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Abstract

In this paper, we present CSCD-NS, the first001
Chinese spelling check (CSC) dataset designed002
for native speakers, containing 40,000 samples003
from a Chinese social platform. Compared004
with existing CSC datasets aimed at Chinese005
learners, CSCD-NS is ten times larger in scale006
and exhibits a distinct error distribution, with007
a significantly higher proportion of word-level008
errors. To further enhance the data resource,009
we propose a novel method that simulates the010
input process through an input method, gener-011
ating large-scale and high-quality pseudo data012
that closely resembles the actual error distribu-013
tion and outperforms existing methods. More-014
over, we investigate the performance of various015
models in this scenario, including large lan-016
guage models (LLMs), such as ChatGPT. The017
result indicates that generative models under-018
perform BERT-like classification models due to019
strict length and pronunciation constraints. The020
high prevalence of word-level errors also makes021
CSC for native speakers challenging enough,022
leaving substantial room for improvement. 1023

1 Introduction024

Chinese spelling check (CSC) is a task to detect025

and correct spelling errors in Chinese texts. There026

are two primary user groups for CSC: (1) Chinese027

learners, including teenage students and individuals028

who use Chinese as a second language, and (2)029

Chinese native speakers. It is obvious that the latter030

user group has a larger population and more diverse031

applications, therefore, this paper concentrates on032

CSC for native speakers.033

However, there is still no CSC dataset specifi-034

cally designed for native speakers. Existing CSC035

datasets, such as SIGHAN13, 14, and 15 (Wu et al.,036

2013; Yu et al., 2014; Tseng et al., 2015), are all037

sourced from Chinese learners. Spelling errors038

made by Chinese learners differ greatly from those039

1The data and codes are attached to the supplementary ma-
terial for review and will be publicly available once accepted.

Figure 1: An error from SIGHAN: misspelling “错误”
as “错勿”. Despite having the same pronunciation, it’s
hard to reproduce this error in the given context through
a Chinese IME, no matter what input form is used.

made by native speakers. This is because Chinese 040

input relies on Chinese input methods (IME), and 041

modern Chinese IMEs always have powerful lan- 042

guage models, making it difficult to recommend 043

candidates that clearly do not fit the context. As 044

shown in Figure 1, native speakers using Chinese 045

IMEs are unlikely to make such an unusual error. 046

Furthermore, the size of existing datasets is lim- 047

ited. As shown in Table 1, for three SIGHAN 048

datasets, the training set contains an average of 049

merely 2158 samples, while the test set comprises 050

an average of only 1054 samples, and no develop- 051

ment set is provided. When using such small-scale 052

datasets, it is difficult for models to be trained suf- 053

ficiently and for evaluation results to be reliable. 054

To address the aforementioned issues, we intro- 055

duce CSCD-NS, a Chinese spelling check dataset 056

designed for native speakers. The dataset is sourced 057

from real Weibo (a Chinese social media platform) 058

posts, which contain genuine spelling errors made 059

by native speakers during their input process. More- 060

over, the dataset comprises 40,000 samples, which 061

is ten times larger than previous datasets and this 062

is also the largest dataset for the CSC task. To con- 063

duct an in-depth investigation into the distribution 064

1



Figure 2: An authentic Weibo post from LCSTS, where
the phrase "效力于" is mistakenly written as "效力与".

of spelling errors, we develop a tagging system that065

operates at phonetic and semantic levels. The anal-066

ysis indicates that native speakers make a higher067

proportion of homophonic and word-level errors068

compared to Chinese learners, with the proportion069

of word-level errors doubling.070

Due to the lack of labeled data, previous stud-071

ies always build additional pseudo data to improve072

the performance of models. However, these meth-073

ods, which rely on confusion sets (Liu et al., 2021;074

Zhang et al., 2020) or ASR transcriptions (Wang075

et al., 2018), do not align with the real-world input076

scenario. Therefore, we propose a novel method077

that directly simulates the input process through078

the Chinese IME and adds sampled noises to con-079

struct high-quality pseudo data. Experimental re-080

sults show that our method can better fit the real081

error distribution and bring greater improvements.082

We conduct comprehensive experiments on083

CSCD-NS, with different model sizes (100M084

to 6B parameters), architectures (encoder-only,085

encoder-decoder, and decoder-only), and learning086

approaches (fine-tuning and in-context learning).087

We also evaluate ChatGPT’s performance in this088

scenario. The results demonstrate that BERT-like089

classification models outperform generative mod-090

els, as the latter struggle with the simultaneous091

constraints of text length and pronunciation. Con-092

currently, the CSC task for native speakers is chal-093

lenging due to the high proportion of word-level094

errors, leaving substantial room for improvement.095

In summary, our contributions are as follows:096

• We introduce the first Chinese spelling check097

dataset for native speakers which is also the098

largest dataset for the CSC task. Through 099

quantitative analyses, we further unveil the 100

specific error distribution for this scenario. 101

• We propose a novel method for construct- 102

ing high-quality and large-scale pseudo data 103

through a Chinese IME. Experimental results 104

show that our method can bring greater im- 105

provements than existing methods. 106

• We explore the performance of different types 107

of models in this scenario and analyze the 108

challenges. To the best of our knowledge, we 109

are the first to investigate the effectiveness and 110

limitations of large language models (LLMs), 111

such as ChatGPT, in addressing the CSC task. 112

2 Related Work 113

CSC Datasets: The existing CSC datasets, such as 114

the SIGHAN series (Wu et al., 2013; Yu et al., 2014; 115

Tseng et al., 2015), primarily cater to Chinese learn- 116

ers. However, these datasets suffer from limited 117

data size and significant discrepancies in spelling 118

errors compared to those made by native speakers. 119

While there have been some efforts to develop Chi- 120

nese grammatical error correction (CGEC) datasets 121

for native speakers (Ma et al., 2022; Xu et al., 2022; 122

Zhao et al., 2022; Wang et al., 2022), no such work 123

has been undertaken for CSC datasets. 124

CSC Data Augmentation: In order to compen- 125

sate for the lack of labeled data, previous studies 126

often create additional pseudo data to enhance per- 127

formance. The mainstream method is based on 128

confusion sets (Liu et al., 2021; Zhang et al., 2020), 129

the pseudo data generated in this way is large in 130

size but low in quality because context information 131

is not considered. Another relatively high-quality 132

construction method is based on ASR (Wang et al., 133

2018). However, this approach requires additional 134

labeled ASR data, making it difficult to create large- 135

scale datasets. Moreover, the spelling errors gen- 136

erated by these two methods differ greatly from 137

those produced by native speakers, such as having 138

a much smaller proportion of word-level errors. We 139

provide a detailed analysis in Appendix A. 140

CSC models: In recent years, BERT-like (De- 141

vlin et al., 2019) classification models have dom- 142

inated the research of the CSC task (Hong et al., 143

2019; Zhu et al., 2022; Huang et al., 2021; Zhang 144

et al., 2020; Liu et al., 2021, 2022). However, due 145

to the lack of large-scale and high-quality datasets, 146

the performance of these models is greatly limited. 147
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3 CSCD-NS148

In this section, we will show how to build CSCD-149

NS and discover the error distribution.150

3.1 Data Source151

We chose the LCSTS dataset (Hu et al., 2015) as152

our data source. This dataset is composed of au-153

thentic Weibo posts, which is a popular Chinese so-154

cial media platform. As shown in Figure 2, spelling155

errors found within these posts reflect the genuine156

mistakes made by native speakers during the input157

process. Furthermore, this dataset contains over158

2 million posts and covers a wide range of fields,159

such as finance, sports, and entertainment. The160

substantial scale and scope of the LCSTS make it161

suitable to serve as the data source.162

3.2 Data Selection163

We split posts in LCSTS into sentence levels and164

obtain over 8 million sentences. It is not realistic165

to label all of these sentences, and most of them166

are completely correct. Therefore, we use an error167

detection model to filter out these correct sentences.168

Detection Model: Given a source sequence169

X = {x1, x2, ..., xN}, the detection model is to170

check whether a token xi(1 ≤ i ≤ N) is correct171

or not. We use the label 1 and 0 to mark the mis-172

spelled and the correct, respectively. The detection173

model can be formalized as follows:174

y = sigmoid(W T (E(e))) (1)175

where e = {e1, e2, ..., eN} is the sequence of word176

embeddings and E(∗) is the pre-trained encoder.177

The output y = {y1, y2, ..., yN} is the sequence of178

probabilities, where yi ∈ (0, 1) denotes the proba-179

bility that xi is erroneous.180

Training: We follow the successful experience181

(Wang et al., 2020) of the NLPTEA2020 task182

(Rao et al., 2020) and use a Chinese ELECTRA-183

Large discriminator model 2 (Clark et al., 2020)184

to initialize the detection model. Following pre-185

vious research, we train the detection model on186

SIGHAN13-15’s training data and Wang’s pseudo187

data (Wang et al., 2018) and save the best check-188

point by SIGHAN13-15’s test data 3.189

Filtering: We then use the trained detection190

model to filter out correct sentences. For the in-191

put sentence, we can obtain the error probability192

2https://github.com/ymcui/Chinese-ELECTRA
3SIGHAN datasets have no development set.

of each token y = {y1, y2, ..., yN}. Previous re- 193

search indicates that the detection model struggles 194

with certain Chinese particles (的/地/得) due to the 195

poor labeling of these words in SIGHAN datasets. 196

Additionally, low-frequency entity words, such as 197

person names, are also prone to over-checking. To 198

address these issues, we utilize a Chinese lexical 199

analysis tool (LAC) (Jiao et al., 2018) to iden- 200

tify these particles and entities in the input sen- 201

tence. We categorize tokens into three groups: 202

Cparticle, Centity, Cothers. Then, we calculate the 203

maximum error probability for tokens in each cat- 204

egory. If a category is empty, the maximum error 205

probability is 0. We only consider a sentence cor- 206

rect if all the maximum error probabilities for each 207

category are below the corresponding threshold. 208

This can be formalized as follows: 209
max({yi|xi ∈ Cparticle}) < δparticle

max({yi|xi ∈ Centity}) < δentity

max({yi|xi ∈ Cothers}) < δothers

(2) 210

where δparticle, δentity and δothers are thresholds. 211

Based on the above method, we filter out ap- 212

proximately 91.2% of sentences, retaining around 213

700,000 sentences that may contain spelling errors. 214

To verify the accuracy of our filtering, we randomly 215

select 2,000 filtered sentences and find that the ac- 216

curacy is 99.2%, aligning with our expectations. 217

For the remaining sentences, we randomly select a 218

portion for manual annotation. 219

3.3 Data Annotation 220

We recruit a group of native speakers for manual 221

annotation. The annotators are required to check 222

whether the given sentence contains any spelling 223

errors and provide the correct sentence. To ensure 224

the quality of annotation, each sentence is anno- 225

tated at least twice by different annotators. If the 226

results of the two annotations are inconsistent, a 227

senior annotator will make the final decision. 228

To clarify the annotation rules and reduce dis- 229

putes during the annotation process, sentences that 230

fall into the following three categories will be di- 231

rectly discarded: (1) sentences with inherent am- 232

biguity; (2) sentences with multiple reasonable an- 233

swers to errors; (3) sentences with complex gram- 234

matical errors. Therefore, the sentence retained in 235

the annotation process is semantically clear and has 236

a unique correction result. 237

In the end, we obtain 40,000 manually annotated 238

sentences, which constitute the CSCD-NS dataset. 239
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Dataset Train Size Dev Size Test Size Target Group Source Language Err. ratio Avg err./sent.
SIGHAN13 700 - 1000 Chinese learners essays TC 77.11% 1.20
SIGHAN14 3437 - 1062 Chinese learners essays TC 86.19% 1.52
SIGHAN15 2339 - 1100 Chinese learners essays TC 81.82% 1.33
CSCD-NS 3,0000 5,000 5,000 native speakers tweets CN 46.02% 1.09

Table 1: The comparison of CSCD-NS and existing CSC datasets SIGHAN13, SIGHAN14, and SIGHAN15 in
terms of dataset size, target group, data source, language, error sentence ratio, and average errors per sentence. In
the table, TC and CN respectively denote Traditional Chinese and Simplified Chinese.

origin 由之可见，中国企业的技术提升后，因与跨国企业共同研发，不在简单的代加工

correct 由此可见，中国企业的技术提升后，应与跨国企业共同研发，不再简单的代加工

segment 由此可见 ，中国企业的技术提升后， 应与跨国企业共同研发，不再简单的代加工

translation
It can be seen that after the technology of Chinese enterprises is upgraded,
they should cooperate with multinational enterprises in research instead of simple processing.

errors

word pair pinyin pair (ed) phonetic tag word len ori-word valid semantic tag
由之可见→由此可见 zhi → ci (2) dissimilar 4 % character

因→应 yin → ying (1) similar 1 - character
不在→不再 zai → zai (0) same 2 ! word

Table 2: The process of adding phonetic and semantic tags. In the table, "ed" means edit distance, and "ori-word
valid" indicates the validity of the original word.

After random partitioning, there are 30,000 samples240

in the training set, and 5,000 samples each in the241

development and test sets.242

3.4 Analysis on Basic Statistics243

As shown in Table 1, the CSCD-NS is significantly244

larger in scale compared to existing datasets. More-245

over, only the CSCD-NS provides a development246

set, is in Simplified Chinese, and originates from247

daily input by native speakers. Additionally, the248

CSCD-NS exhibits a more balanced distribution of249

positive and negative samples, with fewer spelling250

errors per sentence on average, suggesting a lower251

error rate among native speakers compared to Chi-252

nese learners.253

3.5 Analysis on Error Distribution254

To conduct an in-depth study on the differences255

between native speakers and Chinese learners in256

terms of spelling errors, we design a tagging system257

for quantitative analyses.258

Tag definition: We define three phonetic-level259

tags and two semantic-level tags. The phonetic tags260

consist of: (1) same phonetic error: the erroneous261

character has the same pronunciation as the correct262

one. (2) similar phonetic error: the erroneous char-263

acter’s pronunciation has an edit distance of 1 from264

the correct character’s pronunciation. (3) dissimilar265

phonetic error: the erroneous character’s pronunci-266

ation has an edit distance greater than 1 from the267

correct character’s pronunciation. The semantic 268

tags consist of: (1) word-level error: the erroneous 269

word is a valid Chinese word. (2) character-level 270

error: the erroneous word is not a valid Chinese 271

word, or the length of the erroneous word is 1. 272

As shown in Table 2, we first tokenize the cor- 273

rect sentence using LAC (Jiao et al., 2018) to ob- 274

tain word-level correction pairs. For each pair, 275

we compute the pinyin edit distance and assign 276

a phonetic-level tag. Simultaneously, we check the 277

original word’s validity in Chinese and incorporate 278

its length to assign a semantic tag. 279

Phonetic-level analysis: As illustrated in Fig- 280

ure 3, the proportion of same phonetic errors is the 281

largest, while the proportion of dissimilar phonetic 282

errors is the smallest in all four datasets. This fea- 283

ture is more pronounced in the CSCD-NS dataset, 284

where the proportion of dissimilar phonetic errors 285

is only 2.2%, significantly lower than in the other 286

datasets. Over 97% of the errors are either the same 287

phonetic or similar phonetic errors. This is because 288

even if users make slight mistakes in their pinyin 289

input, Chinese IME will auto-fix the input pinyin 290

based on the context (Jia and Zhao, 2014). 291

Semantic-level analysis: As shown in Figure 292

3, the proportion of word-level errors in CSCD- 293

NS (49.4%) far exceeds that of existing datasets, 294

which is twice the average value (23.3%) of the 295

SIGHAN datasets. This is because native speakers 296

rely on the IME to input Chinese texts, which tends 297
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Figure 3: The comparison of error distribution (%) at phonetic level (above) and semantic level (below).

to recommend relatively reasonable valid words298

rather than strange "error words", resulting in a299

lower proportion of character-level errors. Com-300

pared to character-level errors, word-level errors301

pose a greater challenge to CSC systems.302

4 Data Augmentation303

The manual annotation of CSC dataset is very ex-304

pensive, therefore, how to construct pseudo data305

has always been a valuable topic. In this section,306

we introduce a novel method that can generate high-307

quality pseudo data on a large scale.308

4.1 Data Preparation309

The basic principle of pseudo-data construction is310

to add noise to accurate sentences. Therefore, it is311

necessary to first prepare completely correct sen-312

tences. Fortunately, such text data is readily avail-313

able on the Internet, including Wikipedia articles314

and classic books. This availability also ensures315

the generation of a large-scale dataset.316

4.2 IME-based Pseudo Data Generation317

First, we should analyze and obtain the error distri-318

bution based on the annotated data, including the319

distribution of the number of errors per sentence320

Dnum, phonetic-level error distribution Dphonetic,321

and semantic-level error distribution Dsemantic.322

As illustrated in Figure 4, the IME-based gener-323

ation of pseudo data involves eight steps.324

(1) Sample a noise vnum based on Dnum, which325

indicates the number of generated spelling errors. 326

The following steps are performed for each error. 327

(2) Sample a semantic noise vsemantic based on 328

Dsemantic, which indicates whether the error is at 329

the word level or the character level. 330

(3) Randomly select a token from the original 331

text based on the sampled vsemantic. 332

(4) Sample a phonetic noise vphonetic based on 333

Dphonetic, which indicates whether the error is the 334

same, similar, or dissimilar phonetic error. 335

(5) Generate the new pinyin p, based on the sam- 336

pled phonetic noise vphonetic and the actual pronun- 337

ciation of the selected token. 338

(6) In a Chinese IME, input the correct text be- 339

fore the selected token t and enter the generated 340

pinyin p. The IME would then recommend rea- 341

sonable candidates {c1, c2, ..., cn}. Leveraging the 342

powerful language model of the IME, candidates 343

are recommended by considering both the context 344

before token C<t and the pronunciation p (Chen 345

et al., 2015). This can be represented as: 346

{c1, c2, ..., cn} = IME(C<t, p) (3) 347

(7) Choose the candidate from the recommen- 348

dations. If the first recommended candidate is the 349

original token, randomly select the second or third 350

candidate word {c2, c3}. If the first candidate word 351

is not the original token, directly choose the first 352

candidate word c1. Then, replace the original token 353

in the input text with the selected candidate word 354

to generate a noisy sentence. 355
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Figure 4: The IME-based pseudo data generation process.

(8) Due to the powerful language model of IME,356

the generated sentence may still be a correct sen-357

tence. Therefore, we adopt an n-gram language358

model for secondary filtering. We consider the gen-359

erated sentence to be incorrect only if its perplexity360

(PPL) exceeds that of the original sentence by a361

threshold of δ. This can be formalized as follows:362

PPL(noisy)− PPL(origin)

PPL(origin)
> δ (4)363

Through these steps, we can generate pseudo364

data that closely resembles the actual input process.365

4.3 LCSTS-IME-2M366

We apply the above method to construct a large-367

scale CSC pseudo dataset LCSTS-IME-2M, con-368

sisting of about 2 million samples, based on the369

correct sentences filtered from LCSTS, the error370

distribution of CSCD-NS, and the Google IME 4.371

5 Experiments372

In this section, we evaluate the performance of dif-373

ferent models on CSCD-NS and compare different374

pseudo-data construction methods.375

5.1 Basic Settings376

Data: We perform experiments based on the labled377

data CSCD-NS and the pseudo data LCSTS-IME-378

2M. For pseudo data, we pre-train the model on it379

first, then fine-tune the model on the labeled data.380

4https://www.google.com/inputtools/

Model Structure Parameters Learning
BERT encoder 102M FT
SM BERT encoder 123M FT
PLOME encoder 123M FT
BART encoder-decoder 407M FT
ChatGLM GLM 6.17B LoRA
ChatGPT decoder - ICL

Table 3: The comparison of different baselines. In the ta-
ble, FT refers to full-parameter finetuning, LoRA refers
to finetuning using low-rank adaptation, and ICL refers
to in-context learning. Note that the number of parame-
ters for ChatGPT has not been disclosed by the official
documentation.

Metric: We compute detection and correc- 381

tion metrics at the sentence level and character 382

level, including precision, recall, and F1 score. 383

For sentence-level metrics, we use the calcula- 384

tion method in FASPell (Hong et al., 2019). For 385

character-level metrics, we calculate all characters 386

instead of only those correctly detected characters. 387

Baselines: As shown in Table 3, the baselines en- 388

compass a diverse range of model structures, sizes, 389

and learning methods. (1) BERT (Devlin et al., 390

2019) directly fine-tunes the standard masked lan- 391

guage model to generate fixed-length corrections. 392

(2) Soft-Masked BERT (SM BERT) (Zhang et al., 393

2020) employs an error detection model to provide 394

better correction guidance. (3) PLOME (Liu et al., 395

2021) integrates phonetic and visual features into 396

the pre-trained model. It has included a pre-training 397
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Models
Sentence level Character level

Detection Correction Detection Correction
P R F1 P R F1 P R F1 P R F1

BERT 79.16 65.83 71.88 70.55 58.66 64.06 83.00 67.01 74.15 73.59 59.41 65.75
+LCSTS-IME-2M 78.98 73.60 76.20 75.63 70.47 72.96 82.19 75.75 78.84 78.84 72.67 75.63
SM BERT 80.87 64.78 71.94 74.42 59.62 66.20 84.46 65.35 73.68 77.50 59.97 67.62
+LCSTS-IME-2M 79.19 74.86 76.97 75.75 71.60 73.62 82.39 77.93 80.10 78.63 74.37 76.44
PLOME 79.78 57.23 66.65 78.09 56.01 65.23 83.48 57.99 68.44 81.49 56.61 66.81
+LCSTS-IME-2M 81.20 72.21 76.44 79.05 70.30 74.42 84.21 73.81 78.67 82.00 71.88 76.60
BART 38.73 46.05 42.08 35.41 42.11 38.47 36.97 63.32 46.69 33.30 57.04 42.05
+LCSTS-IME-2M 42.06 54.29 47.40 41.01 52.95 46.22 40.87 75.97 53.15 39.68 73.75 51.60
ChatGLM 75.43 43.54 55.21 68.52 39.55 50.15 77.25 46.84 58.32 67.21 40.75 50.74
+LCSTS-IME-2M 78.27 61.71 69.01 72.17 56.90 63.63 80.02 64.43 71.38 72.31 58.22 64.51
ChatGPT 59.23 46.99 52.41 55.23 43.81 48.86 61.02 50.88 55.5 55.72 46.45 50.67

Table 4: The performance (%) of different models on CSCD-NS with or without pseudo dataset.

Models Char level Word level ∆

BERT 72.82 71.07 -1.75
SM BERT 75.09 72.71 -2.38
PLOME 77.77 72.78 -4.99

Table 5: The performance (correction F1 score at char-
acter level %) comparison between word-level and
character-level errors. We only select the same pho-
netic errors here to avoid the influence of pronunciation.

step on a confusion set-based pseudo dataset. (4)398

BART (Lewis et al., 2020) models the CSC as a399

sequence-to-sequence task. We use the Chinese400

BART-large version here 5. (5) ChatGLM (Du401

et al., 2022) models the CSC as a text generation402

task based on instructions. We fine-tune the model403

by LoRA (Hu et al., 2021) and use the 6B version404

here 6. (6) ChatGPT performs the CSC task in a405

few-shot setting (10 examples) through in-context406

learning (ICL) (Dong et al., 2022).407

To ensure that the correction results are of the408

same length as the input text, we only extract equal-409

length substitution modifications for generative410

models (BART, ChatGLM, and ChatGPT). Fur-411

ther implementation details of these models can be412

found in Appendix B.413

5.2 Main Results414

(1) As shown in Table 4, compared with generative415

models, BERT-like token-level classification mod-416

els (BERT, SM BERT, PLOME) remain the best417

approach for the CSC task, with smaller model size,418

higher performance, and faster inference speed.419

(2) The overall performance of generative mod-420

5https://huggingface.co/fnlp/bart-large-chinese
6https://github.com/THUDM/ChatGLM-6B

els is relatively poor because the CSC task has 421

strong constraints, requiring corrections to be of 422

equal length and phonetically similar to the orig- 423

inal text. These strong constraints make it easy 424

for generative models to cause over-correction and 425

incorrect correction. 426

(3) For generative models, as the model param- 427

eters increase, the model’s performance also im- 428

proves. ChatGLM, which has 15 times more param- 429

eters than BART, demonstrates significantly better 430

performance. Similarly, only through in-context 431

learning, ChatGPT achieves performance compara- 432

ble to ChatGLM fine-tuned on CSCD-NS. 433

(4) Large-scale and high-quality pseudo data is 434

important for improving the performance, bringing 435

consistent improvements across all five models. 436

(5) The task of CSC for native speakers is highly 437

challenging and the best F1 score of baseline mod- 438

els is still below 80. A key characteristic of this 439

scenario is the high proportion of word-level errors. 440

As shown in Table 5, word-level errors are more 441

difficult for models to handle than character-level 442

errors, as they require understanding more complex 443

contexts. The development of CSC models, from 444

BERT to PLOME, has primarily focused on opti- 445

mizing character-level errors, with little progress 446

made in addressing word-level errors. Therefore, 447

further efforts are required in this scenario. 448

5.3 Analysis 449

For generative models, it is difficult to ensure that 450

the generated text satisfies constraints on length 451

and pronunciation. In the original correction re- 452

sults produced by ChatGPT, a staggering 82.1% of 453

modifications exhibit unequal length, while 35.4% 454

display dissimilar pronunciation. As illustrated 455
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origin 新方案还处多方博弈中，想要尽快的打破僵局仍就困难重重，我们会跟紧并持续报到

correct 新方案还处多方博弈中，想要尽快地打破僵局仍旧困难重重，我们会跟紧并持续报道

translation
The new plan is still in a multi-party game. It is still difficult to break the deadlock as soon as possible.
We will follow up and continue to report.

PLOME 仍就(jiu) →仍旧(jiu); 跟紧(jin) →跟进(jin)
ChatGPT 处→处于; 尽快的(de) →尽快地(de) ; 仍就(jiu) →仍然(ran); 跟紧(jin) →跟进(jin)

Table 6: The correction results of PLOME and ChatGPT. The pronunciation of the character is in brackets.

Data BERT SM BERT BART ChatGLM
*CS 19.57 15.39 14.02 25.67

*ASR 42.22 39.50 29.97 35.69
*IME 46.71 53.84 32.16 38.64
+CS 64.53 67.36 42.95 54.30

+ASR 68.44 71.26 44.88 56.77
+IME 70.41 72.72 45.92 57.85

Table 7: The comparison of the performance (correction
F1 score at character level %) of three pseudo-data con-
struction methods based on confusion sets (CS), ASR,
and IME. In the table, an asterisk (*) indicates that only
pseudo data is used for training, while a plus sign (+)
denotes pretraining on pseudo data followed by contin-
ued training on the CSCD-NS’s training data.

in Table 6, the replacement of "处" with "处于"456

(located in) disregards the length constraint by in-457

troducing an additional character. Similarly, the458

correction of "仍旧" to "仍然" (still) overlooks459

the pronunciation constraint. Although these alter-460

ations may appear reasonable, they fail to meet the461

CSC task’s requirements.462

BERT-like classification models have difficulty463

in addressing complex word-level errors and equal-464

length grammatical errors, as these require a465

strong contextual understanding. For example, the466

PLOME model shows a recall rate of only 60%467

for word-level errors and merely 44% for particle-468

related grammatical errors (的/地/得). Table 6 il-469

lustrates that the incorrect word "报到" (check-in)470

is a high-frequency term, necessitating the model471

to recognize its context and correct it to "报道" (re-472

port). Similarly, in the phrase "尽快的打破" (try473

to break), the model must comprehend the gram-474

matical rule (the particle between the adjective and475

the verb should be "地" instead of "的") and apply476

the appropriate correction.477

Moreover, all baseline systems, which are based478

on pre-trained language models, exhibit a propen-479

sity to over-convert low-frequency expressions into480

more prevalent ones (Zhang et al., 2020; Liu et al.,481

2022). As demonstrated in Table 6, "跟紧" and "跟482

进" share similar meanings (follow-up); however,483

since "跟进" is more frequently used, the model is 484

prone to over-correcting. 485

Consequently, enabling controlled text genera- 486

tion, addressing complex word-level and grammat- 487

ical errors, and enhancing the understanding of 488

low-frequency or new words all represent valuable 489

avenues for future research. 490

5.4 Better Data Augmentation Method 491

In this part, we compare different pseudo-data con- 492

struction methods. We conduct experiments on an 493

existing ASR-based pseudo dataset (Wang et al., 494

2018), containing about 271K samples. We extract 495

the correct sentences and construct new pseudo- 496

data based on confusion sets and IME, respectively. 497

As demonstrated in Table 7, our IME-based ap- 498

proach exhibits a substantial enhancement in per- 499

formance compared to the other two methods. This 500

improvement is even more pronounced when train- 501

ing exclusively on pseudo-data. The primary factor 502

contributing to this success is the error distribution. 503

As depicted in Figure 5, the pseudo-data generated 504

via the IME-based method more accurately reflects 505

the spelling errors made by native speakers. More 506

analysis can be found in Appendix A. 507

6 Conclusion 508

In this paper, we focus on CSC for native speakers. 509

For this scenario, we propose a new dataset, CSCD- 510

NS, which is also the largest dataset for CSC. We 511

further unveil the specific error distribution, with a 512

significantly higher proportion of word-level errors. 513

Moreover, we introduce an IME-based pseudo-data 514

construction approach, enabling large-scale gen- 515

eration of high-quality pseudo-data. We explore 516

the performance of various models and first eval- 517

uate ChatGPT on the CSC task. Our experiments 518

demonstrate that BERT-like models exhibit better 519

performance than generative models, but there is 520

still a considerable room for improvement. We 521

hope these data resources and our findings could 522

stimulate further research in this area. 523
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7 Limitations524

Limitation of the CSCD-NS dataset: The data525

source for the CSCD-NS dataset is derived from a526

Chinese social networking platform. Therefore, it527

may not fully represent the error distribution of na-528

tive speakers, as there may be slight differences in529

other scenarios, such as formal document writing.530

Limitation of the pseudo-data construction: The531

employed method of input simulation via IME is532

relatively basic, and the actual input scenario is533

more complex. For instance, individuals may uti-534

lize abbreviated pinyin to input common phrases,535

entering only the initials of characters (e.g., "wm"536

for "我们") (Tan et al., 2022). Moreover, a substan-537

tial number of users prefer the T9-style keyboard538

when employing IME on mobile devices. These539

factors collectively contribute to the inability of540

our pseudo-data construction method to accurately541

simulate the realistic input scenario.542

8 Ethics Statement543

License: CSCD-NS and the constructed pseudo-544

data LCSTS-IME-2M are based on LCSTS (Hu545

et al., 2015), we applied for and obtained the right546

to use this dataset, and performed the academic547

research under the copyright.548

Annotator Compensation: In this work, anno-549

tators are from a data labeling company in China,550

including 3 females and 3 males. Through the551

pre-labeling, we estimate that each annotator could552

label 80 samples per hour on average and the la-553

bel speed would be faster when they are skilled. In554

China, 60 yuan (8.76 dollars) per hour is a fair wage555

for annotators, therefore, we pay the annotator 0.75556

yuan (0.11 dollars) for each sentence.557
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LM threshold (δ) Precision Recall F1
w/o 41.17 40.66 40.91

-20% 44.52 49.01 46.66
0% 49.69 44.07 46.71
20% 50.64 26.46 34.76
50% 57.52 9.38 16.12

Table 8: The correction results (%) at character level for
pseudo data with different LM filtering strategies.

A Pseudo Data Analysis720

A.1 Impact of LM Post-Filtering721

In this section, we investigate the influence of lan-722

guage model (LM) post-filtering, which constitutes723

the final stage of our proposed pseudo-data con-724

struction method. We extract accurate sentences725

from the Wang271K dataset (Wang et al., 2018)726

and generate pseudo-data using IME, incorporat-727

ing various LM filtering strategies. We choose the728

basic BERT model to conduct the experiment and729

train the model only on the pseudo data to clearly730

distinguish the differences.731

As demonstrated in Table 8, the lack of LM732

filtering results in the introduction of undesired733

noise. For example, the generated pseudo-data734

may consist of entirely accurate sentences. In con-735

trast, when the threshold is excessively low (even736

below 0), the generated errors become more com-737

plex, leading to high recall but poor precision. Con-738

versely, if the threshold is set too high, the gener-739

ated errors tend to be relatively simple, resulting740

in better precision but lower recall. Therefore, LM741

filtering is necessary, and selecting an appropriate742

threshold is also very important.743

A.2 Error Distribution744

As illustrated in Figure 5, we analyze the error dis-745

tribution of pseudo-data generated by various meth-746

ods at both phonetic and semantic levels. It is clear747

that our pseudo-data construction method demon-748

strates the highest consistency with the CSCD-NS749

dataset, suggesting that our approach closely resem-750

bles real input scenarios. In contrast, the confusion751

set-based method and the ASR-based method ex-752

hibit a significant deviation from the actual error753

distribution.754

A.3 Case Study755

We sample some examples in Table 9. It can be756

observed that the confusion set-based method is757

capable of producing similar phonetic errors; how-758

ever, these errors are entirely out of context and759

translation simple, fashionable and moderate style
origin 简约时尚的风格适中的

CS 简约时尚的风格誓中的

ASR 简约时尚的风格是中的

IME 简约时尚的风格始终的

translation and the regulation is not perfect
origin 且监管也不完善

CS 且监管也不碗善

ASR 其监管也不完善

IME 且监管也不玩善

Table 9: The pseudo data generated based on confusion
set (CS), ASR, and IME.

Configurations Values
PLM bert-base-chinese (Devlin et al., 2019) 7

devices 1 Nvidia A100 GPU (40GB)
framework PyTorch Lightning 1.3.8 8

optimizer AdamW (Loshchilov and Hutter, 2017)
learning rate 1e-4
sequence length 512
batch size 128
epochs 10
dropout 0.1

model size
BERT: 102 M
SM BERT: 123 M

training speed
BERT: ~10 batches/s
SM BERT: ~7 batches/s

metric for best 9 loss

Table 10: Configurations of BERT and SM BERT.

can not accurately represent the real input scenario. 760

The ASR-based method performs better but pri- 761

marily generates character-level errors. Moreover, 762

since the ASR-based method lacks an LM filtering 763

module, the generated noise may occasionally be 764

correct, as demonstrated by the third case in Table 765

9. In contrast, our method can effectively gener- 766

ate high-quality pseudo data, encompassing both 767

word-level and character-level errors. 768

B Experimental Details 769

In this section, we provide comprehensive descrip- 770

tions of the experimental procedures and parameter 771

settings for each model. 772

Note that for each experiment, we select the best 773

checkpoint based on the development set and eval- 774

uate its performance on the test set. We carry out 775

three trials for each experiment and report the av- 776

7https://huggingface.co/bert-base-chinese
8https://www.pytorchlightning.ai/
9The metric used to save the best model

10https://share.weiyun.com/OREEY0H3
11https://www.tensorflow.org/
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Figure 5: The comparison of error distribution (%) at phonetic level (above) and semantic level (below).

Configurations Values
PLM PLOME pre-trained model 10

devices 1 Nvidia V100 GPU (32GB)
framework Tensorflow 1.14 11

optimizer AdamW (Loshchilov and Hutter, 2017)
learning rate 5e-5
sequence length 180
batch size 32
epochs 10
dropout 0.1
model size 123 M
training speed ~2.12 batches/s
metric for best F1-score of correction at character level

Table 11: Configurations of PLOME

erage results in the paper. The total training time777

is contingent upon the size of the training data and778

can be estimated based on the training speed.779

B.1 BERT-like Models780

Since there is no official implementation for BERT781

and SM BERT, we follow a widely-used open-782

source version12. For PLOME, we directly utilize783

the official code13. We adhere to the default hy-784

perparameters, and the detailed configurations for785

these three models can be found in Table 10 and786

Table 11.787

Configurations Values
PLM fnlp/bart-large-chinese 14

devices 8 Nvidia A100 GPU (40GB)
framework transformers 4.29.1 15

optimizer AdamW (Loshchilov and Hutter, 2017)
learning rate 5e-5
sequence length 512
batch size 256
epochs 10
dropout 0.1
model size 407 M
training speed ~3.5 batches/s
metric for best loss
input {origin sentence}
output {correct sentence }

Table 12: Configurations of BART

B.2 BART 788

We choose the Chinese BART-large model as the 789

base model and fine-tune it for the CSC task by 790

treating it as a sequence-to-sequence task. The 791

model takes the original sentence as input and pro- 792

duces the correct sentence as output. The decoding 793

method employed is beam search with a beam size 794

of 4. The specific model configuration can be found 795

in Table 12. 796

12https://github.com/gitabtion/BertBasedCorrectionModels
13https://github.com/liushulinle/PLOME
14https://huggingface.co/fnlp/bart-large-chinese
15https://github.com/huggingface/transformers
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Configurations Values
PLM ChatGLM-6B 16

devices 8 Nvidia A100 GPU (40GB)
framework transformers 4.29.1 17

optimizer AdamW
lora rank 8
learning rate 1e-4
sequence length 512
batch size 128
epochs 10
dropout 0.1
model size 6.17B
training speed ~1.3 batches/s
metric for best loss

input
Instrction: 纠正句子中的拼写错误
Input: {origin sentence}
Output:

output {correct sentence }

Table 13: Configurations of ChatGLM

B.3 ChatGLM797

ChatGLM (Du et al., 2022) is a powerful Chinese798

ChatGPT-like model, and the open-sourced 6B ver-799

sion is chosen for this study. The CSC task is800

modeled as an instruction tuning task, with the801

instruction being "纠正句子中的拼写错误" (cor-802

rect the spelling errors in the following sentence).803

A lightweight fine-tuning method based on LoRA804

(Hu et al., 2021) is employed, resulting in a total of805

only 7M trainable parameters. During the decoding806

stage, random sampling is not performed, and the807

beam size is set to 1. Table 13 displays the specific808

configurations.809

B.4 ChatGPT810

We use ChatGPT through OpenAI’s API18 and set811

the temperature to 0 to reduce the influence of ran-812

dom sampling. As illustrated in Table 14, we devise813

three prompt templates, each comprising a task de-814

scription, 10 examples, and a test sentence. These815

10 examples encompass 5 positive instances (sen-816

tences containing spelling errors) and 5 negative817

instances (sentences without spelling errors), all of818

which are randomly chosen from the training set.819

As shown in Table 15, utilizing the same prompt820

template with varying example samples exerted a821

negligible effect on the outcomes. Likewise, em-822

ploying different prompt templates also has a mi-823

nor impact on the results. Given that the outcomes824

16https://github.com/THUDM/ChatGLM-6B
17https://github.com/huggingface/transformers
18the model is "gpt-3.5-turbo" (accessed on May 24, 2023)

obtained using "prompt 3" are slightly better, we 825

present the average results derived from "prompt 826

3" in our paper. 827
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prompt 1

instruction 修正句子中的拼写错误，修正结果需要与原文长度相等，发音相近

10 examples

比特币价格从15美元飚升到266美元⇒ 比特币价格从15美元飙升到266美元

...

其中，企业成为职务专利申请的主力军⇒ 其中，企业成为职务专利申请的主力军

test case 让农民工流血、流汗不在流泪⇒

prompt 2

instruction 修正拼写错误，修正结果与原文需要长度相等，且发音尽可能相近

10 examples

修正前:比特币价格从15美元飚升到266美元

修正后: 比特币价格从15美元飙升到266美元

...

修正前:其中，企业成为职务专利申请的主力军

修正后:其中，企业成为职务专利申请的主力军

test case
修正前:让农民工流血、流汗不在流泪

修正后:

prompt 3

instruction
Instruction: correct spelling errors in the sentence.

The correct needs to be equal in length to the original text, and the pronunciation should be as close as possible.

10 examples

Input:比特币价格从15美元飚升到266美元

Output: 比特币价格从15美元飙升到266美元

...

Input:其中，企业成为职务专利申请的主力军

Output:其中，企业成为职务专利申请的主力军

test case
Input:让农民工流血、流汗不在流泪

Output:

Table 14: Three prompt templates designed to call ChatGPT for the CSC task.

Settings
Sentence level Character level

Detection Correction Detection Correction
P R F1 P R F1 P R F1 P R F1

prompt 1 (run1) 52.92 51.13 52.01 48.70 47.05 47.86 54.14 57.91 55.96 48.56 51.94 50.19
prompt 1 (run2) 53.61 50.22 51.86 49.40 46.27 47.78 54.08 56.28 55.16 48.84 50.83 49.82
prompt 1 (run3) 53.85 50.61 52.18 49.75 46.75 48.20 54.73 56.92 55.80 49.30 51.27 50.26
prompt 2 (run1) 55.52 48.83 51.96 50.94 44.80 47.67 55.08 54.86 54.97 49.25 49.05 49.15
prompt 2 (run2) 55.43 49.61 52.36 50.82 45.49 48.01 55.48 55.65 55.56 49.72 49.88 49.80
prompt 2 (run3) 55.91 50.22 52.91 51.76 46.49 48.98 55.56 56.72 56.13 50.33 51.38 50.85
prompt 3 (run1) 59.56 47.27 52.71 55.25 43.84 48.89 61.16 51.11 55.69 55.49 46.36 50.52
prompt 3 (run2) 58.29 45.88 51.35 54.88 43.19 48.34 60.62 49.84 54.71 55.67 45.77 50.24
prompt 3 (run3) 59.85 47.83 53.17 55.56 44.41 49.36 61.29 51.70 56.09 56.00 47.23 51.24

Table 15: The performance (%) of ChatGPT with different prompts on CSCD-NS.
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