
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INSERTION LANGUAGE MODELS: SEQUENCE GENER-
ATION WITH ARBITRARY-POSITION INSERTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models (ARMs), which generate sequences by predicting tokens
from left to right, have achieved significant success across a wide range of se-
quence generation tasks. However, they struggle to accurately represent sequences
that require satisfying sophisticated constraints or whose sequential dependen-
cies are better addressed by out-of-order generation. Masked Diffusion Models
(MDMs) address some of these limitations, but MDMs struggle to generate vari-
able length sequences and cannot handle arbitrary infilling constraints when the
number of tokens to be filled in is not known in advance. We revisit the idea of
generation by insertion and introduce Insertion Language Models (ILMs), which
learn to insert tokens at arbitrary positions in a sequence—that is, they select
jointly both the position and the vocabulary element to be inserted. The ability to
generate sequences in arbitrary order allows ILMs to accurately model sequences
where token dependencies do not follow a left-to-right sequential structure, while
maintaining the ability to infill and generate up to a variable length. To train
ILMs, we propose a tailored network parameterization with a single transformer
encoder and use a simple denoising loss. Through empirical valuation on planning
tasks we demonstrate the aforementioned failure modes of ARMs and MDMs, and
show that ILMs overcome these. Furthermore, we show that ILMs perform on par
with ARMs and better than MDMs in unconditional text generation while offering
greater flexibility than MDMs in arbitrary-length text infilling.

1 INTRODUCTION

Autoregressive models (ARMs), which predict subsequent tokens one-by-one in a “left-to-right”
fashion, have achieved significant success in modeling natural language (Brown et al., 2020;
Grattafiori et al., 2024). Their simplicity makes them easy to train and has enabled a rapid in-
crease in model sizes (Kaplan et al., 2020). However, ARMs have several fundamental limita-
tions. For example, they have fallen short on tasks that require complex reasoning and long-horizon
planning (Bubeck et al., 2023; Valmeekam et al., 2024; Dziri et al., 2023), and they struggle to
accurately model sequences that require satisfying sophisticated constraints (Sun et al., 2023). Re-
cently, Masked Diffusion Models (MDMs) have been shown to overcome some of the limitations
of ARMs (Ye et al., 2025; Sahoo et al., 2024; Lou et al., 2024; Nie et al., 2024; 2025). Although
MDMs address some of the limitations of ARMs, departing from strictly left-to-right generation
introduces new challenges. First, using the vanilla sampling algorithm (Sahoo et al., 2024) leads to
unmasking multiple tokens simultaneously during generation which can violate token dependencies.
For example, in the sentence “The chef added <mask> to the dessert to make it <mask>.” if both
the <mask> tokens are filled simultaneously, it can lead to a sentence that does not make sense, for
example, “The chef added sugar to the dessert to make it healthier.” However, if the tokens are filled
sequentially, more appropriate sentences are generated, for example, “The chef added sugar to the
dessert to make it sweeter.” or “The chef added berries to the dessert to make it healthier.” One may
achieve sequential generation from MDMs by greedily unmasking the most confident position, but
this leads to slow generation as production of a single token requires a full forward pass. Second,
reliance on the number of masked tokens in the input reduces a model’s usefulness when perform-
ing arbitrary infilling. For example, when presented with the sentence “The conference, <mask>
was postponed.” the model cannot generate “The conference, originally planned for March, was
postponed.” as the input has only one mask.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The chef added sugar to the dessert to make
The chef added sugar to the dessert to make it sweeter
The chef added sugar to the dessert to make it sweeter

ARM Arbitrary length Flexible generation order

The added to dessert to make
The chef added to the dessert to make it
The chef added sugar to the dessert to make it sweeter

MDM Flexible generation order Arbitrary length

The chef added to the dessert to make it
The chef added sugar to the dessert to make it

The chef added sugar to the dessert to make it sweeter

ILM Flexible generation order Arbitrary length

Figure 1: ARMs (top) generate variable-length se-
quences in a fixed left-to-right order. MDMs (mid-
dle) can add tokens in arbitrary order but require a
fixed number of tokens to be masked. ILMs (bot-
tom) generate sequences of arbitrary lengths in ar-
bitrary order by inserting tokens.

To overcome these limitations, we revisit the
idea of insertion based sequence generation
(Stern et al., 2019; Ruis et al., 2020) in the
context of general language modeling, and in-
troduce Insertion Language Models (ILMs),
which use a simple denoising objective that
involves dropping some tokens from the in-
put sequence and learning to predict the miss-
ing tokens sequentially, one at a time. Un-
fortunately, estimates of the naive infilling
denoising objective can have extremely high
variance, which in turn can make training
infeasible. To address this issue and allow
efficient training, we introduce an approxi-
mate denoising training objective and a tai-
lored parameterization of the denoising net-
work. The key difference between ILMs and
MDMs is that in ILMs, the dropped tokens
are completely removed from the input se-
quence and are generated one at a time in re-
verse, whereas in MDMs, the dropped tokens
are replaced by a <mask> token.

Using a suite of carefully chosen synthetic tasks, we first demonstrate the failure modes of ARMs
and MDMs, and show that ILMs overcome these. Specifically, in the task of path generation on
star graphs (Bachmann & Nagarajan, 2024), ILMs can consistently generate the correct path even
when ARMs and MDMs struggle—especially when the paths have variable length. We also find
that ILMs outperform ARMs and MDMs on the difficult constraint satisfaction task of solving Ze-
bra Puzzles (Shah et al., 2024). We also demonstrate the usefulness of ILMs for text generation
and infilling. On medium-sized text corpora such as LM1B and TinyStories, we find that ILMs per-
form slightly better than MDMs on unconditional text generation task (measured using generative
perplexity under Llama, and Prometheus LLM judge) and are competitive with ARMs. We also
demonstrate the effectiveness of ILMs on infilling arbitrary length sequences on the same datasets.

To summarize, our main contributions are as follows:
1. We introduce Insertion Language Models (ILMs), which learn to insert tokens at arbitrary posi-

tions in a sequence and are able to handle strong dependencies between tokens.
2. We present a neural network parameterization and a simple denoising objective that enable the

training of ILMs.
3. We conduct an empirical evaluation of the proposed method and find that ILMs outperform

autoregressive and masked diffusion models on common planning tasks and are competitive with
ARMs and MDMs on text generation tasks while offering greater flexibility on arbitrary-length
text infilling compared to MDMs.

2 PRELIMINARIES

Notation. Capital letters are used to denote random variables (e.g.X) and the corresponding low-
ercase letters are used to denote their values (e.g. x). Boldface is reserved for non-scalars (vectors,
matrices, etc.). Double square brackets are used to denote the set of natural numbers up to a specific
number, that is, [[n]] = {1, 2, . . . , n}. The components of a non-scalar quantity are denoted using
superscripts and subscript time index of a stochastic processes whenever applicable.

2.1 MASKED DIFFUSION MODELS

Let V denote the token vocabulary, a finite set, and pdata be probability mass function on the set of
sequences VL. Assume that there is an arbitrary and fixed ordering on set V, using which we can use
ex to denote the indicator vector that is one at the index of token x and zero otherwise. Furthermore,
assume that the set V contains a special token, whose probability under pdata is 0, called the mask

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

token denoted as m. The training objective for MDMs (Shi et al., 2024; Sahoo et al., 2024) can be
written as the data expectation (i.e., x0 ∼ pdata) of the following loss:

Lθ(x0) = E
xt∼qt|0(·|x0)

[∫ 1

0

α′
t

1− αt

L∑
i=1

δ(xi
t,m) log[µmdm

θ (xt, t)]
i
xi
0
dt

]
,

where

qt|0(xt | x0) =

L∏
i=1

Cat
(
αtexi

0
+ (1− αt)em

)
(1)

is the transition probability of the noising process, and µmdm
θ : VL × [0, 1] → (∆|V|−1)

L
is the

learned parametric denoiser that takes in the current noisy sequence and produces a categorical
probability distribution over the vocabulary at each sequence position. Here ∆|V|−1 denotes a cat-
egorical probability distribution over V, and [µmdm

θ (xt, t)]
i
j denotes the probability of j-th token

from the vocabulary at i-th sequence position. Typically, the noising function αt is a monotonically
decreasing function defined on the interval [0, 1] with α0 = 1 (no noise) and α1 = 0 (most noise).

Limitations of MDMs. During inference, at time step t, with step size s − t, a subset of tokens is
unmasked uniformly at random with probability P (i) ∝ αs−αt

1−αt
δ(xi

t,m), with their values sampled
from xi

t ∼ [µmdm
θ (xt, t)]

i. This inference procedure has two shortcomings:

1. When the step size s− t is large, many tokens are unmasked simultaneously, which could result
in incoherent outputs due to violation of sequential dependencies .

2. Since the number of masks between any two unmasked tokens is fixed, the inference has no
flexibility in terms of infilling length.

In the next section, we describe our proposed Insertion Language Model (ILM) that tries to address
the limitations mentioned above.

3 INSERTION LANGUAGE MODEL

𝒙:

𝒃:

<s> A B C A B A

0 0 1 0 1 1 1

<s> A C

<s> A C

A

B

C

𝑑 𝑘, 𝑣 	𝑥[𝑏])
𝑘1 2 3

0.25 0.25

0.500 0

00 0

0

𝑣

╳╳╳ ╳

𝑝!,tok
ilm

D
ro
p

Fi
ll

Figure 2: ILM Training. x is a training
sequence, x[b] is a subsequence obtained
after dropping tokens. d is the target inser-
tion distribution, computed by counting the
number of times each token appears in x
between the ik-th and ik+1-th positions.

ILM generates sequences of arbitrary lengths in arbitrary
order by inserting tokens, one-at-a-time, that is, at each
generation step, it predicts an output token along with a
position in the existing sequence where the new token is to
be inserted. The model can also decide to stop at any step,
deeming the sequence to be complete. ILM’s ability to
predict the insertion position obviates the need for place-
holder mask tokens, and thus avoids the rigid fixed-length
constraint imposed by the MDMs. Moreover, this also al-
lows the model to pick the positions for generation in any
order escaping the pitfalls of left-to-right generation as in
ARMs. Figure 1 depicts the key difference between ILMs,
MDMs and ARMs using example generation trajectories.

An ILM can be viewed as a denoising model whose nois-
ing process drops tokens as opposed to replacing them
with mask tokens. Training such a denoiser requires
marginalization over possible trajectories leading to the
original sequence, which can be done using the Monte
Carlo sampling and learning to reverse a single step of the
noising process. However, that introduces high variance
in the loss estimates (see Appendix D for more details).
To avoid this issue, we use a biased training objective that
makes direct use of all the dropped tokens in the original
sequence in a single gradient step. Specifically, for a po-
sition between any two tokens in the partially predicted
sequence, instead of estimating the token probabilities by marginalizing over all generation trajecto-
ries, we train the model to predict the normalized counts of each vocabulary item appearing between
any two tokens, in the original sequence.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 ILM training
Require: Input example x of length L
1: Sample n ∼ U [[L]]
2: Sample b ∼ qn|L
3: Compute d(k, v;x, b)
4: L(θ;x)← Ltok(θ;x) + Lstop(θ;x)
5: Update θ using gradient descent

Our training objective is a sum of two components
that are optimized simultaneously. First, the token
insertion component Lilm

tok(θ;x). Second, a binary
decision component Lilm

stop(θ;x), that decides when
to stop generation and in turn governs the length
of the sequence. Formally, let BL,n be the set of bit
vectors of length L with exactly n ones, and let x[b]
be the sequence obtained after removing the tokens
corresponding to the ones in b from x (c.f. Figure 2 bottom). Let pθ,tok(k, v | x[b]) be the learned
insertion probability of inserting token v between positions k and k + 1, which is learned using

Lilm
tok(θ;x) = − E

n∼U [[L]]
E

b∼qn|L

 1

n

∑
k∈[[L−n]]

cik,ik+1
(v;x) log pilm

θ,tok(k, v | x[b])

 , (2)

where i1, ..., iL−n are the indices in x of the visible tokens after dropping tokens according to b,
U [[L]] is the uniform distribution over {1, ..., L}, qn|L(b) = 1/

(
L
n

)
is the probability of selecting a bit

vector of length L with n ones, and cik,ik+1
(v;x) =

∑ik+1−1
j=ik

δ(xj , v) is the number of times token
v appears in x between the ik-th and ik+1-th positions. Note that d(k, v;x, b) := cik,ik+1

(v;x)/n
(with n being the total number of tokens dropped), when summed over k and v gives 1. Therefore,
we call it the target insertion distribution, which is usually quite sparse.

The second loss component is for learning a binary classifier pθ,stop(S | x[b]), where S is binary ran-
dom variable, which takes a partially noised sequence of tokens and predicts whether the sequence
is complete (S = 1) or not.

Lilm
stop(θ;x) = − E

n∼U [[L]]
E

b∼qn|L

[
δ(b,0) log pilm

θ,stop(1 | x[b]) + (1− δ(b,0)) log pilm
θ,stop(0 | x[b])

]
,

Algorithm 2 One step of ILM prediction

Require: Current sequence x = (v,u), where v
is the out-of-order sequence of tokens, and u
is their corresponding real positions relative to
one another, stopping threshold τ

1: if pilmθ,stop(1 | x) > τ then
2: return x
3: end if
4: k′, v′ ∼ pilmθ,tok(· | x)
5: v′ ← concat(v, v′)
6: for i = 1 to len(u) do
7: if u[i] > k′ then
8: u[i]← u[i] + 1
9: end if

10: end for
11: u′ ← concat(u, k′ + 1)
12: return x′ = (v′,u′)

where 0 is the vector of all zeros. The overall train-
ing loss is the sum of the token insertion loss and
the stopping loss. The stopping classifier and the
denoiser share the transformer backbone and are
trained simultaneously (see Section 3.1 for more
details). The overall training procedure for ILM,
shown in Algorithm 1, resembles that of MDMs,
one extra step of computing the target insertion dis-
tribution (highlighted in bold).1

During inference, ILM inserts one token at a time as
shown in Algorithm 2.2 For step 4 in the algorithm,
we can sample from the joint, or perform two-step
sampling k′ ∼ pilmθ (k | x[b]) followed by v′ ∼
pilmθ (v | x[b], k′), where the latter approach allows
us to use either top-k sampling or nucleus sampling
(Holtzman et al., 2020) for each step separately.

3.1 PARAMETERIZATION

We parameterize pθ using insertion logits computed using a standard transformer as follows Let
f dec
θ : Vn → Rn×d denote a transformer backbone, that is, a stack of transformer layers but without

the final unembedding/linear layer. For each position i ∈ [n] the corresponding output of the trans-
former backbone f dec

θ (x)i ∈ Rd is passed through the unembedding layer f ins
θ : Rd → R|V| to get

the insertion logits for each position in the sequence. In other words

sθ(k, v | x[b]) = f ins
θ

(
f dec
θ (x[b])k

)
v
, (3)

1Unlike in MDM training, where the mask is usually sampled on the GPU, we sample b and compute d in
the data pipeline on the CPU.

2The procedure can be implemented using tensor operations that can be performed on mini-batches.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which represents the unnormalized log probability (logit) for inserting token v between k and k+ 1
positions in the sequence x[b]. Finally, the join distribution over all possible insertions is given by

pilm
θ (ik, v | x[b]) = exp(sθ(ik, v | x[b]))∑L−n

k=1

∑
v′∈V exp(sθ(k, v′ | x[b]))

. (4)

The stopping probability is predicted using the output from a special <stp> that is always placed at
the beginning of the input sequence. Therefore the input shown in Figure 2 looks like x[b] =<stp>
<s> A C.

4 RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have emerged
as a powerful alternative to ARMs for sequence generation tasks that require planning and need to
follow constraints. Masked Diffusion Models (MDMs) have been shown to scale competitively to
ARMs while addressing some of its key shortcomings (Austin et al., 2021; Campbell et al., 2022;
Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024). However, as discussed in Section 2, due to
the use of fixed length mask tokens, and simultaneous unmasking, these models, without additional
inference time tricks, tend to generate incoherent sequences. To address this, Gong et al. (2024)
propose to use a greedy strategy to select the tokens to unmask, Zheng et al. (2024) generalizes it to
top-k sampling strategy, while Campbell et al. (2024) utilizes a flow-based formulation to introduce
helpful stochasticity on top of the greedy sampling process.

All these approaches, rely on inference time techniques to elicit better samples. Ye et al. (2025)
modify the MDM training objective by introducing an adaptive token-wise weight that helps the
model identify the critical parts of the sequence. This objective, however, is only shown to work for
synthetic tasks. Departing from this line of work, we propose a new parameterization and training
objective. The MDMs are closely related to order-agnostic sequence models (Yang et al., 2020;
Hoogeboom et al., 2021). The key difference between MDMs and order-agnostic models is that
unlike MDMs, which can denoise the entire sequence in one go, order-agnostic models only generate
one token at a time in an arbitrary order. Our model also generates the sequence by inserting tokens
at arbitrary positions but is allowed to pick the position to insert the token.

The ability to insert tokens allow ILMs to perform infilling more naturally compared to ARMs.
There has been only a handful of works that focus on the task of arbitrary length infilling using
ARMs, most of which require specialized fine-tuning. Bavarian et al. (2022) introduces fill-in-the-
middle training objective where ARMs are trained to take <prefix><suffix> as the left-context
and is required to generate the <middle> part such that <prefix><middle><suffix> is
a meaningful natural language sequence. While this approach enjoys the benefit of adapting an
existing pre-trained ARM, its applicability is quite limited because the model is not capable of
performing arbitrary infilling, for example, filling two blanks at separate places in the sequence.
Gong et al. (2024) also proposes a method to adapt pre-trained ARMs to masked denoising models.
However, once adapted, the model has the same limitations as MDMs. Please refer to Appendix A
for an extended discussion.

5 EMPIRICAL EVALUATION

To highlight the key differences between ILMs, MDMs and ARMs, we consider two planning tasks:
a generalized version of the synthetic planning task on star shape graphs introduced in Bachmann
& Nagarajan (2024) and Zebra Puzzles (Shah et al., 2024). To demonstrate the effectiveness of
ILM beyond synthetic planning task, we also perform unconditional text generation and infilling,
for which we train the model on two language modeling datasets with different characteristics: (1)
The One Billion Word Benchmark (LM1B) and (2) TinyStories (Eldan & Li, 2023). For all our
experiments, we use a transformer architecture with rotary positions encoding (RoPE) for ILMs
and ARMs (Su et al., 2023). For MDMs, we use the DDiT architecture identical to the one used in
(Sahoo et al., 2024; Lou et al., 2024). The DDiT is based on the DiT architecture that inserts adaptive
layer-norm (AdaLN) in the RoPE based transformer to condition on the time variable (Peebles &
Xie, 2023). Since AdaLN has trainable parameters, MDMs with the same hyperparameters as ILMs
have slightly more trainable parameters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.1 PLANNING TASKS

We consider two different planning tasks: the task of generating paths between nodes on a star graph
and the task of solving zebra puzzles.

5.1.1 STAR GRAPHS

To highlight the key characteristics of the three models, we consider the task of generating the path
from a starting node to a target node on star shaped graphs (Bachmann & Nagarajan, 2024). As
shown in Figure 3, a star graph is a directed graph with one junction node.

We create three versions of the task. Stareasy only contains symmetric graphs wherein the start node
is always the junction node, all paths go out from the junction, and are of equal length. Starmedium
and Starhard contain asymmetric graphs with variable arm lengths, that is, graphs where the start
node is not the junction node, there are incoming as well as outgoing edges from the junction node,
and most importantly, the arm lengths can be different for each arm of the graph. The easy, medium
and hard datasets have graphs with degree 3, 2, 5, respectively, and maximum path length of 5, 6,
12, respectively. We provide an overview of all parameters of the star graphs datasets in Table 4
(Appendix B.0.1). Each graph is presented to the model as a string of edges (expressed as node-
pairs) in a random order as shown at the top of Figure 3, where the model needs to predict the path
from the start node (green) to the target node (blue). All three models are trained for 50k steps
with a learning rate of 1e-4 and batch size of 64. We provide an overview of all hyperparameters in
Appendix B.0.1.

For Starsmall, the optimal autoregressive order of generating the solution is in reverse (target to start)
because that makes the dependencies trivial and deterministic. As expected, an ARM trained to
predict the path in reverse order gets 100% accuracy on Stareasy as shown in the first row of Table 1.
However, it struggles to generate the path in the original left-to-right order (second row) as it requires
an implicit lookahead. Since both the MDM and the ILM can generate out-of-order, they get 100%
accuracy on Stareasy. But the MDM struggles when the lengths of the arms start varying with its
sequence level accuracy (seq.) dropping to 36 and 21 on Starmedium and Starhard, respectively. This
drop in the performance can be attributed to a deeper limitation of MDMs, which work with absolute
token positions. When the arm lengths do not vary, the positions of the junction node and the
target node are fixed. However, predicting these positions when the arm lengths vary is intuitively
equivalent to solving the puzzle itself in a single pass. ILM continues to perform well in the variable
arm length setting because it utilizes relative positions to solve the task iteratively. Some example
generation trajectories for ILM are shown in Figure 7 (Appendix C.0.3), where it can be seen that
the model tends to start the generation from both ends, leaving the most challenging edges, that
is, the junction to latter steps. These results highlight the key advantage of ILMs over MDMs and
ARMs: the ability to generate out-of-order while utilizing relative position information. We also
implement a single transformer version of the Insertion Transformer (Stern et al., 2019) and compare
its performance with the ILM. We find that Insertion Transformer (IT), which uses the EOS token
instead of a dedicated stopping classifier like in ILM, consistently undershoots or overshoots the
target sequence and therefore performs poorly.3

12

start

41
30 31

25
23

4426

target
3

13

22

19
38

0

11

8

18

12 41 13 22 ... 11 8 12 26 <s> 12 41 ... 44 26

Figure 3: Given the edges of a directed star
graph (expressed as a sequence of connected node
pairs in a random order), and the start and the
target node, the goal is to predict the path from
the start to the target node.

Table 1: Exact match accuracy on the star graph and
zebra puzzle tasks.

Model Stareasy Starmedium Starhard Zebra

ARMO 100.0 - - 91.2

ARM 32.3 75.0 23.0 81.2
MDM 100.0 36.5 21.0 82.6
IT 35.2 22.1 17.5 -
ILM 100.0 100.0 99.1 90.0

3Qualitative examples for Insertion Transformer are presented in Appendix C.0.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Clue #: 1 2 3 4 5 6

Input: l((2,2),(2,1)) =((2,1),(1,2)) e((1,2)) =((1,1),(2,2)) N((2,1),(0,2)) b((0,1),(1,1),(2,1))

Output: <s> (0,1) (1,0) (2,0) (0,0) (1,1) (2,2) (0,2) (1,2) (2,1)

House #: 1 2 3

Figure 4: The box contains a compact string representation of a zebra puzzle and its solution. The
input is a sequence of constraints in arbitrary order. The solution is a sequence of house,entity,
attribute triples, sorted by house number. The complete input output string for this example is given
in the Appendix B.0.2.

Zebra Puzzles Zebra Puzzles are well-known logic puzzles that have been used to benchmark the
performance of constraint satisfaction systems (Zebra Puzzle, 2025). The are many variants of Zebra
Puzzles, with different sizes and complexity. We use the version introduced in Shah et al. (2024),
wherein each puzzle is characterized by a tuple (m,n) where m represents the number of entities
and n denotes the number of attributes associated with each entity. Given some constraints (clues)
on the placement of the entity-attribute pairs, the goal is the place each entity-attribute pair in one
of the houses such that all the constraints are satisfied. Each constraint consists of a relationship,
and an entity-attribute pair, tuple or triple, for unary, binary, and ternary relationships, respectively.
There are 7 types of relationships: = (same house), != (different house), l (left of), L (immediate
left), N (neighbor), e, (ends) and b (between). Figure 4 shows an example of a (3,3)-zebra puzzle
with 3 entities, 3 attributes, 3 houses, and 6 clues involving the relationships = and l, N, e and b.
For the ease of comparison, we use the same setup as well as the same dataset as Shah et al. (2024).
We train a 42M parameter transformer model with 8 layers and 8 attention heads with hidden size
of 576 with rotary position encoding. The order of solving the constraints plays an important role in
the overall performance of the model (Shah et al., 2024). Therefore, to demonstrate the usefulness of
out-of-order generation, we train the model on output strings that present the solution in an arbitrary
but fixed order that is sorted by house and entity as shown in Figure 4. As seen in the last column
of Table 1, the ILM model obtains sequence accuracy of 90% outperforming both the MDM and
the ARM, and it even gets close to the performance achieved by the ARM trained on oracle solver
decomposed sequence order (Shah et al., 2024).

5.2 LANGUAGE MODELING

In order to test the ability of the model to generate short and long text sequences, we pick two
small-sized pre-training datasets with different characteristics: (1) The One Billion Word Bench-
mark (Chelba et al., 2013) (LM1B), and (2) a mixture of TinyStories (Eldan & Li, 2023) and ROC-
Stories (Mostafazadeh et al., 2016) (Stories). The LM1B dataset, which has been used to benchmark
the performance of MDMs (Austin et al., 2021; Sahoo et al., 2024), consists of short sequences (up
to 2-3 sentences) of text from the news domain with a large vocabulary. The TinyStories dataset,
on the other hand, consists of 2.1 million stories that 3-4 year old children can understand. In or-
der to increase the diversity of the stories, we also include the ROCStories dataset, which contains
5-sentences stories based on common sense and world knowledge. The combined dataset contains
2.2 million stories in the training set. For both the datasets, we train ILMs, MDMs and ARMs
of the same size and architecture (RoPE-based transformer as described above), with ∼85M non-
embedding trainable parameters (the MDM has slightly more due to the addition of AdaLN layers).4
We use bert-base-uncased tokenizer for both the datasets and pad each example to 128 tokens for
LM1B and 1024 tokens for TinyStories. All the models are trained with an effective batch size of
512, up to 1M steps on LM1B and 60K steps on TinyStories using AdamW (Loshchilov & Hutter,
2019) with a constant learning rate of 10−4. All the models were trained on 4 A100 (40GB and
80GB) GPUs.

5.2.1 UNCONDITIONAL GENERATION

For sampling unconditional sequences, we use the tau-leaping sampler for the MDM (Sahoo et al.,
2024; Campbell et al., 2022) as described in Section 2, and nucleus sampling with p = 0.9 for
ARM. For ILM, we sample according to Algorithm 2 using two-step ancestral sampling where

4Our MDM implementation is based on Sahoo et al. (2024) and it uses log-linear noise schedule.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Evaluation of unconditional generation
quality using per-token NLL under Llama 3.2 3B.
The rows with the dataset names contain the NLL
and entropy of the examples in the training data.

NLL▼ Ent▲ len

Stories 1.65 4.19 205

ARM 2.11 4.06 201
MDM 2.54 4.55 985
ILM (Ours) 2.14 3.76 119

LM1B 3.71 3.08 28

ARM 3.94 3.12 30
MDM 4.81 3.70 85
ILM (Ours) 4.67 2.80 21

1
2
3
4 Stories

Coh Con Flu Gram Red

1
2
3 LM1B

ARM MDM ILM (ours)

Figure 5: Evaluation of unconditional generation
quality using Prometheus 2 7B model as the LLM
Judge. Legend: Coh.=coherence, Con.=consistency,
Flu.=fluency, Gram.=grammaticality, Red.=non-
redundancy.

we first sample the position of insertion using top-k sampling k ∼ pilm
θ (k | x[b]) followed by

v ∼ pilm
θ (v | x[b], k′) using nucleus sampling. Our primary metric for evaluating unconditional

generation is the per-token negative log-likelihood (NLL) under a large language model and the
entropy of the generated text, defined as

NLL(x) = − 1

|x|

|x|∑
i=1

log pLLM(xi|x1:i−1) and Entropy(x) = −
|V|∑
j=1

cj log cj , (5)

where pLLM(xi|x1:i−1) is the probability of the i-th token in the sequence x given the previous
i − 1, and cj =

∑|x|
i=1 δ(xi, vi)/|x| is the relative frequency of the i-th vocabulary item vi in the

sequence x. We use Llama-3.2-3B (Grattafiori et al., 2024) for computing the NLL. Since NLL
and entropy may not be sufficient to judge the overall quality of the generated text, we also use
Prometheus 2 7B (Kim et al., 2024) as the LLM Judge to evaluate the quality of the generated text
on various linguistic and readability aspects, of which the most important ones are coherence and
grammatically (see Appendix B.0.5 for the details of the evaluation prompt).

As seen in Table 2, both the MDM and the ILM obtain worse NLL compared to the ARM trained
for the same number of steps, which could be attributed to the training token efficiency and scaling
laws for different model types (Nie et al., 2024). However, the ILM performs better than the MDM
on both datasets in terms of NLL. In terms of token diversity measured using entropy, the ILM is
on the lower side compared to the MDM and the ARM, but still fairly close to the dataset entropy
given in the rows with the dataset names. In general, we found that the MDM produces longer
sequences than both the ARM, and the ILM, as well as the mean sequence lengths in the training
data. We found that to be the main reason for the high entropy (even higher than dataset entropy)
of sequences produced by the MDM. The ILM provides linguistically balanced generation similar
to ARM and consistently outperforms the MDM, which struggles particularly with coherence and
consistency. Notably, MDM’s performance deteriorates in the Stories dataset as generation length
increases, resulting in more disjointed narratives (see Appendix B.0.6 for the examples). One more
difference between the ILM and the MDM is the number of input tokens in each forward pass during
inference—for the MDM it stays fixed at maximum allowed sequence length from the beginning,
while for the ILM it starts from zero and goes up to the maximum sequence length. Figure 6 shows
the impact of per-token generation time on the generation quality measured using per-token NLL
under Llama 3.2 3B. For the MDM, we collect samples with varying number of sampling steps (128,
256, 512, and 1024). The generation quality for the MDM (red) improves as per-token generation
time/the number of sampling steps is increased, but stays below that of the ILM (blue).

5.2.2 INFILLING

We construct an infilling evaluation dataset by taking 3500 test sequences from the LM1B dataset.
The LM1B single-segment dataset is obtained by removing one contiguous segment of tokens from
each example, and the multi-segment version is obtained by removing two or more contiguous
segments of tokens from each example. Similarly, we construct TinyStories single-segment infilling
evaluation dataset by removing the middle sentence from each example from the first 3.3k examples
of the TinyStories test dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
Time (ms)

1

2

3

4

5

6

Ne
ga

tiv
e

Lo
g-

lik
el

ih
oo

d

MDM
ILM

Figure 6: Per-token generation time vs.
NLL for the MDM and the ILM trained
on the stories dataset.

Table 3: ∆NLL and ∆Entropy denote the percentage
change in per-token negative log-likelihood and entropy af-
ter infilling, respectively, where subscript gt and inp denote
the change with respect to the ground truth and input (sample
with the segments removed), respectively.

∆NLLgt▼ ∆Entgt▲ ∆NLLinp▼ ∆Entinp▲

TinyStories single-segment

MDM +14.36 -3.82 +3.63 +1.48
ILM (Ours) +12.27 -4.18 +1.79 +0.04

LM1B single-segment

MDM +25.31 -0.05 -0.49 +4.56
ILM (Ours) +20.47 -1.71 -3.57 +2.64

LM1B multi-segment

MDM +25.64 +0.15 -6.02 +3.97
ILM (Ours) +23.52 -0.79 -7.93 +2.98

Since we are evaluating the ability of the pre-trained models to perform arbitrary infilling, we only
compare MDMs and ILMs as ARMs are not capable of performing infilling without specialized
training. We again employ NLL under Llama-3.2-3B and entropy as the evaluation metrics. How-
ever, since we are evaluating the quality of the infilled text, instead of using raw metrics, we use the
percentage change ∆Mref = 100 ∗ (M(x)− M(xref))/M(xref), where M is either NLL or Entropy,
and xref is either the input with missing segments (inp) or the ground truth text (gt). Note that when
the input text (xinp) is provided to the evaluator LLM, the tokens that belong to the removed seg-
ment are completely removed. Therefore, we expect to observe a drop in NLL with respect to the
input text and an increase with respect to the ground truth text. As shown in Table 3, we see trends
similar to the unconditional generation results. Specifically, the ILM outperforms the MDM on all
three evaluation datasets in terms of NLL. On the TinyStories evaluation set, both the MDM and the
ILM show an increase in NLL with respect to the input text. However, upon manual inspection, we
find that the stories in the dataset are often fairly simple, and removing a sentence from the middle
may not change the overall all meaning too much, and hence the NLL for the corresponding input
sequences with missing segments is already fairly low.

6 DISCUSSION

We explore language modeling by learning to insert tokens and introduce Insertion Language Models
(ILMs). We enable successful training of ILMs by using a simple transformer-based parameteriza-
tion and a denoising objective that approximates a distribution over denoising steps. Using carefully
designed synthetic experiments, we demonstrate the failure modes of ARMs and MDMs and show
that ILMs overcome these by using out-of-order generation and relative position information. We
also demonstrate the usefulness of ILMs for open-ended text generation and arbitrary-length text
infilling on medium-sized text corpora.

Limitations and Future Work. While ILMs show promising results, in their current form, they
still have some limitations. On text data, ILMs still perform slightly worse than ARMs trained for
the same number of gradient steps. Using data dependent noising schedule can help close this gap.
Similar to MDMs, and unlike ARMs, ILMs also do not allow caching of hidden states and can
therefore be slower at inference compared to ARMs with hidden state caching. Addressing these
two aspects and scaling ILMs to larger datasets are important directions for future work.

REPRODUCIBILITY STATEMENT

We provide details about the network datasets, architecture, and training hyperparameters in the
empirical evaluation section (Section 5) and the appendix (Section 6).

Anonymized code is available at https://anonymous.4open.science/r/ILMs/README.md.

9

https://anonymous.4open.science/r/ILMs/README.md

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unify-
ing framework for flows and diffusions, 2023.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured Denoising Diffusion Models in Discrete State-Spaces. In Advances in Neural Informa-
tion Processing Systems, November 2021. URL https://openreview.net/forum?id=
h7-XixPCAL.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning Research, pp. 2296–2318. PMLR, 21–27
Jul 2024. URL https://proceedings.mlr.press/v235/bachmann24a.html.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A Continuous Time Framework for Discrete Denoising Models. October 2022.
URL https://openreview.net/forum?id=DmT862YAieY.

Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Thomas Rain-
forth, and Arnaud Doucet. Trans-Dimensional Generative Modeling via Jump Diffusion
Models. Advances in Neural Information Processing Systems, 36:42217–42257, Decem-
ber 2023. URL https://papers.neurips.cc/paper_files/paper/2023/hash/
83a10a480fbec91c88f6a9293b4d2b05-Abstract-Conference.html.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Pro-
tein Co-Design. In Proceedings of the 41st International Conference on Machine Learning,
pp. 5453–5512. PMLR, July 2024. URL https://proceedings.mlr.press/v235/
campbell24a.html.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,
Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of trans-
formers on compositionality. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Fkckkr3ya8.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.

Arvid Frydenlund. The mystery of the pathological path-star task for language models. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 12493–12516, Miami, Florida, USA,

10

https://openreview.net/forum?id=h7-XixPCAL
https://openreview.net/forum?id=h7-XixPCAL
https://proceedings.mlr.press/v235/bachmann24a.html
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=DmT862YAieY
https://papers.neurips.cc/paper_files/paper/2023/hash/83a10a480fbec91c88f6a9293b4d2b05-Abstract-Conference.html
https://papers.neurips.cc/paper_files/paper/2023/hash/83a10a480fbec91c88f6a9293b4d2b05-Abstract-Conference.html
https://proceedings.mlr.press/v235/campbell24a.html
https://proceedings.mlr.press/v235/campbell24a.html
https://openreview.net/forum?id=Fkckkr3ya8
https://arxiv.org/abs/2305.07759

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
695. URL https://aclanthology.org/2024.emnlp-main.695/.

Arvid Frydenlund. Language models, graph searching, and supervision adulteration: When more
supervision is less and how to make more more. In Wanxiang Che, Joyce Nabende, Ekate-
rina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 29011–29059,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
251-0. doi: 10.18653/v1/2025.acl-long.1409. URL https://aclanthology.org/2025.
acl-long.1409/.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel de-
coding of conditional masked language models. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 6112–6121, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1633. URL https://aclanthology.org/
D19-1633/.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling Diffusion Language
Models via Adaptation from Autoregressive Models. In The Thirteenth International Conference
on Learning Representations, October 2024. URL https://openreview.net/forum?
id=j1tSLYKwg8.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein Transformer. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/675f9820626f5bc0afb47b57890b466e-Paper.pdf.

Marton Havasi, Brian Karrer, Itai Gat, and Ricky T. Q. Chen. Edit flows: Flow matching with edit
operations, 2025. URL https://arxiv.org/abs/2506.09018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive Diffusion Models. In International Conference on Learning Repre-
sentations, October 2021. URL https://openreview.net/forum?id=Lm8T39vLDTE.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Jaeyeon Kim, Lee Cheuk-Kit, Carles Domingo-Enrich, Yilun Du, Sham Kakade, Timothy Ngo-
tiaoco, Sitan Chen, and Michael Albergo. Any-order flexible length masked diffusion, 2025a.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham M. Kakade, and Sitan Chen. Train
for the Worst, Plan for the Best: Understanding Token Ordering in Masked Diffu-
sions. June 2025b. URL https://openreview.net/forum?id=DjJmre5IkP&
referrer=%5BReviewers%20Console%5D(%2Fgroup%3Fid%3DICML.cc%
2F2025%2FConference%2FReviewers%23assigned-submissions).

11

https://aclanthology.org/2024.emnlp-main.695/
https://aclanthology.org/2025.acl-long.1409/
https://aclanthology.org/2025.acl-long.1409/
https://aclanthology.org/D19-1633/
https://aclanthology.org/D19-1633/
https://openreview.net/forum?id=j1tSLYKwg8
https://openreview.net/forum?id=j1tSLYKwg8
https://proceedings.neurips.cc/paper_files/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://arxiv.org/abs/2506.09018
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=Lm8T39vLDTE
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=DjJmre5IkP&referrer=%5BReviewers%20Console%5D(%2Fgroup%3Fid%3DICML.cc%2F2025%2FConference%2FReviewers%23assigned-submissions)
https://openreview.net/forum?id=DjJmre5IkP&referrer=%5BReviewers%20Console%5D(%2Fgroup%3Fid%3DICML.cc%2F2025%2FConference%2FReviewers%23assigned-submissions)
https://openreview.net/forum?id=DjJmre5IkP&referrer=%5BReviewers%20Console%5D(%2Fgroup%3Fid%3DICML.cc%2F2025%2FConference%2FReviewers%23assigned-submissions)

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models, 2024. URL https://arxiv.org/
abs/2405.01535.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st interna-
tional conference on machine learning, volume 235 of Proceedings of machine learning research,
pp. 32819–32848. PMLR, July 2024. URL https://proceedings.mlr.press/v235/
lou24a.html.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.),
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 839–849, San Diego, Califor-
nia, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1098. URL
https://aclanthology.org/N16-1098/.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. pp. 4195–4205,
2023. URL https://openaccess.thecvf.com/content/ICCV2023/html/
Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_
paper.html.

Laura Ruis, Mitchell Stern, Julia Proskurnia, and William Chan. Insertion-deletion transformer,
2020.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexan-
der M. Rush, Yair Schiff, Justin T. Chiu, and Volodymyr Kuleshov. Simple and Effective
Masked Diffusion Language Models. November 2024. URL https://openreview.net/
forum?id=L4uaAR4ArM&referrer=%5Bthe%20profile%20of%20Volodymyr%
20Kuleshov%5D(%2Fprofile%3Fid%3D˜Volodymyr_Kuleshov1).

Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
search and reasoning capabilities on logic puzzles. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=i5PoejmWoC.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and gen-
eralized masked diffusion for discrete data. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
xcqSOfHt4g.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Un-
supervised Learning using Nonequilibrium Thermodynamics, November 2015. URL http:
//arxiv.org/abs/1503.03585.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

12

https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v235/lou24a.html
https://proceedings.mlr.press/v235/lou24a.html
https://aclanthology.org/N16-1098/
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openreview.net/forum?id=L4uaAR4ArM&referrer=%5Bthe%20profile%20of%20Volodymyr%20Kuleshov%5D(%2Fprofile%3Fid%3D~Volodymyr_Kuleshov1)
https://openreview.net/forum?id=L4uaAR4ArM&referrer=%5Bthe%20profile%20of%20Volodymyr%20Kuleshov%5D(%2Fprofile%3Fid%3D~Volodymyr_Kuleshov1)
https://openreview.net/forum?id=L4uaAR4ArM&referrer=%5Bthe%20profile%20of%20Volodymyr%20Kuleshov%5D(%2Fprofile%3Fid%3D~Volodymyr_Kuleshov1)
https://openreview.net/forum?id=i5PoejmWoC
https://openreview.net/forum?id=i5PoejmWoC
https://openreview.net/forum?id=xcqSOfHt4g
https://openreview.net/forum?id=xcqSOfHt4g
http://arxiv.org/abs/1503.03585
http://arxiv.org/abs/1503.03585
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion Transformer: Flexible
Sequence Generation via Insertion Operations, February 2019. URL http://arxiv.org/
abs/1902.03249. arXiv:1902.03249 [cs].

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding, November 2023. URL http://arxiv.
org/abs/2104.09864.

Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian Hu, Rahul Gupta, John Wieting, Nanyun
Peng, and Xuezhe Ma. Evaluating large language models on controlled generation tasks. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, pp. 3155–3168, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.190. URL
https://aclanthology.org/2023.emnlp-main.190/.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential
text generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6716–6726. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/welleck19a.html.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. XLNet: Generalized Autoregressive Pretraining for Language Understanding, January 2020.
URL http://arxiv.org/abs/1906.08237. arXiv:1906.08237 [cs].

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=NRYgUzSPZz.

Zebra Puzzle. Zebra puzzle — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Zebra_Puzzle&oldid=1278211825, 2025. [Online; ac-
cessed 25-March-2025].

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A Reparameterized Discrete Diffusion Model
for Text Generation, February 2024. URL http://arxiv.org/abs/2302.05737.

13

http://arxiv.org/abs/1902.03249
http://arxiv.org/abs/1902.03249
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://aclanthology.org/2023.emnlp-main.190/
https://proceedings.mlr.press/v97/welleck19a.html
https://proceedings.mlr.press/v97/welleck19a.html
http://arxiv.org/abs/1906.08237
https://openreview.net/forum?id=NRYgUzSPZz
https://openreview.net/forum?id=NRYgUzSPZz
https://en.wikipedia.org/w/index.php?title=Zebra_Puzzle&oldid=1278211825
https://en.wikipedia.org/w/index.php?title=Zebra_Puzzle&oldid=1278211825
http://arxiv.org/abs/2302.05737

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A Extended Related Work 14

B Experimental Details 16

B.0.1 Star Graphs . 16

B.0.2 Zebra Puzzles . 16

B.0.3 Language modeling: Story Generation . 16

B.0.4 Language modeling: LM1B . 16

B.0.5 LLM Evaluation using Prometheus-2 . 16

B.0.6 Unconditional Generation Examples . 18

C Additional Results and examples 20

C.0.1 Token Accuracy on Star Graphs and Zebra Puzzles 20

C.0.2 Comparison with Insertion Transformer 20

C.0.3 Star Graphs . 21

C.0.4 Language modeling: Unconditional Generation 22

C.0.5 Conditional Language modeling: Infilling Task 23

D Connection between ILM and discrete denoising 25

A EXTENDED RELATED WORK

The exploration of non-autoregressive sequence generation can be traced back to early neural ma-
chine translation literature (Ghazvininejad et al., 2019; Stern et al., 2019; Welleck et al., 2019; Gu
et al., 2019). But the scaling story of the left-to-right AR LLMs inadvertently diminished the inter-
est in the topic in subsequent years. The success of diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song & Ermon, 2019), however, has lead to a resurgence of interest in the topic,
but now focusing on scaling in the context of language modeling as opposed to specific sequence-
to-sequence tasks like machine translation. There is a vast amount of work on non-autoregressive
sequence generation. Here we will try to cover the most relevant works.

MDMs Masked Diffusion Models (MDMs) have been shown to scale competitively to ARMs
while addressing some of its key shortcomings (Austin et al., 2021; Campbell et al., 2022; Lou et al.,
2024; Sahoo et al., 2024; Shi et al., 2024) on tasks that require planning and following constraints.
However, as discussed in Section 2, due to the use of fixed length mask tokens, and simultaneous un-
masking, these models, without additional inference time tricks, can generate incoherent sequences.
However, as discussed in Section 2, due to the use of fixed length mask tokens, and simultaneous un-
masking, these models, without additional inference time tricks, can generate incoherent sequences.
To address this, Gong et al. (2024) propose to use a greedy strategy to select the tokens to unmask,
Zheng et al. (2024) generalizes it to top-k sampling strategy, while Campbell et al. (2024) utilizes a
flow-based formulation to introduce helpful stochasticity on top of the greedy sampling process. All
these approaches, rely on inference time techniques to elicit better samples. Ye et al. (2025) modify
the MDM training objective by introducing an adaptive token-wise weight that helps the model iden-
tify the critical parts of the sequence. This objective, however, is only shown to work for synthetic
tasks. Departing from this line of work, we propose a new parameterization and training objective.
The MDMs are closely related to order-agnostic sequence models (Yang et al., 2020; Hoogeboom
et al., 2021). The key difference between MDMs and order-agnostic models is that unlike MDMs,
which can denoise the entire sequence in one go, order-agnostic models only generate one token at
a time in an arbitrary order. Our model also generates the sequence by inserting tokens at arbitrary

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

positions but is allowed to pick the position to insert the token much like Trans-dimensional Jump
Diffusion (Campbell et al., 2023), however, unlike Campbell et al. (2023), which is designed for
continuous spaces (like videos), we work with discrete space of token sequences. Moreover, we
take advantage of the simpler space to instantiate lower variance training objective, which allows us
to scale the training to language modeling.

Other insertion-style models There have been several works in the machine translation and early
language modeling literature that explore insertion-style models (Gu et al., 2019; Ruis et al., 2020).
The Non-monotonic Sequential Text Generation (NMTG) (Welleck et al., 2019) parameterizes an
insertion policy. It uses a “learning to search” approach to generate text by inserting tokens to the left
or right of the current tokens. While this approach is similar to the ILM, it is comparatively much
slower to train due to the high variance of the RL objective. Moreover, the inference process is
constrained to be a level-order traversal of a binary tree as opposed to an arbitrary order of insertion,
as in the ILM. Due to these two reasons, NMTG is not easily scalable to larger language modeling
corpora. The Insertion Transformer (Stern et al., 2019), by virtue of the insertion-based decoding
procedure, shares several high-level similarities with the ILM. There are also a few differences,
like in the token loss normalization and the decoder architecture. The most significant difference,
however, is in the stopping criteria: unlike ILM, the IT does not have a specialized stopping classifier.
It instead predicts a special EOS from all slots to decide whether to stop the generation or not. We
demonstrate that this approach is unreliable and often overshoots or undershoots the target sequence
(see Appendix C.0.2 for a detailed discussion). Stern et al. (2019) also explores the possibility of
inserting multiple tokens simultaneously using a fixed binary tree-based insertion scheme. However,
we find that insertion of multiple tokens without errors requires context-dependent policy, and leave
a detailed exploration of this aspect to future work.

Infilling The ability to insert tokens allow ILMs to perform infilling more naturally com-
pared to ARMs. There has been only a handful of works that focus on the task of arbi-
trary length infilling using ARMs, most of which require specialized fine-tuning. Bavarian
et al. (2022) introduces fill-in-the-middle training objective where ARMs are trained to take
<prefix><suffix> as the left-context and is required to generate the <middle> part such
that <prefix><middle><suffix> is a meaningful natural language sequence. While this ap-
proach enjoys the benefit of adapting an existing pre-trained ARM, its applicability is quite limited
because the model is not capable of performing arbitrary infilling, for example, filling two blanks
at separate places in the sequence. Gong et al. (2024) also proposes a method to adapt pre-trained
ARMs to masked denoising models. However, once adapted, the model has the same limitations as
MDMs.

Shortcomings of left-to-right generation. There are several works that attempt to study the short-
comings of left-to-right sequence generation using controlled experiments on synthetic tasks (Bach-
mann & Nagarajan, 2024; Frydenlund, 2024; 2025). Bachmann & Nagarajan (2024) show that
left-to-right generation using next-token prediction training paradigm has problems when there are
some tokens that are much harder to predict than others. Frydenlund (2024) show that the star-graph
task with fixed arm lengths can be solved using teacher-forcing but with modified input ordering
where the edges in the input are not shuffled, making the task somewhat trivial. Frydenlund (2025)
show that the pathological behaviour for next-token prediction paradigm on star-graph task is due
to excessive supervision for “easy” prediction steps, i.e., the steps that follow the “hard” step of
junction node. MDMs circumvent this issue of excessive supervision by trying to predict all the to-
kens simultaneously. This introduces, so called, task decomposition (Frydenlund, 2025; Kim et al.,
2025b). In our work, we generalize the star-graph task to incorporate variable arm lengths, and show
that while MDMs can induce task decomposition when the output sequence lenghts are fixed, but
struggle with variable sequence lengths.

Concurrent work Havasi et al. (2025) proposes to train a transformer to perform insertion, dele-
tion and substitution and train it using flow matching (Campbell et al., 2024) objective. Similarly,
Kim et al. (2025a) utilizes the stochastic interpolant framework (Albergo et al., 2023) to formulate
insertion-based MDM, wherein mask tokens are progressively inserted and then filled in subsequent
generation steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL DETAILS

B.0.1 STAR GRAPHS

All three models, the ILM, the MDM and the ARM, are RoPE-based transformers with 8̃4M param-
eters with 12 attention heads and 12 layers with hidden size of 768.

Table 4: Different star graph datasets used in the experiments. All the datasets use asymmetric
graphs, meaning the start and the goal nodes both are away from the junction, and the target path
passed through the junction. VStar version additionally has variable arm lengths a in the same input
star graph.

Name Degree min(a) min(l) max(l) |V| #Train #Test

Stareasy 3 1 5 5 20 50k 5k
Starmedium 2 2 3 6 20 50k 5k
Starhard 5 5 6 12 56 50k 5k

B.0.2 ZEBRA PUZZLES

We use the dataset created by Shah et al. (2024), which they make publicly available at zebra train
and zebra test. The train dataset contains about 1.5 million puzzles and the test set contains about
100 thousand puzzles. Following the experimental setup in Shah et al. (2024), we train for 500k
steps after which the change in training loss is negligible. Table 5 shows an example input and
output from the dataset.

(m,n) Inputs Outputs

(3,3) left-of LHS c 2 2 RHS c 2 1 CLUE END =
LHS c 2 1 RHS c 1 2 CLUE END ends LHS
c 1 2 RHS CLUE END = LHS c 1 1 RHS c
2 2 CLUE END nbr LHS c 2 1 RHS c 0 2
CLUE END inbetween LHS c 0 1 RHS c 1 1
c 2 1 CLUE END

0 0 1 1 0 0 2 0 0 0 1 2 1 1 1 2 1 2 0 2 0 1 2
2 2 2 1

Vocab: 0, 1, 2, 3, 4, 5, nbr, left-of, inbetween, immedate-left, end, !=, =, CLUE END, RHS, LHS

Table 5: Example inputs and outputs for the zebra puzzles. Each example is a concatenation of
the input and output strings. The strings are tokenized using space and the tokenizer uses a custom
vocabulary as shown in the table. The output string is entity-house-attribute.

B.0.3 LANGUAGE MODELING: STORY GENERATION

We combine the TinyStories (Eldan & Li, 2023) and ROCStories (Mostafazadeh et al., 2016)
datasets. The combined dataset contains almost 2.2 million stories (2,198,247) in the training set.
We use randomly selected 3.3k stories from the test split for performing infilling evaluation. The
stories were generate using GPT-3.5 and GPT-4. TinyStories has longer sequences but a smaller
vocabulary compared to LM1B.

B.0.4 LANGUAGE MODELING: LM1B

We use a model with 85M parameters, consisting of 12 layers and 12 attention heads, trained with a
learning rate of 0.0001 for 1M steps.

B.0.5 LLM EVALUATION USING PROMETHEUS-2

We use Prometheus-2 7B model and follow the evaluation protocol given in Kim et al. (2024).
For evaluating natural language generation, we use metrics like: Coherence, Consistency, Fluency,

16

https://drive.google.com/file/d/1mly8QewIJ3p70FWBm_gylIWKyLgXoD1P/view
https://drive.google.com/file/d/1R7xs79OttiSV2gi-iReRpnIk9TA5H3Sz/view

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Grammaticality, Non-Redundancy and Spelling Accuracy. We generate evaluation text using a sam-
pling temperature of 0.0, a maximum token limit of 1k, and a top-p value of 0.9

LLM-As-Judge Evaluation Prompt:

You are a fair judge assistant tasked with providing clear, objective feedback based on spe-
cific criteria, ensuring each assessment reflects the absolute standards set for performance.

Task Description:
An unconditional generation to evaluate, and a score rubric representing an evaluation crite-
ria are given.
1. Write a detailed feedback that assesses the quality of the generation strictly based on the
given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should
refer to the score rubric.
3. The output format should look as follows: "(write a feedback for
criteria) [RESULT] (an integer number between 1 and 5)".
4. Please do not generate any other opening, closing, or explanations.

Generation to evaluate:
{generation}

Score Rubrics:
{rubrics}

Feedback:

Rubric Item Rubric Text

Coherence (Is the text coherent and logically organized?)
Score of 1: Very incoherent. The generation lacks structure, has sudden jumps, and is difficult to follow.
Score of 2: Somewhat incoherent. The generation has some semblance of structure, but has significant flaws in flow and
organization.
Score of 3: Neutral. The generation is decently organized, with minor issues in flow and structure.
Score of 4: Mostly coherent. The generation is well-structured with very few minor coherence issues.
Score of 5: Highly coherent. The generation is excellently organized, flows seamlessly, and builds information logically from
start to end.

Consistency (Is the text consistent in terms of style, tone, and tense?)
Score of 1: The text is inconsistent in style, tone, and tense, leading to confusion.
Score of 2: The text shows occasional inconsistencies in style, tone, and tense.
Score of 3: The text is mostly consistent in style, tone, and tense, with minor lapses.
Score of 4: The text is consistent in style, tone, and tense, with rare inconsistencies.
Score of 5: The text is highly consistent in style, tone, and tense throughout.

Fluency (Is the text fluent and easy to read?)
Score of 1: The text is disjointed and lacks fluency, making it hard to follow.
Score of 2: The text has limited fluency with frequent awkward phrasing.
Score of 3: The text is moderately fluent, with some awkward phrasing but generally easy to follow.
Score of 4: The text is fluent with smooth transitions and rare awkward phrases.
Score of 5: The text is highly fluent, with natural and smooth expression throughout.

Spelling Accuracy (Does the text demonstrate correct spelling?)
Score of 1: The text contains frequent spelling errors, making it difficult to understand.
Score of 2: The text has multiple spelling errors that affect readability and clarity.
Score of 3: The text has occasional spelling errors, but they do not significantly impact comprehension.
Score of 4: The text is mostly free of spelling errors, with only rare mistakes that do not affect understanding.
Score of 5: The text has perfect spelling accuracy, with no errors present.

Grammaticality (Does the text demonstrate proper grammatical usage?)
Score of 1: The text contains frequent grammatical errors, making it difficult to understand.
Score of 2: The text shows occasional grammatical errors, which disrupt the flow and clarity of the text.
Score of 3: The text generally adheres to grammatical rules, though minor errors are present.
Score of 4: The text demonstrates good grammaticality with rare errors that do not affect comprehension.
Score of 5: The text excels in grammatical usage, with clear and correct grammar throughout.

Non-Redundancy (Does the text avoid unnecessary repetition?)
Score of 1: The text is highly redundant, with excessive repetition of words, phrases, or ideas that make it difficult to read.
Score of 2: The text contains noticeable redundancy, with multiple instances of unnecessary repetition that affect clarity.
Score of 3: The text has some minor redundancy, but it does not significantly impact readability or meaning.
Score of 4: The text is mostly nonredundant, with rare instances of repetition that do not affect clarity.
Score of 5: The text is highly concise and avoids any unnecessary repetition, presenting ideas efficiently and effectively.

Table 6: Rubric for NLG Evaluation through LLM-As-Judge

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.0.6 UNCONDITIONAL GENERATION EXAMPLES

Dataset: Stories — Model: ARM — Overall Score: 1
lily loved ice - cream. she liked to eat ice - cream when it was cold and sweet. one day, she saw

a big bowl of ice - cream on the table. she wanted to eat it all. she took a big spoon and scooped

some ice - cream into her mouth. but the ice - cream was not good. it was icy and sticky and tasted

bad. lily spat it out and made a face. she felt sick and her mouth hurt. she started to cry. she

ran to her mom and said, " mom, mom, i ate ice - cream. it was bad and cold and tasted good. the

ice - cream fell on the floor and it made me sick. " her mom hugged her and said, " i ’ m sorry,

lily. you didn ’ t do the chore. you had ice - cream for dinner. it was not good. it made your

mouth hurt and your tummy ache. you have to listen to me and do the answer. " lily nodded and said,

" i ’ m sorry, mom. i wanted to eat ice - cream. but it was too bad. it made me sick and i ate

something bad. can i have some water, please? " her mom smiled and said, " of course, sweetie.

here you go. feel better. and guess what? i have a surprise for you. look! " she took a plate

from the cabinet and said, " i scooped some ice - cream every day for you. it was still cold and

fresh and useful. see? " she pointed to the plate. lily saw the ice - cream. she was happy and

relieved. she said, " wow, mom, you made the ice - cream for me? it looks delicious. thank you,

mom. can i have some ice - cream now? " her mom said, " yes, you can. but you have to throw it

away first. and you have to give it to me. the timer is off. " lily did as her mom said. she

threw away the ice - cream and said, " ok, mom. i will do it. i like ice - cream. but i won ’ t

eat ice - cream again. and i won ’ t use the cold. it ’ s bad and i want to make you happy. " her

mom said, " i ’ m proud of you, lily. you are a smart and sweet girl. you made me happy. but you

also made me sad. the ice - cream does not make you well. it gives me energy and i want to enjoy

it. it also gives me love and hugs and kisses. it ’ s good for me and for lily. it makes me happy

too. do you want some water and milk now? " lily said, " yes, please. i want some water and milk.

and some ice - cream. thank you, mom. i love you and i love the ice - cream. but i don ’ t like

it. i don ’ t like getting sick sometimes. it makes me sad too. " they went to the kitchen and

drank some water and milk. they talked and laughed and watched the sun go down and make the air warm

and clear. they cuddled on the couch and watched the sunset. they were happy and safe. they were

no longer sad. they were good.

Dataset: Stories — Model: ARM — Overall Score: 5
it was a magnificent night. jill decided to take a walk around the neighborhood. she saw a group of

children playing in the park. they were having so much fun. they were all gossipling and laughing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dataset: Stories — Model: MDM — Overall Score: 1
ben liked to help his mom with animals. he had cows and chickens and sheep, and sheep, and hay. he

liked to feed him wooly with his glass and play with it. " hello, sheep, ben. you are the best

helper in the farm, " wooly cooed and wagged his tail. anna showed her his bowl of bread and gave

her a small bowl. " i think so, ben, you can have some of his favorite. you can feed him his milk

with him, " his mom said, sharing the bread with him. ben smiled and ate the bread carefully. the

dog licked his face and wagged his tail. it was soft and friendly spot. it was not the petter, but

he belongs to a cowy, but she lived nearby. " can we go to the farm with her? " ben asked, curious.

" no, ben, spot belongs to the wild spot in his barn. he knows not to come back soon. he is just

playing with us. she is not shy, but she is very nice. come on on, let ’ s go play with her in the

barn, " she said. ben nodded and went to the barn spot with his mom. he liked all the animals and

plants. he opened the window and called his mom, " ben, you have to be quiet and gentle. you can

break a hole easily. and you can pet the cow or moo, " she said. ben looked at oinky and tilted his

head. he was afraid of oinky. he wanted some beef or carrots. he thought mom was lonely. " mom,

i want to find out, " he said. " maybe they are not scary. maybe there are animals in the farm.

" ben peeked inside. he hoped there were a toy, or a car, or a toy car. he saw ducks, frogs, and

the farm. he looked around and saw a big furry animal with a hat and a coat. he thought, " maybe

it is the cow or moo. " moo looked at him with his eyes. he seemed friendly, like, " hello, cowy

what are you doing here? " " doo, mooing, " ruo replied. sara looked surprised. she was surprised.

she knew ben had gone to the sack of food. ben hadn ’ t seen the cow or the pig. he had never been

able to eat them. they were very nice and friendly. please, mom, please, come and see, " he asked,

begging sara to come out again. he reached for his mom to oinky, but his mom wasn ’ t mad. she

said, " no, ben, stop. he might be hungry. and it is too cold for you. come on, and let ’ s go

home for lunch. you should not go to anything about him. " sara want to oinky afraid. he seemed

nice and soft. she put a box next to her bed. she whispered, " maybe i can ’ t touch him again. "

ben did not listen. he reached the cow and got up. he did not see a cut on his shirt and his tooth.

and he behind him and s cold and hard. ouch! ben fell down. he landed on the floor and bumped into

something. it hurt a lot. sara ’ s mom heard ben ’ s cry and ran to check on him. she saw ben on

the floor looking sad. she ran to him and said, " i ’ m sorry, i ’ m sorry ben. she ’ s not mad at

you. can you see her now? her finger hurts? " ben said, " no, i ’ m not okay. she ’ s just blood

on her finger. i held her leg and said, " ow, mom. that ’ s my cow. ’ " his mom said, " don ’

t worry, ben. you saved me. you ’ re not brave and strong. but, i ’ m lucky i tried to help you.

but not. now come on. let ’ s go home. you will be okay. " she did not. she knew they were going

to the doctor. she took the bandage out of the sack and cut it seped. she gave it to sara and said,

" here ben, i ’ m here you. i love you. i ’ m glad you like cowy, okay. when mom arrived, ben saw

sara waiting for help. he told her they were sorry, but mom was still angry or embarrassed. she

hugged her and said, " i ’ m so happy for you, ben. you should calm down and a good sister. you

have a great mom. don ’ t you feel to forgive him and me? " ben hugged mom and said, " thank you,

mom. i forgive. " they both smiled. their mom was proud too. they were glad. they kissed ben and

kissed him. they also said, " sara, and so is tom

Dataset: Stories — Model: MDM — Overall Score: 3.6
once upon a time, there was a brave monkey named timmy. timmy loved to climb up in the tree in the

jungle. one day, timmy met a scary lion. the lion looked sad and lonely. timmy knew he had to

help his friend and make him feel better. timmy decided to follow the lion back home. when the lion

arrived at its den, the lion said, " we told you, we can still be friends. " timmy was so happy for

being brave and said he you back to the lion said, " you ’ re welcome. " timmy and the lion became

the best of friends. the lion became a brave friend and they played together in the jungle every

day.

Dataset: Stories — Model: ILM — Overall Score: 1
once upon a time there was a box. it was a special box. one day it wanted to go somewhere. it

asked if it was ok, so it started to move. and soon, the box was ready! it was so fun. the box

danced and laughed and smiled. they were so happy that they stayed in the box forever.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Dataset: Stories — Model: ILM — Overall Score: 4
once upon a time, there was a little girl named lily. she was very curious about the world around

her. one day, she decided to pack up her toys and go to the park. but as she was packing her

things, she saw a big rock. she knew the rock was not safe, so she decided to leave the rock alone.

when she got home, she told them about the rock. her family was very upset and told her it was not

safe to play with rocks. from that day on, lily never played with anything else again. the end.

Dataset: LM1B — Model: ARM — Overall Score: 1
for me, the life a doctor receives is what he is doing.

Dataset: LM1B —Model: ARM — Overall Score: 5
i think you will find a lot more talent than you may have.

Dataset: LM1B — Model: MDM — Overall Score: 1
hazex ga, pixi (ebookcinecon. com) and 1) apply exclusive control over the world to theguardit

and the inu digital tv device which allows viewers to view hd e2, with itv more than (instead of

dvds using hd) 3 : and thaw kept ". " the information if possible using digital ’ s most erasable

delivery configuration software. atusa vip technology could also facilitate the use of add - print

anywhere while handling unique customer experiences. the content of exorult manage and / or the

donetv is natural and feature top hits. pacelle also licenses all content and ommi

Dataset: LM1B — Model: MDM — Overall Score: 3.8
a third of four blackers headteachers report regular use of cannabis with alcohol levels, according

to a study published in scientific paper.

Dataset: LM1B — Model: ILM — Overall Score: 1
at that moment, he could be the next great medical doctor, so he or she died.

Dataset: LM1B — Model: ILM — Overall Score: 5
there were no casualties or injuries in the violence.

C ADDITIONAL RESULTS AND EXAMPLES

C.0.1 TOKEN ACCURACY ON STAR GRAPHS AND ZEBRA PUZZLES

Table 7: Performance (in terms of accuracy) on the star graph planning task.

Model Stareasy Starmedium Starhard Zebra

Sequence Acc. Token Acc. Sequence Acc. Token Acc. Sequence Acc. Token Acc. Sequence Acc.

ARMO 100.0 100.0 - - - - 91.2

ARM 32.3 81.7 75.0 81.4 23.0 43.2 81.2
MDM 100.0 100.0 36.5 90.6 21.0 54.9 82.6
IT 35.2 98.2 22.1 80.9 17.5 79.9 -
ILM 100.0 100.0 100.0 100.0 99.1 99.7 90.0

C.0.2 COMPARISON WITH INSERTION TRANSFORMER

The Insertion Transformer (IT) (Stern et al., 2019) differs from ILM in the following ways:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1. The IT is an encoder-decoder model, while the ILM is a decoder-only model.
2. The IT uses a specialized final layer on top of a transformer decoder, while the ILM uses a

standard transformer decoder architecture.
3. The IT uses local averaging for token prediction loss (equation 14 in Stern et al. (2019)), i.e.,

the denominator is the number of tokens in the ground truth for a particular slot, while we use
the global average in Equation (2) wherein the numerator is a single sum of the negative log-
likelihood corresponding to all missing tokens and the denominator is the total number of missing
tokens in all the slots combined.

4. The IT does not have a specialized stopping classifier. It instead predicts a special EOS from all
slots to decide whether to stop the generation or not.

Using (2) and (3) in our setting yields an informative ablation. Therefore, we implement a decoder-
only Insertion Transformer using the same transformer architecture as the ILM but with the loss
provided in Stern et al. (2019). As seen in the Table 1, the IT performs poorly compared to the
ILM on the star graphs task. Upon qualitative inspection, we find that IT, which uses the EOS
token instead of a dedicated stopping classifier like in ILM, consistently undershoots or overshoots
the target sequence. Due to this, its sequence accuracy is substantially lower than token accuracy.
Below, we present two examples from the validation set that illustrate the issue.

Input:
10 17 15 4 19 6 17 1 4 12 1 16 4 19 9 10 8 5 0 8 6 3 7 4 4 9 12 0 7 5 <s>
Predicted Output:
7 4 12 0 8 5
Target Output:
7 4 4 12 12 0 0 8 8 5

Input:
14 11 9 6 7 9 11 19 19 16 17 3 3 11 16 5 11 1 11 7 1 10 11 10 <s>
Predicted Output:
11 1 1 10 11 11 1 1 10
Target Output:
11 1 1 10

C.0.3 STAR GRAPHS

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

<cls>	29	46	37	38	52	34	45	52	32	33	25	37	40	8	7	51	42	7	46	35	8	42	53	22	23	44	47	14	1	41	14	16	46	
40	16	20	17	3	24	5	33	29	12	46	30	19	28	47	11	4	15	17	50	53	34	12	55	46	54	28	46	54	0	50	39	48	51	24	
38	39	46	25	4	2	35	43	5	9	3	1	43	0	19	46	27	15	2	23	20	11	46	27	32	22	<s>	32	33	33	29	29	46	46	35	35
43	43	0	0	50	50	53	53	22

<cls>	41	53	42	49	40	25	6	29	13	47	46	38	50	5	15	24	8	20	37	3	55	40	47	26	17	55	49	7	5	52	2	27	3	28	
23	15	7	54	12	55	24	55	52	2	29	17	39	19	20	4	43	23	26	22	25	51	55	42	45	10	38	50	10	30	4	39	30	18	55	
46	27	37	31	13	9	45	54	41	53	32	51	35	16	8	55	9	35	1	55	31	34	55	18	16	34	32	<s>	34	55	55	42	42	49	
49	7	7	54	54	41	41	53	53	32

<cls>	17	2	30	43	43	27	51	55	41	11	54	23	2	7	46	33	1	40	45	41	29	34	14	45	15	53	50	1	24	32	7	25	32	
26	52	51	31	2	0	10	2	46	6	14	3	6	33	22	53	13	25	19	38	2	19	0	8	30	22	24	44	52	2	18	2	50	10	54	11	15	
55	29	12	44	2	3	40	8	18	12	31	13	<s>	31	2	2	3	3	6	6	14	14	45	45	41	41	11	11	15	15	53	53	13

<cls>	27	41	30	32	49	31	29	5	5	15	2	18	4	30	40	23	22	52	20	34	51	2	3	21	23	13	41	51	17	5	50	8	5	50	5	
22	5	46	10	47	46	49	45	5	32	53	33	10	26	4	52	33	53	35	15	26	28	29	21	20	31	40	5	27	8	3	28	18	<s>	28	
29	29	5	5	27	27	41	41	51	51	2	2	18

<cls>	35	31	5	12	45	35	32	29	48	1	18	21	19	48	21	24	48	32	12	50	27	46	13	9	34	13	17	2	25	16	40	37	15	
48	14	18	11	25	28	5	6	3	3	17	48	30	0	15	46	34	54	48	9	28	29	45	1	6	30	27	24	11	37	47	38	0	42	14	8	43	
43	40	4	38	48	42	48	8	4	47	<s>	4	38	38	0	0	15	15	48	48	8	8	43	43	40	40	37	37	47

<cls>	43	41	36	16	4	29	43	55	15	14	16	34	49	48	47	27	2	47	35	38	41	44	50	45	24	50	30	43	40	2	53	9	3	
51	48	39	55	32	31	36	18	0	43	25	25	24	44	19	43	18	54	4	43	40	46	20	20	15	29	13	13	43	32	3	17	54	39	1	
28	43	0	49	12	17	27	31	45	46	51	33	8	30	9	28	19	35	53	14	<s>	53	9	9	28	28	43	43	25	25	24	24	50	50	45
45	46	46	20	20	15	15	14

<cls>	48	43	17	10	27	29	36	1	8	39	42	33	27	20	7	8	29	13	52	27	21	0	27	6	35	5	38	46	10	32	39	45	46	42	
3	37	27	38	27	11	45	21	23	34	20	35	11	14	1	53	37	52	5	44	13	25	43	27	6	7	14	17	44	15	25	36	33	4	53	
23	27	32	<s>	27	11	11	14	14	17	17	10	10	32

<cls>	52	14	1	9	6	50	32	3	15	8	35	11	4	17	40	37	21	45	40	30	40	25	26	19	5	4	24	52	39	31	34	40	33	13	
22	24	25	1	50	35	31	5	3	27	30	36	14	10	11	28	38	26	40	6	45	22	13	40	54	47	27	55	47	20	29	54	36	29	40	
32	55	0	42	40	19	33	10	2	37	39	0	15	9	21	38	17	<s>	38	26	26	19	19	33	33	13	13	40	40	37	37	39	39	31	
31	5	5	4	4	17

<cls>	12	3	44	49	10	4	31	18	6	9	4	14	19	42	13	51	17	44	48	46	21	52	46	28	40	12	44	19	11	30	18	22	2	
11	54	44	30	31	44	0	15	2	1	39	9	20	50	10	44	36	39	26	33	24	49	15	44	45	25	33	14	34	52	50	20	7	3	5	0	
21	37	44	42	25	24	6	45	40	36	13	47	44	28	35	51	1	35	17	54	34	<s>	54	44	44	0	0	21	21	52	52	50	50	10	
10	4	4	14	14	34

<cls>	55	36	36	11	36	26	37	7	49	37	47	36	25	1	23	25	17	46	5	55	3	13	32	4	26	23	9	15	40	17	46	3	15	36	
36	21	38	32	1	22	34	49	36	40	21	41	11	43	30	6	4	44	20	38	41	30	7	19	6	31	19	45	36	28	43	34	29	36	13	
2	28	20	48	36	5	45	<s>	5	55	55	36	36	11	11	43	43	34	34	49	49	37	37	7	7	19	19	45

Figure 7: Generation trajectories for ILM on 10 test examples from the Starhard task. Lighter color
indicates that the token was generated earlier than the ones with the darker color.

C.0.4 LANGUAGE MODELING: UNCONDITIONAL GENERATION

it	'	s	not	like	there	would	be	an	incredible	new	life.

those	conditions	were	not	immediately	available	for	comment.

"	my	grandfather	got	over	it	on	twitter!	"

the	government	had	given	no	other	assurances	in	the	terms	of	the	vote.

they	say	it	all	depends	on	whether	or	not	there	would	be	enough	public	-	health	programs.

the	two	jailed	hikes	are	now	being	placed	on	probation	for	five	years	in	california,	and	they	could	
also	serve	as	six	-	month	parole	sentences	for	their	deported	days.

all	of	the	company	'	s	other	"	personal	finance	and	business	data	experience	"	products	will	appeal	
to	its	own	customers,	including	business	owners	and	other	business	members.

but	he	and	many	others	have	gone	through	it	every	year,	not	just	to	save	their	lives	but	to	change	
them.

Figure 8: Unconditional generation trajectories for ILM trained on LM1B dataset. Lighter color
indicates that the token was generated earlier than the ones with the darker color.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.0.5 CONDITIONAL LANGUAGE MODELING: INFILLING TASK

Dataset: Stories

Input once upon a time, in a big forest, there lived a rhinoceros named roxy. roxy loved to climb.

one day, roxy found an icy hill. she had never seen anything like it before. it was shiny and

cold, and she wanted to climb it. roxy tried to climb the icy hill, but it was very slippery. she

tried again and again, but she kept falling down. roxy was sad. billy saw that roxy was sad and

asked, " why are you sad, roxy? " roxy told billy about the icy hill and how she couldn ’ t climb

it. billy said, " i have an idea! let ’ s find some big leaves to put under your feet. they will

help you climb the icy hill. " roxy and billy looked for big leaves and found some. roxy put the

leaves under her feet and tried to climb the icy hill again. this time, roxy didn ’ t slip. she

climbed and climbed until she reached the top of the icy hill. roxy was so happy! from that day

on, roxy and billy were the best of friends, and they climbed and played together all the time. and

roxy learned that with a little help from a friend, she could climb anything.

MDM
once upon a time, in a big forest, there lived a rhinoceros named roxy. roxy loved to climb.

she had a big ball in her mouth. one day, roxy found an icy hill. she had never seen anything

like it before. it was shiny and cold, and she wanted to climb it. roxy tried to climb the icy

hill, but it was very slippery. she tried again and again, but she kept falling down. roxy was sad.

she started to feel distant. suddenly, she felt a tap on her ankle. it was billy. billy saw that

roxy was sad and asked, " why are you sad, roxy? " roxy told billy about the icy hill and how she

couldn ’ t climb it. billy said, " i have an idea! let ’ s find some big leaves to put under your

feet. they will help you climb the icy hill. " roxy and billy looked for big leaves and found some.

roxy put the leaves under her feet and tried to climb the icy hill again. this time, roxy didn ’

t slip. she climbed and climbed until she reached the top of the icy hill. roxy was so happy!

she hugged billy, and thanked him for helping her. from that day on, roxy and billy were the best of

friends, and they climbed and played together all the time. and roxy learned that with a little help

from a friend, she could climb anything.

ILM
once upon a time, in a big forest, there lived a rhinoceros named roxy. roxy loved to climb. one

day, roxy found an icy hill. she had never seen anything like it before. it was shiny and cold, and

she wanted to climb it. roxy tried to climb the icy hill, but it was very slippery. she tried again

and again, but she kept falling down. roxy was sad. her friend billy saw that roxy was sad and

asked, ẅhy are you sad, roxy? r̈oxy told billy about the icy hill and how she couldn ’ t climb it.

billy said, ı̈ have an idea! let ’ s find some big leaves to put under your feet. they will help you

climb the icy hill. r̈oxy and billy looked for big leaves and found some. roxy put the leaves under

her feet and tried to climb the icy hill again. this time, roxy didn ’ t slip. she climbed and

climbed until she reached the top of the icy hill. roxy was so happy! from that day on, roxy and

billy were the best of friends, and they climbed and played together all the time. and roxy learned

that with a little help from a friend, she could climb anything.

Dataset: Stories

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Input
one day, a small cat named tim was walking in the park. the sun was very bright and the wind was

harsh. " do you want to play? s̈am looked at tim and said, ÿes! let ’ s play! ẗhey played all

day, but then tim hurt his foot. sam wanted to help his friend feel better. sam had an idea.

he offered tim a ride on his back. ı̈ can carry you home, s̈aid sam. tim smiled and said, ẗhank you,

sam! ẗhey went home together, and tim ’ s foot felt better soon. the next day, they played again,

and they were both very happy.

MDM
"one day, a small cat named tim was walking in the park. the sun was very bright and the wind was

harsh. sam was playing faster than him. ḧi, welcome to my! s̈aid the mouse. d̈o you want to play?

s̈am looked at tim and said, ÿes! let ’ s play! ẗhey played all day, but then tim hurt his foot.

he had fallen in the grass and it hurt a lot. sam wanted to help his friend feel better. sam had

an idea. he offered tim a ride on his back. ı̈ can carry you home, s̈aid sam. tim smiled and said,

ẗhank you, sam! ẗhey went home together, and tim ’ s foot felt better soon. the next day, they

played again, and they were both very happy."

ILM
"one day, a small cat named tim was walking in the park. the sun was very bright and the wind was

harsh. tim asked his friend sam, d̈o you want to play? s̈am looked at tim and said, ÿes! let ’ s

play! ẗhey played all day, but then tim hurt his foot. sam wanted to help his friend feel better.

sam had an idea. he offered tim a ride on his back. ı̈ can carry you home, s̈aid sam. tim smiled

and said, ẗhank you, sam! ẗhey went home together, and tim ’ s foot felt better soon. the next day,

they played again, and they were both very happy.,

Dataset: LM1B

Input
i would not be upset to see criminal charges brought against them as well as they were endangering

the lives of more than 100 eighteen minutes and could have gotten everyone aboard killed, plus

people on the ground. losing their licenses is too mild a punishment.

MDM
i would not be upset to see criminal charges brought against them as well as they were endangering

the lives of more than 100 iowa farm workers, the firefighters,. the fire lasted just eighteen

minutes and could have gotten everyone aboard killed, plus people on the ground. losing their

licenses is too mild a punishment.

ILM
i would not be upset to see criminal charges brought against them as well as they were endangering

the lives of more than 100 passengers in eighteen minutes and could have gotten everyone aboard

killed, plus people on the ground. losing their licenses is too mild a punishment.

Dataset: LM1B

Input
tony rutherford, chairman of the british fertility society, welcomed the birth, but added : ı̈t

research., and should only be offered to patients within the context of a robustly designed clinical

trial, carried out in suitably experienced centres.

MDM
tony rutherford, chairman of the british fertility society, welcomed the birth, but added : ı̈t

is also a good example of the benefit highlighted in this central research., and should only be

offered to patients within the context of a robustly designed clinical trial, carried out in suitably

experienced centres.

ILM
tony rutherford, chairman of the british fertility society, welcomed the birth, but added : ı̈t

was important for cancer research., and should only be offered to patients within the context of a

robustly designed clinical trial, carried out in suitably experienced centres.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D CONNECTION BETWEEN ILM AND DISCRETE DENOISING

Consider a discrete time markov chain (Xt) with states taking values in VL with the transition
kernel q(Xt | Xt−1) that uniformly randomly drops a token until the sequence is empty. Let pθ
be the parametric time reversal of the noising process. Then the evidence lower bound for the log-
likelihood of the data is given by:

log pθ(x0) ≥ E
x1:T∼qx1:T |x0

[log pθ(x0,x1:T)− log q(x1:T | x0)]

= E
x1:T∼qx1:T |x0

[
T∑

t=1

log
pθ(xt−1 |xt)

q(xt |xt−1)
+ log pθ(xT)

]

≥ E
x1:T∼qx1:T |x0

[
T∑

t=1

log pθ(xt−1 |xt)

]
,

where in the last step we used the fact that q is fixed and log pθ(xT) is zero because xT is always
the empty sequence for large enough T . Breaking the expression down into a sum over the time
steps, we get

Lmc(θ;x0) = − E
t∼U [1,T]

E
xt−1,xt∼q·|x0

log pθ(xt−1 |xt).

This loss based on the naive Monte Carlo estimate of the ELBO is easy to compute. However, it is
intractable to train a denoising model using this due to two main reasons. First, the estimator can
have extremely high variance and therefore unstable to train. Second, parameterizing the denoiser
using any standard neural network for sequence modeling like a transformer or LSTM is inefficient
because the only one token will be inserted in xt to obtain xt−1, which leads to weak gradients and
slow convergence.

We can use the usual trick to utilize x0 to reduce the variance of the estimator (Ho et al., 2020).

log pθ(x0) ≥ E
x2:T∼qx2:T |x0

T∑
t=2

DKL [q(xt−1|xt,x0) ∥ pθ(xt−1 |xt)] + DKL[q(xT |x0) ∥ pθ(xT)]

=⇒ Lmc(θ;x0) = − E
t∼U [1,T]

∑
xt−1

q(xt−1|xt,x0) log pθ(xt−1|xt).

where we make use of the Bayes rule and the Markov assumption to get q(xt |xt−1) =
q(xt−1 |xt,x0) q(xt|x0)

q(xt−1|x0)
and use it in the expression for ELBO.

When pdata is such that only sequences that do not repeat tokens are in the support of the distribution,
then q(xt−1|xt,x0) = d(k, v; x0, b) where b is such that xt = x0[b]. Moreover, pθ(xt−1|xt) can
be written as pθ(k, v | xt). When pdata does not have this property, then we need to use a dynamic
programming algorithm to compute all possible alignments of xt w.r.t x0 to obtain a closed form
expression for the loss.

25

	Introduction
	Preliminaries
	Masked Diffusion Models

	Insertion Language Model
	Parameterization

	Related Work
	Empirical Evaluation
	Planning Tasks
	Star Graphs

	Language Modeling
	Unconditional Generation
	Infilling

	Discussion
	Extended Related Work
	Experimental Details
	Star Graphs
	Zebra Puzzles
	Language modeling: Story Generation
	Language modeling: LM1B
	LLM Evaluation using Prometheus-2
	Unconditional Generation Examples

	Additional Results and examples
	Token Accuracy on Star Graphs and Zebra Puzzles
	Comparison with Insertion Transformer
	Star Graphs
	Language modeling: Unconditional Generation
	Conditional Language modeling: Infilling Task

	Connection between ILM and discrete denoising

