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Abstract

This paper introduces MAD-MIL, a Multi-head Attention-based Deep Multiple Instance
Learning model, designed for weakly supervised Whole Slide Images (WSIs) classifica-
tion in digital pathology. Inspired by the multi-head attention mechanism of the Trans-
former, MAD-MIL simplifies model complexity while achieving competitive results against
advanced models like CLAM and DS-MIL. Evaluated on the MNIST-BAGS and pub-
lic datasets, including TUPAC16, TCGA BRCA, TCGA LUNG, and TCGA KIDNEY,
MAD-MIL consistently outperforms ABMIL. This demonstrates enhanced information
diversity, interpretability, and efficiency in slide representation. The model’s effective-
ness, coupled with fewer trainable parameters and lower computational complexity makes
it a promising solution for automated pathology workflows. Our code is available at
https://github.com/tueimage/MAD-MIL.
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1 Introduction

Digital pathology leverages digital imaging technology to create high-resolution images of
pathology slides, which can then be viewed, analyzed, and shared electronically. The adop-
tion of digital pathology offers several advantages, including increased efficiency, improved
collaboration, and the potential for more accurate and reproducible diagnoses Williams
et al. (2017). Deep learning has emerged as a powerful tool in digital pathology, offering
advanced image analysis capabilities. Convolutional Neural Networks (CNNs) Krizhevsky
et al. (2012) and recently Vision Transformers (ViTs) Dosovitskiy et al. (2020) excel in
learning complex patterns from large datasets and have been applied to various aspects of
digital pathology Coudray et al. (2018); Litjens et al. (2017); Campanella et al. (2019). De-
spite the promising potential of deep learning in digital pathology, its adoption encounters
various challenges Esteva et al. (2019); Holzinger et al. (2017); Madabhushi and Lee (2016).
Challenges include the need for large and diverse annotated datasets, model generalization
across different institutions and populations, and ethical considerations. Multiple Instance
Learning (MIL) has been widely utilized in digital pathology, to address challenges associ-
ated with weakly labeled annotated datasets. In MIL, data is organized into bags, and each
bag contains multiple instances, with the label of the bag determined by the presence of at
least one positive instance. Attention-based deep Multiple Instance Learning (ABMIL) Ilse
et al. (2018) introduces an attention mechanism that allows the model to selectively focus
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Figure 1: The overall framework of the weakly supervised WSI classification task using
MIL.
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on crucial instances within each bag. By assigning different attention weights to various
instances, ABMIL can effectively evaluate the importance of individual regions within a
whole slide image, leading to more accurate predictions and adding a layer of interpretabil-
ity. Clustering-Constrained Attention Multiple Instance Learning (CLAM) Lu et al. (2021)
builds upon the foundations of ABMIL, introducing a novel clustering layer to refine the
feature space and adopting it for multi-class weakly supervised WSI classification. Dual-
Stream Multiple Instance Learning Network (DS-MIL) Li et al. (2021) develops a novel
MIL aggregator in a dual-stream architecture outperforming previous methods. Recently,
the Attention-Challenging MIL (ACMIL) Zhang et al. (2023) has witnessed notable ad-
vancements using two key techniques: Multiple Branch Attention (MBA) and Stochastic
TopK Instance Masking (STKIM). They have enabled ACMIL to enhance its discrimina-
tive instance capturing capabilities and mitigate the impact of prominent top-k instances,
respectively.

One of the key components of the Transformer architecture Vaswani et al. (2017) is the
multi-head self-attention mechanism, which runs the attention mechanism in parallel across
multiple heads to capture diverse aspects of relationships. Although recent models advanced
the state of the art for weakly supervised WSIs classification, they increased the complexity
of the ABMIL model with respect to architecture design and number of trainable param-
eters. Aiming for simpler models, we propose the Multi-head ABMIL (MAD-MIL) model
for weakly supervised WSIs classification. It is inspired by the multi-head self-attention
mechanism not only to reduce the number of trainable parameters but also to incorpo-
rate various facets of the input WSI using multiple attention heads. Although there is a
multi-head version of ABMIL available in the official repository, our method differs from
that implementation. In ABMIL, attention weights are computed using full-dimensional
input features, and a larger classifier is employed for the larger slide representation. Con-
sequently, this approach increases the number of parameters and the overall complexity of
ABMIL. While similar ideas have been explored in previous works such as Li et al. (2019)
for multi-tagging WSIs and ACMIL for weakly supervised WSI classification, our model
distinguishes itself from Li et al. (2019) in two key ways. First, we adhere to the original
architecture proposed in ABMIL to maintain simplicity in the developed model. Second,
the MAD-MIL is specifically designed for the task of weakly supervised WSIs classification
while the model proposed by Li et al. (2019) was designed for multi-tagging WSIs using the
Multi-Tag Attention Module to construct tag-related global slide representations for final
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Figure 2: The attention component used in ABMIL(Left), where only one attention mod-
ule is utilized, and in MAD-MIL(Right), where multiple attention modules are
incorporated.
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prediction. Regarding ACMIL, several attention weights are computed for input features
alongside the introduction of two supplementary regularization terms: semantic and diver-
sity regularizations. In contrast to ACMIL, our approach within ABMIL does not entail
the extraction of attention weights utilizing full-dimensional input features. This choice is
made to avoid the addition of extra parameters. Furthermore, we abstain from introducing
additional regularization terms, thereby preserving the simplicity of the ABMIL framework.
We evaluate MAD-MIL for weakly supervised classification both in controlled settings, us-
ing variants of the MNIST-BAGS dataset, and on four publicly available clinical datasets,
namely, TUPAC16, TCGA BRCA, TCGA LUNG, and TCGA KIDNEY.

2 Method

2.1 Problem formulation

If we consider the input WSI as I, then our goal is to predict its slide-level label Y . As
it is infeasible to feed the I directly to the network due to computational constraints, it is
tiled into N small instances I = {p1, p2, . . . , pN} to create a bag of instances, with unknown
labels. To predict the slide label, in the first step the instances’ features are extracted using
a pre-trained network and compressed by a fully connected layer {f1, f2, . . . , fN} = F (pre−
trained{p1, p2, . . . , pN}),∀n fn ∈ R1×D. In the second step, the features are aggregated with
an attention-based function to obtain the slide embedding Z = H(f1, f2, . . . , fN ), Z ∈ R1×D.
Finally, the slide-label is produced with a fully connected layer Ŷ = L(Z). Figure 1 shows
the overall framework of the approach.

2.2 Attention-based deep MIL

In this method, two types of bags (positive and negative) are considered for binary WSIs
classification. Positive bags contain at least one key-instance, while there are none in
negative bags. Then, two types of attention functions are proposed, which we only present
the gated version for brevity Ilse et al. (2018):

3



Keshvarikhojasteh and Pluim and Veta

Table 1: The average test AUC and F1 scores (±std) for MNIST-BAGS. The flops are
measured with 120 instances per bag.

Model AUC F1 Model Size FLOPs

p-pos= 0.4, p-neg= 0.2

ABMIL 0.803 ± 0.059 0.683 ± 0.120 167.1 K 19.9 M
MAD-MIL/6 0.845 ± 0.032 0.750 ± 0.032 107.1 K 12.7 M
Mean-Pool 0.860 ± 0.021 0.774 ± 0.028 100.8 K 12.0 M
Max-Pool 0.723 ± 0.034 0.653 ± 0.035 100.8 K 12.0 M

p-pos= 0.6, p-neg= 0.4

ABMIL 0.831 ± 0.016 0.727 ± 0.021 167.1 K 19.9 M
MAD-MIL/4 0.840 ± 0.019 0.740 ± 0.015 105.1 K 12.5 M
Mean-Pool 0.864 ± 0.021 0.774 ± 0.022 100.8 K 12.0 M
Max-Pool 0.713 ± 0.042 0.646 ± 0.042 100.8 K 12.0 M

p-pos= 0.8, p-neg= 0.6

ABMIL 0.80 ± 0.057 0.668 ± 0.104 167.1 K 19.9 M
MAD-MIL/7 0.835 ± 0.026 0.753 ± 0.028 107.2 K 12.8 M
Mean-Pool 0.870 ± 0.026 0.783 ± 0.039 100.8 K 12.0 M
Max-Pool 0.784 ± 0.024 0.698 ± 0.051 100.8 K 12.0 M

an =
exp{w⊤(tanh(Vfn

⊤) ⊙ sigm(Ufn
⊤))}∑N

l=1 exp{w⊤(tanh(Vfl
⊤) ⊙ sigm(Ufl

⊤))}
(1)

With U,V ∈ Rd×D and w ∈ Rd×1 learnable parameters, ⊙ an element-wise multiplica-
tion and sigm() the sigmoid function. The attention weights an ideally assign higher values
to key-instances and lower values to non-key ones, providing interpretability of the model.

2.3 Multi-head attention-based deep MIL

Empirical evidence suggests that the multi-head self-attention mechanism in the Trans-
former outperforms its single-head counterpart Vaswani et al. (2017). Additionally, by
leveraging the attention weights from each head, we can generate diverse heatmaps that en-
hance the interpretability of the network. Since our goal is to employ the attention function
from ABMIL, which differs significantly from the scaled dot-product self-attention module
in the Transformer, a direct adaptation of the multi-head idea is impractical. Therefore,

we propose to divide the input features into M equal parts, i.e. ∀n,m fn,m ∈ R1×⌈ D
M

⌉;n =
{1 : N},m = {1 : M}. Then, we feed each part to distinct attention modules given by:

an,m =
exp{wm

⊤(tanh(Vmfn,m
⊤) ⊙ sigm(Umfn,m

⊤))}∑N
l=1 exp{wm

⊤(tanh(Vmfl,m
⊤) ⊙ sigm(Umfl,m

⊤))}
(2)

In the next step, the features of each part are aggregated and ultimately, slide represen-
tation is calculated as the concatenation of the aggregated features:
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Table 2: Slide-Level Classification Evaluation on TUPAC16. The flops are measured with
120 instances per bag, and the instance feature extraction by ResNet-50 is not
considered in the presented model sizes and flops.

Model AUC F1 Model Size FLOPs

ABMIL 0.790 ± 0.013 0.725 ± 0.013 788.7 K 94.4 M

MAD-MIL/3 0.802 ± 0.006 0.735 ± 0.009 614.8 K 73.5 M

CLAM-MB 0.803 ± 0.008 0.725 ± 0.010 791.0 K 94.4 M

CLAM-SB 0.796 ± 0.004 0.730 ± 0.007 790.7 K 94.4 M

DS-MIL 0.796 ± 0.011 0.724 ± 0.008 1186.9 K 142.0 M

ACMIL 0.803 ± 0.004 0.729 ± 0.008 794.8 K 94.5 M

Mean-Pool 0.790 ± 0.004 0.707 ± 0.012 525.8 K 62.9 M

Max-Pool 0.799 ± 0.003 0.719 ± 0.010 525.8 K 62.9 M

Ẑ = Concat(

N∑
n=1

an,1fn,1, . . . ,

N∑
n=1

an,Mfn,M ) (3)

The slide label can be predicted same as before Ý = L(Ẑ). Our developed method
(MAD-MIL) has fewer trainable parameters, as we use smaller attention modules and it
can return various attention heatmaps. However, one more hyperparameter M (number-of-
heads) should be tuned. Figure 2 presents ABMIL and MAD-MIL models.

3 Experiment and Results

3.1 Dataset

We used four public WSI datasets. The TUPAC16 dataset Veta et al. (2019) comprises 821
H&E slides from the Cancer Genome Atlas (TCGA) project, annotated with breast tumor
proliferation labels. We categorize the labels into two classes: low-grade (slides labeled as
grade 1) and high-grade (slides labeled as grade 2 or 3). The TCGA Breast Invasive
Carcinoma Cancer (TCGA BRCA) dataset includes 1038 WSIs for two-types of breast
cancer; Invasive Ductal Carcinoma (IDC) versus Invasive Lobular Carcinoma (ILC) with
slide-level labels. The TCGA Lung Cancer dataset is a public dataset for Non-Small
Cell Lung Carcinoma (NSCLC) subtyping. The dataset contains 1046 slides for Lung
Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) with only slide-
level labels. The TCGA Kidney Cancer includes 918 slides for three types of kidney
cancer, namely Clear Cell Renal Cell Carcinoma (CCRCC), Papillary Renal Cell Carcinoma
(PRCC), and Chromophobe Renal Cell Carcinoma (CHRCC).

We also adopt the approach proposed in Ilse et al. (2018) to construct a dataset by
utilizing images from the MNIST image dataset. In practical applications, particularly
in weakly supervised WSI classification, a fundamental assumption of conventional MIL
is challenged, as negative bags may also encompass some key-instances Li and Vasconcelos
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Model AUC F1 Model Size FLOPs

ABMIL 0.882 ± 0.046 0.783 ± 0.061 788.7 K 94.4 M

MAD-MIL/2 0.897 ± 0.058 0.791 ± 0.064 657.6 K 78.6 M

CLAM-MB 0.897 ± 0.052 0.809 ± 0.060 791.0 K 94.4 M

CLAM-SB 0.889 ± 0.046 0.790 ± 0.052 790.7 K 94.4 M

DS-MIL 0.903 ± 0.053 0.788 ± 0.056 1186.9 K 142.0 M

ACMIL 0.905 ± 0.039 0.793 ± 0.054 794.8 K 94.5 M

Mean-Pool 0.891 ± 0.057 0.793 ± 0.060 525.8 K 62.9 M

Max-Pool 0.900 ± 0.056 0.795 ± 0.050 525.8 K 62.9 M

Table 3: Slide-Level Classification Evaluation on TCGA BRCA dataset.

(2015). To address this, we introduce soft-bags and designate the digit 8 as the key-instance
and create positive and negative bags with varying numbers of the key-instance.

3.2 Implementation Details

For the MNIST-BAGS dataset, we create 50 bags for training, 100 for evaluation, and
900 for testing, every bag containing 20 images. In our experimental setup, we explore
varying percentages of the key-instance within positive and negative bags (p-pos, p-neg.)
Specifically, in our analysis, we consider the (0.4, 0.2), (0.6, 0.4), and (0.8, 0.6) pairs. These
pairs correspond to positive bags with values 0.4, 0.6, 0.8 and negative bags with values
0.2, 0.4, 0.6. We directly input MNIST images into the model, (input dim = 28× 28 = 784
pixels), and then they are compressed to a size of D = 128. Throughout these experiments,
we utilize the Adam optimizer and train models for 20 epochs and identify optimal learning
rate and weight decay values based on the validation loss. We repeat the experiments
with ten different seeds and report the mean AUC and F1 values to maintain consistency
with prior methodologies. For the preprocessing of the TUPAC16 and TCGA datasets, we
adhere to the steps outlined in Lu et al. (2021), incorporating the extraction of features
from non-overlapping 256×256 patches at 20× magnification using the ImageNet pretrained
ResNet50. We feed extracted features into the model, where the feature dimensionality is
input dim = 1024. These features are then compressed to a size of D = 512. We repeat the
experiments five times to evaluate our framework on the TUPAC16 dataset, as there is an
official test split. We report the average performance of the test set for the five experiments.
However, for the TCGA datasets we employ the same 10-folder cross-validation setup as
adopted in Chen et al. (2022), and present the mean and standard variance values of AUC
and F1 scores. The training of the models for these datasets involves using the Adam
optimizer for 50 epochs. A learning rate of 1e-4 is employed, and we tune the weight-decay
value based on the validation loss.

For all experiments we determine the optimal number of heads (M) according to the
validation loss value. Regarding the Mean Pool and Max Pool models, we ensure a fair
comparison by implementing the bag embedding-based variant as opposed to the instance-
level. Specifically, after the feature compression step, we calculate the slide representation
using either the max or mean operation and subsequently predict the slide label. In what
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Model AUC F1 Model Size FLOPs

ABMIL 0.931 ± 0.020 0.853 ± 0.034 788.7 K 94.4 M

MAD-MIL/8 0.940 ± 0.015 0.872 ± 0.027 559.3 K 66.8 M

CLAM-MB 0.935 ± 0.017 0.868 ± 0.039 791.0 K 94.4 M

CLAM-SB 0.932 ± 0.015 0.868 ± 0.034 790.7 K 94.4 M

DS-MIL 0.937 ± 0.015 0.868 ± 0.032 1186.9 K 142.0 M

ACMIL 0.940 ± 0.020 0.871 ± 0.041 794.8 K 94.5 M

Mean-Pool 0.905 ± 0.021 0.844 ± 0.028 525.8 K 62.9 M

Max-Pool 0.950 ± 0.013 0.867 ± 0.035 525.8 K 62.9 M

Table 4: Slide-Level Classification Evaluation on TCGA LUNG dataset.

follows we use brief notation to indicate the number of heads for the MAD-MIL: for instance,
MAD-MIL/3 means the MAD-MIL model with three heads.

3.3 Quantitative Results

Table 1 reports the outcomes obtained from the MNIST-BAGS. Across all three configu-
rations, the MAD-MIL model consistently exhibits superior performance compared to AB-
MIL, despite having a lower number of trainable parameters and computational complexity.
Notably, the most substantial enhancements are observed in the last setting (p-pos= 0.8,
p-neg= 0.6), where AUC and F1 metrics experience notable increases of 4.3% and 12.7%,
respectively. The results for the weakly-supervised WSI classification are presented in Ta-
bles 2, 3, 4 and 5. Notably, the MAD-MIL model outperforms ABMIL across all datasets.
Interestingly, it achieves comparable performance to sophisticated networks like CLAM
and DS-MIL. It is worth noting that while the Mean-Pool and Max-Pool models exhibit
similar performance to other models, their lack of interpretability hinders their practical
application.

3.4 Qualitative Results

We present attention heatmaps in Figure 4 to assess the interpretability of the methods ap-
plied to a LUAD slide from the TCGA LUNG dataset. Notably, all three methods (ABMIL,
CLAM-MB, and MAD-MIL/8) focus on similar regions within the input WSI, demonstrat-
ing negligible differences. However, MAD-MIL distinguishes itself by generating additional
heatmaps. This enhancement could potentially contribute to the overall interpretability of
the network.

4 Conclusion

In summary, this paper presents the MAD-MIL model for weakly supervised WSIs classifica-
tion in digital pathology. By leveraging the multi-head attention mechanism inspired by the
Transformer architecture, MAD-MIL captures diverse aspects of input WSIs. Evaluation
on MNIST-BAGS, TUPAC16 and TCGA datasets demonstrates consistent outperformance
compared to the ABMIL and comparable results to advanced models like CLAM and DS-
MIL. The integration of multiple attention heads not only enriches information diversity in
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Model AUC F1 Model Size FLOPs

ABMIL 0.983 ± 0.010 0.894 ± 0.037 788.7 K 94.4 M

MAD-MIL/5 0.985 ± 0.007 0.898 ± 0.034 582.7 K 69.6 M

CLAM-MB 0.982 ± 0.009 0.893 ± 0.043 791.0 K 94.4 M

CLAM-SB 0.983 ± 0.008 0.889 ± 0.026 790.7 K 94.4 M

DS-MIL 0.983 ± 0.009 0.908 ± 0.037 1186.9 K 142.0 M

ACMIL 0.984 ± 0.008 0.907 ± 0.027 794.8 K 94.5 M

Mean-Pool 0.978 ± 0.009 0.880 ± 0.019 525.8 K 62.9 M

Max-Pool 0.989 ± 0.006 0.914 ± 0.031 525.8 K 62.9 M

Table 5: Slide-Level Classification Evaluation on TCGA KIDNEY dataset.

slide representation but also enhances interpretability, showcasing efficiency with a reduced
number of trainable parameters.
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Figure 3: Attention heatmaps generated by different models for a LUAD slide selected from
the TCGA LUNG dataset. Top row: from left to right, the attention heatmap
produced by the ABMIL and CLAM-MB. Bottom rows: from top to bottom and
left to right, the attention heatmap generated by the MAD-MIL/8-head-1:8.
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Figure 4: Attention weights generated by ABMIL and MAD-MIL/6 networks for a nega-
tive and postive bag selected from the MNIST-BAGS {p-pos= 0.4, p-neg= 0.2}
dataset. For each digit the corresponding attention weight is given by the trained
network. Top row: from top to bottom , the attention weights produced by the
ABMIL and MAD-MIL/6-head-1:6 for a negative bag. Bottom row: from top to
bottom, the attention weights produced by the ABMIL and MAD-MIL/6-head-
1:6 for a positive bag.
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5 Supplementary Material

5.1 Qualitative Results on MNIST-BAGS

We present the attention weights of the ABMIL and MAD-MIL models on the MNIST-
BAGS dataset in Figure 4 to delve deeper into their interpretability. Unlike ABMIL, which
distributes attention across both key and non-key instances, certain heads of the MAD-MIL
model focus solely on either key instances (e.g., head-2 and head-4) or non-key instances
(e.g., head-1 and head-6).

5.2 Ablation Study

Figure 5 presents the AUC, ACC, and Val Loss of the proposed method with respect to
various number of heads on the datasets. These curves indicate that the multi-head idea is
beneficial to both AUC and ACC metrics. However, ACC is more sensitive to the number of
heads, with a significant drop observed for certain head counts. Conversely, AUC tends to
consistently improve with an increase in the number of heads. Looking ahead, MAD-MIL
opens avenues for further research and exploration. Future work could involve adapting the
model for specific pathology tasks or refining its applicability across diverse clinical settings.

Figure 5: The impact of the number of heads (M) on the average AUC, ACC and Val Loss.
Each column presents the results of one dataset, from left to right: TUPAC16,
TCGA BRCA, TCGA LUNG, and TCGA KIDNEY.
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