evaluate the cosine similarity
between the output features from an anchor and different negative samples and illustrated their
probability distribution in Fig. 1. Based on the popular principle, in general, the negative samples
from the dataset are “harder” than the negatives augmented by non-semantic negatives (NSN) (Ge
et al., 2021) which are “harder” than purely random Gaussian noise as negative augmentation.
Surprisingly, however, with the same sufficient amount of augmented samples from either NSN or
Gaussian noise, we observed that both well-trained models can achieve very similar accuracy results
that outperform the baseline. This clearly contradicts the principle, because the augmented negatives
as weak as Gaussian noise can also help contrastive learning. Then,

Anchor sample Non-semantic negative sample Random Gaussian noiseOriginal negative sample

Figure 1: Illustration of probability distribu-
tions over cosine similarity between the anchor
and negatives. Both negative data augmentation
approaches can improve the SimCLR baseline
classification accuracy by ∼ 7% on CIFAR-10.

How to define the “hardness” for negative data?
Recall that contrastive learning aims to learn such
an embedding space where similar sample pairs
stay close to each other while dissimilar ones are far
apart. Therefore, the hardness of a negative sample
becomes meaningless without taking its context
into account which includes the anchor as well as
positives and other (seen) negatives. In fact, we
say that a negative x− will be useful in contrastive
learning, regardless of its hardness, as long as there
exists a triplet sample (x, x+, x−) whose gradient
helps reduce the contrastive loss. From this view,
the triplet importance may be more appropriate
to measure in contrastive learning which can be
used to represent the hardness of the negative, to a
certain degree.

So how shall we measure “triplet importance”?
To answer this question, in this paper we try to understand the effect of positive and negative samples
on the network weight update through gradients in contrastive learning. We show that the gradient
of a family of loss functions such as InfoNCE can be taken as an approximate primal solution for
one-class SVMs (Schölkopf et al., 1999) with specific neural tangent kernels (NTKs) (Jacot et al.,
2018). In this way, the Lagrange multipliers from the SVMs can be interpreted as the importance of
such triplet samples. This analysis leads us to a conclusion that a model learned by deep contrastive
learning essentially can be viewed approximately as an ensemble of one-class SVMs with NTKs.

We are aware that very recently Tian (2022) proposed interpreting contrastive learning from the
perspective of feature composition as a minmax problem, and showed in particular that deep linear
networks contrastive learning is equivalent to Principal Component Analysis (PCA). In contrast,
we interpret contrastive learning as a Sequential Convex Programming (SCP) problem where each
sub-problem is a one-class SVM. Besides, our approach has no restrictions on network architectures.
Such differences distinguish our work dramatically from the current literature on contrastive learning.

Contributions. In summary, our main contributions are listed as follows:

• Theoretically, we are the first, to the best of our knowledge, to interpret contrastive learning from
the perspective of one-class SVMs with NTKs, whose Lagrange multipliers indicate the importance
of triplet samples. This results in a novel SCP formulation for contrastive learning.

• Empirically, we demonstrate that our SCP approach can learn better gradients than conventional
approaches that significantly improve the performance for contrastive learning.

2 RELATED WORK

Contrastive Learning. Recently, learning representations from unlabeled data in contrastive way
Chopra et al. (2005); Hadsell et al. (2006) has been one of the most competitive research field (Oord
et al., 2018; Hjelm et al., 2018; Wu et al., 2018; Tian et al., 2020a; Sohn, 2016; Chen et al., 2020a;
Jaiswal et al., 2020; Li et al., 2020b; He et al., 2020; Chen et al., 2020c;b; Bachman et al., 2019;
Misra & Maaten, 2020; Caron et al., 2020). Popular model structures like SimCLR (Chen et al.,
2020a) and Moco (He et al., 2020) apply the commonly used loss function InfoNCE (Oord et al.,
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2018) to learn latent representation that is beneficial to downstream tasks. Several theoretical studies
show that contrastive loss optimizes data representations by aligning the same image’s two views
(positive pairs) while pushing different images (negative pairs) away on the hypersphere (Wang &
Isola, 2020; Chen et al., 2021; Wang & Liu, 2021; Arora et al., 2019). (Arora et al., 2019) Though
the existing works try to understand the properties and explain the behavior of contrastive learning,
ours is the first work that bridge the connection between contrastive learning and one-class SVMs.
The connections between the two help solve some of the key challenges regarding negative data
augmentation in contrastive learning.

Data Augmentation. Empirically, the positive pairs could be different modalities of a signal
(Arandjelovic & Zisserman, 2018; Tian et al., 2020a; Tschannen et al., 2020) or different data
augmentations of the same image, e.g., color distortion, random crop (Chen et al., 2020a;c; Grill
et al., 2020). (Tian et al., 2020b) suggested generating the positive pairs with “InfoMin principle"
so that the generated positive pairs maintain the minimal information necessary for the downstream
tasks. (Selvaraju et al., 2021; Peng et al., 2022; Mishra et al., 2021; Li et al., 2022) proposed
selecting meaningful but not fully overlapped contrastive crops with guidance like attention maps or
object-scene relations. (Shen et al., 2020) empirically demonstrated that introducing extra convex
combinations of data as positive augmentation improves the representation learning. Similar mixing
data strategies could be found in (Lee et al., 2020; Kim et al., 2020; Verma et al., 2021; Li et al.,
2020a; Ren et al., 2022). Other than exploring positive augmentation, a few recent works also focus
on negative data selection in contrastive learning. Typically, negative samples are drawn uniformly
from the training data. Basing on the argument that not all negative are true negatives, (Chuang et al.,
2020; Robinson et al., 2020) developed debiased contrastive loss to assign higher weights to the hard
negative samples. (Wang & Liu, 2021) proposed an explicit way to select the hard negative samples
that are similar to the positive. To provide more meaningful negative samples, (Kalantidis et al., 2020)
studied the Mixup (Zhang et al., 2017) strategy in latent space to generate hard negatives. (Hu et al.,
2021) proposed to learn a set of negative adversaries directly. (Ge et al., 2021) generated negative
samples by texture synthesis or selecting non-semantic patches from existing images. Different from
previous studies, we do not propose a new method for negative data augmentation, but provide some
insights on the real “hard” negatives from the perspective of the gradients of contrastive loss.

One-Class SVMs. The traditional classification algorithm is designed to classify the test data into
two or more classes after training the classifier on the training set. When considering one-class
learning e.g., outlier detection, anomaly detection, novelty detection (Moya & Hush, 1996), the
ultimate goal of a classifier becomes detecting whether the test data belong to the same distribution
of training set. One-class support-vector machines (SVMs) (Schölkopf et al., 1999; Tax & Duin,
1999; Sain, 1996; Schölkopf et al., 2001; Tax & Duin, 2004; Tax, 2002), a classical one-class learning
algorithm, are frequently used in outlier or novelty detection (Pimentel et al., 2014; Chandola, 2007;
Ratsch et al., 2002). In general, the method of (Schölkopf et al., 1999; 2001) learns to separate the
transformed training data from the origin with maximum margin using hyperplane in the feature space
corresponding to a kernel. When estimating a region that contains a large fraction of the training
data, the algorithm uses a parameter to decide the tolerance of outliers in the “normal” training data.
Instead of using hyperplane, another related approach proposed by (Tax & Duin, 1999) minimizes the
volume of a hypersphere that contains as many as possible of the "normal" training data. For certain
kernels like Gaussian radial basis function (RBF), the hypersphere one-class SVM has been shown to
be equivalent to (Schölkopf et al., 2001).

Sequential Convex Programming. Sequential convex programming (SCP) is a classic technique
to iteratively optimize local convex approximations of a non-convex function Boyd et al. (2004);
Duchi (2018). SCP has been widely studied in practice for different applications such as trajectory
optimization and optimal control systems Augugliaro et al. (2012); Morgan et al. (2014); Bonalli et al.
(2019); Wang & Grant (2017). More details can be found in a recent survey (Messerer et al., 2021).

3 APPROACH

3.1 PRELIMINARIES

Notations. In the sequel, we denote x, x+, x− ∈ X as the anchor, its positive and negative samples,
respectively, x′ as an augmented (could be either positive or negative) sample of x, h(x;ω) : X → Rd
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Table 1: List of contrastive gradient coefficients, αx− , for different contrastive losses.

Contrastive Loss Analytic Solution for αx−

InfoNCE (Oord et al., 2018)
exp{ 1

τ f(x,x
+,x−;ω)}

ϵ+
∑

x− exp{ 1
τ f(x,x

+,x−;ω)}
MINE (Belghazi et al., 2018) exp{f(x,x+,x−;ω)}∑

x− exp{f(x,x+,x−;ω)}

Soft Triplet (Tian et al., 2020c)
exp{ 1

τ f(x,x
+,x−;ω)}

exp{−ϵ}+
∑

x− exp{ 1
τ f(x,x

+,x−;ω)}

N + 1 Tuplet (Sohn, 2016) exp{f(x,x+,x−;ω)}
1+

∑
x− exp{f(x,x+,x−;ω)}

Triplet (Schroff et al., 2015) 1{f(x,x+,x−;ω)+ϵ>0}

Lifted Structured (Oh Song et al., 2016) 1{β=log{
∑

x− exp{f(x,x+,x−;ω)+ϵ}}>0}
2β exp{f(x,x+,x−;ω)}∑
x− exp{f(x,x+,x−;ω)}

Modified Triplet (Coria et al., 2020) cσ(cf(x, x+, x−;ω))(1− σ(cf(x, x+, x−;ω))), σ: sigmoid
Triplet Contrastive (Ji et al., 2021) Constant

as a twice-differentiable function represented by a deep neural network and parametrized by ω ∈ Ω,
s(·, x;ω) = h(·;ω)Th(x;ω) as a similarity score, d(·, x;ω) = ∥h(·;ω)−h(x;ω)∥2 as the Euclidean
distance, f(x, x+, x−;ω) = 1

2

[
d(x+, x;ω)2 − d(x−, x;ω)2

]
, and ∥ · ∥2,∇, (·)T as the ℓ2 norm, the

gradient operator (w.r.t. ω by default), and the matrix transpose operator, respectively.

InfoNCE Loss. It is defined as ℓNCE = −
∑
x τ log

exp{ 1
τ s(x

+,x;ω)}
ϵ exp{ 1

τ s(x
+,x;ω)}+∑

x− exp{ 1
τ s(x

−,x;ω)} =∑
x τ log

[
ϵ+

∑
x− exp

{
1
τ [s(x

−, x;ω)− s(x+, x;ω)]
}]

, where τ is the temperature that controls
the sharpness and ϵ ≥ 0 is a predefined constant. Note that ϵ = 1 has been used in many works such
as SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020; Tian et al., 2020a), and ϵ = 0 was used in
decoupled contrastive learning (DCL) (Yeh et al., 2021). Now we can easily write down its gradient,
∇ℓNCE(ω) =

∑
x∇ℓNCE(x;ω) with∇ℓNCE(x;ω) =

∑
x− p(x−)∇

[
s(x−, x;ω)− s(x+, x;ω)

]
with p(x−) =

exp{ 1
τ [s(x−,x;ω)−s(x+,x;ω)]}

ϵ+
∑

x− exp{ 1
τ [s(x−,x;ω)−s(x+,x;ω)]} ∈ [0, 1]. Then stochastic gradient descent (SGD)

can be used to update network weights.

(ϕ, ψ)-Family of Contrastive Loss. Tian (2022) defined a family of contrastive loss functions as
ℓϕ,ψ =

∑
x ϕ (

∑
x− ψ (f(x, x+, x−;ω))), where ϕ, ψ are monotonously increasing and differen-

tiable scalar functions, that generalizes several different contrastive losses including InfoNCE (i.e.,
ϕ is the log function with ϵ, and ψ is the exp function with τ and ∥h(x;ω)∥2 = ∥h(x+;ω)∥2 =
∥h(x−;ω)∥2). Similarly, its gradient can be written down as∇ℓϕ,ψ(ω) =

∑
x∇ℓϕ,ψ(x;ω) with

∇ℓϕ,ψ(x;ω) = ϕ′x
∑
x−

ψ′
x−∇

[
d(x+, x;ω)− d(x−, x;ω)

]
=

∑
x−

αx−∇
[
d(x+, x;ω)− d(x−, x;ω)

]
,

(1)

where ϕ′x, ψ
′
x− ≥ 0 denote the first order derivatives of ϕ, ψ given the corresponding data and ω and

αx− = ϕ′xψ
′
x− ≥ 0. Table 1 lists some examples for αx− where 1{·} denotes an indication function

returning 1 if the condition holds, otherwise 0. For the first four losses in Table 1, we can see that each
αx− ≥ 0 and

∑
x− αx− ≤ 1, and for the last four losses, αx− is upper bounded (and so is

∑
x− αx−

that can be rescaled to [0, 1]). All such losses can be minimized based on Eq. 1 using SGD.

One-Class SVM. Schölkopf et al. (1999) proposed a one-class SVM with the primal formulation as

min
w,ξ,ρ

1

2
∥w∥22 +

1

νN

N∑
i=1

ξi − ρ, s.t.wTxi ≥ ρ− ξi, ξi ≥ 0,∀i ∈ [N ], (2)

where xi is the i-th input vector, w, ρ are the model parameters, ν ∈ (0, 1) is a predefined trade-off
scalar, and ξi is a slack variable. The corresponding dual form is

min
α

1

2

∑
i,j

αiαjx
T
i xj , s.t. 0 ≤ αi ≤

1

νN
,
∑
i

αi = 1,∀i =⇒ w =
∑
i

αixi, (3)
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where each {αi} denotes the Lagrange multipliers in the dual. By comparing Eq. 3 with Eq. 1, we can
see that if we set αi ← αx− ,xi ← ∇

[
d(x+, x;ω)− d(x−, x;ω)

]
, the gradient can be represented

as a solution of the one-class SVM, provided that αx− satisfies the conditions in the SVM.

3.2 SEQUENTIAL CONVEX PROGRAMMING FOR CONTRASTIVE LEARNING

Algorithm 1 Stochastic SCP with One-Class
SVMs for Contrastive Learning
Input : triplet dataset D = {(x, x+, x−)},

functions {fi}, hyperparameters C
and {ηt}

Output :network weights ω∗

Initialize network weights ω0;
for t = 0, · · · , T − 1 do

Select a batch of triplets from D uniformly
at random;
{α∗

i } ← OneClassSVM({fi}, {∇fi}, C)
in Eq. 7;

∆ω∗
t ←

∑
i α

∗
i∇fi(ωt) in Eq. 8;

ωt+1 ← ωt − ηt∆ω∗
t ;

end
return ω∗ ← ωT ;

In this section, we will try to build the connections
between contrastive learning and one-class SVMs.

Our Learning Objective. To simply our notations,
we will refer to fi(ωt) ≡ f(x, x+, x−;ωt) where i
denotes the index of triplet (x, x+, x−) in the batch.
In order to match the contrastive gradients in Eq. 1
and αx− in Table 1, we define our objective as

min
ω

∑
i

fi(ω)⇔ min
ω,ξi≥0

∑
i

ξi, s.t.fi(ω) ≤ ξi − ρ,

(4)

where it holds that fi(ω) + ρ ≥ 0,∀i,∀ω,∃ρ ∈ R.

Linear Approximation & Network Update. The
key idea in SCP is a locally linear approximation as

fi(ωt+ 1
2
) ≈ fi(ωt)−∇fi(ωt)T∆ωt (5)

with ωt+ 1
2
= ωt −∆ωt. To further reduce the approximation error, we utilize the linear interpolation

(Powell, 1998) between ωt and ωt+ 1
2

, leading to ωt+1 = ωt − ηt∆ωt, ηt ∈ [0, 1] for network update.

Sequential Convex Programming with One-Class SVMs. Our basic idea in SCP is to control the
loss reduction through the term∇fi(ωt)T∆ωt for each triplet by sequentially approximating the loss
landscapes locally with one-class SVMs. By comparing Eq. 4 with Eq. 2, one of the key differences
is the regularization in the objective function. In order to connect one-class SVMs with the gradients
in Eq. 1, we also introduce the same regularization into Eq. 4, and based on the linear approximation
in Eq. 5 further propose a new family of one-class SVMs for contrastive learning as follows:

min
∆ωt,ξi≥0,ρ

1

2
∥∆ωt∥22 + C

∑
i

ξi − ρ, s.t. fi(ωt)−∇fi(ωt)T∆ωt ≤ ξi − ρ, ∀i (6)

dual−−−−⇀↽−−−−
primal

max
0≤αi,t≤C

∑
i

αi,tfi(ωt)−
1

2

∑
i,j

αi,tαj,t∇fi(ωt)T∇fj(ωt), s.t.
∑
i

αi,t = 1, (7)

where C ≥ 0 is a predefined scalar and {αi,t} are the Lagrange multipliers for the dual of Eq. 7. As
a result, letting {α∗

i,t} be the optimal multipliers, we then have the primal solution ∆ω∗
t as

∆ω∗
t =

∑
i

α∗
i,t∇fi(ωt) =

∑
i

α∗
i,t∇

[
d(x+, x;ω)− d(x−, x;ω)

]
. (8)

By comparing Eq. 1 with Eq. 8, we can see that if we set αx− = α∗
i,t, our one-class SVM solution

will share the same formula and similar properties, and thus α∗
i,t can indicate the importance of the

triplet for learning, to a certain degree. The key difference is that those losses have analytic solutions
of the weights for contrastive gradients with higher computational efficiency and better usage of
memory in large-scale scenarios, while our approach involves optimization as intermediate steps that
potentially find better weights for gradient combinations with much fewer samples. In summary, our
stochastic learning algorithm is shown in Alg. 1.

3.3 ANALYSIS

Lemma 1 (Trust Region for ∆ω∗
t ). For ∆ω∗

t in Eq. 8, it holds that

∥∆ω∗
t ∥2 ≤ min

{
max
i
∥∇fi(ωt)∥2,

[
max
i
fi(ωt) + min

j

{
fj(ωt) + max

i

{∣∣∣∇fj(ωt)T∇fi(ωt)∣∣∣}}] 1
2

}
.

(9)

5



Under review as a conference paper at ICLR 2023

Proof. Based on Eq. 8, we can easily get

∥∆ω∗
t ∥2 ≤

∑
i

α∗
i,t∥∇fi(ωt)∥2 ≤ max

i
∥∇fi(ωt)∥2. (10)

Letting ξ∗i , ρ
∗ be the optimal solutions for the primal in Eq. 6 as well, then we have

1

2
∥∆ω∗

t ∥22 − ρ∗ ≤
1

2
∥∆ω∗

t ∥22 + C
∑
i

ξ∗i − ρ∗ =
∑
i

α∗
i,tfi(ωt)−

1

2
∥∆ω∗

t ∥22

=⇒∥∆ω∗
t ∥22 ≤

∑
i

α∗
i,tfi(ωt) + ρ∗ ≤ max

i
fi(ωt) + ρ∗. (11)

Based on the property of a support vector indexed by j, it also holds that ∀j,

ρ∗ = fj(ωt)−∇fj(ωt)T∆ω∗
t

≤ fj(ωt) +
∣∣∣∑

i

α∗
i,t∇fj(ωt)T∇fi(ωt)

∣∣∣ ≤ fj(ωt) + max
i

{∣∣∣∇fj(ωt)T∇fi(ωt)∣∣∣}
=⇒ρ∗ ≤ min

j

{
fj(ωt) + max

i

{∣∣∣∇fj(ωt)T∇fi(ωt)∣∣∣}} . (12)

By substituting Eq. 12 into Eq. 11 and together with Eq. 10, we can complete our proof.

Definition 1 (Neural Tangent Kernel in Contrastive Learning). We define a neural tangent kernel as

κω
(
(xi, x

+
i , x

−
i ), (xj , x

+
j , x

−
j )

)
= ∇f(xi, x+i , x

−
i ;ω)

T∇f(xj , x+j , x
−
j ;ω), (13)

for all the triplets (xi, x+i , x
−
i ), (xj , x

+
j , x

−
j ) ∈ X × X × X .

Lemma 2 (Contrastive Difference Approximates Kernel Aggregation). Suppose that (1) function f is
Lipschitz continuous and smooth over ω for any triplet, i.e., both∇f and∇2f exist everywhere and
are upper bounded, and (2) {ηt} in Alg. 1 satisfies limt→∞ ηt = 0,

∑∞
t=0 ηt =∞,

∑∞
t=0 η

2
t <∞.

Then given a new triplet (y, y′, y′′) we have

lim
T→∞

f(y, y′, y′′;ωT ) ≈ − lim
T→∞

T−1∑
t=0

ηt
∑
i

α∗
i,tκωt

(
(xi, x

+
i , x

−
i ), (y, y

′, y′′)
)
. (14)

Proof. We can recursively apply the second-order Taylor series to decompose f . Based on Lemma 1
and the assumptions on f we know that ∆ω∗

t can be upper bounded. Then since

f(y, y′, y′′;ωt+1)− f(y, y′, y′′;ωt) = −ηt∇f(y, y′, y′′;ωt)T∆ω∗
t +

η2t
2
[∆ω∗

t ]
T∇2f(y, y′, y′′; ω̃t)∆ω

∗
t

= −ηt
∑
i

α∗
i,tκωt

(
(xi, x

+
i , x

−
i ), (y, y

′, y′′)
)
+O

(
η2t
)
,

where ω̃t is a linear interpolation between ωt and ωt+1, we can sum up over t on both sides so that

f(y, y′, y′′;ωT )− f(y, y′, y′′;ω0) =

T−1∑
t=0

[
−ηt

∑
i

α∗
i,tκωt

(
(xi, x

+
i , x

−
i ), (y, y

′, y′′)
)
+O

(
η2t
)]
,

where both f(y, y′, y′′;ω0) and
∑∞
t=0O(η2t ) are upper bounded. Now by taking a limit over T , we

can complete our proof.

4 EXPERIMENTS

To verify our analysis that contrastive learning approximates the ensemble of one-class SVMs, we
follow the representation learning and linear probe protocol (Oord et al., 2018; He et al., 2016; Yeh
et al., 2021). We conduct comprehensive experiments on CIFAR-10 (Krizhevsky et al., 2009) and
STL-10 (Coates et al., 2011). Details are shown as follows.
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Figure 2: Comparison of our approach based on one-class SVMs and two contrastive losses on (left)
CIFAR-10 and (right) STL-10 with the same linear classification protocol.

4.1 DATASETS & BASELINE APPROACHES

The CIFAR-10 dataset consists of 60,000 32×32 color images in 10 classes. There are 50,000 training
images and 10,000 test images. STL-10 has 5,000 labeled training images in 10 classes and 100,000
unlabeled images. There are 800 test data for each class. Each instance has 96×96 pixels. We take
the labeled part in our experiment without label leaking for the self-supervised pretraining. Since the
purpose of this work is not to pursue the state-of-the-art performance on the widely used benchmark
dataset but to demonstrate the theoretical analysis we made, we created a toy dataset CIFAR-10-toy
by sampling 25% data from the original dataset for pretraining to mitigate the training overload
in Alg. 1. The downstream linear evaluation is made on the original CIFAR-10 and STL-10. We
compare our algorithm with InfoNCE loss (Oord et al., 2018) and decoupled contrastive learning
(DCL) (Yeh et al., 2021) loss following SimCLR (Chen et al., 2020a) with ResNet-18 (He et al.,
2016) as the backbone encoder. We refer to both methods as baselines in the following sections.

4.2 IMPLEMENTATION DETAILS

During pretraining, we follow the commonly used instance discrimination pretext task (Wu et al.,
2018; Ye et al., 2019; Bachman et al., 2019). We consider two views of the same image using the
same data augmentation to form a positive pair. CIFAR-10-toy and STL-10 are randomly cropped to
size 32× 32 and 64× 64, respectively. Then the random horizontal flip, color jittering, and random
grayscale are taken following (Peng et al., 2022). The negative samples are other image views in the
data pool. Usually, the negatives are all the other data from the same mini-batch. Due to the hardware
limitation for extracting and storing per-sample gradients in Eq. 7, we design the experiment to
reduce the number of data points in Eq. 7 by sampling triplets of (x, x+, x−) in every mini-batch so
that we can finish our experiments within a reasonable time without any extra code optimization.

We sample 20, 40, 60, 80, 100 triplets randomly in every mini-batch from 128× 127 = 16, 256 in
total to show the performance of our approach. For a fair comparison, the same number of triplets are
used in InfoNCE and DCL. In the implementation of InfoNCE and DCL, we use the negative mask to
sample (x, x−) pairs first. Once the (x, x−) is determined, the corresponding x+ is also determined
since it is just another view of x.

We train our algorithm and baseline methods representation backbones for 50 epochs with a batch
size 64, SGD optimizer with a momentum of 0.9, and weight decay of 10−4. we conduct our
experiments on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and a single Nvidia Quadro RTX
6000 with 24GB memory. We apply CVXOPT (Vandenberghe, 2010) to solve Eq. 7, which runs on
the CPU. We implement our algorithm and baseline methods based on the work of (Peng et al., 2022).
Following the small-scale benchmark (Chen et al., 2020a; Yeh et al., 2021; Peng et al., 2022), we set
the temperature τ to 0.07 for InfoNCE and DCL. We use a cosine-annealed learning rate of 0.5 for
InfoNCE. For DCL learning rate, we use 0.0075 as suggested by (Yeh et al., 2021). For the learning
rate in our algorithm, we utilize either a cosine-annealed learning rate starting from 0.5 or a fixed
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Table 2: Accuracy comparison under the linear classification protocol on CIFAR-10.

pretrained architecture # triplets
20 40 60 80 100 16,256

InfoNCE ResNet-18 28.56 28.99 23.46 36.91 36.92 57.75
DCL ResNet-18 20.41 24.82 28.41 34.35 37.04 64.58
one-class SVM ResNet-18 30.22 34.62 38.79 45.13 49.41 -

Table 3: Accuracy comparison under the linear classification protocol on STL-10.

pretrained architecture # triplets
20 40 60 80 100 16,256

InfoNCE ResNet-18 27.48 28.93 35.58 33.70 35.09 50.65
DCL ResNet-18 20.12 19.90 26.85 31.89 32.01 59.45
one-class SVM ResNet-18 31.91 42.70 45.38 44.17 46.66 -

learning rate of 0.0075. The hyper-parameter C in Alg. 1 is also slightly tuned using cross-validation
and finally set C values to 0.15 and 0.17 whose best performance is reported. We believe further
tuning the C value would boost the one-class SVM algorithm performance.

To evaluate our approach and compare our results with baselines, we adopt the same setting as in
(Peng et al., 2022) for training the linear classifier for all methods. The linear classifier is trained
for 50 epochs with a learning rate of 10.0 for all the experiments with a batch size of 512 and SGD
optimizer with a momentum of 0.9.

4.3 RESULTS

We evaluate the performance of Alg. 1 as well as baseline methods with linear classification on frozen
features following a common protocol in (He et al., 2020). After self-supervised pretraining, we
freeze the network except for the last fully connected layer. We train the last layer classifier in a
supervised way using the full dataset. We then report the top-1 classification accuracy on the test
dataset. For the classifier, we do not search hyper-parameters, but keep exactly the same setup of the
linear evaluation for all the experiments.

Our results on CIFAR-10 and STL-10 are shown in Table 2 and Table 3 and illustrated in Fig. 2.
In the last column of the two tables, we also list the accuracy of baseline methods trained using
all the triples without sampling. It is shown that on both datasets, reducing the number of triplets
would reduce the top-1 accuracy in the linear probe greatly, compared with the result using the whole
mini-batch. However, the one-class SVM can significantly outperform both InfoNCE and DCL under
an extremely small number of triplets. The performance of all three methods is boosted with the
increase of the number of triplets. The one-class SVM gains constantly with more samples, compared
with the unstable performance boosting in InfoNCE and DCL when evaluating on CIFAR-10. The
three methods all benefit from the increased number of samples in STL-10. Though the computational
burden of the per-sample gradient in Eq. 7 prevents us from doing more experiments on a larger
number of samples, the point is made clear that many one-class SVM updates could approximate the
deep contrastive learning based on the behavior of our experiments. With 100 samples, the one-class
SVM gets 49.41% accuracy compared to 36.92% and 37.04% counterparts in InfoNCE and DCL.
Similarly, with only 60 samples, one-class SVM reaches 45.38% compared to 35.58% and 26.85%
in the baseline methods. Although both InfoNCE and DCL outperform our method when using
all the triplets, whose sizes are 163× larger than ours on both datasets, we strongly believe that
our performance could be further improved given such large number of triplets. This observation
indicates that the number of triplets may be more important to achieve higher accuracy when the
dual solutions are sufficiently good as an approximation. Such experimental results also support our
analysis in Sec. 3 that solving the dual form in Eq. 7 and updating the network parameter sequentially
is equivalent to the backpropagation of deep contrastive learning in terms of functionality.
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Figure 3: Comparison on triplet importance
learned by InfoNCE, p(x−), and our one-
class SVM, α.

By adjusting the parameter C in one-class SVMs, the
classifier will learn the Lagrange multipliers, α’s, that
indicate the importance of each triplet in the mini-
batches for constructing the decision boundaries. How-
ever, we find that it is very challenging to visualize the
importance by showing the triples because in our exper-
imental setting the positives and negatives come from
many transformations such as cropping and jittering.
Such operations are so random that we cannot even
visually judge their importance or compare them with
each other. Therefore, in this paper, we do not show
any example of a triplet with higher or lower impor-
tance in a mini-batch. Instead, we show the p(x−) in
InfoNCE and the Lagrange multipliers α for the same
127 triplets with the same x, x+ in Fig. 3. The fea-
ture extraction network is pretrained with 60 samples
in each mini-batch on STL-10. As shown in Fig. 3, the extremely high values of p(x−) and α
co-occur quite frequently (see the peaks). The peak values around the 63rd triplet are 0.14 and 0.15.
The co-occurences of high values in p(x−) and α also demonstrate that the triplets that decide the
boundaries of SVMs are those that contribute most to the gradient update in deep contrastive learning.

Figure 4: Loss comparison on STL-10.

To better understand the learning behavior of our
method, we illustrate the training loss curves of the
three methods in Fig. 4, where our loss curve is linearly
scaled by 5 for a better view. In general, all the methods
converge, which also supports our analysis of primal
solution approximation in the one-class SVMs.

5 CONCLUSION AND DISCUSSION

Compared with its prevailing application and impres-
sive practical performance in recent years, contrastive
learning is not fully understood from the theoretical
perspective. Inspired by an experimental observation that when adding sufficient visually less hard
negatives, contrastive learning could still learn comparable representations to those with visually
hard negatives. This work attempts to better interpret the hardness of negative data in contrastive
learning. Instead of considering positive and negative pairs in the literature, we provide a new insight
to investigate the effect of triplet (x, x+, x−) in contrastive learning. We show theoretically that
the gradients of a family of contrastive loss functions could be interpreted as approximate primal
solutions for one-class SVMs with specific NTKs. In our analysis and empirical experiments, we
demonstrate that the Lagrange multipliers of SVMs decide the importance of triplet in every learning
epoch. The deep contrastive learning thus can be viewed approximately as an ensemble of one-class
SVMs with NTKs.

The empirical bottlenecks in our method are related to the per-sample gradients, which prevent us
from large-scale settings. This results in two limitations: (1) Computational bottleneck. Extracting
per-sample gradients takes much longer than the conventional approaches. This problem can be
mitigated by rewriting/optimizing the Cuda code. The quadratic programming solver for the dual in
one-class SVMs is another barrier due to its complexity, especially when the number of triplets is
large. However, since our kernel is linear, we can employ optimized SVM solvers such as Liblinear
(Fan et al., 2008) for faster computation. (2) Storage bottleneck. Saving all the gradients needs large
memory that is proportional to the model size as well as the number of triplets. To mitigate this
problem, we could move the gradients from GPU to CPU memory.

Such limitations inspire us to think about how to better approximate the one-class SVM primal
solution without explicitly extracting per-sample contrastive gradients. Similar to InfoNCE and DCL,
one way will be embedding all the computations into a suitable loss function. In terms of applications,
our current method may be very useful in few-shot learning with contrastive learning, due to the
superior performance with small numbers of data samples.
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