
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROBABILISTIC HASH EMBEDDINGS FOR TEMPORAL
TABULAR DATA STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study temporal tabular data-streams (TTD) where each observation has both
categorical and numerical values, and where the universe of distinct categorical
items is not known upfront and can even grow unboundedly over time. Such data
is common in many large-scale systems, such as user activity in computer system
logs and scientific experiment records. Feature hashing is commonly used as a pre-
processing step to map the categorical items into a known universe, before doing
representation learning (Coleman et al., 2024; Desai et al., 2022). However, these
methods have been developed and evaluated for the offline or batch settings. In this
paper, we consider the pre-processing step of hashing before representation learning
in the online setting for TTD. We show that deterministic embeddings suffer from
forgetting in online learning with TTD, leading to performance deterioration. To
mitigate the issue, we propose a probabilistic hash embedding (PHE) model that
treats hash embeddings as stochastic and applies Bayesian online learning to learn
incrementally with data. Based on the structure of PHE, we derive a scalable
inference algorithm to learn model parameters and infer/update the posteriors of
hash embeddings and other latent variables. Our algorithm (i) can handle evolving
vocabulary of categorical items, (ii) is adaptive to new items without forgetting old
items, (iii) is implementable with a bounded set of parameters that does not grow
with the number of distinct observed items on the stream, and (iv) is efficiently
implementable both in the offline and the online streaming setting. Experiments
in classification, sequence modeling, and recommendation systems with TTD
demonstrate the superior performance of PHE compared to baselines.

1 INTRODUCTION

Tabular data - where each observation is a vector with both categorical and numerical values - is
very common. For example, tabular data can be any records in a MS Excel file, songs information in
a music playlist, execution results of the Linux command “ls -l,” and any tables seen in this paper.
As a result, tabular data occurs in many high-valued ML applications: finance (Clements et al.,
2020), fraud detection (Al-Hashedi and Magalingam, 2021), anomaly detection (Han et al., 2022),
cybersecurity (Sarker et al., 2020), medical diagnosis (Shehab et al., 2022) and recommendation
systems (Ko et al., 2022). In many of these applications, the data arrives online in a streaming fashion.

Unlike images and natural language text, tables are highly structured and contain heterogeneous
data types that often result in a mix of both categorical and numeric features (Borisov et al., 2022;
Shwartz-Ziv and Armon, 2022). Recent work on tabular data focuses on designing generative models
for tabular data type (Xu et al., 2019; Kotelnikov et al., 2023; Liu et al., 2023b) or learning table
representations with foundation models (Yin et al., 2020; Iida et al., 2021). However, these are offline
models that assume that the characteristics such as the vocabulary of columns are fixed.

In temporal tabular data (TTD), (i) the vocabulary of some or all categorical columns can change,
and/or (ii) the semantic meaning of a categorical item can evolve. These characteristics present
challenges to offline predictive models. Failure to adapt to the expanding vocabulary leads to a loss in
predictive performance, as explained in Figure 1. In the setup of Figure 1, we observe that modeling
new categorical features leads to significant accuracy improvement. This problem of expanding
vocabulary is fairly common in practice: new products are added to a grocery store (Cheng et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: On two tabular datasets, Mushroom and Adult, we split the data into groups based on a
random partition of a categorical column’s vocabulary, such that each group has a disjoint vocabulary.
We report the results before and after online learning on each group in the plots. The performance
gaps motivate the need to learn representations of new items. In the brackets are the columns used for
splitting. Results are averaged on five independent runs. The partition detail is in appendix Fig. 9.

2023), new usernames and application names in intrusion detection systems (Siadati and Memon,
2017; Le et al., 2022), new patients at a hospital, and so on.

The expanding and unbounded universe of categorical values1 poses challenges, even in the offline
setting when all training data is available upfront and the size of the vocabulary can be billions
(Tito Svenstrup et al., 2017; Shi et al., 2020b; Kang et al., 2021; Coleman et al., 2024). A commonly
used methodology to handle unbounded vocabulary is the hashing trick (Weinberger et al., 2009),
where one or more hash functions map the categorical values to a value in a fixed finite set. The
hashed values are treated as an approximation of the original categorical values in subsequent model
training and inference. The resulting item representations are stored in a set of model parameters,
referred to as hash embeddings. Large technology firms, e.g., Yahoo and Google, have incorporated
this approach in their large-scale applications (Weinberger et al., 2009; Coleman et al., 2024).

While hash embeddings claim to handle “dynamic” vocabularies, previous work focuses on offline
settings. In this paper, we study learning hash-based embeddings in TTD, whose categorical vocabu-
lary is really dynamic, i.e., changing over time. We analyze and demonstrate hash embeddings are
subject to catastrophic forgetting as the vocabulary grows. In hash embeddings, representations of
two items may share parameters, updating one item’s embedding can adversely interfere with another,
causing an effect like the model “forgets.” Consequently, hash embeddings are not yet fit for learning
temporally dynamic vocabularies in its vanilla form.

In this paper, we observe that modeling hash embeddings as stochastic and inferring their posterior
upon new data arrival mitigates the shortcomings found in online update of deterministic hash
embeddings. This Bayesian online learning approach is shown as sample-efficient as offline batch
learning (Opper and Winther, 1999), which can in turn make the hash embeddings estimate as
effective as offline training.

Main Contributions: Our work proposes probabilistic hash embeddings (PHE) with Bayesian
updates to handle dynamic vocabularies of TTD in an effective and efficient way. The intuition behind
PHE stems from its benefits in (i) efficiency, as memory/number of model parameters is bounded and
only a small number of parameters need to be updated online (ie., less forgetting, see experiments),
and (ii) accuracy benefits since the probabilistic model provides an implicit regularization to trade-off
forgetting and adaptation, without the need of specific dataset dependent regularization design.

We highlight PHE as a plug-in module, which can be applied to other probabilistic models like Deep
Kalman Filters (Krishnan et al., 2015), a latent variable model for temporal sequences, and Neural
Collaborative Filtering (He et al., 2017), modeling item-user interactions in recommendation systems.
The usage of PHE allows those models to handle unbounded items in their application areas in a
principal way. For those models, we derive scalable variational inference algorithms to learn the
model parameters and infer the latent variables (including latent time variables and PHE). Empirically,
we observe superiority of our method compared to baselines under three setups: one supervised
learning where new items occur in sequence, the second is conditional sequence modeling setup
where the number of sequences increases along with new items, and the third is a recommendation
system where novel user-item interactions occur over time.

1We use the phrase item to refer to a categorical value.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Organization: We survey related work in Sec. 2, present PHE, derive its inference algorithm in
Sec. 3 and demonstrate PHE’s efficacy in Sec. 4 and conclude in Sec. 5.

2 RELATED WORK

Hashing trick. Weinberger et al. (2009) first proposed using hashing to handle unbounded number
of categorical items. To improve on degradation due to hash collisions, Serrà and Karatzoglou (2017)
used bloom filters. In recent times, Tito Svenstrup et al. (2017); Cheng et al. (2023); Coleman
et al. (2024) propose a shared embeddings across all categorical features for efficiency and using
multiple hashing functions to reduce collisions. However, unlike our method, these are deterministic
and are developed in offline learning settings. As shown in our experiments, deterministic hashing
embeddings are vulnerable to evolving vocabularies and inter-observation relation shifts in TTD.

Continual learning. Wang et al. (2023) surveys main works in continual learning. Regularization-
based methods (EWC (Kirkpatrick et al., 2017), VCL Nguyen et al. (2018)) and optimization-based
methods (e.g., GEM (Lopez-Paz and Ranzato, 2017)) ignore categorical variables with unbounded
vocabulary size. Architecture-expanding methods that dynamically expand the universe of items leads
to unbounded memory usage (Rusu et al., 2016; Yoon et al., 2017; Jerfel et al., 2019). In contrast,
PHE uses a fixed size of memory to accommodate expanding categorical features.

Temporal and recommendation models. One of our models extends Deep Kalman Filters
(DKF) (Krishnan et al., 2015) to be applicable for sequence modeling in TTD, while the origi-
nal DKF only apply to time-series data where the categorical attributes are assumed to be given and
thus not modeled. Girin et al. (2021) survey a list of latent variable sequence models for speech, text
and video and are not applicable to tabular data due to the ever increasing vocabulary of categorical
items. Similarly previous recommendation methods (Ko et al., 2022) assume the training data is
given at once and the universe of items is stationary.

Tabular data models. Traditionally, tabular data refers to rows in a database, whose distribution are
permutation invariant (Friedman, 2001). In the offline setting when the universe of categorical values
are known, tree-based boosting methods have emerged as competitive (Chen and Guestrin, 2016; Ke
et al., 2017). In the online and continual learning setting, deep-learning based methods have been
studied in recent times (Huang et al., 2020; Du et al., 2021; Liu et al., 2023a). However, all of these
works assume that the universe of categorical values are known and fixed up-front. Ours is the first
online learning method, even for regular tabular data, that can handle increasing and unbounded
vocabulary for items. Kim et al. use string embeddings from language models for open-vocabulary
categorical/string-valued columns in an offline setting; in contrast, we focus on online setting. We
survey additional related work in Supp. B.

3 METHODOLOGY

We first set necessary notations, then introduce our proposed probabilistic hash embedding module.
Next we show that PHE as a plug-in module for Deep Kalman Filters. Finally we analyze why
deterministic hash embeddings is prone to forgetting.

3.1 PROBLEM SETUP AND NOTATIONS

We formalize the notations here. We denote categorical, numeric, and timestamp columns or their
feature values by s,x, t respectively. For the columns of interest that we want to predict based on
other columns, we denote them by y. We use si to denote the categorical values of the ith row,
similarly for xi, ti, and yi. We consider the problem of learning an ML model in TTD streams where
the vocabulary of one or more categorical columns can change over time.2

Let h : S → N<B be a hash function that maps a string to a hash value. B is the range of h, also
known as the “bucket size”. For simplicity, we use hs to denote the hash value h(s) of an item s. The
hash value hs indexes a row in a hash embedding table E ∈ RB×d, resulting in the hash embedding

2We assume the tabular structure is fixed, i.e., the number of columns, column names, and types are fixed.
We also assume categorical features are single-valued. But our work is compatible with multi-valued features.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: a) Shared hash embedding for category feature s. For example, s can be a username
or anonymized string. The whole module serves as p(Ehs). b.1) A graphical model of a temporal
sequence with PHE. b.2) is a special case of b.1 when no temporal relationship is assumed, e.g.,
classification or regression. The changing categorical values are contained in hs.

of s, denoted by Ehs . We abuse the notation for both random variables and their sampled values
where the meaning should be clear from the context.

3.2 PROBABILISTIC HASH EMBEDDINGS (PHE)

To start off, we explain our universal encoding module for categorical items. Categorical items are the
most common ones in tabular datasets, ranging from login names, database names, and activity codes
to anonymized identifiers, and are subject to increment from time to time. To incorporate the added
items, we propose probabilistic hash embeddings (PHE). The basic PHE involves two components–a
fixed hash function h ∈ N<B and a probabilistic hash embedding table E ∈ RB×d with a prior
distribution p(E).3 Given an item s, it looks up the hsth row of E as its hash embedding Ehs . Ehs

has distribution p(Ehs). We require E to be shared across all categorical columns, an operation
adopted by Coleman et al. (2024) as well. To disambiguate duplicated feature values across columns,
we add the column name as a prefix to its items. Thus, the same string in different columns will likely
be hashed to different values, reducing hash collisions. PHE can also learn the representations of
missing values, which are usually represented as a special string and can be hashed.

A single hash function may result in two distinct inputs having the same hashing value, known as hash
collisions, resulting in undistinguished hash embeddings. For size-B buckets, the collision probability
is proportional to O(1/B). To further reduce the collision rate, we use universal hashing (Carter and
Wegman, 1977). Namely, instead of utilizing one fixed hash function, we use K fixed hash functions.
Then the collision probability can be shown to reduce to O(1/BK). Moreover, we keep the hash
embedding table E shared across K hash functions, which keeps the model size bounded. Repeating
the embedding fetching procedure, a single feature s results in K embeddings {E

h
(1)
s
, . . . , E

h
(K)
s

}
where E

h
(k)
s

is the looked-up embedding from table E based on the k-th hash value h
(k)
s . We then

produce the final representation of s with an assemble function g : RK×d → Rd. This procedure is
denoted by Ehs := g(E

h
(1)
s
, . . . , E

h
(K)
s

). Typical choices of g involve coordinate-wise summation,
average, and minimization; other parametric choices of g include weighted sums where weights come
from a parametric model. We illustrate this procedure in Fig. 2a. This module represents p(Ehs)

where hs := {h(1)
s , . . . , h

(K)
s }. The memory cost of PHE is O(Bd).

A common query is to ask what the conditional probability of observing a feature y given another
categorical feature s is, namely p(y|s). With PHE, we can approximate it by identifying hs to be s,
which is exact in the absence of hash collisions. Thus with Ehs sampled from p(Ehs),

p(y|s) = p(y|hs) = Ep(E)[p(y|Ehs)] ≈ p(y|Ehs). (1)

In this way, one can answer probability queries conditioned on discrete features.

Discussions. In data streaming or continual learning setup, PHE has natural benefits in reducing
catastrophic forgetting: 1) only a few embeddings need to be updated online. This sparse updating
scheme seldom affects other item representations, thus having less forgetting. 2) The online updates
apply Bayesian online learning, in which the prior distribution serves as a regularization of previous
knowledge that also reduces forgetting. In addition, PHE’s memory/storage cost is bounded and does
not increase with the number of distinct categorical values. More discussion in Sections 3.4 and D.

3In this work, we assume E is Gaussian with a diagonal covariance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 AN APPLICATION: PHE IN DEEP KALMAN FILTERS

In this section, we show how PHE can be used in conjunction with a deep Kalman filter (Krishnan et al.,
2015) and derive scalable inference algorithms for the probabilistic embedding. Other model variants
for TTD can be seen as special cases of this model. The goal is to predict y, given all other columns
including categorical columns s, numeric columns x, and timestamp column t. (c.f. Fig. 2b.1.)
The condition of y on categorical features s is through PHE via Eq. (1). We model the dependency
between rows of neighboring timestamps by a latent time variable z. Specifically, we assume zi are
Gaussian distributed and follows the distribution p(zi|zi−1,∆i; θz) = N (zi|fθz (zi−1,∆i)) where
fθz := {µθz ,Σθz} is a parametric function with parameters θz , e.g., a multi-layer perceptron that
outputs mean and covariance of zi and ∆i is the difference in timestamp between the ith observation
and i− 1th observation. We apply a diagonal covariance matrix Σθz in this work. We assume the
initial row’s latent representation z1 are from standard Gaussian distribution p(z1) = N (z1|0, I).
This usage of a latent time variable shares a similar fashion with Kalman filters.

In summary, suppose a parametric likelihood with parameters θy is p(yi|xi, Ehsi
; θy). Given the

covariates hs≤N
, x≤N , and time difference ∆≤N , the data generating process is

E ∼ p(E), For i = 1, . . . , N :
{
zi ∼ p(zi|zi−1,∆i; θz), yi ∼ p(yi|xi, Ehsi

; θy)
}

where p(z1) = N (0, I). Observations of other tasks are generated similarly beside the hash embed-
ding table E and the parameters {θz, θy}, which are shared across tasks.

Inference network. In the above model, we need to infer the hash embedding table and latent time
variables, that is, the posterior distribution p(E, zi|hs≤i

,x≤i,y≤i; θ) after observing i rows, which
is often intractable with complex likelihood and expensive for large-scale datasets. Therefore, we
apply structured variational inference and assume the variational posterior distribution factorizes as

qλ,ϕ(E, z≤N |x≤N ,y≤N ,hs≤N
) = qλ(E)

N∏
i=1

qϕ(zi|x≤i,y≤i, Ehs≤i
) (2)

where we parameterize the posterior of the hash embedding table as a Gaussian with diagonal
covariance, i.e., qλ = N (µλ,Σλ) with variational parameters λ := {µλ ∈ RB×d,Σλ ∈ RB×d}. We
also assume qϕ(zi|x≤i, Ehs≤i

) is a Gaussian distribution implemented as a recurrent neural network
that takes {xi,yi, Ehsi

} as input at recurrent step i and outputs the parameters of zi, in this case,
mean µi,ϕ ∈ Rd and diagnonal covariance matrix Σi,ϕ ∈ Rd. Note that the recurrent neural network
(i.e., its parameters ϕ) is shared across latent time variables z≤N .

Initialization and online learning. As follows, we will first derive a scalable algorithm to initialize
the model with a set of training data and then introduce an efficient online learning algorithm to
adapt the model to TTD. We denote the model parameters relevant to the generating process by
θ := {θz, θy}. We jointly learn the model parameters θ and infer the approximate posteriors of
{E, z≤N} by maximizing a feasible evidence lower bound (ELBO) L(θ, λ, ϕ). It can be shown
that, with twice the applications of Jensen’s inequality, maximizing the ELBO also maximizes the
marginal likelihood log p(y≤N |x≤N ,hs≤N

; θ)

L(θ, λ, ϕ) := Eqλ(E)

[
N∑
i=1

Li(θ, ϕ|E)

]
−DKL(qλ(E)|p(E)) ≤ log p(y≤N |x≤N ,hs≤N

; θ) (3)

where p(E) is the prior distribution of the random hash embedding table and we set it to be a standard
Gaussian distribution. Li(θ, ϕ|E) is the conditional ELBO of the ith row’s log-likelihood

Li(θ, ϕ|E) := Eqϕ(zi)[log p(yi|zi,xi, Ehsi
; θy)]− Eqϕ(zi−1)[DKL(qϕ(zi)|p(zi|zi−1; θz))]. (4)

We provide the full derivation of the ELBO in Supp. A, where we also show Li(θ, ϕ|E) ≤
log p(yi|x≤i,y<i, Ehs≤i

; θ) and why maximizing L(θ, λ, ϕ) is a variational EM algorithm.

Once we initialize the model, we can efficiently adapt the model to new occurring items in TTD. We
only need to update the hash embeddings of new items while fixing other parts of the model. This
scheme is feasible since per the proposed data generating process, the latent time process zi and
model parameters θ has captured all item-shared information and the item-specific information is to
be learned via the new hash embedding.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Forgetting in online learning using deterministic hash embedding on synthetic data. (The
complete setting is described in Sec. 3.4.) The task is predicting a scalar (regression problem) with
the covariate being a categorical variable that takes one of two values of m0 or m1. a) shows the
embedding matrix E of size 3 × 1. Here the number of buckets B = 3 and d = 1. The two hash
function maps m0 to 0 and 1 respectively and maps m1 to 1 and 2 respectively. b) shows the online
samples where the covariate alternates between m0 and m1 and the corresponding target y(mi) takes
values in 1 and −1. c) shows the prediction of a probabilistic hash embedding table (blue) trained
using Bayesian online learning and a deterministic hash embedding (DHE) table (yellow) trained
using online gradient descent. d) plots the prediction error. From these figures we observe that PHE’s
prediction error converges to 0 much quicker than DHE. After every 20 samples when the covariate
changes, there is a big jump in DHE error, exhibiting forgetting while the PHE has no error spikes
after it has encountered both the categorical values.

Suppose the initialization dataset D0 is large enough to allow to infer good model parameters
{λ∗

0, ϕ
∗, θ∗}. (The subscript of λ∗

0 suggests the posterior of hash embedding table E is conditional
on dataset D0.) Suppose we observe a second dataset D1 to which we would like our model to adapt
and still be effective to D0. We can set the posterior distribution qλ∗

0
(E) of hash embeddings as the

new prior distribution and infer the new posterior of E conditioned on D1. Note that θ∗ and ϕ∗ are
fixed during this adaptation procedure. The new ELBO (objective function) on D1 given θ∗, λ∗

0, ϕ
∗ is

L(1)(λ; θ∗, λ∗
0, ϕ

∗) = Eqλ(E)

[
N1∑
i=1

Li(θ
∗, ϕ∗|E)

]
−DKL(qλ(E)|qλ∗

0
(E)) (5)

where N1 is the number of rows in table D1. Notice the original prior p(E) of E is replaced with
qλ∗

0
(E). Upon optimization convergence, the new variational distribution of E is equivalent to an

approximate posterior distribution given both datasets (D0 and D1). We provide detailed derivations
in Supp. A. Although this procedure bears resemblance to traditional continual learning (Wang et al.,
2023; Nguyen et al., 2018; Li et al., 2021), is different since we focus on changing discrete items.

3.4 THEORY: WHY IS PHE SUPERIOR FOR TTD?

Here, we consider a simple linear Gaussian model that we can analyze in closed form to illustrate why
having deterministic hash embeddings that are updated in an online fashion is prone to forgetting.

A simple linear-Gaussian model. Let the input variable m ∈ {m0,m1} take one of two categorical
values and the target y ∈ R be real-valued. The conditional distribution of y is a Gaussian distribution
with the mean 1 when m = m0 and mean −1 when m = m1. The variance of both Gaussians is
σ2 ≈ 0 is tiny. We do not specify the distribution of m just yet and defer that to the sequel.

The predictive model based on hash embedding. Given labeled data (m, y), we aim to learn a
predictor f(m) for y using a 3 × 1 hash embedding matrix4 E. Denote by e(0), e(1) and e(2) as
the three rows of this matrix which are the “embedding vectors” of the three hash values. Thus, in
the notation of our model, this embedding matrix is made of B = 3 buckets with the dimension
d = 1. The model f(·) uses two hash functions hi(·) : {m0,m1} → {0, 1, 2} to map the categorical
variable m into a hash value. Without loss of generality, we assume that h1(m0) = 0, h2(m0) =

4Although technically a vector, we denote it as “embedding matrix” to be consistent with the rest of the text.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1, h1(m1) = 1, h2(m1) = 2. Given this, the predictive model f(m) := e(h1(m)) + e(h2(m)) is a
linear sum of the two hash embedding of the input. This is a simple example of the general class
of models where the predictor y is a linear function of the embedding vectors looked up by the
categorical input m using different hash functions. Although simple, this example illustrates the
parameter-interference phenomenon of hash embeddings since the embedding vector e(1) influences
both m0 through hash function h1(·) and m1 through h2(·).

An online interaction setting. At each time t = 1, 2, . . . , the environment samples m(t) from a
distribution over {m0,m1} and sends to the predictor. The predictor then predicts ŷt := ft(m

(t))
and is then shown the true label y ∈ R. The predictor incurs loss lt := 1

2 (yt − ŷt)
2 and uses the

observed yt to update the predictor to ft+1(·). Consider a setting where the first N inputs consists
of m(t) = m0 for all t ∈ {1, . . . , N}, followed by another N inputs consisting of m(t) = m1 for
all t ∈ {N + 1, · · · , 2N}. The embedding matrix E is assumed to be updated using online gradient
descent on the square loss function lt :=

1
2 (ŷt − yt)

2 for all times t = 1, 2,

Analysis and conclusion. As we can see from the calculations in Supp. D, if N is sufficiently large,
at the end of time 2N , the learned model is such that f2N+1(m0) ≈ 1/4 and f2N+1(m1) ≈ −1.
Thus, given that the last N samples seen corresponded to m(t) = m1, the predictor at the end at
time 2N has near zero prediction error for m1. However, this comes at a cost of having a large
prediction error for m0 with f2N+1(m0) ≈ 1/4, where the true value is 1. This is in contrast to an
offline method that given all the 2N samples upfront, the algorithm would have learned a predictor
that will have near zero prediction error for both m0 and m1. Thus, we say that the online updated
embedding matrix forgets the old distribution m0. This behaviour is also in contrast to Bayesian
online learning that would incrementally learn the posterior distribution p(E|m(1), . . . ,m(t)) at
each time t. It is well known that if we could compute the exact posterior at each time, i.e., exactly
compute p(E|m(1), . . . ,m(t)) for all t, then the posterior for E at the end of 2N samples will be
identical to the case if all the 2N samples would be available up-front in batch, i.e., there will be no
forgetting. Fig. 3 shows an example when N = 20. Detailed calculations are in Supp. D.

4 EXPERIMENTS

In this section, we show TTD is ubiquitous in mainstream machine learning tasks and conduct
experiments to demonstrate the efficacy and memory efficiency of PHE in learning TTD. As follows,
we begin with common experimental protocols in Sec. 4.1. Then, in Sec. 4.2, we simulate online
learning to benchmark PHE in classification tasks. In Secs. 4.3 and 4.4, we showcase PHE in multi-
task sequence modeling and online recommendation systems. All results show PHE outperforms the
deterministic counterpart and performs similarly with the upper-bound collision-free embeddings.

4.1 EXPERIMENTAL PROTOCOLS AND BASELINES

Training protocols. In all experiments, we use one shared hash embedding table, also known as
unified embeddings (Coleman et al., 2024), for all categorical features. Except for the initial training,
we only update the embeddings of categorical columns deemed incremental and freeze parameters
other than the hash embedding table. Tab. 6 in Supp. E.6 justifies this updating protocol.

Experimental setting. We investigate the data-streaming setup highlighting recurring items and
new-arriving items. In this setup, both forgetting and adaptation are measured: the model should
avoid forgetting recurring items and adapt for new items. Upon each data arrival, we conducted
three operations in order: make predictions, evaluate predictions, and update embeddings. We report
the sequential results in plots and the overall averaged results with errors in tables. We repeated all
experiments five times with different parameter initialization while keeping other settings fixed.

Baselines. We use two types of baselines. The first is deterministic hash embeddings with stochastic
gradient descent online learning. They not only have the same model size and architecture as PHE
but also have the same update efficiency. That is, the baselines can quickly adapt to new categories
by updating only a few relevant hash embeddings and leaving the other parameters unmodified
(ie. minimal forgetting). We take three variants: SlowAda only trains one epoch on the new data;
MediumAda trains five epochs; FastAda trains 15 epochs. These baselines cover forgetting-adaptation
trade-offs: FastAda is fast in adaptation but suffers forgetting; SlowAda is on the opposite end.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Online learning results on TTD-streams. Adult, Bank, Mushroom, and Covertype are
evaluated by average accuracy, the larger the better. Retail and MovieLens-32M use mean absolute
error, lower the better. All results are multiplied by 100 except Retail for visual clarity. PHE achieves
the best performance among all hash embedding-based methods.

Hash Embedding Collision-Free Embedding

SlowAda MediumAda FastAda PHE (ours) EE P-EE

Adult (↑) 82.2 ± 0.7 74.8 ± 4.5 71.1 ± 4.0 84.1 ± 0.2 84.2 ± 0.0 84.8 ± 0.0
Bank (↑) 89.7 ± 0.1 89.0 ± 0.9 86.9 ± 1.6 89.6 ± 0.0 90.0 ± 0.0 90.1 ± 0.0
Mushroom (↑) 97.7 ± 0.7 97.9 ± 0.5 98.3 ± 0.3 98.8 ± 0.0 98.8 ± 0.0 98.8 ± 0.0
CoverType (↑) 63.5 ± 0.5 59.1 ± 1.2 55.3 ± 1.2 64.3 ± 0.2 64.3 ± 0.1 64.0 ± 0.4
Retail (↓) 49.1±82.9 22.7±20.3 - 3.0±0.2 3.7±0.1 3.2±0.4
MovieLens (↓) 15.3±0.1 15.1±0.1 15.1±0.1 14.7±0.0 15.1±0.0 14.7±0.0

Figure 4: Online classification results on tabular data streams. The Ada results show a downward
trend although there are no new items to learn, suggesting the deterministic hash embeddings suffer
from forgetting during the learning. In contrast, the proposed PHE mitigates the forgetting issue and
keeps performing as good as the upper-bound method P-EE. Other datasets in Fig. 6 in Supp. E.3
show similar conclusions. In the parentheses is the column whose items embeddings get updated.

Another compared method is an ideal method representing the upper bound–collision-free expandable
embeddings (EE). In particular, EE dynamically initializes and updates an embedding from scratch
when a new item is encountered. This baseline does not suffer from cross-item interference but
may overfit to the most-recent observations. To mitigate the overfitting issue, we treated EE to be
probabilistic and applied Bayesian online learning. We refer to as P-EE. (P-)EE is memory-inefficient
as the memory scales linearly with vocabulary size and can grow unbounded, posing a challenge in
large-scale applications (Tab. 2). Moreover, it is noticeably hard to implement (P-)EE, which requires
to dynamically redefine the embedding layer upon observing new categories.

4.2 CLASSIFICATION IN TTD-STREAMS

Here we show the evolving vocabulary can be managed through PHE effectively on public datasets.

Datasets. We apply four public static tabular datasets that are available in UCI Machine Learning
Repository: Adult, Bank, Mushroom, and Covertype. These datasets contain a mixture of discrete and
continuous columns and are collected for classification problems in various domains. For stability,
we normalized all continuous columns such that the value ranges from zero to one.

Experimental setups. We perform the classification tasks the original datasets provide. The
generating data assumption is illustrated in Fig. 2b.2. Regarding model architecture, we concatenate
all category embeddings as well as continuous features as input to a deterministic neural network,
followed by a softmax activation function. We assume the targets follow categorical distribution.

To simulate the data-streaming setup, at each step we present a randomly sampled data mini-batch
to the model and evaluate the online learning performance. We require only one column’s item
embeddings be updated, mimicking that column has a changing vocabulary. Besides, we initialize the
model (both embeddings and neural network weights) with a separate random portion of the data.

Results. We reported the data-streaming online classification accuracy in Fig. 4. The facts that 1)
any items seen during online learning have been learned at the initialization and that 2) the accuracy
curves of Ada methods have a downward trend suggest hash embeddings suffers from forgetting. In
fact, the forgetting is caused by parameter interference in hash embeddings: suppose items A and B
share parameters in the hash embedding table, then updating A’s embedding affect B’s embedding.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Experimental results of sequence modeling (left) and recommendation (right) on large-scale
TTD-streams Retail and MovieLens-32M. For visibility, all curves are smoothed. It shows that our
method PHE outperforms all deterministic hash embedding baselines (Fast/Medium/SlowAda) that
are sensitive to their optimization hyperparameters. Moreover, it is remarkable to note that PHE
performs similarly with the upper-bound collision-free P-EE baseline, especially considering PHE
consumes only 2% and 4% of the size of P-EE (see Tab. 2). The initial performance gap at Day 0 on
MovieLens is an artifact of smoothing; in fact, all methods have similar initial performance.

We further reported an overall averaged accuracy in Tab. 1. The results show that our proposed PHE
performs similarly with the upper-bound collision-free embeddings (EE), and the gap between PHE
and all other deterministic counterparts proves the effectiveness of PHE in online learning. Besides,
PHE is more stable and has a smaller variance. The varying performances of the Ada baselines
highlight the importance and sensitivity of hyperparameter tuning. In contrast, our method is a
hyperparameter-free approach and the only demand is to train the model until convergence. Lastly, as
summarized in Tab. 2, PHE consumes noticeably lower memory than P-EE.

4.3 MULTI-TASK SEQUENCE MODELING IN TTD-STREAMS

Sequence models, exploiting the temporal correlation among observations, predict a variable of
interest based on the history.

Datasets. We apply a public large-scale time-stamped tabular dataset, Retail, an instance of TTD. A
snippet of this dataset can be found in Tab. 4. This dataset records all online transactions between
01/12/2010 and 09/12/2011 in a retail store. There are over 4,000 products and over 540K time-
stamped invoice records in total. The task is to predict the sales for each product shown in each
invoice record given the product’s historical sales.

Experimental setups. The Retail dataset is naturally a TTD-stream. We use the first three month data
to initialize the model. Then we make predictions on a daily basis following the invoice timestamp.
And at each step, we predict the sales quantity for each product on invoices based on their sale history.
After that, we will receive the prediction error and use it to update the product embeddings. We use
mean absolute errors as the evaluation metric. More details are in Supp. E.4.

We employ latent time variables to model correlations among neighboring transactions and hash
embeddings to represent products. The latent time and product embeddings are independent and
jointly account for the sales (see model assumption in Fig. 2b.1). Concretely, we use gated recurrent
unit (GRU) (Chung et al., 2014) for both the generation and inference network. The network weights
are frozen after the initial training.

Results. Fig. 5 shows the running performance (smoothed by a 1-D Gaussian filter): the Ada-family
baselines favor shorter optimization time for Retail–FastAda explodes after 50 days. (The error
bar is omitted as it is too large to be meaningful.) On the other hand, PHE has lower errors and is
stable across all learning steps. Remarkably, on the average performance in Tab. 1, PHE significantly
outperforms all baselines, including collision-free P-EE with only 2% memory usage. One possible
reason is that P-EE initializes new embeddings from scratch and thus gets slow in warm-up, while
PHE uses shared parameters from initial training.5 Similar observations also occur in the continual
learning setup (see Fig. 11 and Tab. 5 in Supp. E.4) and another large-scale recommendation task.

4.4 RECOMMENDATION IN TTD-STREAMS

TTD is a common in recommendation systems. For example, new users or movies reach a streaming
service, the recommender needs to incorporate them and make recommendations.

5Another possible reason is that PHE provides a regularization mechanism (Tito Svenstrup et al., 2017).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Number of parameters in the embedding module. Ratio is computed by dividing PHE
by P-EE. The results show PHE consumes as low as 2% of number of parameters (i.e. hardware
memory) of P-EE, implying the memory-efficiency benefit of PHE. (See details in Supp. E.6.2.)

Adult Bank Covertype Mushroom Retail MovieLens-32M

PHE (ours) 346 346 346 56 5014 460414
P-EE 3920 1760 1760 90 332760 11541320

Compression Ratio 0.09 0.2 0.2 0.62 0.02 0.04

Datasets. We apply the largest MovieLens-32m (Harper and Konstan, 2015) which contains 32 mil-
lion ratings across over 87k movies and 200k users. These data were recorded between 1/9/1995 and
10/12/2023 for about 28 years. Each piece of data is a tuple of (userId, movieId, rating,
timestamp), recording when and which rating a user gave a movie. Ratings ranges from 0 star to
5 star with half-star increments. This dataset is also an instance of TTD.

Experimental setups. We treat the recommendation problem as a rating prediction problem, where
the task is predicting the rate a user gives to a movie. In implementation, ratings are normalized to
[0, 1] and are taken to be continuous albeit their increments are discrete. We simulate the experiment
as in production – online prediction along the timestamp. We combine PHE and Neural Collaborative
Filtering (He et al., 2017) as the backbone model. The model is pre-trained on the first five years of
data and then perform predict-update online learning on a daily basis. We assume all ratings are IID
conditioned on user, movie, and movie-genre embeddings. And we model user and movie embeddings
through PHE while movie-genres are encoded as multi-hot embeddings. In this setup, both forgetting
and adaptation in the hash embeddings are measured: the model should avoid forgetting for recurring
users/movies and adapt for new users/movies. Prediction error is evaluated by mean absolute error.

Results. The results of all compared methods are shown in Fig. 5 and the memory efficiency of PHE
is reported in the last column of Tab. 2. The curves in Fig. 5 are smoothed with a 1-D Gaussian
filter. The initial performance gap at Day 0 is an artifact of smoothing, in fact, all methods have
similar performance on Day 0 (see Fig. 7 in Supp. E.5). It shows that our method PHE outperforms
all deterministic hash embedding baselines (Fast/Medium/SlowAda) that have various forgetting-
adaptation trade-offs. Similarly with the Retail dataset, PHE also significantly outperforms the
collision-free P-EE baseline. This is remarkable considering PHE consumes only 4% of the memory
of P-EE (Tab. 2). EE, the deterministic counterpart of P-EE, has worse performance, showing
Bayesian online learning effectively mitigates overfitting. 6

4.5 ADDITIONAL RESULTS

We conducted additional experiments and presented the results in Supp. E.6. We showcased additional
results beside Fig. 1 in Supp. E.6.1; demonstrated the memory and hardware efficiency of PHE in
Supp. E.6.2 (also see Tab. 2); analyzed adaptation and forgetting separately in Supp. E.6.3; inves-
tigated classification and sequence modeling in classical continual learning setup in Supp. E.6.4;
performed ablation studies on the hash size B and number of hash functions K in Supp. E.6.5.

5 CONCLUSIONS

In this work we unveiled the ineffectiveness of hash embedding in learning TTD with dynamic
vocabulary. We addressed the problem of modeling TTD and presented probabilistic hash embeddings
(PHE). We showcased PHE is a plug-in module for multiple ML models, allowing those models
to learn TTD-streams. We derive a scalable inference algorithm to simultaneously learn the model
parameters and infer the latent embeddings. Through Bayesian online learning, the model is able
to adapt to new vocabularies without additional hyperparameters in a changing environment. We
benchmark PHE on large-scale public datasets with TTD demonstrating the efficacy of PHE.

6An interesting observation: It turns out MovieLens made two major changes in their movie rating system
around 2003 and 2014 (website), which is reflected in our online learning results – two sharp changes in Fig. 5.

10

https://grouplens.org/blog/movielens-datasets-context-and-history/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Khaled Gubran Al-Hashedi and Pritheega Magalingam. Financial fraud detection applying data
mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40:
100402, 2021.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pages 6679–6687, 2021.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 106–112, 1977.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

Derek Zhiyuan Cheng, Ruoxi Wang, Wang-Cheng Kang, Benjamin Coleman, Yin Zhang, Jianmo Ni,
Jonathan Valverde, Lichan Hong, and Ed Chi. Efficient data representation learning in google-scale
systems. In Proceedings of the 17th ACM Conference on Recommender Systems, pages 267–271,
2023.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Jillian M Clements, Di Xu, Nooshin Yousefi, and Dmitry Efimov. Sequential deep learning for credit
risk monitoring with tabular financial data. arXiv preprint arXiv:2012.15330, 2020.

Benjamin Coleman, Wang-Cheng Kang, Matthew Fahrbach, Ruoxi Wang, Lichan Hong, Ed Chi, and
Derek Cheng. Unified embedding: Battle-tested feature representations for web-scale ml systems.
Advances in Neural Information Processing Systems, 36, 2024.

Aditya Desai, Li Chou, and Anshumali Shrivastava. Random offset block embedding (robe) for
compressed embedding tables in deep learning recommendation systems. Proceedings of Machine
Learning and Systems, 4:762–778, 2022.

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Jiang Zhang, Shi Han, and Dongmei Zhang.
Tabularnet: A neural network architecture for understanding semantic structures of tabular data.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 322–331, 2021.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

Laurent Girin, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, and Xavier Alameda-
Pineda. Dynamical variational autoencoders: A comprehensive review. Foundations and Trends in
Machine Learning, 15(1-2):1–175, 2021.

Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly
detection benchmark. Advances in Neural Information Processing Systems, 35:32142–32159,
2022.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web,
pages 173–182, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. Tabbie: Pretrained representations
of tabular data. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3446–3456,
2021.

Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning and
continual learning with online mixtures of tasks. Advances in neural information processing
systems, 32, 2019.

Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan Hong, and
Ed H Chi. Learning to embed categorical features without embedding tables for recommendation.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 840–850, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Myung Jun Kim, Leo Grinsztajn, and Gael Varoquaux. Carte: Pretraining and transfer for tabular
learning. In Forty-first International Conference on Machine Learning.

Klim Kireev, Maksym Andriushchenko, Carmela Troncoso, and Nicolas Flammarion. Transferable
adversarial robustness for categorical data via universal robust embeddings. arXiv preprint
arXiv:2306.04064, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. A survey of recommendation systems:
recommendation models, techniques, and application fields. Electronics, 11(1):141, 2022.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pages
17564–17579. PMLR, 2023.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Franck Le, Mudhakar Srivatsa, Raghu Ganti, and Vyas Sekar. Rethinking data-driven networking
with foundation models: challenges and opportunities. In Proceedings of the 21st ACM Workshop
on Hot Topics in Networks, pages 188–197, 2022.

Aodong Li, Alex Boyd, Padhraic Smyth, and Stephan Mandt. Detecting and adapting to irregular
distribution shifts in bayesian online learning. Advances in neural information processing systems,
34:6816–6828, 2021.

Hanmo Liu, Shimin Di, and Lei Chen. Incremental tabular learning on heterogeneous feature space.
Proceedings of the ACM on Management of Data, 1(1):1–18, 2023a.

Tongyu Liu, Ju Fan, Guoliang Li, Nan Tang, and Xiaoyong Du. Tabular data synthesis with generative
adversarial networks: design space and optimizations. The VLDB Journal, pages 1–26, 2023b.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
In International Conference on Learning Representations, 2018.

Manfred Opper and Ole Winther. A bayesian approach to on-line learning. 1999.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Iqbal H Sarker, ASM Kayes, Shahriar Badsha, Hamed Alqahtani, Paul Watters, and Alex Ng.
Cybersecurity data science: an overview from machine learning perspective. Journal of Big data,
7:1–29, 2020.

Joan Serrà and Alexandros Karatzoglou. Getting deep recommenders fit: Bloom embeddings
for sparse binary input/output networks. In Proceedings of the Eleventh ACM Conference on
Recommender Systems, pages 279–287, 2017.

Mohammad Shehab, Laith Abualigah, Qusai Shambour, Muhannad A Abu-Hashem, Mohd
Khaled Yousef Shambour, Ahmed Izzat Alsalibi, and Amir H Gandomi. Machine learning
in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine,
145:105458, 2022.

Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. Compositional
embeddings using complementary partitions for memory-efficient recommendation systems. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 165–175, 2020a.

Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi Shan, Yiqun Liu, and
Shaoping Ma. Beyond user embedding matrix: Learning to hash for modeling large-scale users in
recommendation. In Proceedings of the 43rd international ACM SIGIR conference on research
and development in information retrieval, pages 319–328, 2020b.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Hossein Siadati and Nasir Memon. Detecting structurally anomalous logins within enterprise
networks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1273–1284, 2017.

Dan Tito Svenstrup, Jonas Hansen, and Ole Winther. Hash embeddings for efficient word representa-
tions. Advances in neural information processing systems, 30, 2017.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. arXiv preprint arXiv:2302.00487, 2023.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th annual international
conference on machine learning, pages 1113–1120, 2009.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. Advances in neural information processing systems, 32, 2019.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 8413–8426, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pages 3987–3995. PMLR, 2017.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data
synthesizing. In Asian Conference on Machine Learning, pages 97–112. PMLR, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We attached our codebase in code.zip for reproducibility.

A EVIDENCE LOWER BOUNDS

We denote the model parameters relevant to the generating process by θ := {θz, θy}. To learn the
model parameters, we maximize the marginal likelihood p(y≤N |x≤N ,hs≤N

; θ). Directly optimizing
this marginal likelihood with the Expectation-Maximization (EM) algorithm is intractable. Therefore,
we jointly learn the model parameters θ and infer the variational posteriors of latent variables
{E, z≤N} using the variational EM algorithm. That is, we maximize the evidence lower bound
(ELBO) L(θ, λ, ϕ) with respect to model parameters θ and variational parameters {λ, ϕ}.

A.1 DERIVATION OF L(θ, λ, ϕ)

Denote all the history {x≤i,y≤i, Ehs≤i
} until row i by Oi. We find the optimal parameters by

maximizing the marginal evidence p(y≤N |x≤N ,hs≤N
; θ). We take the logarithm of marginal

evidence

log p(y≤N |x≤N ,hs≤N
; θ) (6)

= log

∫
p(y≤N , E|x≤N ,hs≤N

; θ)

qλ(E)
qλ(E)dE (7)

≥ Eqλ(E)[log p(y≤N , E|x≤N ,hs≤N
; θ)− log qλ(E)] (8)

= Eqλ(E)[log p(y≤N |x≤N , Ehs≤N
; θ)]−DKL(qλ(E)|p(E)) (9)

where the inequality follows from Jensen’s inequality. Next, we apply the same trick for another time
to find a lower bound of Eq. (9). Specifically, we will find a tractable lower bound to the conditional
likelihood log p(y≤N |x≤N , Ehs≤N

; θ).

In the filtering setup, we note that log p(y≤N |x≤N , Ehs≤N
; θ) =

∑N
i=1 log p(yi|y<i,x≤i, Ehs≤i

; θ).
If we can find a lower bound for each log p(yi|y<i,x≤i, Ehs≤i

; θ), then the summation of the lower
bounds is also a valid lower bound for log p(y≤N |x≤N , Ehs≤N

; θ).

log p(yi|y<i,x≤i, Ehs≤i
; θ) (10)

= log

∫ p(yi, zi|y<i,x≤i, Ehs≤i
; θ)

qϕ(zi|Oi)
qϕ(zi|Oi)dzi (11)

≥ Eqϕ(zi|Oi)[log p(yi|y<i,x≤i, Ehs≤i
, zi; θ)]−DKL(qϕ(zi|Oi)|p(zi|Oi−1)) (12)

≥ Eqϕ(zi|Oi)[log p(yi|y<i,x≤i, Ehs≤i
, zi; θ)]− Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz))

(13)

Eq. (12) to Eq. (13) follows from the following inequality:

DKL(qϕ(zi|Oi)|p(zi|Oi−1)) ≤ Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz)) (14)

because

DKL(qϕ(zi|Oi)|p(zi|Oi−1)) (15)
= Eqϕ(zi|Oi)[log qϕ(zi|Oi)− log p(zi|Oi−1)] (16)

= Eqϕ(zi|Oi)

[
log qϕ(zi|Oi)− logEq(zi−1|Oi−1)[p(zi|zi−1; θz)]

]
(17)

≤ Eqϕ(zi|Oi)

[
log qϕ(zi|Oi)− Eq(zi−1|Oi−1)[log p(zi|zi−1; θz)]

]
(18)

= Eq(zi−1|Oi−1)qϕ(zi|Oi)[log qϕ(zi|Oi)− log p(zi|zi−1; θz)] (19)

= Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz)) (20)

where Eq. (17) takes the Kalman filter prediction step.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Then Eq. (13) is the conditional ELBO Li(θ, ϕ|E), i.e., Eq. (4). Plug Eq. (13) in Eq. (9), we have

Eqλ(E)[log p(y≤N |x≤N , Ehs≤N
; θ)]−DKL(qλ(E)|p(E)) (21)

≥ Eqλ(E)

[
N∑
i=1

Li(θ, ϕ|E)

]
−DKL(qλ(E)|p(E)) (22)

which is our objective function L(θ, ϕ, λ) (Eq. (3)).

A.2 L(θ, ϕ, λ) AS A VARIATIONAL EM ALGORITHM

Why is maximizing L(θ, ϕ, λ) a meaningful objective as a variational expectation-maximization
algorithm? We start with a general latent variable model pθ(x, z) = p(z)pθ(x|z) and infer the
posterior pθ(z|x).

DKL(qλ(z)|pθ(z|x))
:= Eqλ(z)[log qλ(z)− log pθ(z|x)]
= Eqλ(z)[log qλ(z)− log pθ(x, z) + log pθ(x)]

= − L(λ, θ) + log pθ(x)

Re-ordering the equation yields

L(λ, θ) = log pθ(x)−DKL(qλ(z)|pθ(z|x)),

which shows that maximizing the ELBO L(λ, θ) is equivalent to both maximizing the marginal
likelihood pθ(x) and minimizing the inference gap DKL(qλ(z)|pθ(z|x)).
Then, with the same procedure as above, two facts follow: 1) maximizing Li(θ, ϕ|E) is
equivalent to maximizing the conditional likelihood log p(yi|y<i,x≤i, Ehs≤i

; θ) and minimiz-
ing the inference gap DKL(qϕ(zi|Oi)|p(zi|Oi; θ)) simultaneously; 2) maximizing Eq. (9)
is equivalent to maximizing log p(y≤N |x≤N ,hs≤N

; θ) and minimizing the inference gap
DKL(qλ(E)|p(E|y≤N ,x≤N ,hs≤N

; θ)) simultaneously. Since maximizing L(θ, ϕ, λ) optimizes
both Li(θ, ϕ|E) and Eq. (9), we conclude our objective function will optimize all the mentioned
aspects above.

A.3 DERIVATION OF L(1)(λ; θ∗, λ∗
0, ϕ

∗)

Derivation of Eq. (5). We only adapt the probabilistic hash embedding E. Similar to Bayesian online
learning where the previous posterior is used as the new prior, we use the previous approximate
posterior qλ∗

0
(E) as the new prior for dataset D1 and fix all the other model parameters θ∗, ϕ∗. The

derivation is the same as the one for Eq. (9) except we replace p(E) with qλ∗
0
(E). We only update λ

to acquire the new posterior in the optimization.

B RELATED WORK

D0 D1 D2 D3 D4

Changing vocabulary " " "

Timestamped " " "

Multi-task "

Table 3: Tabular datasets can be categorized into five categories (D0−D4) based on combinations
of three characteristics, i.e., whether their categorical feature vocabulary dynamically expands over
time, whether they contain a specific timestamp column, and whether their nature is multi-task. For
example, datasets without all these characteristics are considered static (D0). While existing works
mainly consider D0 and D1, PHE fits all dataset types (D0−D4) and specifically highlights the
unique applicability for dynamic and temporal tabular data types (D1−D4).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We extend the discussion in Sec. 2 and survey more related works. In a nutshell, our PHE applies to
all tabular data types in Tab. 3 (i.e., D0−D4) while existing works are targeted to D0 or D1.

Our work deals with multi-task dynamic temporal tabular data. Our method has two major compo-
nents: the probabilistic hash embeddings that learn categorical feature representations and the latent
variable model for multi-task temporal tabular data. Next, we discuss the main related works.

Hash features. PHE is motivated by hashing tricks. Weinberger et al. (2009) proposed to use
one hash function to map categorical features to a one-hot hash embedding of length B, which is
the bucket size. The drawback is the embedding size is too large because there is only one hash
function and that requires a large bucket size B to get rid of collision. Bloom Embeddings (Serrà and
Karatzoglou, 2017) is based on Bloom filters and achieves efficient computation while maintaining a
compact model size. Other previous work on using hashing tricks to generate features focuses on
using a smaller number of embedding-related parameters to achieve the same performance as using
one-hot encoding. Hash embeddings or unified embeddings (Tito Svenstrup et al., 2017; Cheng et al.,
2023) use a shared embedding table for all categorical features and multiple hashing functions as
indices of the embedding table, reducing the possibility of collision. Hash embeddings are designed
for stationary vocabularies, emphasizing small parameter sizes. We generalize hash embeddings to
a probabilistic version that enables us to learn changing vocabularies via Bayesian online learning.
Composition Embeddings (Shi et al., 2020a) use multiple hash embedding tables; in contrast, PHE
uses one shared embedding table, further reducing the memory cost. Wolpertinger (Dulac-Arnold
et al., 2015) and Deep Hash embedding (Kang et al., 2021) use a deep neural network to encode
features into real-valued embeddings. In a changing vocabulary setup, the drawback is the need to
modify the whole neural network to incorporate new string features, even though there is only one
new feature. Different from previous works, our method emphasizes the usage of hash embeddings
in dynamic tabular data with changing vocabularies. In the meantime, the model architecture remains
stable, and only partial parameter updates are required.

Generative models for tabular data. Recent research on generative models of non-temporal
tabular data focuses on modeling multi-modality or heterogeneity but overlooks the sustainable
representations for dynamically expanded vocabularies. These works rely on one-hot encoding
for categorical features. Xu et al. (2019) learns VAE and GAN-based tabular data generator while
conditioning on discrete categorical features. Later works rely on GAN to design tabular data
generators (Liu et al., 2023b; Zhao et al., 2021). Kotelnikov et al. (2023) extend diffusion models to
tabular data.

Temporal tabular data models. To our knowledge, there isn’t a sequence model designed for
multi-task temporal tabular data, although some previous works have the potential to extend to tabular
data. PHE extends Deep Kalman Filters (Krishnan et al., 2015) to be applicable for multi-task,
temporal, and dynamic tabular data, while the original Deep Kalman Filters do not explicitly consider
the multi-task and dynamic vocabulary property of the tabular data. Girin et al. (2021) survey a list of
latent variable sequence models that are possible to be extended to tabular data, although most of
them are designed for speech or video data.

Others. The setup of learning dynamic tabular data with changing vocabularies shares the similarity
to continual learning and Bayesian online learning (Kirkpatrick et al., 2017; Wang et al., 2023; Zenke
et al., 2017; Nguyen et al., 2018; Li et al., 2021), but the difference is our formulation is a novel
dictionary- or vocabulary-incremental setup for tabular data. Besides, Kireev et al. (2023) learn
transferable robust embeddings for categorical features. Yin et al. (2020); Iida et al. (2021) design
objective functions for representation learning on tabular data using large-language models. Arik and
Pfister (2021) and Huang et al. (2020) use the one-hot encoder to learn categorical feature embeddings
before input to a transformer module.

Discussions on alternative designs and shortcomings. We acknowledge that alternative solutions
may exist, e.g., encoding string features with a character-level recurrent neural network or using a
popularity-based token-level one-hot encoder. In our considered aspects, for example, long-tailed
data distributions are commonly seen in applications, probabilistic hash embedding stands out with
simplility and continual learning capability. Hash features (Weinberger et al., 2009; Cheng et al.,
2023) is memory inefficient. Incremental one-hot embeddings are also inefficient for dynamic tabular
data, because the model parameters expand unbounded, resulting in storage inefficient and slow
computation. Deep hash embedding (Kang et al., 2021) and other methods in the same fashion are

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: A tabular data snippet from the Retail dataset. The columns are either categorical, numeric,
or timestamp. The rows corresponds to sale records. StockCode stores product ID. Quantity
stores the sales. “?” denotes missing values. The task is to predict the sales for each product.

StockCode Date UnitPrice CustomerID Country Quantity

85123A 2010-12-01 08:26:00 2.55 17850 United Kingdom 6
84406B 2010-12-01 08:26:00 2.75 17850 United Kingdom 6
21724 2010-12-01 08:45:00 0.85 12583 France 12
21791 2010-12-01 10:03:00 1.25 12431 Australia 12
22139 2010-12-01 11:52:00 0.55 ? United Kingdom 56

computationally inefficient. One needs to adapt the whole neural network even when adding one new
category. In contrast, one only needs to adapt the corresponding embeddings in probabilistic hash
embedding.

Handling hashing value collisions. Collision of hash values could happen among popular, important
categories. To address this issue, we can select the desired hash functions that avoid important
collisions before applying the hash functions. In addition, users come and go fast, and collisions may
become unimportant over time.

C AN EXAMPLE TTD

We will explain the concepts related to this work through an example tabular data snippet (Tab. 4).
Tabular data contains two dimensions–rows and columns. Any stored information can be located
by specifying the row and column indices. We can classify columns into three types: categorical,
numeric, and timestamp. A categorical column represents a discrete nominal feature, usually recorded
in text strings and therefore hashable; A numeric column corresponds to a numeric feature, usually
represented by float or integer values; and a timestamp column records the timestamp when a row is
created. For instance, in Tab. 4, there are six columns, among which StockCode, CustomerID,
and Country are categorical columns, UnitPrice and Quantity are numeric columns, and
Date is a timestamp column. Some columns are of particular interest and one may want to predict
those based on others. We refer to those columns as predicted columns. Predicted columns can be
either categorical or numeric, depending on task requirements. Rows with similar timestamps usually
exhibit correlations. But these correlations may change over time.

Some tabular data is multi-task-oriented. For example, in Tab. 4, one may be interested in predicting
future selling quantity based on historical transactions for each product. In this case, different product
IDs in StockCode suggest different tasks. We refer to the categorical columns consisting of task
identifiers as global columns and other categorical columns as local columns. We express this type of
tabular data multi-task. Each task may have specific column relationships.

All unique items in a categorical column constitute its vocabulary. When new items join into the
column, we say it has a changing or dynamic vocabulary. 7 When any changes happen in the above
three aspects for a table, we say it is temporal tabular data (TTD).

D A SIMPLIFIED MODEL TO UNDERSTAND WHY PHE IS SUPERIOR TO DHE

In this section, we consider a simple linear Gaussian model that we can analyze in closed form to
illustrate why having deterministic hash embeddings that are updated in an online fashion is prone to
forgetting. The crux of our calculations is the fact that distinct categorical items share representations
due to partial hash collisions. Thus, when trained online, the shared features shows a bias to work
well for the categorical item that was most recently seen, rather than be optimized for the overall data
distribution seen so far, leading to the forgetting behaviour. However, we will show that Bayesian
hash embedding does not suffer this, because it is well known that if exact online posterior can be

7We assume the tabular structure is fixed, i.e., the number of columns, column names, and types are fixed.
We also assume categorical features are single-valued. But our work is compatible with multi-valued features.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

computed (which in our linear Gaussian setup is easy to do), the online posterior is identical to the
offline one.8

A simple linear-Gaussian model

Consider a simple situation of regression with input variable X ∈ {0, 1} taking one of two categorical
values and the target Y ∈ R is real-valued. The conditional distribution of Y is a gaussian distribution
with the mean being 1 when X = 0 and mean being −1 when X = 1. We further assume that the
variance of Y is σ2 ≈ 0 is tiny, In notation terms, the true distribution of Y |X = 0 ∼ N (1, σ2),
while the distribution of Y |X = 1 ∼ N (−1, σ2), where σ is a fixed and small. We do not specify
the distribution of the covariate X just yet and defer that to the sequel.

The predictive model based on hash embedding

Given labeled data (X,Y), we aim to learn a predictor f(X) that predicts Y given X . To build the
predictor we use a simple hash embedding model. Specifically, we assume that the predictor f(·) is
parameterized by a 3× 1 embedding matrix E. Although technically this is a vector, we still denote it
as an ‘embedding matrix’ to be consistent with the rest of the exposition. Denote by e(0), e(1) and e(2)

as the three rows of this matrix which are the ‘embedding vectors’ of the three hash values. Thus, in
the notation of our model, this embedding matrix is made of B = 3 buckets with the dimension d = 1.
The model f(·) uses two hash functions hi(·) : {0, 1} → {0, 1, 2, } to map the categorical variable
X into a hash value. Without loss of generality, we assume that h1(0) = 0, h2(0) = 1, h1(1) =
1, h2(1) = 2. Given this, the predictive model f(X) := e(h1(X)) + e(h2(X)) is a simple linear sum
of the two hash embedding of the input based on the two hash functions h1(·) and h2(·). This is
a simple example of the general class of models where the predictor Y is a linear function of the
embedding vectors of the categorical input X computed using the different hash functions. Although
simple, this example illustrates the phenomenon that emerges of learning categorical variables in an
online fashion since the embedding vector e(1) influences both X = 0 through hash function h1(·)
and X = 1 through hash function h2(·).
An online interaction setting

We consider the following online prediction protocol. At each time t = 1, 2, · · · , the environment
samples Xt from a distribution over {0, 1} and produces to the predictor. The predictor then predicts
Ŷt := ft(Xt) and is then shown the true label Y ∈ R. The predictor incurs loss lt := 1

2 (Yt − Ŷt)
2

and uses the observed Yt to update the predictor to ft+1(·).
The only learnable parameters of the predictor is the embedding matrix E. Thus the predictor at
time t denoted by ft(·) is parametrized by the state of the embedding matrix Et with its three rows
denoted by e

(i)
t for i ∈ {0, 1, 2}.

Update the hash embedding matrix through Online Gradient Descent (OGD)

In order to demonstrate that the hash embeddings can lead to forgetting, we will assume that they
are updated through standard online gradient descent. Observe that at time t, if Xt = 0, then
Ŷt = e

(0)
t + e

(1)
t . The instantaneous loss at time t is given by lt =

1
2 (Ŷt − Yt)

2. Thus, the gradients
∂lt

∂e(0)
= ∂lt

∂e(1)
= (e

(0)
t + e

(1)
t − Yt), if Xt = 0. Thus, assuming that the embedding matrix Et is

updated online using OGD at a fixed learning rate η ∈ R leads to the following update equations

e
(0)
t+1 =

{
e
(0)
t − η((e

(0)
t + e

(1)
t − Yt)), Xt = 0

e
(0)
t , Xt = 1.

Similarly the update equations for the other two embedding vectors are as follows.

e
(1)
t+1 =

{
e
(1)
t − η((e

(0)
t + e

(1)
t − Yt)) Xt = 0

e
(1)
t − η((e

(1)
t + e

(2)
t − Yt)) Xt = 1

8Note that this section has a slightly different notation from the main text, but the content is self-contained.
Readers can also match the notation by noting X := m and the input variable value has 0 := m0 and 1 := m1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

e
(2)
t+1 =

{
e
(2)
t Xt = 0

e
(2)
t − η((e

(1)
t + e

(2)
t − Yt)) Xt = 1

These update equations for the embedding shows that e(1) which is shared for both X = 0 and X = 1
gets updated all the time, while e(0) is only updated if X = 0 and similarly e(1) is only updated if
X = 1.

A non-stationary distribution for the co-variates X

Consider a setting where the first N inputs consists of Xt = 0 for all t ∈ {1, · · · , N}, followed by
another N inputs consisting of Xt = 1 for all t ∈ {N + 1, · · · , 2N}. In these discussions we will
assume N is large enough and the learning rate η is appropriately tuned to make the variance of the
predictor to be small. If all the 2N samples were shown to a training algorithm, it could have (near)
perfectly estimated the embedding matrix Ê, i.e., for a X that is sampled from {0, 1} that is equally
likely (matching the training data distribution of equal number of 0 and 1), the expected excess
loss will be arbitrarily small (assuming N is sufficiently large). We will show in the calculations
below that if instead the embedding matrix was learnt using OGD, even if N is large enough, the
learnt model at the end will have a constant excess risk when the test input X is sampled with equal
probability among {0, 1}.

Analyzing the OGD update equations

To see this, we make some simplifying assumptions. First is that σ = 0, i.e., conditioned on X ,
Y is deterministic. Second is a symmetric starting point of e(i)0 = 0 for all i ∈ {0, 1, 2}. It is
easy to observe that both of these assumptions do not change the the observation we will make, but
makes the exposition easier. Thus, at the end of the first N samples, we will have e

(2)
N+1 = 0 and

e
(0)
N+1 = e

(1)
N+1 ≈ 1/2. This follows as N is large and the noise σ is 0, thus leading OGD to converge

to a local minima of the loss function. Any embedding matrix with e(0)+e(1) = 1 is a local-minimum
of the loss function and thus at the end of time N + 1, OGD will result in e

(0)
N+1 + e

(1)
N+1 ≈ 1. Since

the initialization and the loss function is symmetric in the arguements e(0)t = e
(1)
t will hold for all

t ≤ N .

At time t = N + 1, the N observed samples corresponds to X = 0. Thus, the prediction error for
X = 0 by this learnt model f̂N+1(X) is small, i.e., the excess risk (fN+1(X)− 1)2 ≈ 0.

Now consider the times t = N +1 till t = 2N . During this period, the gradients will not impact e(0),
i.e., e(0)N+1 = e

(0)
2N+1 ≈ 1/2. However, e(2) and e(3) are no longer symmetric. But one can work out

the recursion for their evolution since the gradients are the same.

In particular, for any time t ∈ {N +1, · · · , 2N}, the observed Xt = 1. Thus, the gradient of e(1) and
e(2) at all times t ∈ {N +1, · · · , 2N} is the equal to (e

(1)
t + e

(2)
t +1). Thus, under the OGD update

equations, for all times t ∈ {N +1, · · · , 2N}, the equality e
(1)
t+1−e

(2)
t+1 = e

(1)
t −e

(2)
t , holds. Since at

time N +1, we have e(1)N+1 ≈ 1/2 and e
(2)
N+1 = 0, we have that e(1)2N+1 − e

(2)
2N+1 ≈ 1/2. On the other

hand, if N is large, we know that OGD will converge to a local minima, i.e., e(1)2N+1 + e
(2)
2N+1 ≈ −1.

These two equations in the variables e(1)2N+1, e
(2)
2N+1 gives e(1)2N+1 ≈ −1/4 and e

(2)
2N+1 ≈ −3/4.

Concluding that the updates leads to forgetting the representation for X = 0

Thus at the end at time 2N + 1, after having seen the first N samples of X = 0 and the last N
samples of X = 1, the predictor is such that f̂2N+1(0) ≈ 1/4 and f̂2N+1(1) ≈ −1. However, note
that the true label when X = 0 is 1 while when X = 1 is −1. Thus, the predictor f̂2N+1(·) has near
zero prediction error when X = 1. However, when X = 0, the loss given by (f̂2N+1(0)− Y)2 ≈
(1/4− 1)2 ≈ 9/16 is a constant.

This shows the discrepancy between a model trained offline using all the 2N samples and the model
trained online where the first N samples all correspond to X = 0 and the last N samples correspond
to X = 1. The offline model will converge to a local minima in which the prediction error for both

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

X = 0 and X = 1 will be small, while the online model converges to a solution where the prediction
error for the categorical variable that was not seen recently is high.

Arguing that online Bayesian model does not lead to forgetting

A Bayesian method to ‘learn’ the embedding matrix is to posit a prior distribution p(E) for the
emebedding matrix and then given the data X compute the posterior distribution p(E|X). We will
say that the Bayesian learning does not forget, if the posterior distribution computed based on all the
2N samples (X1, Y1), · · · , (X2N , Y2N) shown up-front matches the posterior distribution computed
in an online fashion. However, from classical results in online Bayesian learning, it is well known that
if one can compute the exact posterior p(E|X1, · · · , Xt) at all times t, then the posterior at time 2N
is identical to the one that an offline algorithm would have computed had it seen all the 2N samples
at once. Thus, if the exact posterior can be computed at each time, then there is no forgetting in the
Bayesian mechanism.

Thus in this section, we showed through a simple linear-gaussian model, that online updating of hash
embedding matrix leads to forgetting while a bayesian updating of the embedding matrix does not
lead to forgetting. In order to demonstrate this, we defined forgetting to not occur if the model learnt
at the end of seeing each online sample one by one is close to the model learnt had all the samples
been available up-front. Further, we show in experiments that this insight holds even in more complex
scenarios where exact Bayesian posterior cannot be computed, but only an approximation through
variational inference can be done.

E EXPERIMENTAL DETAILS

E.1 AN EFFICIENT EMBEDDING FETCH SCHEMES

When implementing the hash embedding fetching module, there are two available schemes: scheme
one is first to sample a whole hash table E and then fetch the corresponding embeddings Ehs (as
Eq. (23)); scheme two is first to fetch the distribution p(Ehs) and then sample Ehs (as Eq. (24)).

p(x|s) = p(x|hs) = Ep(E)[p(x|E,hs)] ≈ p(x|E,hs) (23)

= Ep(Ehs)
[p(x|Ehs)] ≈ p(x|Ehs) (24)

The two schemes lead to the same results, but scheme two is more memory-efficient as it does not
need to sample the whole embedding table. Thus in practice, we apply Eq. (24).

E.2 HARDWARE INFORMATION

We train and test our model on GPUs (RTX 5000) and use the deep learning framework PyTorch to
enable efficient stochastic backpropagation. In all supervised learning experiments, the total elapsed
wall time (training and testing) for PHE is less than half an hour, and the finetune baseline runs
slightly faster. In the sequence modeling experiments, PHE runs about one hour since Retail is a
large dataset and has over 500k records. In the recommendation experiments, it takes about two hours
for all methods.

E.3 DETAILS FOR CLASSIFICATION IN TTD

The four public datasets all can be found online: Adult9, Bank10, Mushroom11, and Covertype12.
Specifically, Adult has 14 columns and 48,842 rows containing demographic information. The task is
to predict whether or not a person makes over $50K a year; Bank has 16 columns and 45,211 rows to
predict if a client will subscribe to a term deposit; In Mushroom, of 22 discrete columns and 8,124
rows, the goal is to predict whether a mushroom is poisonous; Covertype, involving 12 columns and
581,012 rows, is to predict which forest cover type a pixel in a satellite image belongs to.

9https://archive.ics.uci.edu/dataset/2/adult
10https://archive.ics.uci.edu/dataset/222/bank+marketing
11https://archive.ics.uci.edu/dataset/73/mushroomWe also follow the recommendation

and only use odor as the feature.
12https://archive.ics.uci.edu/dataset/31/covertype

20

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.ics.uci.edu/dataset/73/mushroom
https://archive.ics.uci.edu/dataset/31/covertype

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Regarding model architecture, we concatenate all category embeddings as well as continuous features
as input to a deterministic one-layer neural network, followed by a softmax activation function. For
PHE and P-EE, we stress that only embeddings are probabilistic and neural network weights are
deterministic. We use negative cross entropy as the objective function assuming the targets follow
categorical distributions.

We apply the following criterion when selecting a categorical column to have a dynamic vocabulary.
We select the column to be dynamic if the weights of the column features have large scales when
fitting a logistic regression model on the outputs. Specifically, we first use one-hot encodings to
represent categorical items, and then fit a logistic regression model on the targeted outcomes. Finally,
we select a column to be incremental if its corresponding categorical features have large weights
because the weights in linear regression models can be interpreted as feature importance. Following
this procedure, we select education, poutcome, odor, and wilderness column for the four
datasets respectively. See detailed group information in Fig. 9.

For the continual learning setup in Supp. E.6.4, we first randomly and evenly split the categorical
features of the selected column into disjoint groups, then partition the original dataset according to
the groups. Based on the column dictionary size, we split Adult/Bank/Mushroom/Covertype into
five/four/four/four disjoint groups. We randomly split each group into training and testing subsets
where the training subset takes two-thirds of the total data and the testing subset takes the remaining
one-third. We sequentially fit the prediction model to each non-overlapped group. The goal is to have
high accuracy for all groups after sequential updates. Therefore, after fitting the model on the current
group’s training data, we report the average accuracy on all previous groups’ test data.

Evidence lower bound. We first present the objective function of the latent variable supervised
learning model (Fig. 2(b)). Similarly to Eq. (9), we can derive the objective function as the evidence
lower bound of

∑N
i=1 log p(yi|xi,hsi ; θ):

L(θ, λ) = Eqλ(E)

[
N∑
i=1

log p(yi|xi, Ehsi
; θ)

]
−DKL(qλ(E)|p(E)) (25)

For online adaptation to dataset D1 of size N1, we fix the classifier parameters and only adapt the hash
embedding table E. Denote the pre-trained parameters by θ∗ and λ∗

0. Treat the previous posterior
qλ∗

0
(E) as the current prior, we can write down the objective function

L(1)(λ; θ∗, λ∗
0) = Eqλ(E)

[
N1∑
i=1

log p(yi|xi, Ehsi
; θ∗)

]
−DKL(qλ(E)|qλ∗

0
(E)) (26)

Implementation details and hyperparameters. We implement the aggregation function g as a
weighted sum where the weights are parameters of g. Specifically, we have another random table
W ∈ RP×K whose distribution is p(W) and a hash function h(W) : S → N<P such that h(W)

s

indexes the rows of W , noted by W
h
(W)
s

∈ RK . W
h
(W)
s

serves as the weights for the K hash

embeddings (see Fig. 2a). Then g(E
h
(1)
s
, . . . , E

h
(K)
s

) =
∑K

k=1 W
k

h
(W)
s

E
h
(k)
s

where W k

h
(W)
s

is the kth
value of vector W

h
(W)
s

. During inference, we infer the posteriors of both E and W .

For all tabular datasets except Mushroom, we set B = 7,K = 3, d = 20, P = 11 (whose supported
dictionary size is P × BK = 3773, which is ten times larger than the vocabulary size of the
Adult dataset). We tried these values on Adult when setting the group size to be one (i.e., the
static supervised learning setup) and found the resulting accuracy (about 84%) is comparable to
the public results on this dataset13. We then use this same parameter setup on all other tabular
data supervised learning experiments. For Mushroom, we use a much smaller model size and set
B = 5,K = 3, d = 5, P = 1, because only one feature is used in the experiment.

Optimization. We use Adam stochastic optimization with a learning rate of 0.01 and a minibatch
size of 128 in all experiments for both our method and baselines. For other hyperparameters of Adam,
we apply the default values recommended in the PyTorch framework. When selecting these values,
we fixed the minibatch size 128 and searched the learning rate (0.001, 0.005, 0.01, 0.05, 0.1) on the

13See the baseline model performance in https://archive.ics.uci.edu/dataset/2/adult

21

https://archive.ics.uci.edu/dataset/2/adult

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 6: Results of online classification on all tabular data.

Adult dataset. We found the learning rate 0.01 leads to relatively fast and stable convergence. Then
we apply the same values on all other datasets. For the first group training, we train PHE 100 epochs;
for the remaining groups, we train PHE 15 epochs as we only need to update the hash embedding
table E. Note that on every group, we train PHE until convergence.

Evaluation metric. We use accuracy as an evaluation metric. As we sequentially adapt the model on
each vocabulary group’s training set and test the model on the test set, we have running accuracies on
each group.

Additional results. We add all datasets’ online learning results in Fig. 6.

E.4 DETAILS FOR MULTI-TASK SEQUENCE MODELING IN TTD

Datasets. We use the Retail dataset14 as a multi-task TTD to demonstrate PHE. The dataset
involves over 4,000 products indicated by StockCode column and the corresponding sale quantities
represented by quantity column with invoice timestamps. We treat quantity as a time series
and then track quantity for all 4,000 selling goods over time in a filtering setup. Prediction for
each piece of product is regarded as one task and there are over 4,000 tasks in total. The task is to
predict the sales quantity for the product shown in each invoice record given the product’s previous
sales.

For the continual learning setting in Supp. E.6.4, we treat all transactions as occurring at even time
intervals. For each task, we randomly split the training and testing set with a ratio of 2:1. To get
multi-tasks in a dynamic setting, we treat StockCode as the task identifier and evenly partition the
products in StockCode into ten disjoint groups where each group involves about 400 goods, i.e.,
400 new tasks. Correspondingly, the original dataset is converted into a task-incremental dataset
where each task refers to predicting sale quantities (i.e., taking Quantity column values as y) for
one product, indicated by StockCode column. We normalize the UnitPrice column into the
range [0, 1] and do not use the Description column. We also drop cancellation transactions that
have Quantity values smaller than zero. Therefore, we refer to StockCode as u, Quantity as
y, UnitPrice as x, {Country, CustomerId} as m, and InvoiceDate as t.

Evidence lower bound. We assume the sales quantity follows Poisson distribution, consequently
using the Poisson likelihood. As mentioned in the main paper, we use Eq. (3) to fit the first task and
use Eq. (5) to fit the remaining tasks.

Implementation details and hyperparameters. We also implement a weighted aggregation function
g as above in the supervised learning setup. We did not try out different hyperparameter settings
and directly set B = 109,K = 3, d = 20, P = 109 as these values can already support a large
vocabulary (of size P ×BK). We apply the same values to both PHE and the baselines.

14http://archive.ics.uci.edu/dataset/352/online+retail

22

http://archive.ics.uci.edu/dataset/352/online+retail

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Days

0.155

0.160

0.165

0.170

0.175

M
ea

n
Ab

so
lu

te
 E

rro
r

FastAda
MediumAda
SlowAda
EE
PHE (ours)

0 2 4 6 8
Days

2
3
4
5
6
7
8
9

M
ea

n
Ab

so
lu

te
 E

rro
r

FastAda
MediumAda
SlowAda
EE
PHE (ours)

Figure 7: First ten day results of data-streaming movie recommendation and sales quantity sequence
modeling.

Optimization. We use Adam stochastic optimization with the same learning rate of 0.005 and the
same minibatch size of 128 as in supervised learning experiments. For other hyperparameters of
Adam, we apply the default values recommended in the PyTorch framework. For the first task training,
we train PHE 15 epochs; for the remaining tasks, we train PHE 5 epochs. Note that on every task,
the epochs used are enough to train PHE until convergence.

Evaluation metric. We also evaluate the performance by the cumulative averages of errors. For each
product, we use the first nine observations to predict the 10th observation and measure the absolute
error on the 10th observation. Then, the average of all such absolute errors is the performance of this
product. Since one group contains about 4,000 products, we further average each product’s perfor-
mance as the group’s performance. Specifically, we have a prediction model that has a Poisson like-
lihood p(yt|yt−9:t−1,xt−9:t,hmt−9:t

,hu). We predict ŷt = E[yt|yt−9:t−1,xt−9:t,hmt−9:t
,hu] as

the mean value and then measure the absolute error between the ground-truth value |yt − ŷt|.
For the continual learning setup, after learning group t, we can evaluate the performance of all
previous and current groups, denoted by Rt,≤t. We refer to the cumulative mean absolute error
R̄t =

∑t
a=1 Rt,a/t at group t as the performance at t. We report R̄t as a function of group numbers

in Fig. 11. We report R̄T after learning the final group T in Tab. 5.

Additional results. Because we smoothed the results with a 1-D Gaussian filter in the main paper,
we provide the first ten days’ result without smoothing in Fig. 7.

E.5 DETAILS FOR RECOMMENDATION IN TTD

Beside the first five years, this up-to-date and largest MovieLens dataset 15 have 8688 days (time
steps) with possibly no records on some days. Note after pre-training, all model parameters are
fixed except the hash embeddings. Regarding the likelihood function, we assume the rating follows
Gaussian distribution.

We randomly split the data into a validation (20%) and a test set (80%). We searched the learning
rate, batch size, neural network size, and likelihood scale on the validation set and reported final
results on the test set. PHE, EE, and FastAda train the hash embeddings for 5 epochs per time step
while MediumAda trains 2 epochs and SlowAda trains 1 epoch.

We also use the mean absolute error as the evaluation metric.

E.6 ADDITIONAL RESULTS

E.6.1 MORE MOTIVATION EXAMPLES

We report additional results in Fig. 8 as a complement to Fig. 1 in the main paper. Fig. 8 provides
more evidence for the motivation of our work. For tabular data in a dynamic setting, not including
the newly created categorical feature values in the prediction model will lead to a performance drop.
Therefore, an efficient way to incorporate the new categorical features is necessary to maintain the
efficacy of a prediction model. The “After update” performance in the plots demonstrates PHE is
desirable for adapting to the new features. The splitting details are in Supps. E.3 and E.4 and Fig. 9.

15https://files.grouplens.org/datasets/movielens/ml-32m.zip

23

https://files.grouplens.org/datasets/movielens/ml-32m.zip

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Group 1 Group 2 Group 3 Group 4 Group 5
40

60

80

100

A
cc

u
ra

cy
(%

)

52

80 83

70
76

80

95

85
82

78

Adult (education)

Before update

After update

Group 1 Group 2 Group 3 Group 4

40

60

80

A
cc

u
ra

cy
(%

)

53

71

62

35

82

72

63 63

Bank (poutcome)

Before update

After update

Group 1 Group 2 Group 3 Group 4

50

100

A
cc

u
ra

cy
(%

)

58
71

27

41

88
100 100 100

Mushroom (odor)

Before update

After update

Group 1 Group 2 Group 3 Group 4

20

40

60

80

A
cc

u
ra

cy
(%

)

13

49

20

43

64

48
42

51

Covertype (wilderness)

Before update

After update

Figure 8: Adult dataset is randomly split into disjoint groups based on the education column.
Groups arrive sequentially. We report results before and after the updates on the hash embeddings for
each group to motivate the need to incorporate new groups into the model. Results are averaged on
five independent runs with different random parameter initializations.

Adult

Group 1 (Preschool, 5th-6th, Bachelors)

Group 2 (10th, 11th, 12th)

Group 3 (7th-8th, HS-grad, Prof-school)

Group 4 (9th, Assoc-voc, Doctorate)

Group 5 (1st-4th, Masters, Some-college, Assoc-acdm)

Mushroom

Group 1 (Musty, None)

Group 2 (Anise, Almond)

Group 3 (Spicy, Creosote)

Group 4 (Foul, Fishy, Pungent)

CoverType

Group 1 (A1)

Group 2 (A3)

Group 3 (A4)

Group 4 (A2)

Bank

Group 1 (Unknown)

Group 2 (Failure)

Group 3 (Other)

Group 4 (Successs)

Figure 9: Group information for continual classification tasks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 10: Comparision of online learning methods’ adaptation and forgetting in a streaming online
setup. Our PHE achieves similar performance with the collision-free P-EE on both metrics. Notably,
SlowAda forgets the least but is slow in adaptation; FastAda is in the opposite regime.

E.6.2 MEMORY EFFICIENCY

Memory efficiency of PHE can be seen from the number of parameters in the embedding module,
which we summarized for both PHE and P-EE in Tab. 2. Note that P-EE sets the performance upper
bound but its size scales linearly with the vocabulary size. The fact that PHE on all datasets achieves
the same performance as P-EE illustrates PHE’s impressive memory efficiency, especially considering
PHE only consumes as low as 2% memory of P-EE. Besides, being a unified embedding where all
categorical columns share the same embedding table (Coleman et al., 2024), PHE is compatible with
modern hardware and can benefit from the hardware acceleration.

We multiply each number by two because every parameter has its mean and variance. 20 is due
to each embedding has 20 dimensions. For PHE, refer to implementation details (Supp. E) for the
number of parameters (B × d+ P ×K). We compute the P-EE parameter size by V × d where V is
the vocabulary size.

E.6.3 ADAPTATION AND FORGETTING ANALYSIS

Adaptation and forgetting analysis. We designed experiments to specifically measure the adaptation
to new data and forgetting of old data. We split the data into two disjoint groups based on a random
partition of one column’s vocabulary. The model was initialized using the first group and online
updated on the second group whose items are unseen in initialization. We let the data arrive one at a
time. Adaptation is measured by the cumulative predictive accuracy of new datum and the forgetting
by the accuracy of the first group’s test data. Results in Fig. 10 show that our PHE has almost the best
adaptation and forgetting performance on all four datasets. The P-EE while does not suffer forgetting,
its adaptation to new categories is slow as each new embedding is initialized at random.

Regarding baselines, SlowAda uses a small learning rate (1e-4); MediumAda uses a medium learning
rate (1e-3); FastAda uses a large learning rate (1e-2).

In Fig. 10, we compare on all four classification datasets used in the paper, our PHE against the four
baselines. We observe from Fig. 10 that the SlowAda baseline with smaller LR (1e-4) leads to slower
forgetting at the cost of slower adaptation, while larger LR (1e-2) has faster adaptation at the cost
of faster forgetting (FastAda). Thus a data-stream dependent LR is needed for deterministic hash
embeddings to trade off adaptation and forgetting. In contrast, our PHE has almost the best adaptation
and forgetting performance on all four datasets due to the regularization from the posteriors. The
EE while does not suffer forgetting as each category has a separate row in the embedding table, its
adaptation to new categories is slow as each new embedding is initialized at random.

E.6.4 CONTINUAL LEARNING

We also investigated classification and sequence modeling in the continual learning setup (Kirkpatrick
et al., 2017), we split the dataset into disjoint groups based on a random partition of a selected
column’s vocabulary, assuming data distribution differs conditioned on each partition. This is similar
to Supp. E.6.1. We then sequentially update the embeddings on each group’s training data. After each
group training, we evaluated the model performance on all previously seen groups’ test data. The
splitting details are in Supps. E.3 and E.4 and Fig. 9. While data-streaming setup aims to have good
performance on the latest task, the goal of continual learning is to perform well on all groups after

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 11: Cumulative average results. Column names in the parentheses are the ones made to have
changing vocabulary and used to split groups. PHE is closest to the performance upper-bound P-EE.

Table 5: TTD batch continual learning performance of compared methdos. Adult, Bank, Mushroom,
and Covertype are classification tasks and thus evaluated by average accuracy, which is larger the
better. Retail is a regression task and we use the metric mean absolute error, lower the better.

SlowAda MediumAda FastAda P-EE (collision-free) PHE (ours)

Adult 76.1±1.8 75.0±4.7 71.6±3.1 85.6±0.1 78.9±3.0
Bank 63.0±4.0 67.5±4.5 69.9±1.2 70.5±0.7 70.1±1.4
Mushroom 75.5±7.6 90.1±8.6 84.7±12.3 96.8±0.0 91.6±7.6
Covertype 41.7±4.0 43.8±5.7 39.5±5.1 52.2±1.1 48.8±2.3
Retail 16.8±17.6 38.9±50.9 - 2.92±0.16 2.73±0.23

sequential training. Fig. 11 and Tab. 5 summarizes the results. Our PHE has the top performance
among hash embedding methods.

E.6.5 ABLATION STUDIES

Justification of updating protocols. We provided evidence on our updating protocols in Tab. 6,
showing updating incremental column’s embeddings as well as fixing other parameters has the best
performance. Tab. 6 presents the accuracy of multiple updating schemes, justifying this updating
protocol in use achieves both high accuracy and computational efficiency.

The impact of potential hash collisions and the mitigation measures.

We experimented on the large Retail dataset under the continual learning setup as in Supp. E.6.4. We
varied the hyperparameters bucket size B and the number of hash functions K to control the potential
number of hash collisions. In particular, we varied one hyperparameter when fixing the other.

We repeated each experiment five times with different random seeds. The tables below show the mean
absolute errors (the lower the better) with standard deviation under each hyperparameter setting. In the
first table, we varied bucket size B while fixing the number of hash functions to be K=2. In the second
table, we fixed the bucket size B to 109, which is the same as in the paper, and changed the number
of hash functions. The collision probability increases from right to left for both tables. The results
in the first table show the more likely a hash collision, the more unstable the model performance.
However, the deterioration is slow, showing the method’s robustness to potential hash collisions and
various hyperparameter settings. In the second table, although increasing K reduces the probability
of hash collisions, increasing K also increases the number of effective parameters (related to model
complexity) to fit in the model. It thereby increases the variance of the predictive performance. Thus,
we recommend choosing a small K (such as 2-3) that trades off both hash-collision and predictive
performance variance. Note when K=1, the hash collision will cause two items to have exactly the
same resulting hash embeddings, leading to a high variance among all settings. We will add these
results to the ablation section in the revised paper.

Ablation study on bucket size B
B=40,K=2 B=60,K=2 B=80,K=2 B=109,K=2

2.83±0.23 2.65±0.16 2.56±0.10 2.58±0.09

Ablation study on the number of hash functions K
B=109,K=1 B=109,K=2 B=109,K=3 B=109,K=4 B=109,K=5

2.66±0.34 2.58±0.09 2.63±0.16 2.78±0.18 2.76±0.13

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 6: Comparison between updating all categorical columns’ embeddings, only updating incre-
mental columns’ embeddings, and updating all model parameters. We used collision-free expandable
embeddings in the experiments. The first two updating protocols have little difference but updating
all parameters sometimes result in performance deterioration, possibly due to catastrophic forgetting
in the network weights.

Adult (Acc.) Bank (Acc.) Mushroom (Acc.) Covertype (Acc.) Retail (Err.)

Update all columns embeddings 84.7±0.0 90.0±0.0 98.8±0.0 64.1±0.0 3.4±0.3
Update incremental columns embeddings (in use) 84.8±0.0 90.1±0.0 98.8±0.0 64.0±0.4 3.2±0.4
Update all model parameters 83.3±0.1 89.5±0.0 98.8±0.0 64.0±0.1 287.9±125.5

Remedy. We use the standard trick of multiple independent hash functions to reduce the collision
probability of two unique items. As is standard in universal hashing [Carter and Wegman, 1997], the
probability of collision with all K hash functions each hashing into B buckets is proportional to (see
section 3.3). Collision of hash values could happen among popular, important categories. To address
this issue, we can select the desired hash functions that avoid important collisions before applying the
hash functions. In addition, users come and go fast, and collisions may become unimportant over
time.

27

	Introduction
	Related Work
	Methodology
	Problem Setup and Notations
	Probabilistic Hash Embeddings (PHE)
	An Application: PHE in Deep Kalman Filters
	Theory: Why is PHE superior for TTD?

	Experiments
	Experimental protocols and Baselines
	Classification in TTD-Streams
	Multi-Task Sequence Modeling in TTD-Streams
	Recommendation in TTD-Streams
	Additional Results

	Conclusions
	Evidence Lower Bounds
	Derivation of L(, ,)
	L(, ,) as a Variational EM Algorithm
	Derivation of L(1)(;*,0*, *)

	Related work
	An Example TTD
	A simplified model to understand why PHE is superior to DHE
	Experimental Details
	An efficient embedding fetch schemes
	Hardware Information
	Details for Classification in TTD
	Details for Multi-Task Sequence Modeling in TTD
	Details for Recommendation in TTD
	Additional Results
	More Motivation Examples
	Memory Efficiency
	Adaptation and Forgetting analysis
	Continual learning
	Ablation studies

