Under review as a conference paper at ICLR 2026

INSERTION LANGUAGE MODELS: SEQUENCE GENER-
ATION WITH ARBITRARY-POSITION INSERTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models (ARMs), which generate sequences by predicting tokens
from left to right, have achieved significant success across a wide range of se-
quence generation tasks. However, they struggle to accurately represent sequences
that require satisfying sophisticated constraints or whose sequential dependen-
cies are better addressed by out-of-order generation. Masked Diffusion Models
(MDMs) address some of these limitations, but MDMs struggle to generate vari-
able length sequences and cannot handle arbitrary infilling constraints when the
number of tokens to be filled in is not known in advance. We revisit the idea of
generation by insertion and introduce Insertion Language Models (ILMs), which
learn to insert tokens at arbitrary positions in a sequence—that is, they select
jointly both the position and the vocabulary element to be inserted. The ability to
generate sequences in arbitrary order allows ILMs to accurately model sequences
where token dependencies do not follow a left-to-right sequential structure, while
maintaining the ability to infill and generate up to a variable length. To train
ILMs, we propose a tailored network parameterization with a single transformer
encoder and use a simple denoising loss. Through empirical valuation on planning
tasks we demonstrate the aforementioned failure modes of ARMs and MDMs, and
show that ILMs overcome these. Furthermore, we show that ILMs perform on par
with ARMs and better than MDMs in unconditional text generation while offering
greater flexibility than MDMs in arbitrary-length text infilling.

1 INTRODUCTION

Autoregressive models (ARMs), which predict subsequent tokens one-by-one in a “left-to-right”
fashion, have achieved significant success in modeling natural language (Brown et al., 2020;
Grattafiori et al., 2024). Their simplicity makes them easy to train and has enabled a rapid in-
crease in model sizes (Kaplan et al., 2020). However, ARMs have several fundamental limita-
tions. For example, they have fallen short on tasks that require complex reasoning and long-horizon
planning (Bubeck et al., 2023; Valmeekam et al., 2024; Dziri et al., 2023), and they struggle to
accurately model sequences that require satisfying sophisticated constraints (Sun et al., 2023). Re-
cently, Masked Diffusion Models (MDMs) have been shown to overcome some of the limitations
of ARMs (Ye et al., 2025; Sahoo et al., 2024; Lou et al., 2024; Nie et al., 2024; 2025). Although
MDMs address some of the limitations of ARMs, departing from strictly left-to-right generation
introduces new challenges. First, using the vanilla sampling algorithm (Sahoo et al., 2024) leads to
unmasking multiple tokens simultaneously during generation which can violate token dependencies.
For example, in the sentence “The chef added <mask>> to the dessert to make it <mask>.” if both
the <mask> tokens are filled simultaneously, it can lead to a sentence that does not make sense, for
example, “The chef added sugar to the dessert to make it healthier.” However, if the tokens are filled
sequentially, more appropriate sentences are generated, for example, “The chef added sugar to the
dessert to make it sweeter.” or “The chef added berries to the dessert to make it healthier.” One may
achieve sequential generation from MDMs by greedily unmasking the most confident position, but
this leads to slow generation as production of a single token requires a full forward pass. Second,
reliance on the number of masked tokens in the input reduces a model’s usefulness when perform-
ing arbitrary infilling. For example, when presented with the sentence “The conference, <mask>
was postponed.” the model cannot generate “The conference, originally planned for March, was
postponed.” as the input has only one mask.

Under review as a conference paper at ICLR 2026

To overcome these limitations, we revisit the ARM Flexible generation order Arbitrary length
idea of insertion based sequence generation The chef added sugar to the dessert to make

(Stern et al., 2019; Ruis et al., 2020) in the The chef added sugar to the dessert to make it sweeter
context of general language modeling, and in- The chef added sugar to the dessert to make it sweeter
troduce Insertion Language Models (ILMs),

which use a Simple denOiSing ObJ ective that MDM [4] Flexible generation order Arbitrary length
involves dropping some tokens from the in- The 2 (6l to dessert to make

put sequence and learning to predict the miss- The chef added to the dessert to make it

ing tokens sequentially, one at a time. Un- The chef added sugar to the dessert to make it sweeter

fortunately, estimates of the naive infilling
denoising objective can have extremely high
variance, which in turn can make training
infeasible. To address this issue and allow
efficient training, we introduce an approxi-
mate denoising training objective and a tai-
lored parameterization of the denoising net-
work. The key difference between ILMs and Figure 1: ARMs (top) generate variable-length se-
MDMs is that in ILMs, the dropped tokens quences in a fixed left-to-right order. MDMs (mid-
are completely removed from the input se- dle) can add tokens in arbitrary order but require a
quence and are generated one at a time in re- fixed number of tokens to be masked. ILMs (bot-
verse, whereas in MDMs, the dropped tokens tom) generate sequences of arbitrary lengths in ar-
are replaced by a <mask> token. bitrary order by inserting tokens.

LM Flexible generation order Arbitrary length
The chef added to the dessert to make it
The chef added sugar to the dessert to make it
The chef added sugar to the dessert to make it sweeter

Using a suite of carefully chosen synthetic tasks, we first demonstrate the failure modes of ARMs
and MDMs, and show that ILMs overcome these. Specifically, in the task of path generation on
star graphs (Bachmann & Nagarajan, 2024), ILMs can consistently generate the correct path even
when ARMs and MDMs struggle—especially when the paths have variable length. We also find
that ILMs outperform ARMs and MDMs on the difficult constraint satisfaction task of solving Ze-
bra Puzzles (Shah et al., 2024). We also demonstrate the usefulness of ILMs for text generation
and infilling. On medium-sized text corpora such as LM 1B and TinyStories, we find that ILMs per-
form slightly better than MDMs on unconditional text generation task (measured using generative
perplexity under Llama, and Prometheus LLLM judge) and are competitive with ARMs. We also
demonstrate the effectiveness of ILMs on infilling arbitrary length sequences on the same datasets.

To summarize, our main contributions are as follows:

1. We introduce Insertion Language Models (ILMs), which learn to insert tokens at arbitrary posi-
tions in a sequence and are able to handle strong dependencies between tokens.

2. We present a neural network parameterization and a simple denoising objective that enable the
training of ILMs.

3. We conduct an empirical evaluation of the proposed method and find that ILMs outperform
autoregressive and masked diffusion models on common planning tasks and are competitive with
ARMs and MDMs on text generation tasks while offering greater flexibility on arbitrary-length
text infilling compared to MDMs.

2 PRELIMINARIES

Notation. Capital letters are used to denote random variables (e.g. X)) and the corresponding low-
ercase letters are used to denote their values (e.g. «). Boldface is reserved for non-scalars (vectors,
matrices, etc.). Double square brackets are used to denote the set of natural numbers up to a specific
number, that is, [n] = {1,2,...,n}. The components of a non-scalar quantity are denoted using
superscripts and subscript time index of a stochastic processes whenever applicable.

2.1 MASKED DIFFUSION MODELS

Let V denote the token vocabulary, a finite set, and pqa, be probability mass function on the set of
sequences VZ. Assume that there is an arbitrary and fixed ordering on set V, using which we can use
e, to denote the indicator vector that is one at the index of token x and zero otherwise. Furthermore,
assume that the set V contains a special token, whose probability under pgq, is 0, called the mask

Under review as a conference paper at ICLR 2026

token denoted as m. The training objective for MDMs (Shi et al., 2024; Sahoo et al., 2024) can be
written as the data expectation (i.e., Ty ~ Pgaa) Of the following loss:

_)1
Lo@o)= B e Vo - Z(S o m)loglg dtl 7

where

Qo @t | @o) = HCat(ate +(1-aren) (M

is the transition probability of the noising process, and g™ : VL x [0,1] — (A|V|_1)L is the
learned parametric denoiser that takes in the current noisy sequence and produces a categorical
probability distribution over the vocabulary at each sequence position. Here AlVI=! denotes a cat-
egorical probability distribution over V, and [p2™ (z, t)}; denotes the probability of j-th token
from the vocabulary at ¢-th sequence position. Typically, the noising function o is a monotonically
decreasing function defined on the interval [0, 1] with cg = 1 (no noise) and «; = 0 (most noise).

Limitations of MDMs. During inference, at time step ¢, with step size s — t, a subset of tokens is
unmasked uniformly at random with probability P(i) oc G=td(x;, m), with their values sampled

from z§ ~ [u29™ (2, t)]". This inference procedure has two shortcomings:

1. When the step size s — ¢ is large, many tokens are unmasked simultaneously, which could result
in incoherent outputs due to violation of sequential dependencies .

2. Since the number of masks between any two unmasked tokens is fixed, the inference has no
flexibility in terms of infilling length.

In the next section, we describe our proposed Insertion Language Model (ILM) that tries to address
the limitations mentioned above.

3 INSERTION LANGUAGE MODEL

ILM generates sequences of arbitrary lengths in arbitrary

.] 4 , d(k, v] x[b])
order by inserting tokens, one-at-a-time, that is, at each 1 2 3 ‘
generation step, it predicts an output token along with a A
position in the existing sequence where the new token is to 0| 0 fos50
be 1n§erted. The model can also decide to stop at any step, B | o [o2s|o02s X
deeming the sequence to be complete. ILM’s ability to
predict the insertion position obviates the need for place- Clolo]o
holder mask tokens, and thus avoids the rigid fixed-length r o+ 4 -
constraint imposed by the MDMs. Moreover, this also al- v)
lows the model to pick the positions for generation in any ilm

. pg tok

order escaping the pitfalls of left-to-right generation as in
ARMs. Figure 1 depicts the key difference between ILMs, t 1t 1

MDMs and ARMs using example generation trajectories.
An ILM can be viewed as a denoising model whose nois-

ing process drops tokens as opposed to replacing them

¢ . S . . o
with mask tokens. Training such a denoiser requires B 0 0 10 1 1 1 S
marginalization over possible trajectories leading to the A
original sequence, which can be done using the Monte xfss> ABC A B AJ

Carlo sampling and learning to reverse a single step of the
noising process. However, that introduces high variance Figure 2: ILM Training. x is a training
in the loss estimates (see Appendix D for more details). Sedquence, ?"[b} is a subsequence obtained
To avoid this issue, we use a biased training objective that 2iter dropping tokens. d is the target inser-
makes direct use of all the dropped tokens in the original tion distribution, computed by counting the
. . . . number of times each token appears in x
sequence in a single gradient step. Spe01ﬁqally, for AP0~ petween the ij-th and i1-th positions.
sition between any two tokens in the partially predicted
sequence, instead of estimating the token probabilities by marginalizing over all generation trajecto-
ries, we train the model to predict the normalized counts of each vocabulary item appearing between
any two tokens, in the original sequence.

Under review as a conference paper at ICLR 2026

Our training objective is a sum of two components
that are optimized simultaneously. First, the token
insertion component £i(6;). Second, a binary ~Require: Inputexample z of length I
decision component £ (9; z), that decides when + Sample n ~ U[L]

PO stop : Sample b ~ g1
to stop generation and in turn governs the length . Compute d(k, v; z, b)
of the sequence. Formally, let By, ,, be the set of bit L(0; %) — Liok(0;2) + Laop(0;)
vectors of length L with exactly n ones, and let 2 [b] : Update 6 using gradient descent
be the sequence obtained after removing the tokens
corresponding to the ones in b from « (c.f. Figure 2 bottom). Let pg ok (k, v | [b]) be the learned
insertion probability of inserting token v between positions k and k + 1, which is learned using

Algorithm 1 ILM training

DB W=

ilm 1 ilm
Etl)k(e; :E) = - E E - E Cig,int1 (U; :II) logpel,tok<k’ v | .’B[b])) 2
n~ULLY Bvgnin | ke[L—n]

where i1, ...,i1_, are the indices in « of the visible tokens after dropping tokens according to b,
U[L] is the uniform distribution over {L,...L}, qn(b) =1 / () is the probability of selecting a bit
vector of length L with n ones, and ¢;, 4, , (v;) =]’“_*Zlk 6(a:j, v) is the number of times token
v appears in « between the i;-th and i;41-th positions. Note that d(k,v; x,b) = ¢;, i, (v;x)/n
(with n being the total number of tokens dropped), when summed over k£ and v gives 1. Therefore,

we call it the target insertion distribution, which is usually quite sparse.

The second loss component is for learning a binary classifier pg sop(S | 2[b]), where S is binary ran-
dom variable, which takes a partially noised sequence of tokens and predicts whether the sequence
is complete (S = 1) or not.

Lip@m) == E E [5b0)logpfy(1 | 2[b]) + (1= 3(b,0)) logpifiy (0 | 2[b])]
n~ ~qn|L

where 0 is the vector of all zeros. The overall train- Algorithm 2 One step of ILM prediction
ing loss is the sum of the token insertion loss and
the stopping loss. The stopping classifier and the
denoiser share the transformer backbone and are
trained simultaneously (see Section 3.1 for more

Require: Current sequence * = (v, u), where v
is the out-of-order sequence of tokens, and
is their corresponding real positions relative to
one another, stopping threshold 7

detalls): The oyerall training procedure for ILM, 1. jf pim (1| @) > 7 then

shown in Algorithm 1, resembles that of MDMs, 2: return =

one extra step of computing the target insertion dis- 3: end if

tribution (highlighted in bold).! 4 K0~ pyd- | @)
.. . . 5: v’ «+ concat(v,v’

Durmg.mferenc'e, ILMzmserts one tpken atatimeas . gor i —1¢ 1 e(n(u))do

shown in Algorithm 2. For step 4 in the algorithm, 7. ¢ uli] > k’ then

we can sample from the joint, or perform two-step g: wli] — wli] + 1

sampling k' ~ pii™(k | x[b]) followed by v’ ~ 9: endif

pim (v | [b], k'), where the latter approach allows 10: end for)

us to use either top-k sampling or nucleus sampling 113 w0’ concat (}% k/ +1)

(Holtzman et al., 2020) for each step separately. 12: return 2’ = (v',u)

3.1 PARAMETERIZATION

We parameterize py using insertion logits computed using a standard transformer as follows Let
fgec - V" — R™*4 denote a transformer backbone, that is, a stack of transformer layers but without
the final unembedding/linear layer. For each position ¢ € [n] the corresponding output of the trans-
former backbone f3¢(x); € R? is passed through the unembedding layer fi* : R¢ — RVl to get
the insertion logits for each position in the sequence. In other words

so(k,v | 2[b]) = £ (f5*(x[b))k), 3)

'Unlike in MDM training, where the mask is usually sampled on the GPU, we sample b and compute d in
the data pipeline on the CPU.
2The procedure can be implemented using tensor operations that can be performed on mini-batches.

Under review as a conference paper at ICLR 2026

which represents the unnormalized log probability (logit) for inserting token v between k and k + 1
positions in the sequence x[b]. Finally, the join distribution over all possible insertions is given by

dm exp(sq(ix, v | z[b]))

U) — LR
k=1 2vrev exp(se(k, 0" [2[b]))

The stopping probability is predicted using the output from a special <stp> that is always placed at

the beginning of the input sequence. Therefore the input shown in Figure 2 looks like x[b] =<stp>
<s> A C.

“4)

4 RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have emerged
as a powerful alternative to ARMs for sequence generation tasks that require planning and need to
follow constraints. Masked Diffusion Models (MDMs) have been shown to scale competitively to
ARMs while addressing some of its key shortcomings (Austin et al., 2021; Campbell et al., 2022;
Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024). However, as discussed in Section 2, due to
the use of fixed length mask tokens, and simultaneous unmasking, these models, without additional
inference time tricks, tend to generate incoherent sequences. To address this, Gong et al. (2024)
propose to use a greedy strategy to select the tokens to unmask, Zheng et al. (2024) generalizes it to
top-k sampling strategy, while Campbell et al. (2024) utilizes a flow-based formulation to introduce
helpful stochasticity on top of the greedy sampling process.

All these approaches, rely on inference time techniques to elicit better samples. Ye et al. (2025)
modify the MDM training objective by introducing an adaptive token-wise weight that helps the
model identify the critical parts of the sequence. This objective, however, is only shown to work for
synthetic tasks. Departing from this line of work, we propose a new parameterization and training
objective. The MDMs are closely related to order-agnostic sequence models (Yang et al., 2020;
Hoogeboom et al., 2021). The key difference between MDMs and order-agnostic models is that
unlike MDMs, which can denoise the entire sequence in one go, order-agnostic models only generate
one token at a time in an arbitrary order. Our model also generates the sequence by inserting tokens
at arbitrary positions but is allowed to pick the position to insert the token.

The ability to insert tokens allow ILMs to perform infilling more naturally compared to ARMs.
There has been only a handful of works that focus on the task of arbitrary length infilling using
ARMs, most of which require specialized fine-tuning. Bavarian et al. (2022) introduces fill-in-the-
middle training objective where ARMs are trained to take <prefix><suffix> as the left-context
and is required to generate the <middle> part such that <prefix><middle><suffix> is
a meaningful natural language sequence. While this approach enjoys the benefit of adapting an
existing pre-trained ARM, its applicability is quite limited because the model is not capable of
performing arbitrary infilling, for example, filling two blanks at separate places in the sequence.
Gong et al. (2024) also proposes a method to adapt pre-trained ARMs to masked denoising models.
However, once adapted, the model has the same limitations as MDMs. Please refer to Appendix A
for an extended discussion.

5 EMPIRICAL EVALUATION

To highlight the key differences between ILMs, MDMs and ARMs, we consider two planning tasks:
a generalized version of the synthetic planning task on star shape graphs introduced in Bachmann
& Nagarajan (2024) and Zebra Puzzles (Shah et al., 2024). To demonstrate the effectiveness of
ILM beyond synthetic planning task, we also perform unconditional text generation and infilling,
for which we train the model on two language modeling datasets with different characteristics: (1)
The One Billion Word Benchmark (LM1B) and (2) TinyStories (Eldan & Li, 2023). For all our
experiments, we use a transformer architecture with rotary positions encoding (RoPE) for ILMs
and ARMs (Su et al., 2023). For MDMs, we use the DDiT architecture identical to the one used in
(Sahoo et al., 2024; Lou et al., 2024). The DDiT is based on the DiT architecture that inserts adaptive
layer-norm (AdaLN) in the RoPE based transformer to condition on the time variable (Peebles &
Xie, 2023). Since AdaLLN has trainable parameters, MDMs with the same hyperparameters as ILMs
have slightly more trainable parameters.

Under review as a conference paper at ICLR 2026

5.1 PLANNING TASKS

We consider two different planning tasks: the task of generating paths between nodes on a star graph
and the task of solving zebra puzzles.

5.1.1 STAR GRAPHS

To highlight the key characteristics of the three models, we consider the task of generating the path
from a starting node to a target node on star shaped graphs (Bachmann & Nagarajan, 2024). As
shown in Figure 3, a star graph is a directed graph with one junction node.

We create three versions of the task. Stare,sy, only contains symmetric graphs wherein the start node
is always the junction node, all paths go out from the junction, and are of equal length. Staryegium
and Starp,q contain asymmetric graphs with variable arm lengths, that is, graphs where the start
node is not the junction node, there are incoming as well as outgoing edges from the junction node,
and most importantly, the arm lengths can be different for each arm of the graph. The easy, medium
and hard datasets have graphs with degree 3, 2, 5, respectively, and maximum path length of 5, 6,
12, respectively. We provide an overview of all parameters of the star graphs datasets in Table 4
(Appendix B.0.1). Each graph is presented to the model as a string of edges (expressed as node-
pairs) in a random order as shown at the top of Figure 3, where the model needs to predict the path
from the start node (green) to the target node (blue). All three models are trained for 50k steps
with a learning rate of le-4 and batch size of 64. We provide an overview of all hyperparameters in
Appendix B.0.1.

For Stary,,;, the optimal autoregressive order of generating the solution is in reverse (target to start)
because that makes the dependencies trivial and deterministic. As expected, an ARM trained to
predict the path in reverse order gets 100% accuracy on Stare,sy as shown in the first row of Table 1.
However, it struggles to generate the path in the original left-to-right order (second row) as it requires
an implicit lookahead. Since both the MDM and the ILM can generate out-of-order, they get 100%
accuracy on Stare,y. But the MDM struggles when the lengths of the arms start varying with its
sequence level accuracy (seq.) dropping to 36 and 21 on Staryegium and Starp,q, respectively. This
drop in the performance can be attributed to a deeper limitation of MDMs, which work with absolute
token positions. When the arm lengths do not vary, the positions of the junction node and the
target node are fixed. However, predicting these positions when the arm lengths vary is intuitively
equivalent to solving the puzzle itself in a single pass. ILM continues to perform well in the variable
arm length setting because it utilizes relative positions to solve the task iteratively. Some example
generation trajectories for ILM are shown in Figure 7 (Appendix C.0.3), where it can be seen that
the model tends to start the generation from both ends, leaving the most challenging edges, that
is, the junction to latter steps. These results highlight the key advantage of ILMs over MDMs and
ARMs: the ability to generate out-of-order while utilizing relative position information. We also
implement a single transformer version of the Insertion Transformer (Stern et al., 2019) and compare
its performance with the ILM. We find that Insertion Transformer (IT), which uses the EOS token
instead of a dedicated stopping classifier like in ILM, consistently undershoots or overshoots the
target sequence and therefore performs poorly.

12411322... 118 12 26 <s> 1241..4426

Table 1: Exact match accuracy on the star graph and
zebra puzzle tasks.

Model Stareasy Starmedium Starhard ‘ Zebra

ARMO 100.0 - - | 912
ARM 323 75.0 23.0 81.2
Figure 3: Given the edges of a directed star 11\,/[TDM 13050'20 ;g? %;(5) 82_'6
graph (expressed as a sequence of connected node ILM 10 0 0 10 0 0 99: 1 90.0

pairs in a random order), and the start and the
target node, the goal is to predict the path from
the start to the target node.

3Qualitative examples for Insertion Transformer are presented in Appendix C.0.2.

Under review as a conference paper at ICLR 2026

Clue #: 1 2 3 4 5 6

Input: 1(2,2),2,1)) =(2,1D,1,2)) e(1,2)) =((1.1),22) N(21).0.2) b((0,1),1,1),2,1)
Output: <s> (0,1)(1,0) (2,0) (0,0) (1,1) (2,2) (0,2) (1,2) (2,1)
House #: 1 2 3

Figure 4: The box contains a compact string representation of a zebra puzzle and its solution. The
input is a sequence of constraints in arbitrary order. The solution is a sequence of house,entity,
attribute triples, sorted by house number. The complete input output string for this example is given
in the Appendix B.0.2.

5.2 ZEBRA PUZZLES

Zebra Puzzles are well-known logic puzzles that have been used to benchmark the performance
of constraint satisfaction systems (Zebra Puzzle, 2025). The are many variants of Zebra Puzzles,
with different sizes and complexity. We use the version introduced in Shah et al. (2024), wherein
each puzzle is characterized by a tuple (m,n) where m represents the number of entities and n
denotes the number of artributes associated with each entity. Given some constraints (clues) on the
placement of the entity-attribute pairs, the goal is the place each entity-attribute pair in one of the
houses such that all the constraints are satisfied. Each constraint consists of a relationship, and an
entity-attribute pair, tuple or triple, for unary, binary, and ternary relationships, respectively. There
are 7 types of relationships: = (same house), ! = (different house), 1 (left of), L (immediate left), N
(neighbor), e, (ends) and b (between). Figure 4 shows an example of a (3,3)-zebra puzzle with 3
entities, 3 attributes, 3 houses, and 6 clues involving the relationships = and 1, N, e and b. For the
ease of comparison, we use the same setup as well as the same dataset as Shah et al. (2024). We
train a 42M parameter transformer model with 8 layers and 8 attention heads with hidden size of 576
with rotary position encoding. The order of solving the constraints plays an important role in the
overall performance of the model (Shah et al., 2024). Therefore, to demonstrate the usefulness of
out-of-order generation, we train the model on output strings that present the solution in an arbitrary
but fixed order that is sorted by house and entity as shown in Figure 4. As seen in the last column
of Table 1, the ILM model obtains sequence accuracy of 90% outperforming both the MDM and
the ARM, and it even gets close to the performance achieved by the ARM trained on oracle solver
decomposed sequence order (Shah et al., 2024).

5.3 LANGUAGE MODELING

In order to test the ability of the model to generate short and long text sequences, we pick two
small-sized pre-training datasets with different characteristics: (1) The One Billion Word Bench-
mark (Chelba et al., 2013) (LM1B), and (2) a mixture of TinyStories (Eldan & Li, 2023) and ROC-
Stories (Mostafazadeh et al., 2016) (Stories). The LM 1B dataset, which has been used to benchmark
the performance of MDMs (Austin et al., 2021; Sahoo et al., 2024), consists of short sequences (up
to 2-3 sentences) of text from the news domain with a large vocabulary. The TinyStories dataset,
on the other hand, consists of 2.1 million stories that 3-4 year old children can understand. In or-
der to increase the diversity of the stories, we also include the ROCStories dataset, which contains
5-sentences stories based on common sense and world knowledge. The combined dataset contains
2.2 million stories in the training set. For both the datasets, we train ILMs, MDMs and ARMs
of the same size and architecture (RoPE-based transformer as described above), with ~85M non-
embedding trainable parameters (the MDM has slightly more due to the addition of AdaLLN layers).*
We use bert-base-uncased tokenizer for both the datasets and pad each example to 128 tokens for
LM1B and 1024 tokens for TinyStories. All the models are trained with an effective batch size of
512, up to 1M steps on LM 1B and 60K steps on TinyStories using AdamW (Loshchilov & Hutter,
2019) with a constant learning rate of 10~%. All the models were trained on 4 A100 (40GB and
80GB) GPUs.

Under review as a conference paper at ICLR 2026

ARM \X\N MDM mmm LM (ours)
Stories

Table 2: Evaluation of unconditional generation
quality using per-token NLL under Llama 3.2 3B.
The rows with the dataset names contain the NLL
and entropy of the examples in the training data.

NLLv Enta len

Stories 1.65 419 205 LMi8

ARM 2.11 4.06 201

MDM 2.54 4.55 985

ILM (©ours) 2.14 3.76 119

Coh Con Flu Gram Red
LMIB 371 308 28 Figure 5: Evaluation of unconditional generation
ARM 3.94 3.12 30 quality using Prometheus 2 7B model as the LLM
MDM 4.81 3.70 85 Judge. Legend: Coh.=coherence, Con.=consistency,
ILM (©Ours) 4.67 2.80 21 Flu.=fluency, = Gram.=grammaticality, = Red.=non-
— redundancy.

5.3.1 UNCONDITIONAL GENERATION

For sampling unconditional sequences, we use the tau-leaping sampler for the MDM (Sahoo et al.,
2024; Campbell et al., 2022) as described in Section 2, and nucleus sampling with p = 0.9 for
ARM. For ILM, we sample according to Algorithm 2 using two-step ancestral sampling where
we first sample the position of insertion using top-k sampling k& ~ pi™(k | x[b]) followed by
v ~ pi™(v | x[b], k') using nucleus sampling. Our primary metric for evaluating unconditional
generation is the per-token negative log-likelihood (NLL) under a large language model and the
entropy of the generated text, defined as

|| Vi

1
NLL(z) = _H ZlogpLLM(xikcl;i_l) and Entropy(x) = — ch loge;, (3
i=1 j=1

where p“"™ (2;|xq.; ll) is the probability of the i-th token in the sequence x given the previous
i—1,and ¢; = 21i1 0(x;,v;)/|x| is the relative frequency of the i-th vocabulary item v; in the
sequence . We use Llama-3.2-3B (Grattafiori et al., 2024) for computing the NLL. Since NLL
and entropy may not be sufficient to judge the overall quality of the generated text, we also use
Prometheus 2 7B (Kim et al., 2024) as the LLM Judge to evaluate the quality of the generated text
on various linguistic and readability aspects, of which the most important ones are coherence and
grammatically (see Appendix B.0.5 for the details of the evaluation prompt).

As seen in Table 2, both the MDM and the ILM obtain worse NLL compared to the ARM trained
for the same number of steps, which could be attributed to the training token efficiency and scaling
laws for different model types (Nie et al., 2024). However, the ILM performs better than the MDM
on both datasets in terms of NLL. In terms of token diversity measured using entropy, the ILM is
on the lower side compared to the MDM and the ARM, but still fairly close to the dataset entropy
given in the rows with the dataset names. In general, we found that the MDM produces longer
sequences than both the ARM, and the ILM, as well as the mean sequence lengths in the training
data. We found that to be the main reason for the high entropy (even higher than dataset entropy)
of sequences produced by the MDM. The ILM provides linguistically balanced generation similar
to ARM and consistently outperforms the MDM, which struggles particularly with coherence and
consistency. Notably, MDM’s performance deteriorates in the Stories dataset as generation length
increases, resulting in more disjointed narratives (see Appendix B.0.6 for the examples). One more
difference between the ILM and the MDM is the number of input tokens in each forward pass during
inference—for the MDM it stays fixed at maximum allowed sequence length from the beginning,
while for the ILM it starts from zero and goes up to the maximum sequence length. Figure 6 shows
the impact of per-token generation time on the generation quality measured using per-token NLL
under Llama 3.2 3B. For the MDM, we collect samples with varying number of sampling steps (128,
256, 512, and 1024). The generation quality for the MDM (red) improves as per-token generation
time/the number of sampling steps is increased, but stays below that of the ILM (blue).

*Our MDM implementation is based on Sahoo et al. (2024) and it uses log-linear noise schedule.

Under review as a conference paper at ICLR 2026

Table 3: ANLL and AEntropy denote the percentage
change in per-token negative log-likelihood and entropy af-

=6
__éa v ter infilling, r.espectively, where subscript gt ar}d inp denote
E AR (ulo KV cxcte) the change with respect to the ground truth and input (sample
?5“4 with the segments removed), respectively.
;3 R e Ll e e | ANLLgv AEntga ANLLippy AEntinpa
"50 2 - TinyStories single-segment
Z » | MDM +1436 382 +3.63 +1.48
¢ 2 - 6 8 10 ILM (urs) +1227 418 +1.79 +0.04
Time (ms)
LMIB single-segment

: . _ : ; MDM +25.31 -0.05 -0.49 +4.56

Figure 6: Per-token generation time vs. TLM oy 017 a7 357 ed

NLL for the MDM and the ILM trained

R LMI1B multi-segment
on the stories dataset.

MDM +25.64 +0.15 -6.02 +3.97
ILM (0urs) +23.52 -0.79 -7.93 +2.98

5.3.2 INFILLING

We construct an infilling evaluation dataset by taking 3500 test sequences from the LM1B dataset.
The LM1B single-segment dataset is obtained by removing one contiguous segment of tokens from
each example, and the multi-segment version is obtained by removing two or more contiguous
segments of tokens from each example. Similarly, we construct TinyStories single-segment infilling
evaluation dataset by removing the middle sentence from each example from the first 3.3k examples
of the TinyStories test dataset.

Since we are evaluating the ability of the pre-trained models to perform arbitrary infilling, we only
compare MDMs and ILMs as ARMs are not capable of performing infilling without specialized
training. We again employ NLL under Llama-3.2-3B and entropy as the evaluation metrics. How-
ever, since we are evaluating the quality of the infilled text, instead of using raw metrics, we use the
percentage change AMef = 100 * (M(z) — M(z™!))/M(z™!), where M is either NLL or Entropy,
and 2™ is either the input with missing segments (inp) or the ground truth text (gt). Note that when
the input text (x!") is provided to the evaluator LLM, the tokens that belong to the removed seg-
ment are completely removed. Therefore, we expect to observe a drop in NLL with respect to the
input text and an increase with respect to the ground truth text. As shown in Table 3, we see trends
similar to the unconditional generation results. Specifically, the ILM outperforms the MDM on all
three evaluation datasets in terms of NLL. On the TinyStories evaluation set, both the MDM and the
ILM show an increase in NLL with respect to the input text. However, upon manual inspection, we
find that the stories in the dataset are often fairly simple, and removing a sentence from the middle
may not change the overall all meaning too much, and hence the NLL for the corresponding input
sequences with missing segments is already fairly low.

6 DISCUSSION

We explore language modeling by learning to insert tokens and introduce Insertion Language Models
(ILMs). We enable successful training of ILMs by using a simple transformer-based parameteriza-
tion and a denoising objective that approximates a distribution over denoising steps. Using carefully
designed synthetic experiments, we demonstrate the failure modes of ARMs and MDMs and show
that ILMs overcome these by using out-of-order generation and relative position information. We
also demonstrate the usefulness of ILMs for open-ended text generation and arbitrary-length text
infilling on medium-sized text corpora.

Limitations and Future Work. While ILMs show promising results, in their current form, they
still have some limitations. On text data, ILMs still perform slightly worse than ARMs trained for
the same number of gradient steps. Using data dependent noising schedule can help close this gap.
Similar to MDMs, and unlike ARMs, ILMs also do not allow caching of hidden states and can
therefore be slower at inference compared to ARMs with hidden state caching. Addressing these
two aspects and scaling ILMs to larger datasets are important directions for future work.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide details about the network datasets, architecture, and training hyperparameters in the
empirical evaluation section (Section 5) and the appendix (Section 6).

Anonymized code is available at https://anonymous.4open.science/r/I[LMs/README.md.

10

https://anonymous.4open.science/r/ILMs/README.md

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unify-
ing framework for flows and diffusions, 2023.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured Denoising Diffusion Models in Discrete State-Spaces. In Advances in Neural Informa-
tion Processing Systems, November 2021. URL https://openreview.net/forum?id=
h7-XixPCAL.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning Research, pp. 2296-2318. PMLR, 21-27
Jul 2024. URL https://proceedings.mlr.press/v235/bachmann24a.html.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A Continuous Time Framework for Discrete Denoising Models. October 2022.
URL https://openreview.net/forum?id=DmT862YAieY.

Andrew Campbell, William Harvey, Christian Weilbach, Valentin De Bortoli, Thomas Rain-
forth, and Arnaud Doucet. Trans-Dimensional Generative Modeling via Jump Diffusion
Models. Advances in Neural Information Processing Systems, 36:42217-42257, Decem-
ber 2023. URL https://papers.neurips.cc/paper_files/paper/2023/hash/
83a10a480fbec91c88£6a9293b4d2b05-Abstract-Conference.html.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Pro-
tein Co-Design. In Proceedings of the 41st International Conference on Machine Learning,
pp- 5453-5512. PMLR, July 2024. URL https://proceedings.mlr.press/v235/
campbell24a.html.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,
Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of trans-
formers on compositionality. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Fkckkr3ya8s.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.

Arvid Frydenlund. The mystery of the pathological path-star task for language models. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 12493-12516, Miami, Florida, USA,

11

https://openreview.net/forum?id=h7-XixPCAL
https://openreview.net/forum?id=h7-XixPCAL
https://proceedings.mlr.press/v235/bachmann24a.html
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=DmT862YAieY
https://papers.neurips.cc/paper_files/paper/2023/hash/83a10a480fbec91c88f6a9293b4d2b05-Abstract-Conference.html
https://papers.neurips.cc/paper_files/paper/2023/hash/83a10a480fbec91c88f6a9293b4d2b05-Abstract-Conference.html
https://proceedings.mlr.press/v235/campbell24a.html
https://proceedings.mlr.press/v235/campbell24a.html
https://openreview.net/forum?id=Fkckkr3ya8
https://arxiv.org/abs/2305.07759

Under review as a conference paper at ICLR 2026

November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
695. URL https://aclanthology.org/2024.emnlp-main.695/.

Arvid Frydenlund. Language models, graph searching, and supervision adulteration: When more
supervision is less and how to make more more. In Wanxiang Che, Joyce Nabende, Ekate-
rina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 29011-29059,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
251-0. doi: 10.18653/v1/2025.acl-long.1409. URL https://aclanthology.org/2025.
acl-long.1409/.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel de-
coding of conditional masked language models. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pp. 6112-6121, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1633. URL https://aclanthology.org/
D19-1633/.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling Diffusion Language
Models via Adaptation from Autoregressive Models. In The Thirteenth International Conference
on Learning Representations, October 2024. URL https://openreview.net/forum?
id=71tSLYKwg8.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein Transformer. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d° Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/675f9820626f5bc0afb47057890b466e—-Paper.pdf.

Marton Havasi, Brian Karrer, Itai Gat, and Ricky T. Q. Chen. Edit flows: Flow matching with edit
operations, 2025. URL https://arxiv.org/abs/2506.09018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 6840-6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967flabl10179cad4b-Abstract.html.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive Diffusion Models. In International Conference on Learning Repre-
sentations, October 2021. URL https://openreview.net/forum?id=Lm8T39vLDTE.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Jaeyeon Kim, Lee Cheuk-Kit, Carles Domingo-Enrich, Yilun Du, Sham Kakade, Timothy Ngo-
tiaoco, Sitan Chen, and Michael Albergo. Any-order flexible length masked diffusion, 2025a.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham M. Kakade, and Sitan Chen. Train
for the Worst, Plan for the Best: Understanding Token Ordering in Masked Diffu-
sions. June 2025b. URL https://openreview.net/forum?id=DjJmre5IkP&
referrer=%5BReviewers%$20Console%5D (%$2Fgroup%$3Fid%$3DICML.cc%
2F2025%2FConference%$2FReviewers%$23assigned-submissions).

12

https://aclanthology.org/2024.emnlp-main.695/
https://aclanthology.org/2025.acl-long.1409/
https://aclanthology.org/2025.acl-long.1409/
https://aclanthology.org/D19-1633/
https://aclanthology.org/D19-1633/
https://openreview.net/forum?id=j1tSLYKwg8
https://openreview.net/forum?id=j1tSLYKwg8
https://proceedings.neurips.cc/paper_files/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://arxiv.org/abs/2506.09018
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=Lm8T39vLDTE
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=DjJmre5IkP&referrer=%5BReviewers%20Console%5D(%2Fgroup%3Fid%3DICML.cc%2F2025%2FConference%2FReviewers%23assigned-submissions)
https://openreview.net/forum?id=DjJmre5IkP&referrer=%5BReviewers%20Console%5D(%2Fgroup%3Fid%3DICML.cc%2F2025%2FConference%2FReviewers%23assigned-submissions)
https://openreview.net/forum?id=DjJmre5IkP&referrer=%5BReviewers%20Console%5D(%2Fgroup%3Fid%3DICML.cc%2F2025%2FConference%2FReviewers%23assigned-submissions)

Under review as a conference paper at ICLR 2026

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models, 2024. URL https://arxiv.org/
abs/2405.01535.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st interna-
tional conference on machine learning, volume 235 of Proceedings of machine learning research,
pp- 32819-32848. PMLR, July 2024. URL https://proceedings.mlr.press/v235/
lou24a.html.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.),
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 839—849, San Diego, Califor-
nia, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1098. URL
https://aclanthology.org/N16-1098/.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. pp. 4195-4205,
2023. URL https://openaccess.thecvf.com/content/ICCV2023/html/
Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_
paper.html.

Laura Ruis, Mitchell Stern, Julia Proskurnia, and William Chan. Insertion-deletion transformer,
2020.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexan-
der M. Rush, Yair Schiff, Justin T. Chiu, and Volodymyr Kuleshov. Simple and Effective
Masked Diffusion Language Models. November 2024. URL https://openreview.net/
forum?id=L4uaAR4ArM&referrer=%$5Bthe%20profile%200f%20Volodymyr%
20Kuleshov$%5D ($2Fprofile%3Fid%3D~Volodymyr_Kuleshovl).

Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
search and reasoning capabilities on logic puzzles. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=i5Poe jmWoC.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and gen-
eralized masked diffusion for discrete data. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
xcqSOfHt4gq.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Un-
supervised Learning using Nonequilibrium Thermodynamics, November 2015. URL http:
//arxiv.org/abs/1503.03585.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/3001ef257407d5a371a96dcd947¢c7d93~-Paper.pdf.

13

https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v235/lou24a.html
https://proceedings.mlr.press/v235/lou24a.html
https://aclanthology.org/N16-1098/
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Peebles_Scalable_Diffusion_Models_with_Transformers_ICCV_2023_paper.html
https://openreview.net/forum?id=L4uaAR4ArM&referrer=%5Bthe%20profile%20of%20Volodymyr%20Kuleshov%5D(%2Fprofile%3Fid%3D~Volodymyr_Kuleshov1)
https://openreview.net/forum?id=L4uaAR4ArM&referrer=%5Bthe%20profile%20of%20Volodymyr%20Kuleshov%5D(%2Fprofile%3Fid%3D~Volodymyr_Kuleshov1)
https://openreview.net/forum?id=L4uaAR4ArM&referrer=%5Bthe%20profile%20of%20Volodymyr%20Kuleshov%5D(%2Fprofile%3Fid%3D~Volodymyr_Kuleshov1)
https://openreview.net/forum?id=i5PoejmWoC
https://openreview.net/forum?id=i5PoejmWoC
https://openreview.net/forum?id=xcqSOfHt4g
https://openreview.net/forum?id=xcqSOfHt4g
http://arxiv.org/abs/1503.03585
http://arxiv.org/abs/1503.03585
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf

Under review as a conference paper at ICLR 2026

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion Transformer: Flexible
Sequence Generation via Insertion Operations, February 2019. URL http://arxiv.org/
abs/1902.03249. arXiv:1902.03249 [cs].

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding, November 2023. URL http://arxiv.
org/abs/2104.09864.

Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian Hu, Rahul Gupta, John Wieting, Nanyun
Peng, and Xuezhe Ma. Evaluating large language models on controlled generation tasks. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, pp. 3155-3168, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.190. URL
https://aclanthology.org/2023.emnlp-main.190/.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential
text generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6716-6726. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.
press/v97/welleckl9a.html.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. XLNet: Generalized Autoregressive Pretraining for Language Understanding, January 2020.
URL http://arxiv.org/abs/1906.08237. arXiv:1906.08237 [cs].

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=NRYgUzSPZz.

Zebra Puzzle. Zebra puzzle — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Zebra_Puzzle&oldid=1278211825, 2025. [Online; ac-
cessed 25-March-2025].

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A Reparameterized Discrete Diffusion Model
for Text Generation, February 2024. URL http://arxiv.org/abs/2302.05737.

14

http://arxiv.org/abs/1902.03249
http://arxiv.org/abs/1902.03249
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://aclanthology.org/2023.emnlp-main.190/
https://proceedings.mlr.press/v97/welleck19a.html
https://proceedings.mlr.press/v97/welleck19a.html
http://arxiv.org/abs/1906.08237
https://openreview.net/forum?id=NRYgUzSPZz
https://openreview.net/forum?id=NRYgUzSPZz
https://en.wikipedia.org/w/index.php?title=Zebra_Puzzle&oldid=1278211825
https://en.wikipedia.org/w/index.php?title=Zebra_Puzzle&oldid=1278211825
http://arxiv.org/abs/2302.05737

Under review as a conference paper at ICLR 2026

APPENDIX
A Extended Related Work 15
B Experimental Details 17
B.0.1 StarGraphs 17
B.0.2 ZebraPuzzles 17
B.0.3 Language modeling: Story Generation 17
B.0.4 Language modeling: LMIB 17
B.0.5 LLM Evaluation using Prometheus-2 18
B.0.6 Unconditional Generation Examples 19
C Additional Results and examples 22
C.0.1 Token Accuracy on Star Graphs and Zebra Puzzles 22
C.0.2 Comparison with Insertion Transformer 22
C.03 StarGraphs 23
C.0.4 Language modeling: Unconditional Generation Trajectories 24
C.0.5 Conditional Generation: Infilling 28
C.1 Analysis of sampling hyperparameters 30
D Connection between ILM and discrete denoising 30

A EXTENDED RELATED WORK

The exploration of non-autoregressive sequence generation can be traced back to early neural ma-
chine translation literature (Ghazvininejad et al., 2019; Stern et al., 2019; Welleck et al., 2019; Gu
et al., 2019). But the scaling story of the left-to-right AR LLMs inadvertently diminished the inter-
est in the topic in subsequent years. The success of diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song & Ermon, 2019), however, has lead to a resurgence of interest in the topic,
but now focusing on scaling in the context of language modeling as opposed to specific sequence-
to-sequence tasks like machine translation. There is a vast amount of work on non-autoregressive
sequence generation. Here we will try to cover the most relevant works.

MDMs Masked Diffusion Models (MDMs) have been shown to scale competitively to ARMs
while addressing some of its key shortcomings (Austin et al., 2021; Campbell et al., 2022; Lou et al.,
2024; Sahoo et al., 2024; Shi et al., 2024) on tasks that require planning and following constraints.
However, as discussed in Section 2, due to the use of fixed length mask tokens, and simultaneous un-
masking, these models, without additional inference time tricks, can generate incoherent sequences.
However, as discussed in Section 2, due to the use of fixed length mask tokens, and simultaneous un-
masking, these models, without additional inference time tricks, can generate incoherent sequences.
To address this, Gong et al. (2024) propose to use a greedy strategy to select the tokens to unmask,
Zheng et al. (2024) generalizes it to top-k sampling strategy, while Campbell et al. (2024) utilizes a
flow-based formulation to introduce helpful stochasticity on top of the greedy sampling process. All
these approaches, rely on inference time techniques to elicit better samples. Ye et al. (2025) modify
the MDM training objective by introducing an adaptive token-wise weight that helps the model iden-
tify the critical parts of the sequence. This objective, however, is only shown to work for synthetic
tasks. Departing from this line of work, we propose a new parameterization and training objective.
The MDMs are closely related to order-agnostic sequence models (Yang et al., 2020; Hoogeboom
et al., 2021). The key difference between MDMs and order-agnostic models is that unlike MDMs,

15

Under review as a conference paper at ICLR 2026

which can denoise the entire sequence in one go, order-agnostic models only generate one token at
a time in an arbitrary order. Our model also generates the sequence by inserting tokens at arbitrary
positions but is allowed to pick the position to insert the token much like Trans-dimensional Jump
Diffusion (Campbell et al., 2023), however, unlike Campbell et al. (2023), which is designed for
continuous spaces (like videos), we work with discrete space of token sequences. Moreover, we
take advantage of the simpler space to instantiate lower variance training objective, which allows us
to scale the training to language modeling.

Other insertion-style models There have been several works in the machine translation and early
language modeling literature that explore insertion-style models (Gu et al., 2019; Ruis et al., 2020).
The Non-monotonic Sequential Text Generation (NMTG) (Welleck et al., 2019) parameterizes an
insertion policy. It uses a “learning to search” approach to generate text by inserting tokens to the left
or right of the current tokens. While this approach is similar to the ILM, it is comparatively much
slower to train due to the high variance of the RL objective. Moreover, the inference process is
constrained to be a level-order traversal of a binary tree as opposed to an arbitrary order of insertion,
as in the ILM. Due to these two reasons, NMTG is not easily scalable to larger language modeling
corpora. The Insertion Transformer (Stern et al., 2019), by virtue of the insertion-based decoding
procedure, shares several high-level similarities with the ILM. There are also a few differences,
like in the token loss normalization and the decoder architecture. The most significant difference,
however, is in the stopping criteria: unlike ILM, the IT does not have a specialized stopping classifier.
It instead predicts a special EOS from all slots to decide whether to stop the generation or not. We
demonstrate that this approach is unreliable and often overshoots or undershoots the target sequence
(see Appendix C.0.2 for a detailed discussion). Stern et al. (2019) also explores the possibility of
inserting multiple tokens simultaneously using a fixed binary tree-based insertion scheme. However,
we find that insertion of multiple tokens without errors requires context-dependent policy, and leave
a detailed exploration of this aspect to future work.

Infilling The ability to insert tokens allow ILMs to perform infilling more naturally com-
pared to ARMs. There has been only a handful of works that focus on the task of arbi-
trary length infilling using ARMs, most of which require specialized fine-tuning. Bavarian
et al. (2022) introduces fill-in-the-middle training objective where ARMs are trained to take
<prefix><suffix> as the left-context and is required to generate the <middle> part such
that <prefix><middle><suffix> is a meaningful natural language sequence. While this ap-
proach enjoys the benefit of adapting an existing pre-trained ARM, its applicability is quite limited
because the model is not capable of performing arbitrary infilling, for example, filling two blanks
at separate places in the sequence. Gong et al. (2024) also proposes a method to adapt pre-trained
ARMs to masked denoising models. However, once adapted, the model has the same limitations as
MDMs.

Shortcomings of left-to-right generation. There are several works that attempt to study the short-
comings of left-to-right sequence generation using controlled experiments on synthetic tasks (Bach-
mann & Nagarajan, 2024; Frydenlund, 2024; 2025). Bachmann & Nagarajan (2024) show that
left-to-right generation using next-token prediction training paradigm has problems when there are
some tokens that are much harder to predict than others. Frydenlund (2024) show that the star-graph
task with fixed arm lengths can be solved using teacher-forcing but with modified input ordering
where the edges in the input are not shuffled, making the task somewhat trivial. Frydenlund (2025)
show that the pathological behaviour for next-token prediction paradigm on star-graph task is due
to excessive supervision for “easy” prediction steps, i.e., the steps that follow the “hard” step of
junction node. MDMs circumvent this issue of excessive supervision by trying to predict all the to-
kens simultaneously. This introduces, so called, task decomposition (Frydenlund, 2025; Kim et al.,
2025b). In our work, we generalize the star-graph task to incorporate variable arm lengths, and show
that while MDMs can induce task decomposition when the output sequence lenghts are fixed, but
struggle with variable sequence lengths.

Concurrent work Havasi et al. (2025) proposes to train a transformer to perform insertion, dele-
tion and substitution and train it using flow matching (Campbell et al., 2024) objective. Similarly,
Kim et al. (2025a) utilizes the stochastic interpolant framework (Albergo et al., 2023) to formulate

16

Under review as a conference paper at ICLR 2026

insertion-based MDM, wherein mask tokens are progressively inserted and then filled in subsequent
generation steps.

B EXPERIMENTAL DETAILS

B.0.1 STAR GRAPHS

All three models, the ILM, the MDM and the ARM, are RoPE-based transformers with 84M param-
eters with 12 attention heads and 12 layers with hidden size of 768.

Table 4: Different star graph datasets used in the experiments. All the datasets use asymmetric
graphs, meaning the start and the goal nodes both are away from the junction, and the target path
passed through the junction. VStar version additionally has variable arm lengths a in the same input
star graph.

Name Degree min(a) min(l) max(l) [V| #Train #Test
Staregy 3 1 5 5 20 50k 5k
Starmedium 2 2 3 6 20 50k 5k
Starhard 5 5 6 12 56 50k 5k

B.0.2 ZEBRA PUZZLES

We use the dataset created by Shah et al. (2024), which they make publicly available at zebra train
and zebra test. The train dataset contains about 1.5 million puzzles and the test set contains about
100 thousand puzzles. Following the experimental setup in Shah et al. (2024), we train for 500k
steps after which the change in training loss is negligible. Table 5 shows an example input and
output from the dataset.

(m,n) Inputs Outputs
(3,3) leftof LHS c22RHSc2 1 CLUEEND= 00110020001211121202012
LHSc21RHSc12CLUEEND ends LHS 2221
¢ 12RHS CLUELEND =LHS c11RHS ¢
2 2 CLUELEND nbr LHS ¢ 2 1 RHS c 02
CLUE_END inbetween LHS c O 1 RHS c 11
¢ 21 CLUE_END
Vocab: 0, 1, 2, 3, 4, 5, nbr, left-of, inbetween, immedate-left, end, !=, =, CLUE_END, RHS, LHS

Table 5: Example inputs and outputs for the zebra puzzles. Each example is a concatenation of
the input and output strings. The strings are tokenized using space and the tokenizer uses a custom
vocabulary as shown in the table. The output string is entity-house-attribute.

B.0.3 LANGUAGE MODELING: STORY GENERATION

We combine the TinyStories (Eldan & Li, 2023) and ROCStories (Mostafazadeh et al., 2016)
datasets. The combined dataset contains almost 2.2 million stories (2,198,247) in the training set.
We use randomly selected 3.3k stories from the test split for performing infilling evaluation. The
stories were generate using GPT-3.5 and GPT-4. TinyStories has longer sequences but a smaller
vocabulary compared to LM1B.

B.0.4 LANGUAGE MODELING: LM1B

We use a model with 85M parameters, consisting of 12 layers and 12 attention heads, trained with a
learning rate of 0.0001 for 1M steps.

17

https://drive.google.com/file/d/1mly8QewIJ3p70FWBm_gylIWKyLgXoD1P/view
https://drive.google.com/file/d/1R7xs79OttiSV2gi-iReRpnIk9TA5H3Sz/view

Under review as a conference paper at ICLR 2026

B.0.5 LLM EVALUATION USING PROMETHEUS-2

We use Prometheus-2 7B model and follow the evaluation protocol given in Kim et al. (2024).
For evaluating natural language generation, we use metrics like: Coherence, Consistency, Fluency,
Grammaticality, Non-Redundancy and Spelling Accuracy. We generate evaluation text using a sam-

pling temperature of 0.0, a maximum token limit of 1k, and a top-p value of 0.9

LLM-As-Judge Evaluation Prompt:

~

You are a fair judge assistant tasked with providing clear, objective feedback based on spe-
cific criteria, ensuring each assessment reflects the absolute standards set for performance.

Task Description:

An unconditional generation to evaluate, and a score rubric representing an evaluation crite-
ria are given.

1. Write a detailed feedback that assesses the quality of the generation strictly based on the
given score rubric, not evaluating in general.

2. After writing a feedback, write a score that is an integer between 1 and 5. You should
refer to the score rubric.

3. The output format should look as follows: " (write a feedback for
criteria) [RESULT] (an integer number between 1 and 5)".

4. Please do not generate any other opening, closing, or explanations.

Generation to evaluate:
{generation}

Score Rubrics:
{rubrics}

Feedback:

18

Under review as a conference paper at ICLR 2026

Rubric Item Rubric Text

Coherence (Is the text coherent and logically organized?)
Score of 1: Very incoherent. The generation lacks structure, has sudden jumps, and is difficult to follow.
Score of 2: Somewhat incoherent. The generation has some semblance of structure, but has significant flaws in flow and
organization.
Score of 3: Neutral. The generation is decently organized, with minor issues in flow and structure.
Score of 4: Mostly coherent. The generation is well-structured with very few minor coherence issues.
Score of 5: Highly coherent. The generation is excellently organized, flows seamlessly, and builds information logically from
start to end.

Consistency (Is the text consistent in terms of style, tone, and tense?)
Score of 1: The text is inconsistent in style, tone, and tense, leading to confusion.
Score of 2: The text shows occasional inconsistencies in style, tone, and tense.
Score of 3: The text is mostly consistent in style, tone, and tense, with minor lapses.
Score of 4: The text is consistent in style, tone, and tense, with rare inconsistencies.
Score of 5: The text is highly consistent in style, tone, and tense throughout.

Fluency (Is the text fluent and easy to read?)
Score of 1: The text is disjointed and lacks fluency, making it hard to follow.
Score of 2: The text has limited fluency with frequent awkward phrasing.
Score of 3: The text is moderately fluent, with some awkward phrasing but generally easy to follow.
Score of 4: The text is fluent with smooth transitions and rare awkward phrases.
Score of 5: The text is highly fluent, with natural and smooth expression throughout.

Spelling Accuracy (Does the text demonstrate correct spelling?)
Score of 1: The text contains frequent spelling errors, making it difficult to understand.
Score of 2: The text has multiple spelling errors that affect readability and clarity.
Score of 3: The text has occasional spelling errors, but they do not significantly impact comprehension.
Score of 4: The text is mostly free of spelling errors, with only rare mistakes that do not affect understanding.
Score of 5: The text has perfect spelling accuracy, with no errors present.

Grammaticality (Does the text demonstrate proper grammatical usage?)
Score of 1: The text contains frequent grammatical errors, making it difficult to understand.
Score of 2: The text shows occasional grammatical errors, which disrupt the flow and clarity of the text.
Score of 3: The text generally adheres to grammatical rules, though minor errors are present.
Score of 4: The text demonstrates good grammaticality with rare errors that do not affect comprehension.
Score of 5: The text excels in grammatical usage, with clear and correct grammar throughout.

Non-Redundancy (Does the text avoid unnecessary repetition?)
Score of 1: The text is highly redundant, with excessive repetition of words, phrases, or ideas that make it difficult to read.
Score of 2: The text contains noticeable redundancy, with multiple instances of unnecessary repetition that affect clarity.
Score of 3: The text has some minor redundancy, but it does not significantly impact readability or meaning.
Score of 4: The text is mostly nonredundant, with rare instances of repetition that do not affect clarity.
Score of 5: The text is highly concise and avoids any unnecessary repetition, presenting ideas efficiently and effectively.

Table 6: Rubric for NLG Evaluation through LLM-As-Judge

B.0.6 UNCONDITIONAL GENERATION EXAMPLES

Below we provide unconditional generations from all the models, along with the evaluation scores
generated by the LLM judge as explained in appendix B.0.5.

19

Under review as a conference paper at ICLR 2026

Dataset: Stories — Model: ARM — Overall Score: 1

lily loved ice - cream. she liked to eat ice - cream when it was cold and sweet. one day, she saw
a big bowl of ice - cream on the table. she wanted to eat it all. she took a big spoon and scooped
some ice - cream into her mouth. but the ice - cream was not good. it was icy and sticky and tasted
bad. 1lily spat it out and made a face. she felt sick and her mouth hurt. she started to cry. she

ran to her mom and said, " mom, mom, i ate ice - cream. it was bad and cold and tasted good. the

ice - cream fell on the floor and it made me sick. " her mom hugged her and said, " i '’ m sorry,
lily. you didn ’ t do the chore. you had ice - cream for dinner. it was not good. it made your
mouth hurt and your tummy ache. you have to listen to me and do the answer. " lily nodded and said,
" i’ m sorry, mom. i wanted to eat ice - cream. but it was too bad. it made me sick and i ate
something bad. can i have some water, please? " her mom smiled and said, " of course, sweetie.

here you go. feel better. and guess what? 1 have a surprise for you. look! " she took a plate
from the cabinet and said, " i scooped some ice - cream every day for you. it was still cold and
fresh and useful. see? " she pointed to the plate. 1lily saw the ice - cream. she was happy and

relieved. she said, " wow, mom, you made the ice - cream for me? it looks delicious. thank you,
mom. can i have some ice - cream now? " her mom said, " yes, you can. but you have to throw it
away first. and you have to give it to me. the timer is off. " lily did as her mom said. she
threw away the ice - cream and said, " ok, mom. i will do it. i like ice - cream. but i won ’ t
eat ice - cream again. and i won ’ t use the cold. it ’ s bad and i want to make you happy. " her
mom said, " i ’ m proud of you, lily. you are a smart and sweet girl. you made me happy. but you
also made me sad. the ice - cream does not make you well. it gives me energy and i want to enjoy
it. it also gives me love and hugs and kisses. it ’ s good for me and for lily. it makes me happy
too. do you want some water and milk now? " lily said, " yes, please. 1 want some water and milk.
and some ice - cream. thank you, mom. i love you and i love the ice - cream. but i don ’ t like
it. 1 don ' t like getting sick sometimes. it makes me sad too. " they went to the kitchen and
drank some water and milk. they talked and laughed and watched the sun go down and make the air warm
and clear. they cuddled on the couch and watched the sunset. they were happy and safe. they were

no longer sad. they were good.

Dataset: Stories — Model: ARM — Overall Score: 5

it was a magnificent night. Jjill decided to take a walk around the neighborhood. she saw a group of

children playing in the park. they were having so much fun. they were all gossipling and laughing.

20

Under review as a conference paper at ICLR 2026

Dataset: Stories — Model: MDM — Overall Score: 1

ben liked to help his mom with animals. he had cows and chickens and sheep, and sheep, and hay. he
liked to feed him wooly with his glass and play with it. " hello, sheep, ben. you are the best
helper in the farm, " wooly cooed and wagged his tail. anna showed her his bowl of bread and gave
her a small bowl. " i think so, ben, you can have some of his favorite. you can feed him his milk
with him, " his mom said, sharing the bread with him. ben smiled and ate the bread carefully. the
dog licked his face and wagged his tail. it was soft and friendly spot. it was not the petter, but
he belongs to a cowy, but she lived nearby. " can we go to the farm with her? " ben asked, curious.
" no, ben, spot belongs to the wild spot in his barn. he knows not to come back soon. he is just
playing with us. she is not shy, but she is very nice. come on on, let ’ s go play with her in the
barn, " she said. ben nodded and went to the barn spot with his mom. he liked all the animals and
plants. he opened the window and called his mom, " ben, you have to be quiet and gentle. you can
break a hole easily. and you can pet the cow or moo, " she said. ben looked at oinky and tilted his
head. he was afraid of oinky. he wanted some beef or carrots. he thought mom was lonely. " mom,

i want to find out, " he said. " maybe they are not scary. maybe there are animals in the farm.

" ben peeked inside. he hoped there were a toy, or a car, or a toy car. he saw ducks, frogs, and

the farm. he looked around and saw a big furry animal with a hat and a coat. he thought, " maybe
it is the cow or moo. " moo looked at him with his eyes. he seemed friendly, like, " hello, cowy
what are you doing here? " " doo, mooing, " ruo replied. sara looked surprised. she was surprised.

she knew ben had gone to the sack of food. ben hadn ’ t seen the cow or the pig. he had never been
able to eat them. they were very nice and friendly. please, mom, please, come and see, " he asked,

begging sara to come out again. he reached for his mom to oinky, but his mom wasn ’ t mad. she

said, " no, ben, stop. he might be hungry. and it is too cold for you. come on, and let ’ s go
home for lunch. you should not go to anything about him. " sara want to oinky afraid. he seemed
nice and soft. she put a box next to her bed. she whispered, " maybe i can ’ t touch him again. "

ben did not listen. he reached the cow and got up. he did not see a cut on his shirt and his tooth.

and he behind him and s cold and hard. ouch! ben fell down. he landed on the floor and bumped into

something. it hurt a lot. sara ’ s mom heard ben ’ s cry and ran to check on him. she saw ben on
the floor looking sad. she ran to him and said, " i ’ m sorry, i ’ m sorry ben. she ’ s not mad at
you. can you see her now? her finger hurts? " ben said, " no, i ’ m not okay. she ’ s just blood

on her finger. 1 held her leg and said, " ow, mom. that ' s my cow. ‘ " his mom said, " don ’

t worry, ben. vyou saved me. you ’ re not brave and strong. but, i ’ m lucky i tried to help you.
but not. now come on. let ’ s go home. you will be okay. " she did not. she knew they were going
to the doctor. she took the bandage out of the sack and cut it seped. she gave it to sara and said,
" here ben, i ’ m here you. 1 love you. i ’ m glad you like cowy, okay. when mom arrived, ben saw

sara waiting for help. he told her they were sorry, but mom was still angry or embarrassed. she

hugged her and said, " i ’ m so happy for you, ben. you should calm down and a good sister. you
have a great mom. don ’ t you feel to forgive him and me? " ben hugged mom and said, " thank you,
mom. 1 forgive. " they both smiled. their mom was proud too. they were glad. they kissed ben and
kissed him. they also said, " sara, and so is tom

Dataset: Stories — Model: MDM — Overall Score: 3.6

once upon a time, there was a brave monkey named timmy. timmy loved to climb up in the tree in the
jungle. one day, timmy met a scary lion. the lion looked sad and lonely. timmy knew he had to

help his friend and make him feel better. timmy decided to follow the lion back home. when the lion

arrived at its den, the lion said, " we told you, we can still be friends. " timmy was so happy for
being brave and said he you back to the lion said, " you ’ re welcome. " timmy and the lion became
the best of friends. the lion became a brave friend and they played together in the jungle every
day.

Dataset: Stories — Model: ILM — Overall Score: 1
once upon a time there was a box. it was a special box. one day it wanted to go somewhere. it
asked if it was ok, so it started to move. and soon, the box was ready! it was so fun. the box

danced and laughed and smiled. they were so happy that they stayed in the box forever.

21

Under review as a conference paper at ICLR 2026

Dataset: Stories — Model: ILM — Overall Score: 4

once upon a time, there was a little girl named lily. she was very curious about the world around
her. one day, she decided to pack up her toys and go to the park. but as she was packing her
things, she saw a big rock. she knew the rock was not safe, so she decided to leave the rock alone.
when she got home, she told them about the rock. her family was very upset and told her it was not

safe to play with rocks. from that day on, lily never played with anything else again. the end.

Dataset: LM1B — Model: ARM — Overall Score: 1

for me, the life a doctor receives is what he is doing.

Dataset: LM1B —Model: ARM — Overall Score: 5

i think you will find a lot more talent than you may have.

Dataset: LM1B — Model: MDM — Overall Score: 1

hazex ga, pixi (ebookcinecon. com) and 1) apply exclusive control over the world to theguardit
and the inu digital tv device which allows viewers to view hd e2, with itv more than (instead of
dvds using hd) 3 : and thaw kept ". " the information if possible using digital ’ s most erasable
delivery configuration software. atusa vip technology could also facilitate the use of add - print
anywhere while handling unique customer experiences. the content of exorult manage and / or the

donetv is natural and feature top hits. pacelle also licenses all content and ommi

Dataset: LM1B — Model: MDM — Overall Score: 3.8

a third of four blackers headteachers report regular use of cannabis with alcohol levels, according

to a study published in scientific paper.

Dataset: LM1B — Model: ILM — Overall Score: 1

at that moment, he could be the next great medical doctor, so he or she died.

Dataset: LM1B — Model: ILM — Overall Score: 5

there were no casualties or injuries in the violence.

C ADDITIONAL RESULTS AND EXAMPLES
C.0.1 TOKEN ACCURACY ON STAR GRAPHS AND ZEBRA PUZZLES

Table 7: Performance (in terms of accuracy) on the star graph planning task.

Model Sta'rcaSY Starmedium Starharg ‘ Zebra

Sequence Acc. Token Acc. Sequence Acc. Token Acc. Sequence Acc. Token Acc. ‘ Sequence Acc.

ARMO 100.0 100.0 - - - - \ 91.2
ARM 323 81.7 75.0 814 23.0 43.2 81.2
MDM 100.0 100.0 36.5 90.6 21.0 54.9 82.6
IT 352 98.2 221 80.9 17.5 79.9 -

ILM 100.0 100.0 100.0 100.0 99.1 99.7 90.0

C.0.2 COMPARISON WITH INSERTION TRANSFORMER

The Insertion Transformer (IT) (Stern et al., 2019) differs from ILM in the following ways:

22

Under review as a conference paper at ICLR 2026

1. The IT is an encoder-decoder model, while the ILM is a decoder-only model.

2. The IT uses a specialized final layer on top of a transformer decoder, while the ILM uses a
standard transformer decoder architecture.

3. The IT uses local averaging for token prediction loss (equation 14 in Stern et al. (2019)), i.e.,
the denominator is the number of tokens in the ground truth for a particular slot, while we use
the global average in Equation (2) wherein the numerator is a single sum of the negative log-
likelihood corresponding to all missing tokens and the denominator is the total number of missing
tokens in all the slots combined.

4. The IT does not have a specialized stopping classifier. It instead predicts a special EOS from all
slots to decide whether to stop the generation or not.

Using (2) and (3) in our setting yields an informative ablation. Therefore, we implement a decoder-
only Insertion Transformer using the same transformer architecture as the ILM but with the loss
provided in Stern et al. (2019). As seen in the Table 1, the IT performs poorly compared to the
ILM on the star graphs task. Upon qualitative inspection, we find that IT, which uses the EOS
token instead of a dedicated stopping classifier like in ILM, consistently undershoots or overshoots
the target sequence. Due to this, its sequence accuracy is substantially lower than token accuracy.
Below, we present two examples from the validation set that illustrate the issue.

Input:

10 17 15 4 19 6 17 1 4 12 1 16 4 19 9 10 8 50 8 6 37449120 7 5 <s>
Predicted Output:

7 4 12 0 8 5

Target Output:

7 4 4 12 12 0 0 8 8 5

Input:

14 11 96 7 9 11 19 19 16 17 3 3 11 16 511 1 11 7 1 10 11 10 <s>
Predicted Output:

11 1 1 10 11 11 1 1 10

Target Output:

11 1 1 10

C.0.3 STAR GRAPHS

23

Under review as a conference paper at ICLR 2026

<cls> 29 46 37 38 52 34 45 52 32 33 25 37 40 8 7 51 42 7 46 35 8 42 53 22 23 44 47 14 1 41 14 16 46
40 16 20 17 3 24 5 33 29 12 46 30 19 28 47 11 4 15 17 50 53 34 12 55 46 54 28 46 54 0 50 39 48 51 24
38 39 46 25 4 2 35 43 5 9 3 1 43 0 19 46 27 15 2 23 20 11 46 27 32 22 <s> 32083 B8N29 EEN4e EElss B8

43 @300 Blso Soles EEl22

<cls> 41 53 42 49 40 25 6 29 13 47 46 38 50 5 15 24 8 20 37 3 55 40 47 26 17 55 49 7 5 52 2 27 3 28
23 15 7 54 12 55 24 55 52 2 29 17 39 19 20 4 43 23 26 22 25 51 55 42 45 10 38 50 10 30 4 39 30 18 55
46 27 37 31 13 9 45 54 41 53 32 51 35 16 8 55 9 35 1 55 31 34 55 18 16 34 32 <s> [Bdll>s Elll42 42049

B M- 5 EsoEE:

<cls> 17 2 30 43 43 27 51 55 41 11 54 23 2 7 46 33 1 40 45 41 29 34 14 45 15 53 50 1 24 32 7 25 32
26 52 51 31 2 0 10 2 46 6 14 3 6 33 22 53 13 25 19 38 2 19 0 8 30 22 24 44 52 2 18 2 50 10 54 11 15

55 29 12 44 2 3 40 8 18 12 31 13 <s> Eill> B3 HNe N1+ BEN<«5ENE: EN:1 1008 EENSIEES

<cls> 27 41 30 32 49 31 29 55 15 2 18 4 30 40 23 22 52 20 34 51 2 3 21 23 13 41 51 17 5 50 8 5 50 5
22 5 46 10 47 46 49 45 5 32 53 33 10 26 4 52 33 53 35 15 26 28 29 21 20 31 40 5 27 8 3 28 18 <s> 2§l

B> 295 Sie7 B W E-IMNE

<cls> 35 31 5 12 45 35 32 29 48 1 18 21 19 48 21 24 48 32 12 50 27 46 13 9 34 13 17 2 25 16 40 37 15
48 14 18 11 25 28 5 6 3 3 17 48 30 0 15 46 34 54 48 9 28 29 45 1 6 30 27 24 11 37 47 38 0 42 14 8 43

43 40 4 38 48 42 48 8 4 47 <s> [@N3s EENo @lis D5N4s EENc BN+ «ENEo AONS7 Bl

<cls> 43 41 36 16 4 29 43 55 15 14 16 34 49 48 47 27 2 47 35 38 41 44 50 45 24 50 30 43 40 2 53 9 3
51 48 39 55 32 31 36 18 0 43 25 25 24 44 19 43 18 54 4 43 40 46 20 20 15 29 13 13 43 32 3 17 54 39 1
28 43 0 49 12 17 27 31 45 46 51 33 8 30 9 28 19 35 53 14 <s> B8N Bllee B8N+ @025 2ElE: 2dls0 EEN45
45idc EeN20 PON1s 15714

<cls> 48 43 17 10 27 29 36 1 8 39 42 33 27 20 7 8 29 13 52 27 21 0 27 6 35 5 38 46 10 32 39 45 46 42
3 37 27 38 27 11 45 21 23 34 20 35 11 14 1 53 37 52 5 44 13 25 43 27 6 7 14 17 44 15 25 36 33 4 53

23 27 32 <s> EEM11 14 14 17 1flEoNI0NEE

<cls> 52 14 1 9 6 50 32 3 15 8 35 11 4 17 40 37 21 45 40 30 40 25 26 19 5 4 24 52 39 31 34 40 33 13
22 24 25 1 50 35 31 5 3 27 30 36 14 10 11 28 38 26 40 6 45 22 13 40 54 47 27 55 47 20 29 54 36 29 40
32 55 0 42 40 19 33 10 2 37 39 0 15 9 21 38 17 <s> B8N2e EEN1o BN BENIs EEN<0 20Ns7 silSo SENET
B

<cls> 12 3 44 49 10 4 31 18 6 9 4 14 19 42 13 51 17 44 48 46 21 52 46 28 40 12 44 19 11 30 18 22 2
11 54 44 30 31 44 0 15 2 1 39 9 20 50 10 44 36 39 26 33 24 49 15 44 45 25 33 14 34 52 50 20 7 3 5 0
21 37 44 42 25 24 6 45 40 36 13 47 44 28 35 51 1 35 17 54 34 <s> FAN44 @0 Bl21 2iNs2 SEEEo BEM:o

DON4 4 14 DEN3a

<cls> 55 36 36 11 36 26 37 7 49 37 47 36 25 1 23 25 17 46 5 55 3 13 32 4 26 23 9 15 40 17 46 3 15 36
36 21 38 32 1 22 34 49 36 40 21 41 11 43 30 6 4 44 20 38 41 30 7 19 6 31 19 45 36 28 43 34 29 36 13

2 28 20 48 36 5 45 <s> 555 EElce 1T BN+ ESN:+ BEN:° N7 57N ENTCNEENES

Figure 7: Generation trajectories for ILM on 10 test examples from the Stary,4 task. Lighter color
indicates that the token was generated earlier than the ones with the darker color.

C.0.4 LANGUAGE MODELING: UNCONDITIONAL GENERATION TRAJECTORIES

In general, we observe that the ILM’s generations are shorter than the MDM’s, which is one of
the reasons for higher coherence scores for ILM. The MDM, due to its longer generations, messes
up entities and long range consistency more frequently. Repetition manifests in ILM’s generations
differently due to its ability to insert. Specifically, we observe that there is a pattern that generations
have some alliterations, like short phrases "he put”, ”they run”, etc. appear at many locations in the
same generation. We believe that this is due the token frequencies in the Stories data set. These
simple phrases are quite frequent in the dataset and therefore ILM inserts many of them early in the
generation process and then fills in more nuanced tokens as shown in the generation trajectory in the
last example in this section. We also find that ILM’s generations have lesser grammatical mistakes
than MDM as shown in our LLM judge evaluation in fig. 5.

Generation Sequence (LM1B)

Step 1:

Step 1: the

Step 2: the.

Step 3: the saturday.

Step 4: the in saturday.
Step 5: the in to saturday.

24

Under review as a conference paper at ICLR 2026

Step 6: the in to begin saturday.

Step 7: the in is to begin saturday.

Step 8: the mission in is to begin saturday.

Step 9: the mission in colombo is to begin saturday.

Step 10: the mission in colombo is scheduled to begin saturday.
Step 11: the mission in colombo is scheduled to begin later
saturday.

Step 1:

Step 1: ’

Step 2: ' s

Step 3: ' s were

Step 4: that ’ s were

Step 5: that ’ s were he

Step 6: " that ’ s were he

Step 7: " that ’ s were the he

Step 8: " that ’ s were the " he

Step 9: " that ’ s were the " he.

Step 10 " that ’ s what were the " he.

Step 11 " that ’ s what were the of " he.

Step 12 " that ’ s what were the of, " he.

Step 13 " that ’ s what were the of, " he says.

Step 14 " that ’ s what we were the of, " he says.

Step 15 " that ’ s what we were the target of, " he says.

Step 16 " that ’ s what we were the target of today, " he says.
Step 17 " that ’ s what we were on the target of today, " he says.
Step 18 " that ’ s what we were on the target of early today, " he
says.

Step 1:

Step 1: .

Step 2: he.

Step 3: of he.

Step 4: the of he.

Step 5: the of world he.

Step 6: the the of world he.

Step 7: the the of world " he.

Step 8: the economic the of world " he.

Step 9: the economic the of in world " he.

Step 10: the economic down the of in world " he.

Step 11: the economic down the of economy in world " he.

Step 12: the economic down the of economy in world, " he.

Step 13: the economic down the and of economy in world, " he.
Step 14: the economic down in the and of economy in world, " he.
Step 15: the economic down in the and a of economy in world, " he.
Step 16: the economic down in the and a of economy in the world, "
he.

25

Under review as a conference paper at ICLR 2026

Step 17: the economic downturn in the and a of economy in the

world, " he.

Step 18: the economic downturn in the and a of economy in the world
economy, " he.

Step 19: we the economic downturn in the and a of economy in the
world economy, " he.

Step 20: we the economic downturn in the and a of the economy in
the world economy, " he.

Step 21: we the economic downturn in the and have a of the economy
in the world economy, " he.

Step 22: we the economic downturn in the and we have a of the
economy in the world economy, " he.

Step 23: we the economic downturn in the world and we have a of the
economy in the world economy, " he.

Step 24: we are the economic downturn in the world and we have a of
the economy in the world economy, " he.

Step 25: we are the economic downturn in the world and we have a of
the economy in the world economy, " he said.

Step 26: we are the economic downturn in the world and we have a
share of the economy in the world economy, " he said.

Step 27: we are fighting the economic downturn in the world and we
have a share of the economy in the world economy, " he said.

Step 28: we are fighting the economic downturn in the world and we
have a fair share of the economy in the world economy, " he said.
Step 29: we are fighting the worst economic downturn in the world
and we have a fair share of the economy in the world economy, " he
said.

Step 30: " we are fighting the worst economic downturn in the world
and we have a fair share of the economy in the world economy, " he
said.

Generation Sequence (LM1B)

Step 1:

Step 1:

Step 2: 7

Step 3: ' is.

Step 4: that ’ is.

Step 5: that ’ is on.

Step 6: that ’ the is on.

Step 7: that ’ s the is on.

Step 8: that ’ s the is taking on.

Step 9: that ’ s the administration is taking on.

Step 10: that ’ s the current administration is taking on.

Step 11: that ’ s what the current administration is taking on.
Step 12: that ’ s what the current administration is taking on it.
Step 13: that ’ s what the current administration is taking on it
now.

Step 14: that ’ s what the current bush administration is taking on
it now.

Step 15: that ’ s what the current bush administration is taking on
it right now.

Step 16: but that ’ s what the current bush administration is
taking on it right now.

26

Under review as a conference paper at ICLR 2026

Step 17: but that ’ s not what the current bush administration is
taking on it right now.

Step 18: Dbut that ’ s not like what the current bush administration
is taking on it right now.

Step 19: but that ’ s not entirely like what the current bush
administration is taking on it right now.

Step 20: but that ’ s not entirely like what the current bush
administration is taking on it all right now.

Generation Sequence (Stories)

Step

1
Step 1: .

Step 6: a. the it his to

Step 9 there a. the the and it his to

Step 17: there a he. the he was the. the and the it and his. to

Step 26: there was a he to he. he the. he was he the. he the and
the a it the and his. to

Step 27: there was a he to he. he the. he was he the. he the and
the a it the and his. he to

Step 28: there was a he he to he. he the. he was he the. he the
and the a it the and his. he to

Step 29: there was a he he to he. he the. he was he the. he the
and the a he it the and his. he to

Step 49: upon there was a man he to something, he to. he found.

so excited. he put it the. he was. he the. he put the in and the
the a he the it the man smiled and he his. he to

Step 65: once upon there was a man he wanted to buy something, so
he went to buy a. he found a. was so excited. he put it the. he
was. he in the. he put the in his and the he the a he the it. the

man smiled and he his. he was to have the

Step 66: once upon there was a man he wanted to buy something, so
he went to buy a. he found a. was so excited. he put it the. he
was. he in the. he put the in his and the he the a he the it. the
man smiled and he his. he was to have the.

Step 110: once upon a time there was a wealthy man. he wanted to

buy something, so he went to buy a bed. he found a beautiful bed.
he was so excited. he put it in the shop. he was very happy. he
went home and put it in the house. he put the bed in his room and
opened the door. then he put the bed on with a cozy blanket. he
put the bed down and enjoyed it. the man smiled and he put the
blanket on his bed. he was so happy to have the bed.

Step 139: once upon a time, there was a wealthy man. he wanted

to buy something special, so he went out to buy a special bed. he
found a beautiful, pink bed. he was so excited. he put it in his
pocket, and the shopkeeper smiled. he was very happy. he went home
and put it in the house. he put the bed in his living room, and
then he opened the bedroom door. then, he put the bed on the bed
with a cozy blanket. then, he put the bed down and enjoyed it. the
wealthy man smiled and laughed as he put the special pink blanket on
his bed. he was so happy to have made the perfect bed.

Step 143: once upon a time, there was a wealthy man. he wanted to
buy something very special, so he went out to buy a special bed. he
found a beautiful, pink bed. he was so excited. he put it in his
pocket, and the shopkeeper smiled. he was very happy. he went home
and put it in the house. he put the bed in his living room, and
then he opened the bedroom door. then, he put the bed on the bed
with a cozy, pink blanket. then, he put the bed down and enjoyed

27

Under review as a conference paper at ICLR 2026

it. the wealthy man smiled and laughed as he put the special, pink
blanket on his bed. he was so happy to have made the perfect bed.

C.0.5 CONDITIONAL GENERATION: INFILLING

Below we compare the outputs of the ILM and the MDM for variable length infilling task. ILM has
the freedom to implicitly decide the length of the infilled segment. We observe that ILM generally
chooses to insert shorter segments compared the ground truth.

Dataset: Stories

Illpllt once upon a time, in a big forest, there lived a rhinoceros named roxy. roxy loved to climb.
-—— one day, roxy found an icy hill. she had never seen anything like it before. it was shiny and
cold, and she wanted to climb it. roxy tried to climb the icy hill, but it was very slippery. she
tried again and again, but she kept falling down. roxy was sad. ___ billy saw that roxy was sad and
asked, " why are you sad, roxy? " roxy told billy about the icy hill and how she couldn ’ t climb
it. billy said, " i1 have an idea! 1let ’ s find some big leaves to put under your feet. they will
help you climb the icy hill. " roxy and billy looked for big leaves and found some. roxy put the
leaves under her feet and tried to climb the icy hill again. this time, roxy didn ’ t slip. she
climbed and climbed until she reached the top of the icy hill. roxy was so happy! -—- from that day
on, roxy and billy were the best of friends, and they climbed and played together all the time. and
roxy learned that with a little help from a friend, she could climb anything.

MDM

once upon a time, in a big forest, there lived a rhinoceros named roxy. roxy loved to climb.

she had a big ball in her mouth. one day, roxy found an icy hill. she had never seen anything

like it before. it was shiny and cold, and she wanted to climb it. roxy tried to climb the icy
hill, but it was very slippery. she tried again and again, but she kept falling down. roxy was sad.

she started to feel distant. suddenly, she felt a tap on her ankle. it was billy. billy saw that

roxy was sad and asked, " why are you sad, roxy? " roxy told billy about the icy hill and how she
couldn ' t climb it. billy said, " i have an idea! 1let ’ s find some big leaves to put under your
feet. they will help you climb the icy hill. " roxy and billy looked for big leaves and found some.

roxy put the leaves under her feet and tried to climb the icy hill again. this time, roxy didn ’
t slip. she climbed and climbed until she reached the top of the icy hill. roxy was so happy!

she hugged billy, and thanked him for helping her. from that day on, roxy and billy were the best of

friends, and they climbed and played together all the time. and roxy learned that with a little help
from a friend, she could climb anything.

ILM

once upon a time, in a big forest, there lived a rhinoceros named roxy. roxy loved to climb. one
day, roxy found an icy hill. she had never seen anything like it before. it was shiny and cold, and
she wanted to climb it. roxy tried to climb the icy hill, but it was very slippery. she tried again
and again, but she kept falling down. roxy was sad. her friend billy saw that roxy was sad and
asked, why are you sad, roxy? foxy told billy about the icy hill and how she couldn ’ t climb it.
billy said, I have an idea! 1let ’ s find some big leaves to put under your feet. they will help you
climb the icy hill. foxy and billy looked for big leaves and found some. roxy put the leaves under
her feet and tried to climb the icy hill again. this time, roxy didn ’ t slip. she climbed and
climbed until she reached the top of the icy hill. roxy was so happy! from that day on, roxy and
billy were the best of friends, and they climbed and played together all the time. and roxy learned

that with a little help from a friend, she could climb anything.

Dataset: Stories

28

Under review as a conference paper at ICLR 2026

Input

one day, a small cat named tim was walking in the park. the sun was very bright and the wind was
harsh. " do you want to play? 8am looked at tim and said, ¥es! let ’ s play! they played all
day, but then tim hurt his foot. _._... sam wanted to help his friend feel better. sam had an idea.
he offered tim a ride on his back. I can carry you home, $aid sam. tim smiled and said, thank you,
sam! they went home together, and tim ’ s foot felt better soon. the next day, they played again,
and they were both very happy.

MDM

"one day, a small cat named tim was walking in the park. the sun was very bright and the wind was

harsh. sam was playing faster than him. hi, welcome to my! &Said the mouse. do you want to play?

Sam looked at tim and said, yes! let ’ s play! they played all day, but then tim hurt his foot.

he had fallen in the grass and it hurt a lot. sam wanted to help his friend feel better. sam had

an idea. he offered tim a ride on his back. I can carry you home, Said sam. tim smiled and said,
thank you, sam! they went home together, and tim ’ s foot felt better soon. the next day, they
played again, and they were both very happy."

"one day, a small cat named tim was walking in the park. the sun was very bright and the wind was

harsh. tim asked his friend sam, do you want to play? &am looked at tim and said, yes! let ’ s

play! they played all day, but then tim hurt his foot. sam wanted to help his friend feel better.
sam had an idea. he offered tim a ride on his back. I can carry you home, Said sam. tim smiled
and said, thank you, sam! they went home together, and tim ’ s foot felt better soon. the next day,

they played again, and they were both very happy.,

Dataset: LM1B

Input

i would not be upset to see criminal charges brought against them as well as they were endangering
the lives of more than 100 ____ eighteen minutes and could have gotten everyone aboard killed, plus
people on the ground. 1losing their licenses is too mild a punishment.

i would not be upset to see criminal charges brought against them as well as they were endangering

the lives of more than 100 iowa farm workers, the firefighters,. the fire lasted just eighteen

minutes and could have gotten everyone aboard killed, plus people on the ground. losing their
licenses is too mild a punishment.

i would not be upset to see criminal charges brought against them as well as they were endangering
the lives of more than 100 passengers in eighteen minutes and could have gotten everyone aboard

killed, plus people on the ground. losing their licenses is too mild a punishment.

Dataset: LM1B

Input

tony rutherford, chairman of the british fertility society, welcomed the birth, but added : it .
research., and should only be offered to patients within the context of a robustly designed clinical
trial, carried out in suitably experienced centres.

tony rutherford, chairman of the british fertility society, welcomed the birth, but added : it

is also a good example of the benefit highlighted in this central research., and should only be

offered to patients within the context of a robustly designed clinical trial, carried out in suitably
experienced centres.
tony rutherford, chairman of the british fertility society, welcomed the birth, but added : it

was important for cancer research., and should only be offered to patients within the context of a

robustly designed clinical trial, carried out in suitably experienced centres.

29

Under review as a conference paper at ICLR 2026

Ancestral: False Ancestral: True
p=0.¢ gp=1.0
1.8 E
p=0 p=1.0
p=0 31'
1.6 4
’ 1
=10 p=0.5 @ l' 1.0
p=0. =0, .
_aaq b o0 1 Vo % stopping threshold
= 05 X v e — o5
p=05) 0,800 \ ,l p=0.5 @ —_ 08
1.2 1 ll I";_«aw— 1 ¥ Frtl e 09
/ p=0.5.%" i
4.0 4 / 4
1.0 / - {
4
3.8 4
T T T T T T T T T T T T T T T T T T
245 250 255 260 2.65 270 275 280 285 245 250 255 260 2.65 270 275 280 285
entropy entropy

Figure 8: The figure shows NLL vs. entropy on LMIB as the sampling parameters are varied
for ILM. A conservative stopping threshold of 0.9 provides a good balance between quality and
diversity.

C.1 ANALYSIS OF SAMPLING HYPERPARAMETERS

Figure 8 shows the impact of various sampling parameters on the quality and diversity of the gen-
erations. A conservative stopping threshold of 0.9 provides a good balance between quality (lower
nll) and diversity (higher entropy).

D CONNECTION BETWEEN ILM AND DISCRETE DENOISING

Consider a discrete time markov chain (X;) with states taking values in V¥ with the transition
kernel g(X; | X¢—1) that uniformly randomly drops a token until the sequence is empty. Let py
be the parametric time reversal of the noising process. Then the evidence lower bound for the log-
likelihood of the data is given by:

logpg(zo) = B [logpy(wo, ®1.7) — log g1 | 20)]

L1:T ey, 7 |zg

= E

L1:T~qx 7 |zg

T
> E [Z log po (w11 | wt)] :

T
Zl po(Te—1 | xt)

og —————=
: Q($t|$t—1)

=1

+ log pe(ivT)l

ZL1:T~qx 7 |zg =1

where in the last step we used the fact that ¢ is fixed and log pg () is zero because x is always
the empty sequence for large enough 7. Breaking the expression down into a sum over the time
steps, we get

L(0;x0) =— E E logpe(zi—1|z:).

t~U[LT) Tt —1,T4~G |

This loss based on the naive Monte Carlo estimate of the ELBO is easy to compute. However, it is
intractable to train a denoising model using this due to two main reasons. First, the estimator can
have extremely high variance and therefore unstable to train. Second, parameterizing the denoiser
using any standard neural network for sequence modeling like a transformer or LSTM is inefficient
because the only one token will be inserted in a; to obtain x;_;, which leads to weak gradients and
slow convergence.

We can use the usual trick to utilize x(to reduce the variance of the estimator (Ho et al., 2020).

T
log po(x0) > E Y Dilg(@iilze, o) | po(ai—i|2)] + Dicla(@r [20) || po(@r)]

L2: T~y 1|2 =2

= L™O:;mo) =— E > q(@i1|m, @) logpe(_1|me).

~UMLT] S

30

Under review as a conference paper at ICLR 2026

where we make use of the Bayes rule and the Markov assumption to get q(z;|zi—1) =
q(ze—1 |2¢,20) q(z¢]20)
q(zt—1]z0)

and use it in the expression for ELBO.

When pg,, is such that only sequences that do not repeat tokens are in the support of the distribution,
then q(x¢—1|xs, o) = d(k, v; xp,b) where b is such that x; = xy[b]. Moreover, pp(x;_1|2:) can
be written as py(k, v | ;). When pg,, does not have this property, then we need to use a dynamic
programming algorithm to compute all possible alignments of x; w.r.t &, to obtain a closed form
expression for the loss.

31

	Introduction
	Preliminaries
	Masked Diffusion Models

	Insertion Language Model
	Parameterization

	Related Work
	Empirical Evaluation
	Planning Tasks
	Star Graphs

	Zebra Puzzles
	Language Modeling
	Unconditional Generation
	Infilling

	Discussion
	Extended Related Work
	Experimental Details
	Star Graphs
	Zebra Puzzles
	Language modeling: Story Generation
	Language modeling: LM1B
	LLM Evaluation using Prometheus-2
	Unconditional Generation Examples

	Additional Results and examples
	Token Accuracy on Star Graphs and Zebra Puzzles
	Comparison with Insertion Transformer
	Star Graphs
	Language modeling: Unconditional Generation Trajectories
	Conditional Generation: Infilling

	Analysis of sampling hyperparameters

	Connection between ILM and discrete denoising

