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ABSTRACT

We study temporal tabular data-streams (TTD) where each observation has both
categorical and numerical values, and where the universe of distinct categorical
items is not known upfront and can even grow unboundedly over time. Such data
is common in many large-scale systems, such as user activity in computer system
logs and scientific experiment records. Feature hashing is commonly used as a pre-
processing step to map the categorical items into a known universe, before doing
representation learning (Coleman et al., 2024; Desai et al., 2022). However, these
methods have been developed and evaluated for the offline or batch settings. In this
paper, we consider the pre-processing step of hashing before representation learning
in the online setting for TTD. We show that deterministic embeddings suffer from
forgetting in online learning with TTD, leading to performance deterioration. To
mitigate the issue, we propose a probabilistic hash embedding (PHE) model that
treats hash embeddings as stochastic and applies Bayesian online learning to learn
incrementally with data. Based on the structure of PHE, we derive a scalable
inference algorithm to learn model parameters and infer/update the posteriors of
hash embeddings and other latent variables. Our algorithm (i) can handle evolving
vocabulary of categorical items, (ii) is adaptive to new items without forgetting old
items, (iii) is implementable with a bounded set of parameters that does not grow
with the number of distinct observed items on the stream, and (iv) is efficiently
implementable both in the offline and the online streaming setting. Experiments
in classification, sequence modeling, and recommendation systems with TTD
demonstrate the superior performance of PHE compared to baselines.

1 INTRODUCTION

Tabular data - where each observation is a vector with both categorical and numerical values - is
very common. For example, tabular data can be any records in a MS Excel file, songs information in
a music playlist, execution results of the Linux command “ls -l,” and any tables seen in this paper.
As a result, tabular data occurs in many high-valued ML applications: finance (Clements et al.,
2020), fraud detection (Al-Hashedi and Magalingam, 2021), anomaly detection (Han et al., 2022),
cybersecurity (Sarker et al., 2020), medical diagnosis (Shehab et al., 2022) and recommendation
systems (Ko et al., 2022). In many of these applications, the data arrives online in a streaming fashion.

Unlike images and natural language text, tables are highly structured and contain heterogeneous
data types that often result in a mix of both categorical and numeric features (Borisov et al., 2022;
Shwartz-Ziv and Armon, 2022). Recent work on tabular data focuses on designing generative models
for tabular data type (Xu et al., 2019; Kotelnikov et al., 2023; Liu et al., 2023b) or learning table
representations with foundation models (Yin et al., 2020; Iida et al., 2021). However, these are offline
models that assume that the characteristics such as the vocabulary of columns are fixed.

In temporal tabular data (TTD), (i) the vocabulary of some or all categorical columns can change,
and/or (ii) the semantic meaning of a categorical item can evolve. These characteristics present
challenges to offline predictive models. Failure to adapt to the expanding vocabulary leads to a loss in
predictive performance, as explained in Figure 1. In the setup of Figure 1, we observe that modeling
new categorical features leads to significant accuracy improvement. This problem of expanding
vocabulary is fairly common in practice: new products are added to a grocery store (Cheng et al.,
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Figure 1: On two tabular datasets, Mushroom and Adult, we split the data into groups based on a
random partition of a categorical column’s vocabulary, such that each group has a disjoint vocabulary.
We report the results before and after online learning on each group in the plots. The performance
gaps motivate the need to learn representations of new items. In the brackets are the columns used for
splitting. Results are averaged on five independent runs. The partition detail is in appendix Fig. 9.

2023), new usernames and application names in intrusion detection systems (Siadati and Memon,
2017; Le et al., 2022), new patients at a hospital, and so on.

The expanding and unbounded universe of categorical values1 poses challenges, even in the offline
setting when all training data is available upfront and the size of the vocabulary can be billions
(Tito Svenstrup et al., 2017; Shi et al., 2020b; Kang et al., 2021; Coleman et al., 2024). A commonly
used methodology to handle unbounded vocabulary is the hashing trick (Weinberger et al., 2009),
where one or more hash functions map the categorical values to a value in a fixed finite set. The
hashed values are treated as an approximation of the original categorical values in subsequent model
training and inference. The resulting item representations are stored in a set of model parameters,
referred to as hash embeddings. Large technology firms, e.g., Yahoo and Google, have incorporated
this approach in their large-scale applications (Weinberger et al., 2009; Coleman et al., 2024).

While hash embeddings claim to handle “dynamic” vocabularies, previous work focuses on offline
settings. In this paper, we study learning hash-based embeddings in TTD, whose categorical vocabu-
lary is really dynamic, i.e., changing over time. We analyze and demonstrate hash embeddings are
subject to catastrophic forgetting as the vocabulary grows. In hash embeddings, representations of
two items may share parameters, updating one item’s embedding can adversely interfere with another,
causing an effect like the model “forgets.” Consequently, hash embeddings are not yet fit for learning
temporally dynamic vocabularies in its vanilla form.

In this paper, we observe that modeling hash embeddings as stochastic and inferring their posterior
upon new data arrival mitigates the shortcomings found in online update of deterministic hash
embeddings. This Bayesian online learning approach is shown as sample-efficient as offline batch
learning (Opper and Winther, 1999), which can in turn make the hash embeddings estimate as
effective as offline training.

Main Contributions: Our work proposes probabilistic hash embeddings (PHE) with Bayesian
updates to handle dynamic vocabularies of TTD in an effective and efficient way. The intuition behind
PHE stems from its benefits in (i) efficiency, as memory/number of model parameters is bounded and
only a small number of parameters need to be updated online (ie., less forgetting, see experiments),
and (ii) accuracy benefits since the probabilistic model provides an implicit regularization to trade-off
forgetting and adaptation, without the need of specific dataset dependent regularization design.

We highlight PHE as a plug-in module, which can be applied to other probabilistic models like Deep
Kalman Filters (Krishnan et al., 2015), a latent variable model for temporal sequences, and Neural
Collaborative Filtering (He et al., 2017), modeling item-user interactions in recommendation systems.
The usage of PHE allows those models to handle unbounded items in their application areas in a
principal way. For those models, we derive scalable variational inference algorithms to learn the
model parameters and infer the latent variables (including latent time variables and PHE). Empirically,
we observe superiority of our method compared to baselines under three setups: one supervised
learning where new items occur in sequence, the second is conditional sequence modeling setup
where the number of sequences increases along with new items, and the third is a recommendation
system where novel user-item interactions occur over time.

1We use the phrase item to refer to a categorical value.
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Organization: We survey related work in Sec. 2, present PHE, derive its inference algorithm in
Sec. 3 and demonstrate PHE’s efficacy in Sec. 4 and conclude in Sec. 5.

2 RELATED WORK

Hashing trick. Weinberger et al. (2009) first proposed using hashing to handle unbounded number
of categorical items. To improve on degradation due to hash collisions, Serrà and Karatzoglou (2017)
used bloom filters. In recent times, Tito Svenstrup et al. (2017); Cheng et al. (2023); Coleman
et al. (2024) propose a shared embeddings across all categorical features for efficiency and using
multiple hashing functions to reduce collisions. However, unlike our method, these are deterministic
and are developed in offline learning settings. As shown in our experiments, deterministic hashing
embeddings are vulnerable to evolving vocabularies and inter-observation relation shifts in TTD.

Continual learning. Wang et al. (2023) surveys main works in continual learning. Regularization-
based methods (EWC (Kirkpatrick et al., 2017), VCL Nguyen et al. (2018)) and optimization-based
methods (e.g., GEM (Lopez-Paz and Ranzato, 2017)) ignore categorical variables with unbounded
vocabulary size. Architecture-expanding methods that dynamically expand the universe of items leads
to unbounded memory usage (Rusu et al., 2016; Yoon et al., 2017; Jerfel et al., 2019). In contrast,
PHE uses a fixed size of memory to accommodate expanding categorical features.

Temporal and recommendation models. One of our models extends Deep Kalman Filters
(DKF) (Krishnan et al., 2015) to be applicable for sequence modeling in TTD, while the origi-
nal DKF only apply to time-series data where the categorical attributes are assumed to be given and
thus not modeled. Girin et al. (2021) survey a list of latent variable sequence models for speech, text
and video and are not applicable to tabular data due to the ever increasing vocabulary of categorical
items. Similarly previous recommendation methods (Ko et al., 2022) assume the training data is
given at once and the universe of items is stationary.

Tabular data models. Traditionally, tabular data refers to rows in a database, whose distribution are
permutation invariant (Friedman, 2001). In the offline setting when the universe of categorical values
are known, tree-based boosting methods have emerged as competitive (Chen and Guestrin, 2016; Ke
et al., 2017). In the online and continual learning setting, deep-learning based methods have been
studied in recent times (Huang et al., 2020; Du et al., 2021; Liu et al., 2023a). However, all of these
works assume that the universe of categorical values are known and fixed up-front. Ours is the first
online learning method, even for regular tabular data, that can handle increasing and unbounded
vocabulary for items. Kim et al. use string embeddings from language models for open-vocabulary
categorical/string-valued columns in an offline setting; in contrast, we focus on online setting. We
survey additional related work in Supp. B.

3 METHODOLOGY

We first set necessary notations, then introduce our proposed probabilistic hash embedding module.
Next we show that PHE as a plug-in module for Deep Kalman Filters. Finally we analyze why
deterministic hash embeddings is prone to forgetting.

3.1 PROBLEM SETUP AND NOTATIONS

We formalize the notations here. We denote categorical, numeric, and timestamp columns or their
feature values by s,x, t respectively. For the columns of interest that we want to predict based on
other columns, we denote them by y. We use si to denote the categorical values of the ith row,
similarly for xi, ti, and yi. We consider the problem of learning an ML model in TTD streams where
the vocabulary of one or more categorical columns can change over time.2

Let h : S → N<B be a hash function that maps a string to a hash value. B is the range of h, also
known as the “bucket size”. For simplicity, we use hs to denote the hash value h(s) of an item s. The
hash value hs indexes a row in a hash embedding table E ∈ RB×d, resulting in the hash embedding

2We assume the tabular structure is fixed, i.e., the number of columns, column names, and types are fixed.
We also assume categorical features are single-valued. But our work is compatible with multi-valued features.
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Figure 2: a) Shared hash embedding for category feature s. For example, s can be a username
or anonymized string. The whole module serves as p(Ehs). b.1) A graphical model of a temporal
sequence with PHE. b.2) is a special case of b.1 when no temporal relationship is assumed, e.g.,
classification or regression. The changing categorical values are contained in hs.

of s, denoted by Ehs . We abuse the notation for both random variables and their sampled values
where the meaning should be clear from the context.

3.2 PROBABILISTIC HASH EMBEDDINGS (PHE)

To start off, we explain our universal encoding module for categorical items. Categorical items are the
most common ones in tabular datasets, ranging from login names, database names, and activity codes
to anonymized identifiers, and are subject to increment from time to time. To incorporate the added
items, we propose probabilistic hash embeddings (PHE). The basic PHE involves two components–a
fixed hash function h ∈ N<B and a probabilistic hash embedding table E ∈ RB×d with a prior
distribution p(E).3 Given an item s, it looks up the hsth row of E as its hash embedding Ehs . Ehs

has distribution p(Ehs). We require E to be shared across all categorical columns, an operation
adopted by Coleman et al. (2024) as well. To disambiguate duplicated feature values across columns,
we add the column name as a prefix to its items. Thus, the same string in different columns will likely
be hashed to different values, reducing hash collisions. PHE can also learn the representations of
missing values, which are usually represented as a special string and can be hashed.

A single hash function may result in two distinct inputs having the same hashing value, known as hash
collisions, resulting in undistinguished hash embeddings. For size-B buckets, the collision probability
is proportional to O(1/B). To further reduce the collision rate, we use universal hashing (Carter and
Wegman, 1977). Namely, instead of utilizing one fixed hash function, we use K fixed hash functions.
Then the collision probability can be shown to reduce to O(1/BK). Moreover, we keep the hash
embedding table E shared across K hash functions, which keeps the model size bounded. Repeating
the embedding fetching procedure, a single feature s results in K embeddings {E

h
(1)
s
, . . . , E

h
(K)
s

}
where E

h
(k)
s

is the looked-up embedding from table E based on the k-th hash value h
(k)
s . We then

produce the final representation of s with an assemble function g : RK×d → Rd. This procedure is
denoted by Ehs := g(E

h
(1)
s
, . . . , E

h
(K)
s

). Typical choices of g involve coordinate-wise summation,
average, and minimization; other parametric choices of g include weighted sums where weights come
from a parametric model. We illustrate this procedure in Fig. 2a. This module represents p(Ehs)

where hs := {h(1)
s , . . . , h

(K)
s }. The memory cost of PHE is O(Bd).

A common query is to ask what the conditional probability of observing a feature y given another
categorical feature s is, namely p(y|s). With PHE, we can approximate it by identifying hs to be s,
which is exact in the absence of hash collisions. Thus with Ehs sampled from p(Ehs),

p(y|s) = p(y|hs) = Ep(E)[p(y|Ehs)] ≈ p(y|Ehs). (1)

In this way, one can answer probability queries conditioned on discrete features.

Discussions. In data streaming or continual learning setup, PHE has natural benefits in reducing
catastrophic forgetting: 1) only a few embeddings need to be updated online. This sparse updating
scheme seldom affects other item representations, thus having less forgetting. 2) The online updates
apply Bayesian online learning, in which the prior distribution serves as a regularization of previous
knowledge that also reduces forgetting. In addition, PHE’s memory/storage cost is bounded and does
not increase with the number of distinct categorical values. More discussion in Sections 3.4 and D.

3In this work, we assume E is Gaussian with a diagonal covariance.
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3.3 AN APPLICATION: PHE IN DEEP KALMAN FILTERS

In this section, we show how PHE can be used in conjunction with a deep Kalman filter (Krishnan et al.,
2015) and derive scalable inference algorithms for the probabilistic embedding. Other model variants
for TTD can be seen as special cases of this model. The goal is to predict y, given all other columns
including categorical columns s, numeric columns x, and timestamp column t. (c.f. Fig. 2b.1.)
The condition of y on categorical features s is through PHE via Eq. (1). We model the dependency
between rows of neighboring timestamps by a latent time variable z. Specifically, we assume zi are
Gaussian distributed and follows the distribution p(zi|zi−1,∆i; θz) = N (zi|fθz (zi−1,∆i)) where
fθz := {µθz ,Σθz} is a parametric function with parameters θz , e.g., a multi-layer perceptron that
outputs mean and covariance of zi and ∆i is the difference in timestamp between the ith observation
and i− 1th observation. We apply a diagonal covariance matrix Σθz in this work. We assume the
initial row’s latent representation z1 are from standard Gaussian distribution p(z1) = N (z1|0, I).
This usage of a latent time variable shares a similar fashion with Kalman filters.

In summary, suppose a parametric likelihood with parameters θy is p(yi|xi, Ehsi
; θy). Given the

covariates hs≤N
, x≤N , and time difference ∆≤N , the data generating process is

E ∼ p(E), For i = 1, . . . , N :
{
zi ∼ p(zi|zi−1,∆i; θz), yi ∼ p(yi|xi, Ehsi

; θy)
}

where p(z1) = N (0, I). Observations of other tasks are generated similarly beside the hash embed-
ding table E and the parameters {θz, θy}, which are shared across tasks.

Inference network. In the above model, we need to infer the hash embedding table and latent time
variables, that is, the posterior distribution p(E, zi|hs≤i

,x≤i,y≤i; θ) after observing i rows, which
is often intractable with complex likelihood and expensive for large-scale datasets. Therefore, we
apply structured variational inference and assume the variational posterior distribution factorizes as

qλ,ϕ(E, z≤N |x≤N ,y≤N ,hs≤N
) = qλ(E)

N∏
i=1

qϕ(zi|x≤i,y≤i, Ehs≤i
) (2)

where we parameterize the posterior of the hash embedding table as a Gaussian with diagonal
covariance, i.e., qλ = N (µλ,Σλ) with variational parameters λ := {µλ ∈ RB×d,Σλ ∈ RB×d}. We
also assume qϕ(zi|x≤i, Ehs≤i

) is a Gaussian distribution implemented as a recurrent neural network
that takes {xi,yi, Ehsi

} as input at recurrent step i and outputs the parameters of zi, in this case,
mean µi,ϕ ∈ Rd and diagnonal covariance matrix Σi,ϕ ∈ Rd. Note that the recurrent neural network
(i.e., its parameters ϕ) is shared across latent time variables z≤N .

Initialization and online learning. As follows, we will first derive a scalable algorithm to initialize
the model with a set of training data and then introduce an efficient online learning algorithm to
adapt the model to TTD. We denote the model parameters relevant to the generating process by
θ := {θz, θy}. We jointly learn the model parameters θ and infer the approximate posteriors of
{E, z≤N} by maximizing a feasible evidence lower bound (ELBO) L(θ, λ, ϕ). It can be shown
that, with twice the applications of Jensen’s inequality, maximizing the ELBO also maximizes the
marginal likelihood log p(y≤N |x≤N ,hs≤N

; θ)

L(θ, λ, ϕ) := Eqλ(E)

[
N∑
i=1

Li(θ, ϕ|E)

]
−DKL(qλ(E)|p(E)) ≤ log p(y≤N |x≤N ,hs≤N

; θ) (3)

where p(E) is the prior distribution of the random hash embedding table and we set it to be a standard
Gaussian distribution. Li(θ, ϕ|E) is the conditional ELBO of the ith row’s log-likelihood

Li(θ, ϕ|E) := Eqϕ(zi)[log p(yi|zi,xi, Ehsi
; θy)]− Eqϕ(zi−1)[DKL(qϕ(zi)|p(zi|zi−1; θz))]. (4)

We provide the full derivation of the ELBO in Supp. A, where we also show Li(θ, ϕ|E) ≤
log p(yi|x≤i,y<i, Ehs≤i

; θ) and why maximizing L(θ, λ, ϕ) is a variational EM algorithm.

Once we initialize the model, we can efficiently adapt the model to new occurring items in TTD. We
only need to update the hash embeddings of new items while fixing other parts of the model. This
scheme is feasible since per the proposed data generating process, the latent time process zi and
model parameters θ has captured all item-shared information and the item-specific information is to
be learned via the new hash embedding.
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Figure 3: Forgetting in online learning using deterministic hash embedding on synthetic data. (The
complete setting is described in Sec. 3.4.) The task is predicting a scalar (regression problem) with
the covariate being a categorical variable that takes one of two values of m0 or m1. a) shows the
embedding matrix E of size 3 × 1. Here the number of buckets B = 3 and d = 1. The two hash
function maps m0 to 0 and 1 respectively and maps m1 to 1 and 2 respectively. b) shows the online
samples where the covariate alternates between m0 and m1 and the corresponding target y(mi) takes
values in 1 and −1. c) shows the prediction of a probabilistic hash embedding table (blue) trained
using Bayesian online learning and a deterministic hash embedding (DHE) table (yellow) trained
using online gradient descent. d) plots the prediction error. From these figures we observe that PHE’s
prediction error converges to 0 much quicker than DHE. After every 20 samples when the covariate
changes, there is a big jump in DHE error, exhibiting forgetting while the PHE has no error spikes
after it has encountered both the categorical values.

Suppose the initialization dataset D0 is large enough to allow to infer good model parameters
{λ∗

0, ϕ
∗, θ∗}. (The subscript of λ∗

0 suggests the posterior of hash embedding table E is conditional
on dataset D0.) Suppose we observe a second dataset D1 to which we would like our model to adapt
and still be effective to D0. We can set the posterior distribution qλ∗

0
(E) of hash embeddings as the

new prior distribution and infer the new posterior of E conditioned on D1. Note that θ∗ and ϕ∗ are
fixed during this adaptation procedure. The new ELBO (objective function) on D1 given θ∗, λ∗

0, ϕ
∗ is

L(1)(λ; θ∗, λ∗
0, ϕ

∗) = Eqλ(E)

[
N1∑
i=1

Li(θ
∗, ϕ∗|E)

]
−DKL(qλ(E)|qλ∗

0
(E)) (5)

where N1 is the number of rows in table D1. Notice the original prior p(E) of E is replaced with
qλ∗

0
(E). Upon optimization convergence, the new variational distribution of E is equivalent to an

approximate posterior distribution given both datasets (D0 and D1). We provide detailed derivations
in Supp. A. Although this procedure bears resemblance to traditional continual learning (Wang et al.,
2023; Nguyen et al., 2018; Li et al., 2021), is different since we focus on changing discrete items.

3.4 THEORY: WHY IS PHE SUPERIOR FOR TTD?

Here, we consider a simple linear Gaussian model that we can analyze in closed form to illustrate why
having deterministic hash embeddings that are updated in an online fashion is prone to forgetting.

A simple linear-Gaussian model. Let the input variable m ∈ {m0,m1} take one of two categorical
values and the target y ∈ R be real-valued. The conditional distribution of y is a Gaussian distribution
with the mean 1 when m = m0 and mean −1 when m = m1. The variance of both Gaussians is
σ2 ≈ 0 is tiny. We do not specify the distribution of m just yet and defer that to the sequel.

The predictive model based on hash embedding. Given labeled data (m, y), we aim to learn a
predictor f(m) for y using a 3 × 1 hash embedding matrix4 E. Denote by e(0), e(1) and e(2) as
the three rows of this matrix which are the “embedding vectors” of the three hash values. Thus, in
the notation of our model, this embedding matrix is made of B = 3 buckets with the dimension
d = 1. The model f(·) uses two hash functions hi(·) : {m0,m1} → {0, 1, 2} to map the categorical
variable m into a hash value. Without loss of generality, we assume that h1(m0) = 0, h2(m0) =

4Although technically a vector, we denote it as “embedding matrix” to be consistent with the rest of the text.
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1, h1(m1) = 1, h2(m1) = 2. Given this, the predictive model f(m) := e(h1(m)) + e(h2(m)) is a
linear sum of the two hash embedding of the input. This is a simple example of the general class
of models where the predictor y is a linear function of the embedding vectors looked up by the
categorical input m using different hash functions. Although simple, this example illustrates the
parameter-interference phenomenon of hash embeddings since the embedding vector e(1) influences
both m0 through hash function h1(·) and m1 through h2(·).

An online interaction setting. At each time t = 1, 2, . . . , the environment samples m(t) from a
distribution over {m0,m1} and sends to the predictor. The predictor then predicts ŷt := ft(m

(t))
and is then shown the true label y ∈ R. The predictor incurs loss lt := 1

2 (yt − ŷt)
2 and uses the

observed yt to update the predictor to ft+1(·). Consider a setting where the first N inputs consists
of m(t) = m0 for all t ∈ {1, . . . , N}, followed by another N inputs consisting of m(t) = m1 for
all t ∈ {N + 1, · · · , 2N}. The embedding matrix E is assumed to be updated using online gradient
descent on the square loss function lt :=

1
2 (ŷt − yt)

2 for all times t = 1, 2, . . . .

Analysis and conclusion. As we can see from the calculations in Supp. D, if N is sufficiently large,
at the end of time 2N , the learned model is such that f2N+1(m0) ≈ 1/4 and f2N+1(m1) ≈ −1.
Thus, given that the last N samples seen corresponded to m(t) = m1, the predictor at the end at
time 2N has near zero prediction error for m1. However, this comes at a cost of having a large
prediction error for m0 with f2N+1(m0) ≈ 1/4, where the true value is 1. This is in contrast to an
offline method that given all the 2N samples upfront, the algorithm would have learned a predictor
that will have near zero prediction error for both m0 and m1. Thus, we say that the online updated
embedding matrix forgets the old distribution m0. This behaviour is also in contrast to Bayesian
online learning that would incrementally learn the posterior distribution p(E|m(1), . . . ,m(t)) at
each time t. It is well known that if we could compute the exact posterior at each time, i.e., exactly
compute p(E|m(1), . . . ,m(t)) for all t, then the posterior for E at the end of 2N samples will be
identical to the case if all the 2N samples would be available up-front in batch, i.e., there will be no
forgetting. Fig. 3 shows an example when N = 20. Detailed calculations are in Supp. D.

4 EXPERIMENTS

In this section, we show TTD is ubiquitous in mainstream machine learning tasks and conduct
experiments to demonstrate the efficacy and memory efficiency of PHE in learning TTD. As follows,
we begin with common experimental protocols in Sec. 4.1. Then, in Sec. 4.2, we simulate online
learning to benchmark PHE in classification tasks. In Secs. 4.3 and 4.4, we showcase PHE in multi-
task sequence modeling and online recommendation systems. All results show PHE outperforms the
deterministic counterpart and performs similarly with the upper-bound collision-free embeddings.

4.1 EXPERIMENTAL PROTOCOLS AND BASELINES

Training protocols. In all experiments, we use one shared hash embedding table, also known as
unified embeddings (Coleman et al., 2024), for all categorical features. Except for the initial training,
we only update the embeddings of categorical columns deemed incremental and freeze parameters
other than the hash embedding table. Tab. 6 in Supp. E.6 justifies this updating protocol.

Experimental setting. We investigate the data-streaming setup highlighting recurring items and
new-arriving items. In this setup, both forgetting and adaptation are measured: the model should
avoid forgetting recurring items and adapt for new items. Upon each data arrival, we conducted
three operations in order: make predictions, evaluate predictions, and update embeddings. We report
the sequential results in plots and the overall averaged results with errors in tables. We repeated all
experiments five times with different parameter initialization while keeping other settings fixed.

Baselines. We use two types of baselines. The first is deterministic hash embeddings with stochastic
gradient descent online learning. They not only have the same model size and architecture as PHE
but also have the same update efficiency. That is, the baselines can quickly adapt to new categories
by updating only a few relevant hash embeddings and leaving the other parameters unmodified
(ie. minimal forgetting). We take three variants: SlowAda only trains one epoch on the new data;
MediumAda trains five epochs; FastAda trains 15 epochs. These baselines cover forgetting-adaptation
trade-offs: FastAda is fast in adaptation but suffers forgetting; SlowAda is on the opposite end.
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Table 1: Online learning results on TTD-streams. Adult, Bank, Mushroom, and Covertype are
evaluated by average accuracy, the larger the better. Retail and MovieLens-32M use mean absolute
error, lower the better. All results are multiplied by 100 except Retail for visual clarity. PHE achieves
the best performance among all hash embedding-based methods.

Hash Embedding Collision-Free Embedding

SlowAda MediumAda FastAda PHE (ours) EE P-EE

Adult (↑) 82.2 ± 0.7 74.8 ± 4.5 71.1 ± 4.0 84.1 ± 0.2 84.2 ± 0.0 84.8 ± 0.0
Bank (↑) 89.7 ± 0.1 89.0 ± 0.9 86.9 ± 1.6 89.6 ± 0.0 90.0 ± 0.0 90.1 ± 0.0
Mushroom (↑) 97.7 ± 0.7 97.9 ± 0.5 98.3 ± 0.3 98.8 ± 0.0 98.8 ± 0.0 98.8 ± 0.0
CoverType (↑) 63.5 ± 0.5 59.1 ± 1.2 55.3 ± 1.2 64.3 ± 0.2 64.3 ± 0.1 64.0 ± 0.4
Retail (↓) 49.1±82.9 22.7±20.3 - 3.0±0.2 3.7±0.1 3.2±0.4
MovieLens (↓) 15.3±0.1 15.1±0.1 15.1±0.1 14.7±0.0 15.1±0.0 14.7±0.0

Figure 4: Online classification results on tabular data streams. The Ada results show a downward
trend although there are no new items to learn, suggesting the deterministic hash embeddings suffer
from forgetting during the learning. In contrast, the proposed PHE mitigates the forgetting issue and
keeps performing as good as the upper-bound method P-EE. Other datasets in Fig. 6 in Supp. E.3
show similar conclusions. In the parentheses is the column whose items embeddings get updated.

Another compared method is an ideal method representing the upper bound–collision-free expandable
embeddings (EE). In particular, EE dynamically initializes and updates an embedding from scratch
when a new item is encountered. This baseline does not suffer from cross-item interference but
may overfit to the most-recent observations. To mitigate the overfitting issue, we treated EE to be
probabilistic and applied Bayesian online learning. We refer to as P-EE. (P-)EE is memory-inefficient
as the memory scales linearly with vocabulary size and can grow unbounded, posing a challenge in
large-scale applications (Tab. 2). Moreover, it is noticeably hard to implement (P-)EE, which requires
to dynamically redefine the embedding layer upon observing new categories.

4.2 CLASSIFICATION IN TTD-STREAMS

Here we show the evolving vocabulary can be managed through PHE effectively on public datasets.

Datasets. We apply four public static tabular datasets that are available in UCI Machine Learning
Repository: Adult, Bank, Mushroom, and Covertype. These datasets contain a mixture of discrete and
continuous columns and are collected for classification problems in various domains. For stability,
we normalized all continuous columns such that the value ranges from zero to one.

Experimental setups. We perform the classification tasks the original datasets provide. The
generating data assumption is illustrated in Fig. 2b.2. Regarding model architecture, we concatenate
all category embeddings as well as continuous features as input to a deterministic neural network,
followed by a softmax activation function. We assume the targets follow categorical distribution.

To simulate the data-streaming setup, at each step we present a randomly sampled data mini-batch
to the model and evaluate the online learning performance. We require only one column’s item
embeddings be updated, mimicking that column has a changing vocabulary. Besides, we initialize the
model (both embeddings and neural network weights) with a separate random portion of the data.

Results. We reported the data-streaming online classification accuracy in Fig. 4. The facts that 1)
any items seen during online learning have been learned at the initialization and that 2) the accuracy
curves of Ada methods have a downward trend suggest hash embeddings suffers from forgetting. In
fact, the forgetting is caused by parameter interference in hash embeddings: suppose items A and B
share parameters in the hash embedding table, then updating A’s embedding affect B’s embedding.
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Figure 5: Experimental results of sequence modeling (left) and recommendation (right) on large-scale
TTD-streams Retail and MovieLens-32M. For visibility, all curves are smoothed. It shows that our
method PHE outperforms all deterministic hash embedding baselines (Fast/Medium/SlowAda) that
are sensitive to their optimization hyperparameters. Moreover, it is remarkable to note that PHE
performs similarly with the upper-bound collision-free P-EE baseline, especially considering PHE
consumes only 2% and 4% of the size of P-EE (see Tab. 2). The initial performance gap at Day 0 on
MovieLens is an artifact of smoothing; in fact, all methods have similar initial performance.

We further reported an overall averaged accuracy in Tab. 1. The results show that our proposed PHE
performs similarly with the upper-bound collision-free embeddings (EE), and the gap between PHE
and all other deterministic counterparts proves the effectiveness of PHE in online learning. Besides,
PHE is more stable and has a smaller variance. The varying performances of the Ada baselines
highlight the importance and sensitivity of hyperparameter tuning. In contrast, our method is a
hyperparameter-free approach and the only demand is to train the model until convergence. Lastly, as
summarized in Tab. 2, PHE consumes noticeably lower memory than P-EE.

4.3 MULTI-TASK SEQUENCE MODELING IN TTD-STREAMS

Sequence models, exploiting the temporal correlation among observations, predict a variable of
interest based on the history.

Datasets. We apply a public large-scale time-stamped tabular dataset, Retail, an instance of TTD. A
snippet of this dataset can be found in Tab. 4. This dataset records all online transactions between
01/12/2010 and 09/12/2011 in a retail store. There are over 4,000 products and over 540K time-
stamped invoice records in total. The task is to predict the sales for each product shown in each
invoice record given the product’s historical sales.

Experimental setups. The Retail dataset is naturally a TTD-stream. We use the first three month data
to initialize the model. Then we make predictions on a daily basis following the invoice timestamp.
And at each step, we predict the sales quantity for each product on invoices based on their sale history.
After that, we will receive the prediction error and use it to update the product embeddings. We use
mean absolute errors as the evaluation metric. More details are in Supp. E.4.

We employ latent time variables to model correlations among neighboring transactions and hash
embeddings to represent products. The latent time and product embeddings are independent and
jointly account for the sales (see model assumption in Fig. 2b.1). Concretely, we use gated recurrent
unit (GRU) (Chung et al., 2014) for both the generation and inference network. The network weights
are frozen after the initial training.

Results. Fig. 5 shows the running performance (smoothed by a 1-D Gaussian filter): the Ada-family
baselines favor shorter optimization time for Retail–FastAda explodes after 50 days. (The error
bar is omitted as it is too large to be meaningful.) On the other hand, PHE has lower errors and is
stable across all learning steps. Remarkably, on the average performance in Tab. 1, PHE significantly
outperforms all baselines, including collision-free P-EE with only 2% memory usage. One possible
reason is that P-EE initializes new embeddings from scratch and thus gets slow in warm-up, while
PHE uses shared parameters from initial training.5 Similar observations also occur in the continual
learning setup (see Fig. 11 and Tab. 5 in Supp. E.4) and another large-scale recommendation task.

4.4 RECOMMENDATION IN TTD-STREAMS

TTD is a common in recommendation systems. For example, new users or movies reach a streaming
service, the recommender needs to incorporate them and make recommendations.

5Another possible reason is that PHE provides a regularization mechanism (Tito Svenstrup et al., 2017).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Number of parameters in the embedding module. Ratio is computed by dividing PHE
by P-EE. The results show PHE consumes as low as 2% of number of parameters (i.e. hardware
memory) of P-EE, implying the memory-efficiency benefit of PHE. (See details in Supp. E.6.2.)

Adult Bank Covertype Mushroom Retail MovieLens-32M

PHE (ours) 346 346 346 56 5014 460414
P-EE 3920 1760 1760 90 332760 11541320

Compression Ratio 0.09 0.2 0.2 0.62 0.02 0.04

Datasets. We apply the largest MovieLens-32m (Harper and Konstan, 2015) which contains 32 mil-
lion ratings across over 87k movies and 200k users. These data were recorded between 1/9/1995 and
10/12/2023 for about 28 years. Each piece of data is a tuple of (userId, movieId, rating,
timestamp), recording when and which rating a user gave a movie. Ratings ranges from 0 star to
5 star with half-star increments. This dataset is also an instance of TTD.

Experimental setups. We treat the recommendation problem as a rating prediction problem, where
the task is predicting the rate a user gives to a movie. In implementation, ratings are normalized to
[0, 1] and are taken to be continuous albeit their increments are discrete. We simulate the experiment
as in production – online prediction along the timestamp. We combine PHE and Neural Collaborative
Filtering (He et al., 2017) as the backbone model. The model is pre-trained on the first five years of
data and then perform predict-update online learning on a daily basis. We assume all ratings are IID
conditioned on user, movie, and movie-genre embeddings. And we model user and movie embeddings
through PHE while movie-genres are encoded as multi-hot embeddings. In this setup, both forgetting
and adaptation in the hash embeddings are measured: the model should avoid forgetting for recurring
users/movies and adapt for new users/movies. Prediction error is evaluated by mean absolute error.

Results. The results of all compared methods are shown in Fig. 5 and the memory efficiency of PHE
is reported in the last column of Tab. 2. The curves in Fig. 5 are smoothed with a 1-D Gaussian
filter. The initial performance gap at Day 0 is an artifact of smoothing, in fact, all methods have
similar performance on Day 0 (see Fig. 7 in Supp. E.5). It shows that our method PHE outperforms
all deterministic hash embedding baselines (Fast/Medium/SlowAda) that have various forgetting-
adaptation trade-offs. Similarly with the Retail dataset, PHE also significantly outperforms the
collision-free P-EE baseline. This is remarkable considering PHE consumes only 4% of the memory
of P-EE (Tab. 2). EE, the deterministic counterpart of P-EE, has worse performance, showing
Bayesian online learning effectively mitigates overfitting. 6

4.5 ADDITIONAL RESULTS

We conducted additional experiments and presented the results in Supp. E.6. We showcased additional
results beside Fig. 1 in Supp. E.6.1; demonstrated the memory and hardware efficiency of PHE in
Supp. E.6.2 (also see Tab. 2); analyzed adaptation and forgetting separately in Supp. E.6.3; inves-
tigated classification and sequence modeling in classical continual learning setup in Supp. E.6.4;
performed ablation studies on the hash size B and number of hash functions K in Supp. E.6.5.

5 CONCLUSIONS

In this work we unveiled the ineffectiveness of hash embedding in learning TTD with dynamic
vocabulary. We addressed the problem of modeling TTD and presented probabilistic hash embeddings
(PHE). We showcased PHE is a plug-in module for multiple ML models, allowing those models
to learn TTD-streams. We derive a scalable inference algorithm to simultaneously learn the model
parameters and infer the latent embeddings. Through Bayesian online learning, the model is able
to adapt to new vocabularies without additional hyperparameters in a changing environment. We
benchmark PHE on large-scale public datasets with TTD demonstrating the efficacy of PHE.

6An interesting observation: It turns out MovieLens made two major changes in their movie rating system
around 2003 and 2014 (website), which is reflected in our online learning results – two sharp changes in Fig. 5.
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We attached our codebase in code.zip for reproducibility.

A EVIDENCE LOWER BOUNDS

We denote the model parameters relevant to the generating process by θ := {θz, θy}. To learn the
model parameters, we maximize the marginal likelihood p(y≤N |x≤N ,hs≤N

; θ). Directly optimizing
this marginal likelihood with the Expectation-Maximization (EM) algorithm is intractable. Therefore,
we jointly learn the model parameters θ and infer the variational posteriors of latent variables
{E, z≤N} using the variational EM algorithm. That is, we maximize the evidence lower bound
(ELBO) L(θ, λ, ϕ) with respect to model parameters θ and variational parameters {λ, ϕ}.

A.1 DERIVATION OF L(θ, λ, ϕ)

Denote all the history {x≤i,y≤i, Ehs≤i
} until row i by Oi. We find the optimal parameters by

maximizing the marginal evidence p(y≤N |x≤N ,hs≤N
; θ). We take the logarithm of marginal

evidence

log p(y≤N |x≤N ,hs≤N
; θ) (6)

= log

∫
p(y≤N , E|x≤N ,hs≤N

; θ)

qλ(E)
qλ(E)dE (7)

≥ Eqλ(E)[log p(y≤N , E|x≤N ,hs≤N
; θ)− log qλ(E)] (8)

= Eqλ(E)[log p(y≤N |x≤N , Ehs≤N
; θ)]−DKL(qλ(E)|p(E)) (9)

where the inequality follows from Jensen’s inequality. Next, we apply the same trick for another time
to find a lower bound of Eq. (9). Specifically, we will find a tractable lower bound to the conditional
likelihood log p(y≤N |x≤N , Ehs≤N

; θ).

In the filtering setup, we note that log p(y≤N |x≤N , Ehs≤N
; θ) =

∑N
i=1 log p(yi|y<i,x≤i, Ehs≤i

; θ).
If we can find a lower bound for each log p(yi|y<i,x≤i, Ehs≤i

; θ), then the summation of the lower
bounds is also a valid lower bound for log p(y≤N |x≤N , Ehs≤N

; θ).

log p(yi|y<i,x≤i, Ehs≤i
; θ) (10)

= log

∫ p(yi, zi|y<i,x≤i, Ehs≤i
; θ)

qϕ(zi|Oi)
qϕ(zi|Oi)dzi (11)

≥ Eqϕ(zi|Oi)[log p(yi|y<i,x≤i, Ehs≤i
, zi; θ)]−DKL(qϕ(zi|Oi)|p(zi|Oi−1)) (12)

≥ Eqϕ(zi|Oi)[log p(yi|y<i,x≤i, Ehs≤i
, zi; θ)]− Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz))

(13)

Eq. (12) to Eq. (13) follows from the following inequality:

DKL(qϕ(zi|Oi)|p(zi|Oi−1)) ≤ Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz)) (14)

because

DKL(qϕ(zi|Oi)|p(zi|Oi−1)) (15)
= Eqϕ(zi|Oi)[log qϕ(zi|Oi)− log p(zi|Oi−1)] (16)

= Eqϕ(zi|Oi)

[
log qϕ(zi|Oi)− logEq(zi−1|Oi−1)[p(zi|zi−1; θz)]

]
(17)

≤ Eqϕ(zi|Oi)

[
log qϕ(zi|Oi)− Eq(zi−1|Oi−1)[log p(zi|zi−1; θz)]

]
(18)

= Eq(zi−1|Oi−1)qϕ(zi|Oi)[log qϕ(zi|Oi)− log p(zi|zi−1; θz)] (19)

= Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz)) (20)

where Eq. (17) takes the Kalman filter prediction step.
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Then Eq. (13) is the conditional ELBO Li(θ, ϕ|E), i.e., Eq. (4). Plug Eq. (13) in Eq. (9), we have

Eqλ(E)[log p(y≤N |x≤N , Ehs≤N
; θ)]−DKL(qλ(E)|p(E)) (21)

≥ Eqλ(E)

[
N∑
i=1

Li(θ, ϕ|E)

]
−DKL(qλ(E)|p(E)) (22)

which is our objective function L(θ, ϕ, λ) (Eq. (3)).

A.2 L(θ, ϕ, λ) AS A VARIATIONAL EM ALGORITHM

Why is maximizing L(θ, ϕ, λ) a meaningful objective as a variational expectation-maximization
algorithm? We start with a general latent variable model pθ(x, z) = p(z)pθ(x|z) and infer the
posterior pθ(z|x).

DKL(qλ(z)|pθ(z|x))
:= Eqλ(z)[log qλ(z)− log pθ(z|x)]
= Eqλ(z)[log qλ(z)− log pθ(x, z) + log pθ(x)]

= − L(λ, θ) + log pθ(x)

Re-ordering the equation yields

L(λ, θ) = log pθ(x)−DKL(qλ(z)|pθ(z|x)),

which shows that maximizing the ELBO L(λ, θ) is equivalent to both maximizing the marginal
likelihood pθ(x) and minimizing the inference gap DKL(qλ(z)|pθ(z|x)).
Then, with the same procedure as above, two facts follow: 1) maximizing Li(θ, ϕ|E) is
equivalent to maximizing the conditional likelihood log p(yi|y<i,x≤i, Ehs≤i

; θ) and minimiz-
ing the inference gap DKL(qϕ(zi|Oi)|p(zi|Oi; θ)) simultaneously; 2) maximizing Eq. (9)
is equivalent to maximizing log p(y≤N |x≤N ,hs≤N

; θ) and minimizing the inference gap
DKL(qλ(E)|p(E|y≤N ,x≤N ,hs≤N

; θ)) simultaneously. Since maximizing L(θ, ϕ, λ) optimizes
both Li(θ, ϕ|E) and Eq. (9), we conclude our objective function will optimize all the mentioned
aspects above.

A.3 DERIVATION OF L(1)(λ; θ∗, λ∗
0, ϕ

∗)

Derivation of Eq. (5). We only adapt the probabilistic hash embedding E. Similar to Bayesian online
learning where the previous posterior is used as the new prior, we use the previous approximate
posterior qλ∗

0
(E) as the new prior for dataset D1 and fix all the other model parameters θ∗, ϕ∗. The

derivation is the same as the one for Eq. (9) except we replace p(E) with qλ∗
0
(E). We only update λ

to acquire the new posterior in the optimization.

B RELATED WORK

D0 D1 D2 D3 D4

Changing vocabulary " " "

Timestamped " " "

Multi-task "

Table 3: Tabular datasets can be categorized into five categories (D0−D4) based on combinations
of three characteristics, i.e., whether their categorical feature vocabulary dynamically expands over
time, whether they contain a specific timestamp column, and whether their nature is multi-task. For
example, datasets without all these characteristics are considered static (D0). While existing works
mainly consider D0 and D1, PHE fits all dataset types (D0−D4) and specifically highlights the
unique applicability for dynamic and temporal tabular data types (D1−D4).
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We extend the discussion in Sec. 2 and survey more related works. In a nutshell, our PHE applies to
all tabular data types in Tab. 3 (i.e., D0−D4) while existing works are targeted to D0 or D1.

Our work deals with multi-task dynamic temporal tabular data. Our method has two major compo-
nents: the probabilistic hash embeddings that learn categorical feature representations and the latent
variable model for multi-task temporal tabular data. Next, we discuss the main related works.

Hash features. PHE is motivated by hashing tricks. Weinberger et al. (2009) proposed to use
one hash function to map categorical features to a one-hot hash embedding of length B, which is
the bucket size. The drawback is the embedding size is too large because there is only one hash
function and that requires a large bucket size B to get rid of collision. Bloom Embeddings (Serrà and
Karatzoglou, 2017) is based on Bloom filters and achieves efficient computation while maintaining a
compact model size. Other previous work on using hashing tricks to generate features focuses on
using a smaller number of embedding-related parameters to achieve the same performance as using
one-hot encoding. Hash embeddings or unified embeddings (Tito Svenstrup et al., 2017; Cheng et al.,
2023) use a shared embedding table for all categorical features and multiple hashing functions as
indices of the embedding table, reducing the possibility of collision. Hash embeddings are designed
for stationary vocabularies, emphasizing small parameter sizes. We generalize hash embeddings to
a probabilistic version that enables us to learn changing vocabularies via Bayesian online learning.
Composition Embeddings (Shi et al., 2020a) use multiple hash embedding tables; in contrast, PHE
uses one shared embedding table, further reducing the memory cost. Wolpertinger (Dulac-Arnold
et al., 2015) and Deep Hash embedding (Kang et al., 2021) use a deep neural network to encode
features into real-valued embeddings. In a changing vocabulary setup, the drawback is the need to
modify the whole neural network to incorporate new string features, even though there is only one
new feature. Different from previous works, our method emphasizes the usage of hash embeddings
in dynamic tabular data with changing vocabularies. In the meantime, the model architecture remains
stable, and only partial parameter updates are required.

Generative models for tabular data. Recent research on generative models of non-temporal
tabular data focuses on modeling multi-modality or heterogeneity but overlooks the sustainable
representations for dynamically expanded vocabularies. These works rely on one-hot encoding
for categorical features. Xu et al. (2019) learns VAE and GAN-based tabular data generator while
conditioning on discrete categorical features. Later works rely on GAN to design tabular data
generators (Liu et al., 2023b; Zhao et al., 2021). Kotelnikov et al. (2023) extend diffusion models to
tabular data.

Temporal tabular data models. To our knowledge, there isn’t a sequence model designed for
multi-task temporal tabular data, although some previous works have the potential to extend to tabular
data. PHE extends Deep Kalman Filters (Krishnan et al., 2015) to be applicable for multi-task,
temporal, and dynamic tabular data, while the original Deep Kalman Filters do not explicitly consider
the multi-task and dynamic vocabulary property of the tabular data. Girin et al. (2021) survey a list of
latent variable sequence models that are possible to be extended to tabular data, although most of
them are designed for speech or video data.

Others. The setup of learning dynamic tabular data with changing vocabularies shares the similarity
to continual learning and Bayesian online learning (Kirkpatrick et al., 2017; Wang et al., 2023; Zenke
et al., 2017; Nguyen et al., 2018; Li et al., 2021), but the difference is our formulation is a novel
dictionary- or vocabulary-incremental setup for tabular data. Besides, Kireev et al. (2023) learn
transferable robust embeddings for categorical features. Yin et al. (2020); Iida et al. (2021) design
objective functions for representation learning on tabular data using large-language models. Arik and
Pfister (2021) and Huang et al. (2020) use the one-hot encoder to learn categorical feature embeddings
before input to a transformer module.

Discussions on alternative designs and shortcomings. We acknowledge that alternative solutions
may exist, e.g., encoding string features with a character-level recurrent neural network or using a
popularity-based token-level one-hot encoder. In our considered aspects, for example, long-tailed
data distributions are commonly seen in applications, probabilistic hash embedding stands out with
simplility and continual learning capability. Hash features (Weinberger et al., 2009; Cheng et al.,
2023) is memory inefficient. Incremental one-hot embeddings are also inefficient for dynamic tabular
data, because the model parameters expand unbounded, resulting in storage inefficient and slow
computation. Deep hash embedding (Kang et al., 2021) and other methods in the same fashion are
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Table 4: A tabular data snippet from the Retail dataset. The columns are either categorical, numeric,
or timestamp. The rows corresponds to sale records. StockCode stores product ID. Quantity
stores the sales. “?” denotes missing values. The task is to predict the sales for each product.

StockCode Date UnitPrice CustomerID Country Quantity

85123A 2010-12-01 08:26:00 2.55 17850 United Kingdom 6
84406B 2010-12-01 08:26:00 2.75 17850 United Kingdom 6
21724 2010-12-01 08:45:00 0.85 12583 France 12
21791 2010-12-01 10:03:00 1.25 12431 Australia 12
22139 2010-12-01 11:52:00 0.55 ? United Kingdom 56

computationally inefficient. One needs to adapt the whole neural network even when adding one new
category. In contrast, one only needs to adapt the corresponding embeddings in probabilistic hash
embedding.

Handling hashing value collisions. Collision of hash values could happen among popular, important
categories. To address this issue, we can select the desired hash functions that avoid important
collisions before applying the hash functions. In addition, users come and go fast, and collisions may
become unimportant over time.

C AN EXAMPLE TTD

We will explain the concepts related to this work through an example tabular data snippet (Tab. 4).
Tabular data contains two dimensions–rows and columns. Any stored information can be located
by specifying the row and column indices. We can classify columns into three types: categorical,
numeric, and timestamp. A categorical column represents a discrete nominal feature, usually recorded
in text strings and therefore hashable; A numeric column corresponds to a numeric feature, usually
represented by float or integer values; and a timestamp column records the timestamp when a row is
created. For instance, in Tab. 4, there are six columns, among which StockCode, CustomerID,
and Country are categorical columns, UnitPrice and Quantity are numeric columns, and
Date is a timestamp column. Some columns are of particular interest and one may want to predict
those based on others. We refer to those columns as predicted columns. Predicted columns can be
either categorical or numeric, depending on task requirements. Rows with similar timestamps usually
exhibit correlations. But these correlations may change over time.

Some tabular data is multi-task-oriented. For example, in Tab. 4, one may be interested in predicting
future selling quantity based on historical transactions for each product. In this case, different product
IDs in StockCode suggest different tasks. We refer to the categorical columns consisting of task
identifiers as global columns and other categorical columns as local columns. We express this type of
tabular data multi-task. Each task may have specific column relationships.

All unique items in a categorical column constitute its vocabulary. When new items join into the
column, we say it has a changing or dynamic vocabulary. 7 When any changes happen in the above
three aspects for a table, we say it is temporal tabular data (TTD).

D A SIMPLIFIED MODEL TO UNDERSTAND WHY PHE IS SUPERIOR TO DHE

In this section, we consider a simple linear Gaussian model that we can analyze in closed form to
illustrate why having deterministic hash embeddings that are updated in an online fashion is prone to
forgetting. The crux of our calculations is the fact that distinct categorical items share representations
due to partial hash collisions. Thus, when trained online, the shared features shows a bias to work
well for the categorical item that was most recently seen, rather than be optimized for the overall data
distribution seen so far, leading to the forgetting behaviour. However, we will show that Bayesian
hash embedding does not suffer this, because it is well known that if exact online posterior can be

7We assume the tabular structure is fixed, i.e., the number of columns, column names, and types are fixed.
We also assume categorical features are single-valued. But our work is compatible with multi-valued features.
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computed (which in our linear Gaussian setup is easy to do), the online posterior is identical to the
offline one.8

A simple linear-Gaussian model

Consider a simple situation of regression with input variable X ∈ {0, 1} taking one of two categorical
values and the target Y ∈ R is real-valued. The conditional distribution of Y is a gaussian distribution
with the mean being 1 when X = 0 and mean being −1 when X = 1. We further assume that the
variance of Y is σ2 ≈ 0 is tiny, In notation terms, the true distribution of Y |X = 0 ∼ N (1, σ2),
while the distribution of Y |X = 1 ∼ N (−1, σ2), where σ is a fixed and small. We do not specify
the distribution of the covariate X just yet and defer that to the sequel.

The predictive model based on hash embedding

Given labeled data (X,Y ), we aim to learn a predictor f(X) that predicts Y given X . To build the
predictor we use a simple hash embedding model. Specifically, we assume that the predictor f(·) is
parameterized by a 3× 1 embedding matrix E. Although technically this is a vector, we still denote it
as an ‘embedding matrix’ to be consistent with the rest of the exposition. Denote by e(0), e(1) and e(2)

as the three rows of this matrix which are the ‘embedding vectors’ of the three hash values. Thus, in
the notation of our model, this embedding matrix is made of B = 3 buckets with the dimension d = 1.
The model f(·) uses two hash functions hi(·) : {0, 1} → {0, 1, 2, } to map the categorical variable
X into a hash value. Without loss of generality, we assume that h1(0) = 0, h2(0) = 1, h1(1) =
1, h2(1) = 2. Given this, the predictive model f(X) := e(h1(X)) + e(h2(X)) is a simple linear sum
of the two hash embedding of the input based on the two hash functions h1(·) and h2(·). This is
a simple example of the general class of models where the predictor Y is a linear function of the
embedding vectors of the categorical input X computed using the different hash functions. Although
simple, this example illustrates the phenomenon that emerges of learning categorical variables in an
online fashion since the embedding vector e(1) influences both X = 0 through hash function h1(·)
and X = 1 through hash function h2(·).
An online interaction setting

We consider the following online prediction protocol. At each time t = 1, 2, · · · , the environment
samples Xt from a distribution over {0, 1} and produces to the predictor. The predictor then predicts
Ŷt := ft(Xt) and is then shown the true label Y ∈ R. The predictor incurs loss lt := 1

2 (Yt − Ŷt)
2

and uses the observed Yt to update the predictor to ft+1(·).
The only learnable parameters of the predictor is the embedding matrix E. Thus the predictor at
time t denoted by ft(·) is parametrized by the state of the embedding matrix Et with its three rows
denoted by e

(i)
t for i ∈ {0, 1, 2}.

Update the hash embedding matrix through Online Gradient Descent (OGD)

In order to demonstrate that the hash embeddings can lead to forgetting, we will assume that they
are updated through standard online gradient descent. Observe that at time t, if Xt = 0, then
Ŷt = e

(0)
t + e

(1)
t . The instantaneous loss at time t is given by lt =

1
2 (Ŷt − Yt)

2. Thus, the gradients
∂lt

∂e(0)
= ∂lt

∂e(1)
= (e

(0)
t + e

(1)
t − Yt), if Xt = 0. Thus, assuming that the embedding matrix Et is

updated online using OGD at a fixed learning rate η ∈ R leads to the following update equations

e
(0)
t+1 =

{
e
(0)
t − η((e

(0)
t + e

(1)
t − Yt)), Xt = 0

e
(0)
t , Xt = 1.

Similarly the update equations for the other two embedding vectors are as follows.

e
(1)
t+1 =

{
e
(1)
t − η((e

(0)
t + e

(1)
t − Yt)) Xt = 0

e
(1)
t − η((e

(1)
t + e

(2)
t − Yt)) Xt = 1

8Note that this section has a slightly different notation from the main text, but the content is self-contained.
Readers can also match the notation by noting X := m and the input variable value has 0 := m0 and 1 := m1.
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e
(2)
t+1 =

{
e
(2)
t Xt = 0

e
(2)
t − η((e

(1)
t + e

(2)
t − Yt)) Xt = 1

These update equations for the embedding shows that e(1) which is shared for both X = 0 and X = 1
gets updated all the time, while e(0) is only updated if X = 0 and similarly e(1) is only updated if
X = 1.

A non-stationary distribution for the co-variates X

Consider a setting where the first N inputs consists of Xt = 0 for all t ∈ {1, · · · , N}, followed by
another N inputs consisting of Xt = 1 for all t ∈ {N + 1, · · · , 2N}. In these discussions we will
assume N is large enough and the learning rate η is appropriately tuned to make the variance of the
predictor to be small. If all the 2N samples were shown to a training algorithm, it could have (near)
perfectly estimated the embedding matrix Ê, i.e., for a X that is sampled from {0, 1} that is equally
likely (matching the training data distribution of equal number of 0 and 1), the expected excess
loss will be arbitrarily small (assuming N is sufficiently large). We will show in the calculations
below that if instead the embedding matrix was learnt using OGD, even if N is large enough, the
learnt model at the end will have a constant excess risk when the test input X is sampled with equal
probability among {0, 1}.

Analyzing the OGD update equations

To see this, we make some simplifying assumptions. First is that σ = 0, i.e., conditioned on X ,
Y is deterministic. Second is a symmetric starting point of e(i)0 = 0 for all i ∈ {0, 1, 2}. It is
easy to observe that both of these assumptions do not change the the observation we will make, but
makes the exposition easier. Thus, at the end of the first N samples, we will have e

(2)
N+1 = 0 and

e
(0)
N+1 = e

(1)
N+1 ≈ 1/2. This follows as N is large and the noise σ is 0, thus leading OGD to converge

to a local minima of the loss function. Any embedding matrix with e(0)+e(1) = 1 is a local-minimum
of the loss function and thus at the end of time N + 1, OGD will result in e

(0)
N+1 + e

(1)
N+1 ≈ 1. Since

the initialization and the loss function is symmetric in the arguements e(0)t = e
(1)
t will hold for all

t ≤ N .

At time t = N + 1, the N observed samples corresponds to X = 0. Thus, the prediction error for
X = 0 by this learnt model f̂N+1(X) is small, i.e., the excess risk (fN+1(X)− 1)2 ≈ 0.

Now consider the times t = N +1 till t = 2N . During this period, the gradients will not impact e(0),
i.e., e(0)N+1 = e

(0)
2N+1 ≈ 1/2. However, e(2) and e(3) are no longer symmetric. But one can work out

the recursion for their evolution since the gradients are the same.

In particular, for any time t ∈ {N +1, · · · , 2N}, the observed Xt = 1. Thus, the gradient of e(1) and
e(2) at all times t ∈ {N +1, · · · , 2N} is the equal to (e

(1)
t + e

(2)
t +1). Thus, under the OGD update

equations, for all times t ∈ {N +1, · · · , 2N}, the equality e
(1)
t+1−e

(2)
t+1 = e

(1)
t −e

(2)
t , holds. Since at

time N +1, we have e(1)N+1 ≈ 1/2 and e
(2)
N+1 = 0, we have that e(1)2N+1 − e

(2)
2N+1 ≈ 1/2. On the other

hand, if N is large, we know that OGD will converge to a local minima, i.e., e(1)2N+1 + e
(2)
2N+1 ≈ −1.

These two equations in the variables e(1)2N+1, e
(2)
2N+1 gives e(1)2N+1 ≈ −1/4 and e

(2)
2N+1 ≈ −3/4.

Concluding that the updates leads to forgetting the representation for X = 0

Thus at the end at time 2N + 1, after having seen the first N samples of X = 0 and the last N
samples of X = 1, the predictor is such that f̂2N+1(0) ≈ 1/4 and f̂2N+1(1) ≈ −1. However, note
that the true label when X = 0 is 1 while when X = 1 is −1. Thus, the predictor f̂2N+1(·) has near
zero prediction error when X = 1. However, when X = 0, the loss given by (f̂2N+1(0)− Y )2 ≈
(1/4− 1)2 ≈ 9/16 is a constant.

This shows the discrepancy between a model trained offline using all the 2N samples and the model
trained online where the first N samples all correspond to X = 0 and the last N samples correspond
to X = 1. The offline model will converge to a local minima in which the prediction error for both
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X = 0 and X = 1 will be small, while the online model converges to a solution where the prediction
error for the categorical variable that was not seen recently is high.

Arguing that online Bayesian model does not lead to forgetting

A Bayesian method to ‘learn’ the embedding matrix is to posit a prior distribution p(E) for the
emebedding matrix and then given the data X compute the posterior distribution p(E|X). We will
say that the Bayesian learning does not forget, if the posterior distribution computed based on all the
2N samples (X1, Y1), · · · , (X2N , Y2N ) shown up-front matches the posterior distribution computed
in an online fashion. However, from classical results in online Bayesian learning, it is well known that
if one can compute the exact posterior p(E|X1, · · · , Xt) at all times t, then the posterior at time 2N
is identical to the one that an offline algorithm would have computed had it seen all the 2N samples
at once. Thus, if the exact posterior can be computed at each time, then there is no forgetting in the
Bayesian mechanism.

Thus in this section, we showed through a simple linear-gaussian model, that online updating of hash
embedding matrix leads to forgetting while a bayesian updating of the embedding matrix does not
lead to forgetting. In order to demonstrate this, we defined forgetting to not occur if the model learnt
at the end of seeing each online sample one by one is close to the model learnt had all the samples
been available up-front. Further, we show in experiments that this insight holds even in more complex
scenarios where exact Bayesian posterior cannot be computed, but only an approximation through
variational inference can be done.

E EXPERIMENTAL DETAILS

E.1 AN EFFICIENT EMBEDDING FETCH SCHEMES

When implementing the hash embedding fetching module, there are two available schemes: scheme
one is first to sample a whole hash table E and then fetch the corresponding embeddings Ehs (as
Eq. (23)); scheme two is first to fetch the distribution p(Ehs) and then sample Ehs (as Eq. (24)).

p(x|s) = p(x|hs) = Ep(E)[p(x|E,hs)] ≈ p(x|E,hs) (23)

= Ep(Ehs )
[p(x|Ehs)] ≈ p(x|Ehs) (24)

The two schemes lead to the same results, but scheme two is more memory-efficient as it does not
need to sample the whole embedding table. Thus in practice, we apply Eq. (24).

E.2 HARDWARE INFORMATION

We train and test our model on GPUs (RTX 5000) and use the deep learning framework PyTorch to
enable efficient stochastic backpropagation. In all supervised learning experiments, the total elapsed
wall time (training and testing) for PHE is less than half an hour, and the finetune baseline runs
slightly faster. In the sequence modeling experiments, PHE runs about one hour since Retail is a
large dataset and has over 500k records. In the recommendation experiments, it takes about two hours
for all methods.

E.3 DETAILS FOR CLASSIFICATION IN TTD

The four public datasets all can be found online: Adult9, Bank10, Mushroom11, and Covertype12.
Specifically, Adult has 14 columns and 48,842 rows containing demographic information. The task is
to predict whether or not a person makes over $50K a year; Bank has 16 columns and 45,211 rows to
predict if a client will subscribe to a term deposit; In Mushroom, of 22 discrete columns and 8,124
rows, the goal is to predict whether a mushroom is poisonous; Covertype, involving 12 columns and
581,012 rows, is to predict which forest cover type a pixel in a satellite image belongs to.

9https://archive.ics.uci.edu/dataset/2/adult
10https://archive.ics.uci.edu/dataset/222/bank+marketing
11https://archive.ics.uci.edu/dataset/73/mushroomWe also follow the recommendation

and only use odor as the feature.
12https://archive.ics.uci.edu/dataset/31/covertype
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Regarding model architecture, we concatenate all category embeddings as well as continuous features
as input to a deterministic one-layer neural network, followed by a softmax activation function. For
PHE and P-EE, we stress that only embeddings are probabilistic and neural network weights are
deterministic. We use negative cross entropy as the objective function assuming the targets follow
categorical distributions.

We apply the following criterion when selecting a categorical column to have a dynamic vocabulary.
We select the column to be dynamic if the weights of the column features have large scales when
fitting a logistic regression model on the outputs. Specifically, we first use one-hot encodings to
represent categorical items, and then fit a logistic regression model on the targeted outcomes. Finally,
we select a column to be incremental if its corresponding categorical features have large weights
because the weights in linear regression models can be interpreted as feature importance. Following
this procedure, we select education, poutcome, odor, and wilderness column for the four
datasets respectively. See detailed group information in Fig. 9.

For the continual learning setup in Supp. E.6.4, we first randomly and evenly split the categorical
features of the selected column into disjoint groups, then partition the original dataset according to
the groups. Based on the column dictionary size, we split Adult/Bank/Mushroom/Covertype into
five/four/four/four disjoint groups. We randomly split each group into training and testing subsets
where the training subset takes two-thirds of the total data and the testing subset takes the remaining
one-third. We sequentially fit the prediction model to each non-overlapped group. The goal is to have
high accuracy for all groups after sequential updates. Therefore, after fitting the model on the current
group’s training data, we report the average accuracy on all previous groups’ test data.

Evidence lower bound. We first present the objective function of the latent variable supervised
learning model (Fig. 2(b)). Similarly to Eq. (9), we can derive the objective function as the evidence
lower bound of

∑N
i=1 log p(yi|xi,hsi ; θ):

L(θ, λ) = Eqλ(E)

[
N∑
i=1

log p(yi|xi, Ehsi
; θ)

]
−DKL(qλ(E)|p(E)) (25)

For online adaptation to dataset D1 of size N1, we fix the classifier parameters and only adapt the hash
embedding table E. Denote the pre-trained parameters by θ∗ and λ∗

0. Treat the previous posterior
qλ∗

0
(E) as the current prior, we can write down the objective function

L(1)(λ; θ∗, λ∗
0) = Eqλ(E)

[
N1∑
i=1

log p(yi|xi, Ehsi
; θ∗)

]
−DKL(qλ(E)|qλ∗

0
(E)) (26)

Implementation details and hyperparameters. We implement the aggregation function g as a
weighted sum where the weights are parameters of g. Specifically, we have another random table
W ∈ RP×K whose distribution is p(W ) and a hash function h(W ) : S → N<P such that h(W )

s

indexes the rows of W , noted by W
h
(W )
s

∈ RK . W
h
(W )
s

serves as the weights for the K hash

embeddings (see Fig. 2a). Then g(E
h
(1)
s
, . . . , E

h
(K)
s

) =
∑K

k=1 W
k

h
(W )
s

E
h
(k)
s

where W k

h
(W )
s

is the kth
value of vector W

h
(W )
s

. During inference, we infer the posteriors of both E and W .

For all tabular datasets except Mushroom, we set B = 7,K = 3, d = 20, P = 11 (whose supported
dictionary size is P × BK = 3773, which is ten times larger than the vocabulary size of the
Adult dataset). We tried these values on Adult when setting the group size to be one (i.e., the
static supervised learning setup) and found the resulting accuracy (about 84%) is comparable to
the public results on this dataset13. We then use this same parameter setup on all other tabular
data supervised learning experiments. For Mushroom, we use a much smaller model size and set
B = 5,K = 3, d = 5, P = 1, because only one feature is used in the experiment.

Optimization. We use Adam stochastic optimization with a learning rate of 0.01 and a minibatch
size of 128 in all experiments for both our method and baselines. For other hyperparameters of Adam,
we apply the default values recommended in the PyTorch framework. When selecting these values,
we fixed the minibatch size 128 and searched the learning rate (0.001, 0.005, 0.01, 0.05, 0.1) on the

13See the baseline model performance in https://archive.ics.uci.edu/dataset/2/adult
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Figure 6: Results of online classification on all tabular data.

Adult dataset. We found the learning rate 0.01 leads to relatively fast and stable convergence. Then
we apply the same values on all other datasets. For the first group training, we train PHE 100 epochs;
for the remaining groups, we train PHE 15 epochs as we only need to update the hash embedding
table E. Note that on every group, we train PHE until convergence.

Evaluation metric. We use accuracy as an evaluation metric. As we sequentially adapt the model on
each vocabulary group’s training set and test the model on the test set, we have running accuracies on
each group.

Additional results. We add all datasets’ online learning results in Fig. 6.

E.4 DETAILS FOR MULTI-TASK SEQUENCE MODELING IN TTD

Datasets. We use the Retail dataset14 as a multi-task TTD to demonstrate PHE. The dataset
involves over 4,000 products indicated by StockCode column and the corresponding sale quantities
represented by quantity column with invoice timestamps. We treat quantity as a time series
and then track quantity for all 4,000 selling goods over time in a filtering setup. Prediction for
each piece of product is regarded as one task and there are over 4,000 tasks in total. The task is to
predict the sales quantity for the product shown in each invoice record given the product’s previous
sales.

For the continual learning setting in Supp. E.6.4, we treat all transactions as occurring at even time
intervals. For each task, we randomly split the training and testing set with a ratio of 2:1. To get
multi-tasks in a dynamic setting, we treat StockCode as the task identifier and evenly partition the
products in StockCode into ten disjoint groups where each group involves about 400 goods, i.e.,
400 new tasks. Correspondingly, the original dataset is converted into a task-incremental dataset
where each task refers to predicting sale quantities (i.e., taking Quantity column values as y) for
one product, indicated by StockCode column. We normalize the UnitPrice column into the
range [0, 1] and do not use the Description column. We also drop cancellation transactions that
have Quantity values smaller than zero. Therefore, we refer to StockCode as u, Quantity as
y, UnitPrice as x, {Country, CustomerId} as m, and InvoiceDate as t.

Evidence lower bound. We assume the sales quantity follows Poisson distribution, consequently
using the Poisson likelihood. As mentioned in the main paper, we use Eq. (3) to fit the first task and
use Eq. (5) to fit the remaining tasks.

Implementation details and hyperparameters. We also implement a weighted aggregation function
g as above in the supervised learning setup. We did not try out different hyperparameter settings
and directly set B = 109,K = 3, d = 20, P = 109 as these values can already support a large
vocabulary (of size P ×BK). We apply the same values to both PHE and the baselines.

14http://archive.ics.uci.edu/dataset/352/online+retail
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Figure 7: First ten day results of data-streaming movie recommendation and sales quantity sequence
modeling.

Optimization. We use Adam stochastic optimization with the same learning rate of 0.005 and the
same minibatch size of 128 as in supervised learning experiments. For other hyperparameters of
Adam, we apply the default values recommended in the PyTorch framework. For the first task training,
we train PHE 15 epochs; for the remaining tasks, we train PHE 5 epochs. Note that on every task,
the epochs used are enough to train PHE until convergence.

Evaluation metric. We also evaluate the performance by the cumulative averages of errors. For each
product, we use the first nine observations to predict the 10th observation and measure the absolute
error on the 10th observation. Then, the average of all such absolute errors is the performance of this
product. Since one group contains about 4,000 products, we further average each product’s perfor-
mance as the group’s performance. Specifically, we have a prediction model that has a Poisson like-
lihood p(yt|yt−9:t−1,xt−9:t,hmt−9:t

,hu). We predict ŷt = E[yt|yt−9:t−1,xt−9:t,hmt−9:t
,hu] as

the mean value and then measure the absolute error between the ground-truth value |yt − ŷt|.
For the continual learning setup, after learning group t, we can evaluate the performance of all
previous and current groups, denoted by Rt,≤t. We refer to the cumulative mean absolute error
R̄t =

∑t
a=1 Rt,a/t at group t as the performance at t. We report R̄t as a function of group numbers

in Fig. 11. We report R̄T after learning the final group T in Tab. 5.

Additional results. Because we smoothed the results with a 1-D Gaussian filter in the main paper,
we provide the first ten days’ result without smoothing in Fig. 7.

E.5 DETAILS FOR RECOMMENDATION IN TTD

Beside the first five years, this up-to-date and largest MovieLens dataset 15 have 8688 days (time
steps) with possibly no records on some days. Note after pre-training, all model parameters are
fixed except the hash embeddings. Regarding the likelihood function, we assume the rating follows
Gaussian distribution.

We randomly split the data into a validation (20%) and a test set (80%). We searched the learning
rate, batch size, neural network size, and likelihood scale on the validation set and reported final
results on the test set. PHE, EE, and FastAda train the hash embeddings for 5 epochs per time step
while MediumAda trains 2 epochs and SlowAda trains 1 epoch.

We also use the mean absolute error as the evaluation metric.

E.6 ADDITIONAL RESULTS

E.6.1 MORE MOTIVATION EXAMPLES

We report additional results in Fig. 8 as a complement to Fig. 1 in the main paper. Fig. 8 provides
more evidence for the motivation of our work. For tabular data in a dynamic setting, not including
the newly created categorical feature values in the prediction model will lead to a performance drop.
Therefore, an efficient way to incorporate the new categorical features is necessary to maintain the
efficacy of a prediction model. The “After update” performance in the plots demonstrates PHE is
desirable for adapting to the new features. The splitting details are in Supps. E.3 and E.4 and Fig. 9.

15https://files.grouplens.org/datasets/movielens/ml-32m.zip
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Figure 8: Adult dataset is randomly split into disjoint groups based on the education column.
Groups arrive sequentially. We report results before and after the updates on the hash embeddings for
each group to motivate the need to incorporate new groups into the model. Results are averaged on
five independent runs with different random parameter initializations.
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Figure 9: Group information for continual classification tasks.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 10: Comparision of online learning methods’ adaptation and forgetting in a streaming online
setup. Our PHE achieves similar performance with the collision-free P-EE on both metrics. Notably,
SlowAda forgets the least but is slow in adaptation; FastAda is in the opposite regime.

E.6.2 MEMORY EFFICIENCY

Memory efficiency of PHE can be seen from the number of parameters in the embedding module,
which we summarized for both PHE and P-EE in Tab. 2. Note that P-EE sets the performance upper
bound but its size scales linearly with the vocabulary size. The fact that PHE on all datasets achieves
the same performance as P-EE illustrates PHE’s impressive memory efficiency, especially considering
PHE only consumes as low as 2% memory of P-EE. Besides, being a unified embedding where all
categorical columns share the same embedding table (Coleman et al., 2024), PHE is compatible with
modern hardware and can benefit from the hardware acceleration.

We multiply each number by two because every parameter has its mean and variance. 20 is due
to each embedding has 20 dimensions. For PHE, refer to implementation details (Supp. E) for the
number of parameters (B × d+ P ×K). We compute the P-EE parameter size by V × d where V is
the vocabulary size.

E.6.3 ADAPTATION AND FORGETTING ANALYSIS

Adaptation and forgetting analysis. We designed experiments to specifically measure the adaptation
to new data and forgetting of old data. We split the data into two disjoint groups based on a random
partition of one column’s vocabulary. The model was initialized using the first group and online
updated on the second group whose items are unseen in initialization. We let the data arrive one at a
time. Adaptation is measured by the cumulative predictive accuracy of new datum and the forgetting
by the accuracy of the first group’s test data. Results in Fig. 10 show that our PHE has almost the best
adaptation and forgetting performance on all four datasets. The P-EE while does not suffer forgetting,
its adaptation to new categories is slow as each new embedding is initialized at random.

Regarding baselines, SlowAda uses a small learning rate (1e-4); MediumAda uses a medium learning
rate (1e-3); FastAda uses a large learning rate (1e-2).

In Fig. 10, we compare on all four classification datasets used in the paper, our PHE against the four
baselines. We observe from Fig. 10 that the SlowAda baseline with smaller LR (1e-4) leads to slower
forgetting at the cost of slower adaptation, while larger LR (1e-2) has faster adaptation at the cost
of faster forgetting (FastAda). Thus a data-stream dependent LR is needed for deterministic hash
embeddings to trade off adaptation and forgetting. In contrast, our PHE has almost the best adaptation
and forgetting performance on all four datasets due to the regularization from the posteriors. The
EE while does not suffer forgetting as each category has a separate row in the embedding table, its
adaptation to new categories is slow as each new embedding is initialized at random.

E.6.4 CONTINUAL LEARNING

We also investigated classification and sequence modeling in the continual learning setup (Kirkpatrick
et al., 2017), we split the dataset into disjoint groups based on a random partition of a selected
column’s vocabulary, assuming data distribution differs conditioned on each partition. This is similar
to Supp. E.6.1. We then sequentially update the embeddings on each group’s training data. After each
group training, we evaluated the model performance on all previously seen groups’ test data. The
splitting details are in Supps. E.3 and E.4 and Fig. 9. While data-streaming setup aims to have good
performance on the latest task, the goal of continual learning is to perform well on all groups after
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Figure 11: Cumulative average results. Column names in the parentheses are the ones made to have
changing vocabulary and used to split groups. PHE is closest to the performance upper-bound P-EE.

Table 5: TTD batch continual learning performance of compared methdos. Adult, Bank, Mushroom,
and Covertype are classification tasks and thus evaluated by average accuracy, which is larger the
better. Retail is a regression task and we use the metric mean absolute error, lower the better.

SlowAda MediumAda FastAda P-EE (collision-free) PHE (ours)

Adult 76.1±1.8 75.0±4.7 71.6±3.1 85.6±0.1 78.9±3.0
Bank 63.0±4.0 67.5±4.5 69.9±1.2 70.5±0.7 70.1±1.4
Mushroom 75.5±7.6 90.1±8.6 84.7±12.3 96.8±0.0 91.6±7.6
Covertype 41.7±4.0 43.8±5.7 39.5±5.1 52.2±1.1 48.8±2.3
Retail 16.8±17.6 38.9±50.9 - 2.92±0.16 2.73±0.23

sequential training. Fig. 11 and Tab. 5 summarizes the results. Our PHE has the top performance
among hash embedding methods.

E.6.5 ABLATION STUDIES

Justification of updating protocols. We provided evidence on our updating protocols in Tab. 6,
showing updating incremental column’s embeddings as well as fixing other parameters has the best
performance. Tab. 6 presents the accuracy of multiple updating schemes, justifying this updating
protocol in use achieves both high accuracy and computational efficiency.

The impact of potential hash collisions and the mitigation measures.

We experimented on the large Retail dataset under the continual learning setup as in Supp. E.6.4. We
varied the hyperparameters bucket size B and the number of hash functions K to control the potential
number of hash collisions. In particular, we varied one hyperparameter when fixing the other.

We repeated each experiment five times with different random seeds. The tables below show the mean
absolute errors (the lower the better) with standard deviation under each hyperparameter setting. In the
first table, we varied bucket size B while fixing the number of hash functions to be K=2. In the second
table, we fixed the bucket size B to 109, which is the same as in the paper, and changed the number
of hash functions. The collision probability increases from right to left for both tables. The results
in the first table show the more likely a hash collision, the more unstable the model performance.
However, the deterioration is slow, showing the method’s robustness to potential hash collisions and
various hyperparameter settings. In the second table, although increasing K reduces the probability
of hash collisions, increasing K also increases the number of effective parameters (related to model
complexity) to fit in the model. It thereby increases the variance of the predictive performance. Thus,
we recommend choosing a small K (such as 2-3) that trades off both hash-collision and predictive
performance variance. Note when K=1, the hash collision will cause two items to have exactly the
same resulting hash embeddings, leading to a high variance among all settings. We will add these
results to the ablation section in the revised paper.

Ablation study on bucket size B
B=40,K=2 B=60,K=2 B=80,K=2 B=109,K=2

2.83±0.23 2.65±0.16 2.56±0.10 2.58±0.09

Ablation study on the number of hash functions K
B=109,K=1 B=109,K=2 B=109,K=3 B=109,K=4 B=109,K=5

2.66±0.34 2.58±0.09 2.63±0.16 2.78±0.18 2.76±0.13
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Table 6: Comparison between updating all categorical columns’ embeddings, only updating incre-
mental columns’ embeddings, and updating all model parameters. We used collision-free expandable
embeddings in the experiments. The first two updating protocols have little difference but updating
all parameters sometimes result in performance deterioration, possibly due to catastrophic forgetting
in the network weights.

Adult (Acc.) Bank (Acc.) Mushroom (Acc.) Covertype (Acc.) Retail (Err.)

Update all columns embeddings 84.7±0.0 90.0±0.0 98.8±0.0 64.1±0.0 3.4±0.3
Update incremental columns embeddings (in use) 84.8±0.0 90.1±0.0 98.8±0.0 64.0±0.4 3.2±0.4
Update all model parameters 83.3±0.1 89.5±0.0 98.8±0.0 64.0±0.1 287.9±125.5

Remedy. We use the standard trick of multiple independent hash functions to reduce the collision
probability of two unique items. As is standard in universal hashing [Carter and Wegman, 1997], the
probability of collision with all K hash functions each hashing into B buckets is proportional to (see
section 3.3). Collision of hash values could happen among popular, important categories. To address
this issue, we can select the desired hash functions that avoid important collisions before applying the
hash functions. In addition, users come and go fast, and collisions may become unimportant over
time.
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