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ABSTRACT

Message-passing neural networks (MPNNs) often collapse into a one-dimensional
subspace because repeated neighborhood aggregation amplifies the dominant
eigenvector of the normalized adjacency matrix, erasing local distinctions and
limiting graph classification performance. In this paper, we theoretically analyze
this phenomenon using perturbation theory to trace the eigenvector amplification
process and mutual information bounds to quantify the resulting loss of discrim-
inative signals. Guided by these insights, we propose the Subgraph Plug-in (SP),
a lightweight, architecture-agnostic module that selects the top-κ nodes by cen-
trality, extracts their τ -hop neighborhoods as interpretable subgraphs, and con-
catenates the resulting subgraph embeddings with the global representation of any
base GNN without altering its architecture or incurring significant computational
overhead. Across 11 graph-classification benchmarks and 13 GNN variants, we
evaluate each backbone with and without SP, yielding 110 model–dataset pairs; SP
improves performance in 94 of 110. Beyond these, on ZINC and OGBG-MolHIV,
we conduct head-to-head comparisons against 11 methods, including augmenta-
tion modules, recent GNNs, and subgraph-based methods. SP achieves the best
results among augmentation and subgraph-based approaches and remains compet-
itive with recent GNNs, supporting its role as a widely applicable, cost-effective
plug-in that preserves feature diversity and amplifies discriminative substructures.
performance.

1 INTRODUCTION

Graph classification is essential for diverse domains, from drug discovery to traffic network analysis,
where predicting global properties depends on graph topology Zhou et al. (2020); Wu et al. (2022).
Modern approaches rely mainly on message-passing neural networks (MPNNs), which iteratively
update node features via neighborhood aggregation:

H(l+1) = σ
(
ÃH(l)W (l)

)
. (1)

Here, Â = A + I , D̂ii =
∑

j Âij , Ã = D̂−1/2ÂD̂−1/2 is the normalized adjacency matrix, and

W (l) denotes the learnable weights at the layer l Kipf & Welling (2016).

Despite strong empirical results and the common practice of stacking more layers to expand the
receptive field, deep MPNNs suffer from a fundamental collapse: as the number of layers l grows,

repeated propagation along the normalized adjacency Ã amplifies its dominant eigenvector such
that

lim
l→∞

∥∥∥ H(l)

‖H(l)‖F − Y
∥∥∥
F
= 0. (2)

Here, Y is rank-one (i.e., rank(Y ) = 1 and all columns are proportional to a single vector), and
‖ · ‖F denotes the Frobenius norm.

Although aggregation propagates information across neighborhoods, successive linear and nonlin-
ear transformations tend to compress feature diversity, resulting in rank collapse, often to a one-
dimensional subspace Li et al. (2018); Oono & Suzuki (2019). In this process, all node embeddings

become proportional to the leading eigenvector of Ã, erasing local distinctions and severely limiting
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discriminative power Roth (2024); Liu et al. (2022); Keriven (2022). Moreover, conventional graph
classification methods generate embeddings for every node and then apply global pooling. This
pooling disregards hierarchical or substructure-specific organization, collapsing rich local cues into
a single vector and further hampering classification accuracy Ying et al. (2018); Zhao et al. (2021);
Alsentzer et al. (2020).

In this paper, we leverage perturbation theory and mutual information bounds to show that preserv-
ing embeddings of high-centrality node-induced subgraphs prevents rank collapse in deep MPNNs.
The analysis characterizes how repeated neighborhood aggregation drives MPNNs toward a one-
dimensional feature subspace, erasing local distinctions. Guided by these findings, we propose the
subgraph plug-in (SP), a lightweight module that augments any base GNN, such as GCN or GAT,
without modifying its architecture. SP computes centrality scores on the adjacency matrix to iden-
tify κ key nodes (number of seeds) and extracts their τ hop neighborhoods (radius) as interpretable
subgraphs, and concatenates the resulting embeddings with the global graph representation, thereby
emphasizing subgraphs most predictive of the graph label while preserving original message-passing
dynamics. Extensive experiments on 13 graph benchmarks, 13 GNN variants, 3 augmentation mod-
ules, 3 recent GNNs, and 5 subgraph-based methods demonstrate that SP consistently mitigates rank
collapse and delivers superior classification and regression performance with a one-time preprocess-
ing and negligible computational overhead.

2 RELATED WORK

2.1 AUGMENTATION METHODS FOR MITIGATING RANK COLLAPSE

Rank collapse (often to rank one) occurs when repeated message passing drives node features into
a one-dimensional subspace Li et al. (2018); Oono & Suzuki (2019). Several strategies have been
proposed to mitigate this collapse:

Normalization and skip connections. PairNorm adds a normalization step after each layer to
preserve feature variance Zhao & Akoglu (2019). Jumping knowledge (JK) networks and GCNII
introduce residual or identity mappings across layers to maintain embedding diversity Xu et al.
(2018b); Chen et al. (2020). However, computational cost grows with depth, and fusing multi-layer
features can dilute local signals.

Stochastic graph structure removal. DropEdge randomly drops edges during training to disrupt
the fixed-point averaging that leads to collapse Rong et al. (2019). DropEdge injects variability but
risks discarding task-critical links.

Graph rewiring. Graph rewiring methods adjust the adjacency matrix by adding or reweighting
edges to shorten effective path lengths and improve signal propagation without altering the GNN’s
core update rule Attali et al. (2024); Banerjee et al. (2022). These methods require careful tuning
and introduce additional computational overhead.

Hierarchical and pooling schemes. DiffPool learns soft cluster assignments to downsample the
graph Ying et al. (2018), while TopKPool and SAGPool apply learnable pooling to retain a subset
of nodes Lee et al. (2019). Although they can alleviate over-smoothing by hierarchical coarsening
and node selection, they incur significant overhead and may erase fine-grained motifs.

These approaches remain within the standard message-passing paradigm, so mitigation can degrade
as depth increases. In particular, several methods impose nontrivial hyperparameter tuning on a
per-dataset basis, which complicates use in graph classification and generalization across diverse
domains. Even when node features are well-separated, most graph classification pipelines compress
them via simple readouts (sum, mean, max, or single-head attention) to a single graph vector. Such
exchangeable pooling ignores the organization of multiple substructures and can further compress
discriminative signals at the readout stage by averaging locally informative features. The methods
above primarily target message passing and rarely redesign graph-level readout.

2.2 SUBGRAPH-BASED GNNS

Extracting subgraphs has become a popular strategy for boosting GNN expressivity and capturing
higher-order structures: Union Subgraph GNNs generate node- or edge-deleted subgraphs to break
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1-WL limitations Xu et al. (2024). MAG-GNN employs reinforcement learning to pick informative
subgraphs, trading between expressivity and efficiency Kong et al. (2023). Policy-Learn uses two
models, one to select a bag of subgraphs and another to predict Bevilacqua et al. (2023a). OSAN
learns a distribution over tuples that represent subgraphs with multiple node markings Qian et al.
(2022). CS-GNN associates subgraphs with node clusters rather than individual nodes to perform
generalized message passing.

Although these models offer strong guarantees on expressivity, they often require intrusive architec-
tural changes, dense tensor operations, or learned policy networks, which increase computational
overhead and can introduce instability. Moreover, many subgraph GNNs construct a bag of candi-
date subgraphs per graph via random sampling, heuristics, or learned policies and then aggregate
over this bag, which can miss domain-specific semantics and introduce additional pooling-induced
information loss. By contrast, the proposed method computes simple node-centrality scores once,
deterministically extracts only κ subgraphs of radius τ , and concatenates their embeddings with
the global graph representation at readout, thereby preserving the base message-passing pipeline
without architectural redesign, precomputed subgraph bags, or auxiliary selection networks.

3 PROPOSED METHOD

To mitigate rank collapse in deep message-passing neural networks, we introduce the subgraph
plug-in (SP) in three stages:

1. Structural analysis: Compute centrality scores (degree, betweenness, closeness) on the
input graph G to identify the top-κ high-centrality nodes.

2. Subgraph partitioning: For each selected node v, extract its τ -hop neighborhood as an
interpretable subgraph Sv , yielding the collection S = {Sv}; enforce disjointness among
{Sv} so that no nodes overlap, promoting independent information per subgraph and im-
proving the utility of readout-time concatenation.

3. Subgraph encoding and readout fusion: Encode each subgraph S ∈ S with the same base
GNN f(·;θ) to obtain embeddings {hS}, then concatenate them with the global represen-
tation hbase

G to form the final embedding hG . This preserves the original message-passing
flow while emphasizing locally discriminative structures at readout.

Figure 1 illustrates the process. We first detail the partitioning algorithm 1, then present theoretical
guarantees, and finally describe embedding fusion and complexity.

3.1 PRELIMINARIES

Let G = (V,E) be an undirected graph with n = |V| and adjacency matrix A ∈ {0, 1}n×n. Let
dG(u, v) denote the shortest-path distance. We use three centrality measures:

Definition 1 (Node centralities) For each node v ∈ V,

CD(v) =
∑

u∈V
Auv, CB(v) =

∑
s,t∈V

s �=t, v /∈{s,t}
σst(v)
σst

, CC(v) =
n−1∑

u∈V
dG(u,v) ,

where σst is the number of shortest s−t paths, σst(v) counts those passing through v.

(If G is disconnected, adopt harmonic closeness Charm
C (v) =

∑
u �=v 1/dG(u, v) with 1/∞=0.)

Let f(·;θ) be the base GNN encoder and define the global representation by hbase
G =

READOUT
(
f(G;θ)).

3.2 SUBGRAPH PARTITIONING

We propose a partitioning scheme that concentrates on structurally informative regions. The method
first computes multiple centrality measures (degree, betweenness, closeness) on the input graph
G, then expands τ -hop neighborhoods around selected seeds. Each centrality emphasizes distinct
aspects of structure (Appendix A.2). Neighborhood expansion ensures that resulting subgraphs

3
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Algorithm 1 Subgraph partitioning with disjoint τ -
hop neighborhoods

Require: graph G = (V,E), centralities C, seeds per
measure κ, radius τ

Ensure: subgraph collection S
1: S ← ∅, U ← V // unassigned nodes
2: for each c ∈ C do
3: compute scores sc(v) for all v ∈ U
4: Q ← nodes in U sorted by sc
5: t ← 0
6: for each v ∈ Q do
7: if t = κ then
8: break
9: end if

10: if v ∈ U then
11: B ← {u ∈ U : dG(u, v) ≤ τ} // τ -ball
12: if |B| > 0 then
13: Sv ← B; S ← S ∪ {Sv}; U ← U \

B; t ← t+ 1
14: end if
15: end if
16: end for
17: end for
18: return S

Figure 1: The overall process of SP

are readily encodable by GNNs with limited depth, reducing the risk that label-relevant nodes fall
outside the receptive field. We enforce disjoint τ -hop subgraphs by masking already-assigned nodes;
when high-centrality seeds are adjacent, later seeds skip covered regions. The full procedure appears
in Algorithm 1.

Focusing on these high-centrality regions aligns with the claim that localized structures around in-
fluential nodes preserve discriminative patterns. The information-theoretic formalization and its
implications are developed in Section 3.3 below.

3.3 THEORETICAL GUARANTEES

Given a subgraph family S , we study how focusing embeddings on S mitigates rank col-
lapse—evidenced by non-decreasing pairwise dispersion under concatenation (Prop. 1) and by the
information-monotonicity of the augmented representation (Lemma 1). The base encoder fθ is fixed
and deterministic. Subgraph sizes may vary; subgraphs are disjoint within a centrality type but may
overlap across types. Further technical details are in Appendix A.

Let S∗ =
⋃

S∈S S. We use:

A1 Task locality. Y ⊥ (G \ S∗) | S∗.

A2 Subgraph encoder adequacy. There exists γ ∈ (0, 1] such that I
(
H(G);Y

) ≥
γ I

(S∗;Y
)
, where H(G) = Concat {hS : S ∈ S}.

A3 Global contraction. There exists η ∈ [0, 1] such that I
(
fglobal(G);Y

) ≤ η I
(S∗;Y

)
.

A2 reflects encoder sufficiency on S∗ (e.g., bounded-depth subgraph encoders). A3 abstracts spec-
tral low-pass contraction in deep MPNNs; the contraction factor η typically decays with depth as

|λ2(Ã)|L Oono & Suzuki (2019). Empirically, our ablations, perturbation tests, and depth-sensitivity
studies collectively corroborate A1–A3.

Theorem 1 (Information comparison under locality and contraction) Under A1–A3, if γ ≥ η
then

I
(
H(G);Y

) ≥ I
(
fglobal(G);Y

)
, (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with strict inequality when γ > η.

By A2, I(H(G);Y ) ≥ γI(S∗;Y ). By A3, I(fglobal(G);Y ) ≤ ηI(S∗;Y ). If γ ≥ η, the claim
follows.

Corollary 1 (Depth advantage from spectral decay; qualitative) If the base global pipeline ex-
hibits oversmoothing so that for some c ∈ (0, 1) and large L, I

(
fglobal(G);Y

) ≤ cL I(S∗;Y )

(e.g., governed by |λ2(Ã)|L), while H(G) is computed at bounded depth, then there exists L0 such
that for all L ≥ L0, I

(
H(G);Y

)
> I

(
fglobal(G);Y

)
.

Deep MPNNs contract node distinctions geometrically with depth due to low-pass behavior and
spectral gap; see Li et al. (2018); Oono & Suzuki (2019); Chen et al. (2020).

Proposition 1 (Graph-level dispersion is nondecreasing under concatenation) For any two
graphs G1, G2, let dbase = ‖ hbase

G1
−hbase

G2
‖2 and dSP =

∥∥ [hbase
G1

⊕H(G1) ]− [hbase
G2

⊕H(G2) ]
∥∥
2
.

Then dSP ≥ dbase. Consequently, any dataset-level pairwise (Euclidean) dispersion of graph
embeddings is nondecreasing after adding H(G).

By Pythagorean expansion in the augmented coordinates.

Lemma 1 (Augmented representation is information-monotone) Let fglobal(G) and H(G) be
deterministic. Then
I
(
[fglobal(G), H(G)];Y

)
= I

(
fglobal(G);Y

)
+ I

(
H(G);Y | fglobal(G)

) ≥ I
(
fglobal(G);Y

)
.

Follows from the chain rule and nonnegativity of conditional mutual information.

Proposition 2 (Perturbation sensitivity) Let G′ = Pα(G,S∗) and G′′ = Pα(G,G \S∗) denote α
i.i.d. random edits restricted inside vs. outside S∗. Let φ be the trained predictor. Suppose each edit
inside (resp. outside) flips the predicted label with probability p (resp. q), with p > q. Then
Pr[φ(G′) �= φ(G)]− Pr[φ(G′′) �= φ(G)] = (1− q)α − (1− p)α ≥ α (p− q) (1− p)α−1 > 0.

The equality uses independence; the inequality follows from the mean-value theorem applied to
g(r) = (1− r)α with r ∈ (q, p) (For small p, q, (1− r)α ≈ e−αr gives the familiar approximation
e−αq − e−αp).

3.4 FEATURE FUSION

Having established the rationale, we realize SP via readout-time fusion. Each (within-type disjoint)
subgraph is encoded to preserve local structure and then integrated with the global embedding,
ensuring that partition-specific signals are not washed out by a single global aggregator.

Let f(·; θ) be the base GNN encoder and READOUT a graph-level pooling. Compute

hbase
G = READOUT

(
f(G; θ)

)
, hS = READOUT

(
f(G[S]; θ)

)
for S ∈ S, (4)

and fuse

hG = MLP
([

hbase
G ⊕ {hS }S∈S

])
. (5)

This preserves the base message-passing pipeline while injecting localized, high-centrality signals.
The extra cost scales with |S| feed-forwards through f , whereas centrality scoring/partitioning is a
one-time preprocessing step.

3.5 COMPLEXITY ANALYSIS

Let n be the number of nodes, m edges, d embedding width, τ hop radius, and κ = |S| selected
subgraphs. The main costs are:

Centrality scoring: degree O(n+m), betweenness (Brandes, unweighted) O(nm)

τ -hop extraction: O
(∑

S∈S
(nS+mS)

)
≤ O(min{κ(n+m), κ d̄ τ}),

Fusion (concatenate+MLP): O(d2 + κd).

5
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Table 1: Performance comparison on four chemical/biological datasets with node features. “Origi-
nal” indicates baseline GNN accuracy, and “Ours” refers to the proposed method accuracy. Results
are mean±std (%).

MUTAG NCI1 NCI109 PROTEINS

METHOD ORIG. OURS ORIG. OURS ORIG. OURS ORIG. OURS

GCN 74.0±6.1 76.6±5.1 69.2±2.7 71.8±5.2 67.5±2.9 68.9±3.4 71.6±3.8 74.1±4.3
GIN 81.0±10.2 82.5±9.9 76.4±4.1 77.2±4.9 73.6±5.2 74.7±4.1 71.4±4.4 72.2±4.0
GIN0 80.9±7.5 82.3±12.2 74.9±3.7 76.8±3.0 75.0±2.9 75.1±2.7 70.1±4.1 71.9±3.9
TOPK 72.9±5.8 78.2±5.6 71.6±4.6 74.9±3.9 69.9±3.2 71.7±2.9 72.0±3.4 72.1±4.2
SAGPOOL 80.8±10.8 83.0±7.4 70.8±5.1 74.5±7.9 70.9±3.6 72.0±3.2 71.8±3.4 72.2±5.4
EDGEPOOL 73.5±5.9 78.9±9.5 73.1±2.5 72.4±5.3 70.1±5.6 70.4±2.6 71.0±3.6 71.3±1.4
GRACLUS 77.1±5.9 77.3±7.3 71.3±4.4 76.0±1.7 70.3±2.9 71.2±3.6 71.9±3.3 72.5±3.2
GAT 75.5±8.9 77.1±8.0 71.5±4.8 72.2±5.6 68.5±4.7 68.7±4.4 71.8±4.0 72.8±4.3
SET2SET 73.4±11.4 70.3±12.1 70.4±3.5 73.8±3.9 79.7±2.7 80.2±1.3 73.1±4.7 75.1±2.7
GRAPHSAGE 77.2±4.7 79.5±3.2 71.3±3.5 76.1±3.1 69.6±3.1 70.3±3.2 71.6±2.7 71.8±3.2

Dominant step. In practice, the most time-consuming component is centrality scoring when us-
ing betweenness/closeness, i.e., O(nm) (unweighted) or O(nm+n2 log n) (weighted). Subgraph
extraction is linear in the total size of selected subgraphs, and fusion is negligible.

This preprocessing is one-time per graph (cacheable) and κ � n in our settings. The per-epoch
training overhead from processing κ subgraphs is roughly depth-invariant (both base and SP passes
scale similarly with added layers). Empirical timings are reported in Appendix C.4 and C.5.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EXPERIMENT SETUP

Dataset. We evaluate the proposed method on 13 benchmark datasets commonly used in graph clas-
sification. These datasets span social networks (IMDB-BINARY, IMDB-MULTI, COLLAB), chem-
ical compounds (MUTAG, PTC, NCI1, NCI109), proteins (PROTEINS), and large-recent chemical
dataset (ogbg-molhiv, ZINC) More description is in Appedix B.1.

Training setup. To verify the best performance of all GNNs used in the experiments for each
dataset, we have performed experiments with five different numbers of layers and dimensions, run-
ning each setting for 200 epochs in 10-fold cross-validation. For fair comparison, all experiments
on Table 1–3 are conducted by setting the κ for extracting the subgraph to 2, and τ for expand-
ing the subgraph to 4. The resulting experimental outcomes and hyperparameters are detailed in
Appendix B.2. We compare the proposed method against 13 baseline approaches, 3 augmentation
modules, 5 subgraph-based methods, and 3 recent GNNs, covering standard GNN models, pooling
strategies, and enhancement modules (see Appendix B.3 for full details).

4.2 ACCURACY COMPARISON OF SP ON GNN VARIANT

Tables 1–3 compare the classification accuracies of various GNN baselines (“Original”) and their
SP-augmented counterparts (“Ours”). The key finding is that SP consistently improves graph clas-
sification accuracy in 96 of the 110 experimental configurations. In particular, even for models such
as GIN, which already exhibit competitive performance, SP reliably increases accuracy across most
datasets.

Interestingly, the most pronounced gains occur on large graphs. For example, on COLLAB and
IMDB-BINARY (Table 3), SP yields absolute accuracy gains of 2–3 pp. This pattern is consistent
with our analysis that deep architectures on large graphs are prone to rank-one collapse; by empha-
sizing critical local information that would otherwise be washed out by smoothing, SP mitigates
this effect. Consequently, SP functions as a lightweight, architecture-agnostic plug-in that preserves
high-centrality substructures without modifying the underlying GNN.

6
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Table 2: Performance comparison on four PTC-family datasets with node features. Same legend as
Table 1.

PTC MR PTC FR PTC MM PTC FM

METHOD ORIG. OURS ORIG. OURS ORIG. OURS ORIG. OURS

GCN 54.9±5.0 56.4±6.3 65.5±2.9 66.9±2.5 66.6±8.4 67.5±5.6 60.7±3.9 61.5±4.7
GIN 55.6±4.1 56.1±3.1 64.1±5.7 64.5±3.7 62.2±7.7 65.1±7.1 61.0±4.4 61.7±5.2
GIN0 56.4±6.6 58.1±6.2 64.4±7.3 65.8±4.1 64.0±3.2 59.5±6.2 60.2±2.9 58.2±7.5
TOPK 57.3±8.8 57.5±8.3 66.1±4.2 66.7±4.7 66.9±4.8 66.6±6.3 60.2±3.9 61.3±7.6
SAGPOOL 57.2±6.2 57.9±5.0 66.1±4.8 67.2±3.7 66.0±5.2 67.5±5.3 60.7±4.5 61.2±6.6
EDGEPOOL 55.2±7.4 56.1±6.9 64.7±7.1 65.2±4.6 65.4±6.2 67.8±5.1 60.2±4.8 60.7±5.6
GRACLUS 52.9±9.4 56.7±4.6 65.5±5.7 65.2±4.6 64.8±6.1 66.0±5.4 61.0±4.4 63.3±3.9
GAT 53.2±7.0 58.4±5.6 65.2±5.9 65.3±5.2 67.8±6.0 69.0±5.7 59.6±4.0 61.3±4.2
SET2SET 55.2±4.5 53.8±6.8 66.7±3.9 66.9±3.2 67.8±5.7 68.3±1.4 59.9±4.3 61.4±1.9
GRAPHSAGE 54.1±6.1 56.7±9.0 66.4±2.2 63.5±6.0 63.4±5.7 66.9±5.8 60.5±4.1 59.9±8.2

Table 3: Performance comparison on the datasets without node features (IMDB-BINARY, IMDB-
MULTI, COLLAB). Again, “Original” vs. “Ours” refers to baseline vs. proposed method. Results
are mean±std (%).

IMDB-BINARY IMDB-MULTI COLLAB

METHOD ORIG. OURS ORIG. OURS ORIG. OURS

GCN 74.6±4.8 74.9±3.8 50.9±3.6 50.9±3.5 80.6±0.4 82.1±0.9
GIN 72.7±5.5 73.4±5.7 48.7±3.0 50.6±2.9 80.2±0.6 81.2±0.8
GIN0 73.6±4.4 73.7±5.4 48.3±2.3 49.9±4.3 80.1±0.2 81.2±1.7
TOPK 74.3±5.6 75.9±5.3 50.5±2.7 50.7±3.0 78.8±1.4 79.1±2.6
SAGPOOL 73.4±5.3 74.1±5.4 50.5±2.5 50.6±3.4 80.3±1.2 81.6±1.0
EDGEPOOL 73.5±5.0 73.2±4.7 50.8±2.5 51.5±4.9 82.4±1.0 83.8±0.7
GRACLUS 72.7±4.7 73.2±3.1 50.7±2.9 50.8±2.7 79.4±0.5 78.8±1.1
GAT 73.0±4.6 72.4±4.2 50.0±3.2 50.9±2.0 80.3±0.7 81.8±2.1
SET2SET 72.9±4.4 72.5±4.9 50.9±2.9 51.2±1.7 77.6±0.8 76.4±3.1
GRAPHSAGE 71.7±3.9 72.8±3.6 51.2±3.0 52.3±1.7 79.6±2.0 78.6±1.7

Although SP appears to underperform in 16 configurations across Tables 1–3 or to produce gains
within one standard deviation of the baseline, this follows from strict adherence to each model’s
original hyperparameters without any SP-specific tuning. A detailed error analysis is provided in
Section C.1, and the hyperparameters used in all experiments are listed in Table 8. SP is designed
to counter rank-one collapse that intensifies with depth; in our experiments, deeper architectures
augmented with SP outperform the untuned baselines. These gains arise without additional hyper-
parameter optimization, indicating robustness and practical utility. Section 4.3 and Appendix C
show that stacking more layers further amplifies SP’s benefits.

4.3 ACCURACY COMPARISON WITH RECENT METHODS

Across OGBG–MolHIV and ZINC, the proposed method is the only augmentation that yields con-
sistent gains across backbones and delivers the best ZINC MAE for every encoder; on MolHIV
it is strongest for three of four backbones, with GraphSAGE + PairNorm as the lone exception.
Head–to–head against recent SubGNNs at T=3(κ = 1) (GIN backbone), it attains the top score on
both benchmarks, indicating that a small, deterministically chosen set of κ radius τ subgraphs can
outperform bag–based subgraph pipelines. These outcomes support the theory that fusing locally
focused subgraph embeddings at readout preserves label–relevant structure while avoiding architec-
tural changes to the base MPNN. Detailed error analysis appears in Sec. C.1; hyperparameters are
listed in Tab. 8.

Notably, GCNII and U-Net exhibit poor performance when evaluated in these domains. This degra-
dation is not merely due to limited representational capacity of the GNN encoder but stems from
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Table 4: Comparison of additional methods on various GNN models (OGBG-MolHIV, ZINC). T=3
results for SGNN baselines are appended.

MODEL ADDITIONAL METHOD OGBG(ROC-AUC) ZINC(MAE)

GCN BASE 0.62788 ± 0.00451 0.14852 ± 0.01511
DROP 0.62318 ± 0.00387 0.14655 ± 0.01248
PAIRNORM 0.53268 ± 0.00671 0.14877 ± 0.01346
WITHJK 0.67570 ± 0.00299 0.14256 ± 0.00988
SP 0.69194 ± 0.00257 0.13159 ± 0.00913

GIN BASE 0.80840 ± 0.01581 0.07125 ± 0.00594
DROP 0.76590 ± 0.01266 0.08349 ± 0.00581
PAIRNORM 0.77442 ± 0.01007 0.08158 ± 0.00563
WITHJK 0.81132 ± 0.00864 0.07345 ± 0.00601
SP 0.84810 ± 0.00912 0.07011 ± 0.00544

GIN0 BASE 0.81036 ± 0.00457 0.08641 ± 0.00648
DROP 0.76776 ± 0.00866 0.08358 ± 0.00650
PAIRNORM 0.77776 ± 0.00948 0.08415 ± 0.00684
WITHJK 0.81136 ± 0.00900 0.08478 ± 0.00631
SP 0.83892 ± 0.01012 0.07861 ± 0.00694

GRAPHSAGE BASE 0.72514 ± 0.01022 0.06849 ± 0.00812
DROP 0.66738 ± 0.01051 0.06579 ± 0.00791
PAIRNORM 0.79502 ± 0.01069 0.06661 ± 0.00755
WITHJK 0.68638 ± 0.00998 0.06922 ± 0.00764
SP 0.75094 ± 0.01002 0.06294 ± 0.00734

GCNII* NONE 0.49914 ± 0.05121 2.64234 ± 0.56150
UNET* NONE 0.45804 ± 0.04966 1.44671 ± 0.49660
GRAPHORMER NONE 0.79392 ± 0.00358 0.05648 ± 0.00258

SP 0.83311 ± 0.00426 0.04951 ± 0.00322

GIN (SUBGNN, T=3) RANDOM 0.76300 ± 0.01000 0.11200 ± 0.00600
MAG-GNN 0.80600 ± 0.01900 0.11000 ± 0.01200
OSAN 0.77400 ± 0.02100 0.19400 ± 0.00600
POLICY-LEARN 0.83500 ± 0.01500 0.09100 ± 0.00600
CS-GNN 0.79600 ± 0.01900 0.09300 ± 0.00700
HYMN 0.83700 ± 0.02100 0.09000 ± 0.00600
SP (OURS) 0.83800 ± 0.02100 0.08600 ± 0.00500

information loss during the graph pooling step, where independent node embeddings are aggregated
into a single vector. SP addresses this challenge by simultaneously preventing rank-one collapse and
employing feature fusion to recover and integrate critical local information that would otherwise be
discarded.

4.4 ABLATION & PERTURBATION ANALYSIS

Setup. Let S∗ =
⋃

S∈S
S. We test (A1) Task locality—Y ⊥ (G \ S∗) | S∗—via node–feature

masking, and (A2) Subgraph encoder adequacy—I
(
H(G);Y ) ≥ γ I

(
S∗;Y

)
—via centrality–choice

ablations.

A1: Node–feature masking (perturbation). For each dataset–backbone pair, we compare Ran-
dom masking (uniform nodes) vs. Centrality masking (top nodes by degree/betweenness/closeness)
at the same masking rate; results are in Table 5. Across all 30/30 valid comparisons, accuracy under
Centrality masking is lower than under Random masking (two runs failed to train when central
nodes were masked, marked “–”), indicating that information critical for Y is concentrated in S∗
rather than G \ S∗. This selective fragility directly supports (A1).

A2: Centrality–choice ablation (encoder adequacy). Using a GCN backbone, we replace SP’s
selection with a single centrality (degree, betweenness, closeness) and report performance in Table 6.
Any single centrality strictly improves over the base in all datasets, and SP (ours)—which fuses
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Table 5: Comparison of graph classification performance under node feature masking. ‘-” means
that the model failed to train properly

GCN GAT GIN SET2SET

DATASET RND. CENT. RND. CENT. RND. CENT. RND. CENT.

MUTAG 72.7 68.7 71.9 66.3 78.4 76.6 70.4 69.4
NCI1 64.9 63.5 67.6 65.5 73.7 71.1 68.7 65.8
NCI109 63.8 62.2 65.4 64.2 70.6 67.8 75.6 71.4
PROTEINS 65.7 60.7 67.9 63.7 67.8 64.9 71.9 69.8
PTC MR 52.6 – 50.1 – 50.9 50.3 52.4 51.2
PTC FR 63.0 62.7 59.7 58.6 60.3 60.2 63.6 61.2
PTC MM 62.8 60.3 62.2 61.0 57.1 54.9 61.8 60.2
PTC FM 57.9 55.8 55.5 53.9 53.7 52.7 57.3 56.6

Table 6: Ablation on centrality measures (GCN backbone). Higher is better for COLLAB, MU-
TAG, PROTEINS, OGBG-MolHIV; lower is better for ZINC. Mean ± std over repeated runs.

Dataset GCN base Degree Betweenness Closeness SP (ours)

COLLAB 80.6± 0.4 81.9± 0.5 81.3± 0.6 81.7± 0.7 82.1± 0.9
MUTAG 74.0± 6.1 74.8± 5.5 75.5± 5.3 74.1± 5.2 76.6± 5.1
PROTEINS 71.6± 3.8 72.2± 3.9 73.0± 4.0 73.6± 4.2 74.1± 4.3
OGBG-MolHIV (AUC) 0.627± 0.005 0.643± 0.006 0.685± 0.007 0.686± 0.008 0.692± 0.003
ZINC (MAE) 0.149± 0.015 0.145± 0.014 0.137± 0.013 0.135± 0.013 0.132± 0.009

κ radius–τ subgraph embeddings—achieves the best score in every case (e.g., OGBG-MolHIV
0.6279 → 0.6919 ROC–AUC; ZINC 0.1485 → 0.1316 MAE). These gains show that H(G) =
Concat{hS : S ∈ S} retains label–relevant signals present in S∗, substantiating (A2) and aligning
with Theorem 1 on the augmented representation’s information advantage.

4.5 LIMITATIONS AND SCOPE

(i) Tie handling and invariance. Deterministic tie-breaking by node index can, in principle, vi-
olate permutation invariance. In practice we observed negligible effect; nevertheless, a canonical,
isomorphism-invariant rule (e.g., WL colors with lexicographic neighborhood hashes) or a fixed
hash of local neighborhoods can resolve ties without sacrificing invariance.

(ii) Tasks driven by global structure. When labels depend on long-range global topology, the
marginal gain from local subgraphs may shrink. SP is orthogonal to rewiring and positional encod-
ings and can be paired with them to restore long-range signal.

(iii) Very large graphs. Exact betweenness/closeness can be costly. Approximate centralities (e.g.
PageRank proxies) are drop-in replacements; centrality is computed once and reused across (κ, τ)
sweeps.

5 CONCLUSION

We propose Subgraph Plug-in (SP), a lightweight, architecture-agnostic module that (1) scores
nodes via simple centralities, (2) extracts κ radius-τ subgraphs, and (3) concatenates their embed-
dings with the global graph representation. The perturbation and information-theoretic analyses ex-
plain why emphasizing high-centrality neighborhoods counters depth-induced contraction (rank-one
collapse), and the information-monotonicity result guarantees that fusion does not decrease label
information. Empirically, SP yields consistent gains across 13 datasets and 11 backbones, with
the largest improvements on large graphs and deeper models, and remains competitive with recent
SGNNs at modest cost. Future works include adaptive selection of (κ, τ), scalable approximate
centralities for web-scale graphs and joint use with rewiring or positional encodings. We view SP
as a practical, last-layer structural prior: a simple partition–encode–fuse step that reliably preserves
discriminative substructures while leaving the base MPNN pipeline intact.
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